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0.1 PREFACE

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space CP2 are completely unique in the sense that they allow
twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (CP2) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the CP2

projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kähler-Dirac assigned with
Kähler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
“world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with CP2 factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and
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consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
“Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

• One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n × h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kähler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kähler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

• With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW
Kähler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kähler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kähler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. The approximate localization of the nodes of induced spinor fields to 2-D
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string world sheets (and possibly also to partonic 2-surfaces) implies a stringy formulation
of the theory analogous to stringy variant of twistor formalism with string world sheets
having interpretation as 2-braids. In TGD framework fermionic variant of twistor Grassmann
formalism leads to a stringy variant of twistor diagrammatics in which basic fermions can be
said to be on mass-shell but carry non-physical helicities in the internal lines. This suggests
the generalization of the Yangian symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Karkkila, October 30, 2010, Finland

Matti Pitkänen
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged towards
the end of 1977 - would emerge now it would be seen as an attempt to solve the difficulties of
these approaches to unification.

The basic physical picture behind the geometric vision of TGD corresponds to a fusion
of two rather disparate approaches: namely TGD as a Poincare invariant theory of gravitation
and TGD as a generalization of the old-fashioned string model. After 1995 number theoretic
vision started to develop and was initiated by the success of mass calculations based on p-adic
thermodynamics. Number theoretic vision involves all number fields and is complementary to
the geometric vision: one can say that this duality is analogous to momentum-position duality of
wave mechanics. TGD can be also regarded as topological quantum theory in a very general sense
as already the attribute ”Topological” in ”TGD” makes clear. Space-time surfaces as minimal
surfaces can be regarded as representatives of homology equivalence classes and p-adic topologies
generalize the notion of local topology and apply to the description of correlates of cognition.

1.1.1 Geometric Vision Very Briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description
of basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K5].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional embedding space H = M4×
CP2, where M4 is 4-dimensional (4-D) Minkowski space and CP2 is 4-D complex projective
space (see Appendix).

2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to
geometrize various fields. Space-time metric characterizing gravitational fields corresponds to
the induced metric obtained by projecting the metric tensor of H to the space-time surface.
Electroweak gauge potentials are identified as projections of the components of CP2 spinor
connection to the space-time surface, and color gauge potentials as projections of CP2

Killing vector fields representing color symmetries. Also spinor structure can be induced:
induced spinor gamma matrices are projections of gamma matrices of H and induced spinor
fields just H spinor fields restricted to space-time surface. Spinor connection is also projected.
The interpretation is that distances are measured in embedding space metric and parallel
translation using spinor connection of embedding space.

1



2 Chapter 1. Introduction

Twistor lift of TGD means that one can lift space-time surfaces in H to 6-D surfaces a
analogs of twistor space of space-time surface in the Cartesian product of the twistor spaces
of M4 and CP2, which are the only 4-manifolds allowing twistor space with Kähler structure
[A57]. The twistor structure would be induced in some sense, and should coincide with that
associated with the induced metric. Clearly, the 2-spheres defining the fibers of twistor spaces
of M4 and CP2 must allow identification: this 2-sphere defines the S2 fiber of the twistor
space of the space-time surface. This poses a constraint on the embedding of the twistor
space of space-time surfaces as sub-manifold in the Cartesian product of twistor spaces. The
existence of Kähler structure allows to lift 4-D Kähler action to its 6-D counterparts and the
6-D counterpart of twistor space is obtained by its dimensional reduction so that one obtains
a sphere bundle. This makes possible twistorialization for all space-time surfaces: in general
relativity the general metric does not allow this.

3. A geometrization of quantum numbers is achieved. The isometry group of the geometry
of CP2 codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of CP2 geometry so that
standard model gauge group results. There are also important deviations from the standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in CP2 scale. In contrast to GUTs, quark and
lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M4 and CP2 are unique choices for many other reasons. For instance, they are the unique
4-D space-times allowing twistor space with Kähler structure. M4 light-cone boundary
allows a huge extension of 2-D conformal symmetries. M4 and CP2 allow quaternionic
structures. Therefore standard model symmetries have number theoretic meaning.

4. Induced gauge potentials are expressible in terms of embedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field-like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions
in the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particles in space-time can be identified as a topological inhomogeneities in background
space-time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distances of about 104 Planck lengths (CP2 size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore a
microscopic theory from which the standard model and general relativity follow as a topo-
logical simplification, however forcing a dramatic increase of the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These
effects are indeed observed but only in living matter. The basic problem is that one has long
ranged classical electroweak gauge fields. The resolution of the problem is that the quantum
averages of induced weak and color gauge fields vanish due to the fact that color rotations
affect both space-time surfaces and induced weak and color fields. Only the averages of
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electromagnetic fields are nonvanishing. The correlations functions for weak fields are non-
vanishing below Compton lengths of weak bosons. In living matter large values of effective
Planck constant labelling phases of ordinary matter identified as dark matter make possible
long ranged weak fields and color fields.

6. General coordinate invariance requires holography so that space-time surfaces are analogous
to Bohr orbits for particles identified as 3-surfaces. Bohr orbit property would be naturally
realized by a 4-D generalization of holomorphy of string world sheets and implies that the
space-time surfaces are minimal surfaces apart from singularities. This holds true for any
action as long as it is general coordinate invariant and constructible in terms of the induced
geometry. String world sheets and light-like orbits of partonic 2-surfaces correspond to
singularities at which the minimal surface property of the space-time surfaces realizing the
preferred extremal property fails. Preferred extremals are not completely deterministic,
which implies what I call zero energy ontology (ZEO) meaning that the Bohr orbits are the
fundamental objects. This leads to a solution of the basic paradox of quantum measurement
theory. Also the mathematically ill-defined path integral disappears and leaves only the
well-defined functional integral over the Bohr orbits.

7. A string model-like picture emerges from TGD and one ends up with a rather concrete view
about the topological counterpart of Feynman diagrammatics. The natural stringy action
would be given by the string world sheet area, which is present only in the space-time regions
with Minkowskian signature. Gravitational constant could be present as a fundamental con-
stant in string action and the ratio ~/G/R2 would be determined by quantum criticality
conditions. The hierarchy of Planck constants heff/h = n assigned to dark matter in TGD
framework would allow to circumvent the objection that only objects of length of order
Planck length are possible since string tension given by T = 1/~effG apart from numerical
factor could be arbitrary small. This would make possible gravitational bound states as par-
tonic 2-surfaces as structures connected by strings and solve the basic problem of superstring
theories. This option allows the natural interpretation of M4 type vacuum extremals with
CP2 projection, which is Lagrange manifold as good approximations for space-time sheets at
macroscopic length scales. String area does not contribute to the Kähler function at all.

Whether induced spinor fields associated with Kähler-Dirac action and de-localized inside
the entire space-time surface should be allowed remains an open question: super-conformal
symmetry strongly suggests their presence. A possible interpretation for the corresponding
spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants.

It is perhaps useful to make clear what TGD is not and also what new TGD can give to
physics.

1. TGD is not just General Relativity made concrete by using embeddings: the 4-surface
property is absolutely essential for unifying standard model physics with gravitation and
to circumvent the incurable conceptual problems of General Relativity. The many-sheeted
space-time of TGD gives rise only at the macroscopic limit to GRT space-time as a slightly
curved Minkowski space. TGD is not a Kaluza-Klein theory although color gauge potentials
are analogous to gauge potentials in these theories.

TGD space-time is 4-D and its dimension is due to completely unique conformal properties of
light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary
conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry
fundamental fermions at 1-D boundaries of string world sheets. TGD is not obtained
by performing Poincare gauging of space-time to introduce gravitation and is plagued by
profound conceptual problems.

2. TGD is not a particular string model although string world sheets emerge in TGD very
naturally as loci for spinor modes: their 2-dimensionality makes among other things possible
quantum deformation of quantization known to be physically realized in condensed matter,
and conjectured in TGD framework to be crucial for understanding the notion of finite
measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this
obviously means analogy with branes of super-string models.
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TGD is not one more item in the collection of string models of quantum gravitation relying
on Planck length mystics. Dark matter becomes an essential element of quantum gravitation
and quantum coherence in astrophysical scales is predicted just from the assumption that
strings connecting partonic 2-surfaces are responsible for gravitational bound states.

TGD is not a particular string model although AdS/CFT duality of super-string models
generalizes due to the huge extension of conformal symmetries and by the identification
of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a
natural conformal structure.

3. TGD is not a gauge theory. In TGD framework the counterparts of also ordinary gauge
symmetries are assigned to super-symplectic algebra (and its Yangian [A29] [B25, B17, B18]),
which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a
fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is not one
more quantum field theory like structure based on path integral formalism: path integral
is replaced with functional integral over 3-surfaces, and the notion of classical space-time
becomes an exact part of the theory. Quantum theory becomes formally a purely classical
theory of WCW spinor fields: only state function reduction is something genuinely quantal.

4. TGD view about spinor fields is not the standard one. Spinor fields appear at three levels.
Spinor modes of the embedding space are analogs of spinor modes characterizing incoming
and outgoing states in quantum field theories. Induced second quantized spinor fields at
space-time level are analogs of stringy spinor fields. Their modes are localized by the well-
definedness of electro-magnetic charge and by number theoretic arguments at string world
sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma
matrices are replaced by what I call Kähler-Dirac gamma matrices - this something new.
WCW spinor fields, which are classical in the sense that they are not second quantized, serve
as analogs of fields of string field theory and imply a geometrization of quantum theory.

5. TGD is in some sense an extremely conservative geometrization of entire quantum physics:
no additional structures such as gauge fields as independent dynamical degrees of freedom
are introduced: Kähler geometry and associated spinor structure are enough. “Topological”
in TGD should not be understood as an attempt to reduce physics to torsion (see for instance
[B16]) or something similar. Rather, TGD space-time is topologically non-trivial in all scales
and even the visible structures of the everyday world represent non-trivial topology of space-
time in the TGD Universe.

6. Twistor space - or rather, a generalization of twistor approach replacing masslessness in 4-D
sense with masslessness in 8-D sense and thus allowing description of also massive particles
- emerged originally as a technical tool, and its Kähler structure is possible only for H =
M4×CP2. It however turned out that much more than a technical tool is in question. What
is genuinely new is the infinite-dimensional character of the Kähler geometry making it highly
unique, and its generalization to p-adic number fields to describe correlates of cognition. Also
the hierarchy of Planck constants heff = n×h reduces to the quantum criticality of the TGD
Universe and p-adic length scales and Zero Energy Ontology represent something genuinely
new.

The great challenge is to construct a mathematical theory around these physically very
attractive ideas and I have devoted the last 45 years to the realization of this dream and this
has resulted in 26 online books about TGD and nine online books about TGD inspired theory of
consciousness and of quantum biology.

A collection of 30 online books is now (August 2023) under preparation. The goal is to
minimize overlap between the topics of the books and make the focus of a given book sharper.

1.1.2 Two Visions About TGD as Geometrization of Physics and Their
Fusion

As already mentioned, TGD as a geometrization of physics can be interpreted both as a modifi-
cation of general relativity and generalization of string models.
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TGD as a Poincare Invariant Theory of Gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski
space and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A48,
A56, A39, A53].

The identification of the space-time as a sub-manifold [A49, A70] of M4 × CP2 leads to
an exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in struc-
ture than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of CP2

explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors corre-
spond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the CP2 spinor connection, Killing vector fields of CP2 and
of H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries.
Also number theoretical vision selects H = M4 × CP2 uniquely. M4 and CP2 are also unique
spaces allowing twistor space with Kähler structure.

TGD as a Generalization of the Hadronic String Model

The second approach was based on the generalization of the mesonic string model describing
mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization
3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex
of string models. Indeed, the important difference between TGD and string models is that the
analogs of string world sheet diagrams do not describe particle decays but the propagation of
particles via different routes. Particle reactions are described by generalized Feynman diagrams
for which 3-D light-like surface describing particle propagating join along their ends at vertices. As
4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Quite recently, it has turned out that fermionic strings inside space-time surfaces define an
exact part of quantum TGD and that this is essential for understanding gravitation in long length
scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined
either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time
regions or Kähler action + string action assignable to Minkowskian regions.

The recent view about construction of scattering amplitudes is very “stringy”. By strong
form of holography string world sheets and partonic 2-surfaces provide the data needed to con-
struct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical
correspondence necessary to understand the classical correlates of quantum measurement. There
is a huge generalization of the duality symmetry of hadronic string models.

The proposal is that scattering amplitudes can be regarded as sequences of computational
operations for the Yangian of super-symplectic algebra. Product and co-product define the basic
vertices and realized geometrically as partonic 2-surfaces and algebraically as multiplication for the
elements of Yangian identified as super-symplectic Noether charges assignable to strings. Any com-
putational sequences connecting given collections of algebraic objects at the opposite boundaries
of causal diamond (CD) produce identical scattering amplitudes.

Fusion of the Two Approaches via a Generalization of the Space-Time Concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
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trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a “topological condensate” containing matter as
particle like 3-surfaces “glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
“topological condensate” there could be “vapor phase” that is a “gas” of particle like 3-surfaces
and string like objects (counterpart of the “baby universes” of GRT) and the non-conservation
of energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possible existence vapour phase.

. What one obtains is what I have christened as many-sheeted space-time (see Fig. http:

//tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory the physical
system does not possess this kind of field identity. The notion of the magnetic body is one of
the key players in TGD inspired theory of consciousness and quantum biology. The existence of
monopole flux tubes requiring no current as a source of the magnetic field makes it possible to
understand the existence of magnetic fields in cosmological and astrophysical scales.

This picture became more detailed with the advent of zero energy ontology (ZEO). The
basic notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP2

and of the intersection of future and past directed light-cones and having scale coming as an
integer multiple of CP2 size is fundamental. CDs form a fractal hierarchy and zero energy states
decompose to products of positive and negative energy parts assignable to the opposite boundaries
of CD defining the ends of the space-time surface. The counterpart of zero energy state in positive
energy ontology is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the
opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can
say that by holography the basic dynamical objects are the space-time surface connecting these
3-surfaces and identifiable as analogs of Bohr orbits. This changes totally the vision about notions
like self-organization: self-organization by quantum jumps does not take for a 3-D system but for
the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as
space-like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that
space-time surface is analogous to Bohr orbit. An alternative identification of the lines of gener-
alized Feynman diagrams is as light-like 3-surfaces at which the signature of the induced metric
changes from Minkowskian to Euclidian . Also the Euclidian 4-D regions can have a similar in-
terpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kähler action. In
finite length scale resolution these effects can be neglected below UV cutoff and above IR cutoff.
One can also speak about a strong form of holography.

The understanding of the super symplectic invariance leads to the proposal that super
symplectic algebra and other Kac-Moody type algebras labelled by non-negative multiples of
basic conformal weights allow a hierarchy of symmetry breakings in which the analog of gauge
symmetry breaks down to a genuine dynamical symmetry. This gives rise to fractal hierarchies of
algebras and symmetry breakings. This breaking can occur also for ordinary conformal algebras
if one restricts the conformal weights to be non-negative integers.

1.1.3 Basic Objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four embedding space
coordinates only- essentially CP2 coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particles topologically condense to several space-time sheets simultaneously and experience the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified
theory the number of primary field variables is countered in hundreds if not thousands, now it is
just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-time
due to the embeddability to 8-D embedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation makes
it possible to understand the relationship to GRT space-time and how the Equivalence Principle
(EP) follows from Poincare invariance of TGD. The interpretation of GRT space-time is as effective
space-time obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the induced metrics
of the space-time sheets from Minkowski metric. Poincare invariance strongly suggests classical EP
for the GRT limit in long length scales at least. One can also consider other kinds of limits such
as the analog of GRT limit for Euclidian space-time regions assignable to elementary particles.
In this case deformations of CP2 metric define a natural starting point and CP2 indeed defines a
gravitational instanton with a very large cosmological constant in Einstein-Maxwell theory. Also
gauge potentials of the standard model correspond classically to superpositions of induced gauge
potentials over space-time sheets.

Topological Field Quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was “Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones.

World of Classical Worlds

The notion of WCW reduces the interacting quantum theory to a theory of free WCW spinor
fields.

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude identified as WCW spinor in the configuration space CH (“world of
classical worlds”, WCW) consisting of all possible 3-surfaces in H. “All possible” means that
surfaces with arbitrary many disjoint components and with arbitrary internal topology and
also singular surfaces topologically intermediate between two different manifold topologies
are included.

2. 4-D general coordinate invariance forces holography and replaces the ill-defined path integral
over all space-time surfaces with a discrete sum over 4-D analogs of Bohr orbits for particles
identified as 3-surfaces. Holography means that basic objects are these analogs of Bohr orbits.
Since there is no quantization at the level of WCW, one has an analog of wave mechanics
with point-like particles replaced with 4-D Bohr orbits.
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3. One must geometrize WCW as the space of Bohr orbits. In an infinite-dimensional situation
the existence of geometry requires maximal symmetries already in the case of loop spaces.
Physics is unique from its mathematical existence.

WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operators, appearing in the field equations of the
theory 1

Identification of Kähler function

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kähler function. Kähler function is
Kähler action for a preferred extremal assignable to a given 3-surface but what this preferred
extremal is? The obvious first guess was as absolute minimum of Kähler action but could not be
proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should
reduce to almost topological QFT in which braids would replace 3-surfaces in finite measurement
resolution, which could be inherent property of the theory itself and imply discretization at partonic
2-surfaces with discrete points carrying fermion number.

It took long time to realize that there is no discretization in 4-D sense - this would lead to
difficulties with basic symmetries. Rather, the discretization occurs for the parameters character-
izing co-dimension 2 objects representing the information about space-time surface so that they
belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic
2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself
approximates itself, one might say! This is of course nothing but strong form of holography.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the

√
g4 factorc coming from metric would be imaginary

so that one would obtain sum of real term identifiable as Kähler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The way to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulomb
contribution to Kähler action is required and is true for all known extremals if one makes
a general ansatz about the form of classical conserved currents. The so called weak form of
electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to
Chern-Simons terms. In this way almost topological QFT results. But only “almost” since
the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons
action for preferred extremals depends on metric.

WCW spinor fields

Classical WCW spinor fields are analogous to Schrödinger amplitudes and the construction of
WCW Kähler geometry reduces to the second quantization of free spinor fields of H.

1There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric
definable either in terms of Kähler function identified as a the bosonic action for Euclidian space-time regions
or as anti-commutators for WCW gamma matrices identified as conformal Noether super-charges associated with
the second quantized modified Dirac action consisting of string world sheet term and possibly also modified Dirac
action in Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT
duality.
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1. The WCW metric is given by anticommutators of WCW gamma matrices which also have
interpretation as supercharges assignable to the generators of WCW isometries and allow-
ing expression as non-conserved Noether charges. Holography implies zero energy ontology
(ZEO) meaning that zero energy states are superpositions of Bohr orbits connecting bound-
aries of causal diamond (CD). CDs form a fractal hierarchy and their space forming the
spine of WCW is finite-dimensional and can be geometrized. The alternative interpretation
is as a superposition of pairs of ordinary 3-D fermionic states assignable to the ends of the
space-time surfaces.

2. There are several Dirac operators. WCW Dirac operatorDWCW appears in Super-symplectic
gauge conditions analogous to Super Virasoro conditions. The algebraic variant of the H
Dirac operator DH appears in fermionic correlation functions: this is due to the fact that
free fermions appearing as building bricks of WCW gamma matrices are modes of DH . The
modes of DH define the ground states of super-symplectic representations. There is also
the modified Dirac operator DX4 acting on the induced spinors at space-time surfaces and
it is dictated by symmetry one the action fixing the space-time surfaces as Bohr orbits is
fixed. DH is needed since it determines the expressions of WCW gamma matrices as
Noether charges assignable to 3-surfaces at the ends of WCW.

The role of modified Dirac action

1. By quantum classical correspondence, the construction of WCW spinor structure in sectors
assignable to CDs reduces to the second quantization of the induced spinor fields of H. The
basic action is so called modified Dirac action in which gamma matrices are replaced with
the modified) gamma matrices defined as contractions of the canonical momentum currents
of the bosonic action defining the space-time surfaces with the embedding space gamma
matrices. In this way one achieves super-conformal symmetry and conservation of fermionic
currents among other things and a consistent Dirac equation.

Modified Dirac action is needed to define WCW gamma matrices as super charges assignable
to WCW isometry generators identified as generators of symplectic transformations and by
holography are needed only at the 3-surface at the boundaries of WCW. It is important to
notice that the modified Dirac equation does not determine propagators since induced spinor
fields are obtained from free second quantized spinor fields of H. This means enormous
simplification and makes the theory calculable.

2. An important interpretational problem relates to the notion of the induced spinor connec-
tion. The presence of classical W boson fields is in conflict with the classical conservation
of em charge since the coupling to classical W fields changes em charge.

One way out of the problem is the fact that the quantum averages of weak and gluon fields
vanish unlike the quantum average of the em field. This leads to a rather precise understand-
ing of electroweak symmetry breaking as being due the fact that color symmetries rotate
space-time surfaces and also affect the induced weak fields.

One can also consider a stronger condition. If one requires that the spinor modes have well-
defined em charge, one must assume that the modes in the generic situation are localized at
2-D surfaces - string world sheets or perhaps also partonic 2-surfaces - at which classicalW bo-
son fields vanish. Covariantly constant right handed neutrinos generating super-symmetries
forms an exception. The vanishing of the Z0 field is possible for Kähler-Dirac action and
should hold true at least above weak length scales. This implies that the string model in 4-D
space-time becomes part of TGD. Without these conditions classical weak fields can vanish
above weak scale only for the GRT limit of TGD for which gauge potentials are sums over
those for space-time sheets.

The localization would simplify the mathematics enormously and one can solve exactly the
Kähler-Dirac equation for the modes of the induced spinor field just like in super string
models.

At the light-like 3-surfaces the signature of the induced metric changes from Euclidian to
Minkowskian so that

√
g4 vanishes. One can pose the condition that the algebraic analog of



10 Chapter 1. Introduction

the massless Dirac equation is satisfied by the modes of the modified-Dirac action assignable
to the Chern-Simons-Kähler action.

1.1.5 Construction of scattering amplitudes

Reduction of particle reactions to space-time topology

Particle reactions are identified as topology changes [A62, A77, A87]. For instance, the decay of
a 3-surface to two 3-surfaces corresponds to the decay A → B + C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector
to two-particle sector. All coupling constants should result as predictions of the theory since no
nonlinearities are introduced.

During years this näıve and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form
of General Coordinate Invariance has led to a rather detailed and in many respects un-expected
visions. This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also introduced the word “world of classical worlds” (WCW) instead of
rather formal “configuration space”. I hope that “WCW” does not induce despair in the reader
having tendency to think about the technicalities involved!

Construction of the counterparts of S-matrices

What does one mean with the counterpart of S-matrix in the TGD framework has been a long
standing problem. The development of ZEO based quantum measurement theory has led to a
rough overall view of the situation.

1. There are two kinds of state function reductions (SFRs). ”Small” SFRs (SSFRs) following the
TGD counterpart of a unitary time evolution defines a sequence of SFRs, which is analogous
to a sequence of repeated quantum measurements associated with the Zeno effect. In wave
mechanics nothing happens in these measurements. In quantum optics these measurements
correspond to weak measurements. In TGD SSFR affects the zero energy state but leaves
the 3-D state at the passive boundary of CD unaffected.

2. In TGD framework each SSFR is preceded by a counterpart of a unitary time evolution,
which means dispersion in the space of CDs and unitary time evolution in fermionic degrees
of freedom such that the passive boundary of CDs and 3-D states at it are unaffected but a
superposition of CDs with varying active boundaries in the space of CDs is formed. In SSFR
a localization in the space of CDs occurs such that the active is fixed. In a statistical sense
the size of the CD increases and the increasing distance between the tips of the CD gives rise
to the arrow of geometric time.

3. Also ”big” SFRS (BSFRs) can occur and they correspond to ordinary SFRs. In BSFR the
roles of the active and passive boundary are changed and this means that the arrow of time
is changed. Big SFR occurs when the SSFR corresponds to a quantum measurement, which
does not commute with the operators, which define the states at the passive boundary of CD
as their eigenstates. This means a radical deviation from standard quantum measurement
theory and has predictions in all scales.

4. One can assign the counterpart of S-matrix to the unitary time evolution between two sub-
sequent SSFRs and also to the counterpart of S-matrix associated with BSFR. At least in
the latter case the dimension of the state space can increase since at least BSFRs lead to
the increase of the dimension of algebraic extension of rationals assignable to the space-time
surface by M8 −H duality. Unitarity is therefore replaced with isometry.

5. I have also considered the possibility that unitary S-matrix could be replaced in the fermionic
degrees of freedom with Kähler metric of the state space satisfying analogs of unitarity
conditions but it seems that this is un-necessary and also too outlandish an idea.
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The notion of M-matrix

1. The most ambitious dream is that zero energy states correspond to a complete solution basis
for the Dirac operators associated with WCWs associated with the spaces of CDs with fixed
passive boundary: this would define an S-matrix assignable to SFR. Also the analog of S-
matrix for the localizations of the states to the active boundary assignable to the BSFR
changing the state at the passive boundary of CD is needed.

2. If one allows entanglement between positive and energy parts of the zero energy state but
assumes that the states at the passive boundary are fixed, one must introduce the counterpart
of the density matrix, or rather its square root. This classical free field theory would dictate
what I have called M-matrices defined between positive and negative energy parts of zero
energy states which form orthonormal rows of what I call U-matrix as a matrix defined
between zero energy states. A biven M-matrix in turn would decompose to a product of a
hermitian square root of density matrix and unitary S-matrix.

3. M-matrix would define time-like entanglement coefficients between positive and negative en-
ergy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in a well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the M-matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebras acting as symmetries of the S-matrix. Therefore quan-
tum TGD would reduce to group theory in a well-defined sense.

4. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained
by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also
the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and
would correspond to a hierarchy of CDs with the temporal distances between tips coming as
integer multiples of the CP2 time.

The M-matrices associated with CDs are obtained by a discrete scaling from the minimal
CD and characterized by integer n are naturally proportional to a representation matrix of
scaling: S(n) = Sn, where S is unitary S-matrix associated with the minimal CD [K67]. This
conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized
to integer power of S and represented as scaling with respect to the logarithm of the proper
time distance between the tips of CD.

5. I have also considered the notion of U-matrix. U-matrix elements between M-matrices for
various CDs are proportional to the inner products Tr[S−n1◦HiHj◦Sn2λ], where λ represents
unitarily the discrete Lorentz boost relating the moduli of the active boundary of CD and
Hi form an orthonormal basis of Hermitian square roots of density matrices. ◦ tells that S
acts at the active boundary of CD only. I have proposed a general representation for the
U-matrix, reducing its construction to that of the S-matrix.

1.1.6 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional config-
uration space (“world of classical worlds”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name “TGD as a gen-
eralized number theory”. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already,
the formulation of quantum TGD in terms of complexified counterparts of classical number fields,
and the notion of infinite prime. Note that one can identify subrings such as hyper-quaternions and
hyper-octonions as sub-spaces of complexified classical number fields with Minkowskian signature
of the metric defined by the complexified inner product.
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The Threads in the Development of Quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name “TGD as
a generalized number theory”. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and rather fruitful revision
of the basic views about what the final form and physical content of quantum TGD might
be. Together with the vision about the fusion of p-adic and real physics to a larger coherent
structure these sub-threads fused to the “physics as generalized number theory” thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
primes as sub-threads of a thread which might be called “physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to three corresponding to
geometric, number theoretic and topological views of physics.

TGD forces the generalization of physics to a quantum theory of consciousness, and TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations.

Number theoretic vision very briefly

Number theoretic vision about quantum TGD involves notions like adelic physics, M8−H duality
and number theoretic universality. A short review of the basic ideas that have developed during
years is in order.

1. The physical interpretation of M8 is as an analog of momentum space and M8 −H duality
is analogous to momentum-position duality of ordinary wave mechanics.

2. Adelic physics means that all classical number fields, all p-adic number fields and their
extensions induced by extensions of rationals and defining adeles, and also finite number
fields are basic mathematical building bricks of physics.

The complexification of M8, identified as complexified octonions, would provide a realization
of this picture and M8 −H duality would map the algebraic physics in M8 to the ordinary
physics in M4 × CP2 described in terms of partial differential equations.
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3. Negentropy Maximization Principle (NMP) states that the conscious information assignable
with cognition representable measured in terms of p-adic negentropy increases in statistical
sense.

NMP is mathematically completely analogous to the second law of thermodynamics and
number theoretic evolution as an unavoidable statistical increase of the dimension of the
algebraic extension of rationals characterizing a given space-time region implies it. There is
no paradox involved: the p-adic negentropy measures the conscious information assignable
to the entanglement of two systems regarded as a conscious entity whereas ordinary entropy
measures the lack of information about the quantums state of either entangled system.

4. Number theoretical universality requires that space-time surfaces or at least their M8 −H
duals in M8

c are defined for both reals and various p-adic number fields. This is true if they are
defined by polynomials with integer coefficients as surfaces in M8 obeying number theoretic
holography realized as associativity of the normal space of 4-D surface using as holographic
data 3-surfaces at mass shells identified in terms of roots of a polynomial. A physically
motivated additional condition is that the coefficients of the polynomials are smaller than
their degrees.

5. Galois confinement is a key piece of the number theoretic vision. It states that the momenta of
physical states are algebraic integers in the extensions of rationals assignable to the space-time
region considered. These numbers are in general complex and are not consistent with particle
in box quantization. The proposal is that physical states satisfy Galois confinement being
thus Galois singlets and having therefore total momenta, whose components are ordinary
integers, when momentum unit defined by the scale of causal diamond (CD) is used.

6. The notion of p-adic prime was introduced in p-adic mass calculations that started the
developments around 1995. p-Adic length scale hypothesis states that p-adic primes near
powers of 2 have a special physical role (as possibly also the powers of other small primes
such as p = 3).

The proposal is that p-adic primes correspond to ramified primes assignable to the extension
and identified as divisors of the polynomial defined by the products of the root differences
for the roots of the polynomial defining space-time space and having interpretation as values
of, in general complex, virtual mass squared.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might
be important for TGD. Experimentation with p-adic numbers led to the notion of canonical iden-
tification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Al-
though the details of the calculations have varied from year to year, it was clear that p-adic physics
reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all
elementary particle mass scales, to number theory if one assumes that primes near prime powers of
two are in a physically favored position. Why this is the case, became one of the key puzzles and
led to a number of arguments with a common gist: evolution is present already at the elementary
particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired “Universe as Computer” vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.
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In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades central
problem in the frontier of mathematics and a lot of profound work has been done along same
intuitive lines as I have proceeded in TGD framework. The basic idea is certainly the notion
of algebraic continuation from the world of rationals belonging to the intersection of real world
and various p-adic worlds.

Despite various uncertainties, the number of the applications of the poorly defined p-adic
physics has grown steadily and the applications turned out to be relatively stable so that it was
clear that the solution to these problems must exist. It became only gradually clear that the
solution of the problems might require going down to a deeper level than that represented by reals
and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structure.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of embedding space and space-time concept
and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time,
embedding space, and WCW.

The corresponds of real 4-surfaces with the p-adic ones is induced by number theoretical
discretization using points of 4-surfaces Y 4 ⊂M8

c identifiable as 8-momenta, whose components are
assumed to be algebraic integers in an extension of rationals defined by the extension of rationals
associated with a polynomial P with integer coefficients smaller than the degree of P . These points
define a cognitive representation, which is universal in the sense that it exists also in the algebraic
extensions of p-adic numbers. The points of the cognitive representations associated with the mass
shells with mass squared values identified as roots of P are enough since M8 −H duality can be
used at both M8 and H sides and also in the p-adic context. The mass shells are special in that
they allow for Minkowski coordinates very large cognitive representations unlike the interiors of the
4-surfaces determined by holography by using the data defined by the 3-surfaces at the mass shells.
The higher the dimension of the algebraic extension associated with P , the better the accuracy of
the cognitive representation.

Adelization providing number theoretical universality reduces to algebraic continuation for
the amplitudes from this intersection of reality and various p-adicities - analogous to a back of a
book - to various number fields. There are no problems with symmetries but canonical identification
is needed: various group invariant of the amplitude are mapped by canonical identification to
various p-adic number fields. This is nothing but a generalization of the mapping of the p-adic
mass squared to its real counterpart in p-adic mass calculations.

This leads to surprisingly detailed predictions and far reaching conjectures. For instance,
the number theoretic generalization of entropy concept allows negentropic entanglement central
for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or
Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could
emerge as so called ramified primes of algebraic extension of rationals in question and characterizing

http://tgdtheory.fi/appfigures/cat.jpg
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string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for
extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces
(imaginations) allowing also real continuation (realization of imagination) would be especially
large. These ramifications would be winners in the fight for number theoretical survival. Also a
generalization of p-adic length scale hypothesis emerges from NMP [K63].

The characteristic non-determinism of the p-adic differential equations suggests strongly that
p-adic regions correspond to “mind stuff”, the regions of space-time where cognitive representations
reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is
probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the
cognitive representations to derive information about the real physics. This view encouraged by
TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear
interpretation for the predictions of p-adic physics.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined
by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the
speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly repre-
sentable as surfaces geometrically, it was clear how TGD might be formulated as a generalized
number theory with infinite primes forming the bridge between classical and quantum such that
real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from
algebraic physics as various completions of the algebraic extensions of complexified quaternions
and octonions. Complete algebraic, topological and dimensional democracy would characterize
the theory.

The infinite primes at the first level of hierarchy, which represent analogs of bound states,
can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of
rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields.
The products of infinite primes in turn define more general algebraic extensions of rationals. The
interesting question concerns the physical interpretation of the higher levels in the hierarchy of
infinite primes and integers mappable to polynomials of n > 1 variables.

1.1.7 An explicit formula for M8 −H duality

M8 −H duality is a generalization of momentum-position duality relating the number theoretic
and geometric views of physics in TGD and, despite that it still involves poorly understood aspects,
it has become a fundamental building block of TGD. One has 4-D surfaces Y 4 ⊂ M8

c , where
M8
c is complexified M8 having interpretation as an analog of complex momentum space and 4-D

spacetime surfaces X4 ⊂ H = M4 ×CP2. M8
c , equivalently E8

c , can be regarded as complexified
octonions. M8

c has a subspace M4
c containing M4.

Comment: One should be very cautious with the meaning of ”complex”. Complexified
octonions involve a complex imaginary unit i commuting with the octonionic imaginary units
Ik. i is assumed to also appear as an imaginary unit also in complex algebraic numbers defined
by the roots of polynomials P defining holographic data in M8

c .

In the following M8 − H duality and its twistor lift are discussed and an explicit formula
for the dualities are deduced. Also possible variants of the duality are discussed.

Holography in H

X4 ⊂ H satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3-
surface. The proposal is that holography reduces to a 4-D generalization of holomorphy so that
X4 is a simultaneous zero of two functions of complex CP2 coordinates and of what I have called
Hamilton-Jacobi coordinates of M4 with a generalized Kähler structure.

The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition
M4 = M2 × E2, where M2 is endowed with hypercomplex structure defined by light-like coor-
dinates (u, v), which are analogous to z and z. Any analytic map u → f(u) defines a new set
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of light-like coordinates and corresponds to a solution of the massless d’Alembert equation in M2.
E2 has some complex coordinates with imaginary unit defined by i.

The conjecture is that also more general Hamilton-Jacobi structures for which the tangent
space decomposition is local are possible. Therefore one would have M4 = M2(x)×E2(x). These
would correspond to non-equivalent complex and Kähler structures of M4 analogous to those
possessed by 2-D Riemann surfaces and parametrized by moduli space.

Number theoretic holography in M8
c

Y 4 ⊂ M8
c satisfies number theoretic holography defining dynamics, which should reduce to asso-

ciativity in some sense. The Euclidian complexified normal space N4(y) at a given point y of Y 4

is required to be associative, i.e. quaternionic. Besides this, N4(i) contains a preferred complex
Euclidian 2-D subspace Y 2(y). Also the spaces Y 2(x) define an integrable distribution. I have
assumed that Y 2(x) can depend on the point y of Y 4.

These assumptions imply that the normal space N(y) of Y 4 can be parameterized by
a point of CP2 = SU(3)/U(2). This distribution is always integrable unlike quaternionic tangent
space distributions. M8 −H duality assigns to the normal space N(y) a point of CP2. M4

c

point y is mapped to a point x ∈ M4 ⊂ M4 × CP2 defined by the real part of its inversion
(conformal transformation): this formula involves effective Planck constant for dimensional reasons.

The 3-D holographic data, which partially fixes 4-surfaces Y 4 is partially determined by a
polynomial P with real integer coefficients smaller than the degree of P . The roots define mass
squared values which are in general complex algebraic numbers and define complex analogs of mass
shells in M4

c ⊂ M8
c , which are analogs of hyperbolic spaces H3. The 3-surfaces at these mass

shells define 3-D holographic data continued to a surface Y 4 by requiring that the normal space
of Y 4 is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting
conjecture is that they correspond to fundamental domains of tessellations of H3.

What does the complexity of the mass shells mean? The simplest interpretation is that
the space-like M4 coordinates (3-momentum components) are real whereas the time-like
coordinate (energy) is complex and determined by the mass shell condition. One would have
Re2(E)− Im(E)2 − p2 = Re(m2) and 2Re(E)Im(E) = Im(m2). The condition for the real parts
gives H3 when

√
Re2(E)− Im(E)2 is taken as a time coordinate. The second condition allows

to solve Im(E) in terms of Re(E) so that the first condition reduces to an equation of mass shell
when

√
(Re(E)2 − Im(E)2), expressed in terms of Re(E), is taken as new energy coordinate

Eeff =
√

(Re(E)2−Im(E)2). Is this deformation of H3 in imaginary time direction equivalent
with a region of the hyperbolic 3-space H3?

One can look at the formula in more detail. Mass shell condition gives Re2(E)−Im(E)2−
p2 = Re(m2) and 2Re(E)Im(E) = Im(m2). The condition for the real parts gives H3, when√
Re2(E)− Im(E)2 is taken as an effective energy. The second condition allows to solve Im(E)

in terms of Re(E) so that the first condition reduces to a dispersion relation for Re(E)2.

Re(E)2 =
1

2
(Re(m2)− Im(m2) + p2)(1±

√
1 +

2Im(m2)2

(Re(m2)− Im(m2) + p2)2
. (1.1.1)

Only the positive root gives a non-tachyonic result for Re(m2)− Im(m2) > 0. For real roots with
Im(m2) = 0 and at the high momentum limit the formula coincides with the standard formula.
For Re(m2) = Im(m2) one obtains Re(E)2 → Im(m2)/

√
2 at the low momentum limit p2 → 0.

Energy does not depend on momentum at all: the situation resembles that for plasma waves.

Can one find an explicit formula for M8 −H duality?

The dream is an explicit formula for the M8 −H duality mapping Y 4 ⊂M8
c to X4 ⊂ H. This

formula should be consistent with the assumption that the generalized holomorphy holds true for
X4.

The following proposal is a more detailed variant of the earlier proposal for which Y 4 is
determined by a map g of M4

c → SU(3)c ⊂ G2,c, where G2,c is the complexified automorphism
group of octonions and SU(3)c is interpreted as a complexified color group.
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This map defines a trivial SU(3)c gauge field. The real part of g however defines a
non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with respect to
the gauge potential. The quadratic terms involving the imaginary part of the gauge potential give
an additional condition to the real part in the complex situation and cancel it. If only the real
part of g contributes, this contribution would be absent and the gauge field is non-vanishing.

How could the automorphism g(x) ⊂ SU(3) ⊂ G2 give rise to M8 −H duality?

1. The interpretation is that g(y) at given point y of Y 4 relates the normal space at y to a
fixed quaternionic/associative normal space at point y0, which corresponds is fixed by some
subgroup U(2)0 ⊂ SU(3). The automorphism property of g guarantees that the normal
space is quaternionic/associative at y. This simplifies the construction dramatically.

2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex sub-
space which corresponds to a point of sphere S2 = SO(3)/O(2), where SO(3) is the quater-
nionic automorphism group. The interpretation could be in terms of a selection of spin
quantization axes. The local choice of the preferred complex plane would not be unique
and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M4

characterized by the choice of M2(x) and equivalently its normal subspace E2(x).

These two structures are independent apart from dependencies forced by the number theoretic
dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and
energy by fixing a distribution of light-like tangent vectors of M4 and the choice of the
quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining
a quantization axis of the weak isospin.

3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection SU(3)→ CP2

in turn defines a point of CP2 = SU(3)/U(2). Hence one can assign to g a point of CP2

as M8 − H duality requires and deduce an explicit formula for the point. This means a
realization of the dream.

4. The construction requires a fixing of a quaternionic normal space N0 at y0 containing a
preferred complex subspace at a single point of Y 4 plus a selection of the function g. If M4

coordinates are possible for Y 4, the first guess is that g as a function of complexified M4

coordinates obeys generalized holomorphy with respect to complexified M4 coordinates in
the same sense and in the case of X4. This might guarantee that the M8 −H image of Y 4

satisfies the generalized holomorphy.

5. Also space-time surfaces X4 with M4 projection having a dimension smaller than 4 are al-
lowed. I have proposed that they might correspond to singular cases for the above formula:
a kind of blow-up would be involved. One can also consider a more general definition of
Y 4 allowing it to have a M4 projection with dimension smaller than 4 (say cosmic strings).
Could one have implicit equations for the surface Y 4 in terms of the complex coordinates of
SU(3)c and M4? Could this give for instance cosmic strings with a 2-D M4 projection and
CP2 type extremals with 4-D CP2 projection and 1-D light-like M4 projection?

What could the number theoretic holography mean physically?

What could be physical meaning of the number theoretic holography? The condition that has been
assumed is that the CP2 coordinates at the mass shells of M4

c ⊂ M8
c mapped to mass shells H3

of M4 ⊂ M4 × CP2 are constant at the H3. This is true if the g(y) defines the same CP2 point
for a given component X3

i of the 3-surface at a given mass shell. g is therefore fixed apart from
a local U(2) transformation leaving the CP2 point invariant. A stronger condition would be that
the CP2 point is the same for each component of X3

i and even at each mass shell but this
condition seems to be unnecessarily strong.

Comment: One can o criticize this condition as too strong and one can consider giving
up this condition. The motivation for this condition is that the number of algebraic points at the
3-surfaces associated with H3 explodes since the coordinates associated with normal directions
vanish. Kind of cognitive explosion would be in question.

SU(3) corresponds to a subgroup of G2 and one can wonder what the fixing of this subgroup
could mean physically. G2 is 14-D and the coset space G2/SU(3) is 6-D and a good guess is that
it is just the 6-D twistor space SU(3)/U(1)× U(1) of CP2: at least the isometries are the same.
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The fixing of the SU(3) subgroup means fixing of a CP2 twistor. Physically this means the
fixing of the quantization axis of color isospin and hypercharge.

Twistor lift of the holography

What is interesting is that by replacing SU(3) with G2, one obtains an explicit formula form the
generalization of M8 −H duality to that for the twistorial lift of TGD!

One can also consider a twistorial generalization of the above proposal for the number
theoretic holography by allowing local G2 automorphisms interpreted as local choices of the color
quantization axis. G2 elements would be fixed apart from a local SU(3) transformation at the
components of 3-surfaces at mass shells. The choice of the color quantization axes for a connected
3-surface at a given mass shell would be the same everywhere. This choice is indeed very natural
physically since 3-surface corresponds to a particle.

Is this proposal consistent with the boundary condition of the number theoretical holog-
raphy mean in the case of 4-surfaces in M8

c and M4 × CP2?

1. The selection of SU(3) ⊂ G2 for ordinary M8 − H duality means that the G2,c gauge field
vanishes everywhere and the choice of color quantization axis is the same at all points of the
4-surface. The fixing of the CP2 point to be constant at H3 implies that the color gauge
field at H3 ⊂ M8

c and its image H3 ⊂ H vanish. One would have color confinement at the
mass shells H3

i , where the observations are made. Is this condition too strong?

2. The constancy of the G2 element at mass shells makes sense physically and means a fixed
color quantization axis. The selection of a fixed SU(3) ⊂ G2 for entire space-time surface
is in conflict with the non-constancy of G2 element unless G2 element differs at different
points of 4-surface only by a multiplication of a local SU(3)0 element, that is local SU(3)
transformation. This kind of variation of the G2 element would mean a fixed color group
but varying choice of color quantization axis.

3. Could one consider the possibility that the local G2,c element is free and defines the twistor
lift of M8 −H duality as something more fundamental than the ordinary M8 −H duality
based on SU(3)c. This duality would make sense only at the mass shells so that only the
spaces H3×CP2 assignable to mass shells would make sense physically? In the interior CP2

would be replaced with the twistor space SU(3)/U(1) × U(1). Color gauge fields would be
non-vanishing at the mass shells but outside the mass shells one would have G2 gauge fields.

There is also a physical objection against the G2 option. The 14-D Lie algebra representation
of G2 acts on the imaginary octonions which decompose with respect to the color group to
1 ⊕ 3 ⊕ 3. The automorphism property requires that 1 can be transformed to 3 or 3 to
themselves: this requires that the decomposition contains 3 ⊕ 3. Furthermore, it must be
possible to transform 3 and 3 to themselves, which requires the presence of 8. This leaves
only the decomposition 8 ⊕ 3 ⊕ 3. G2 gluons would both color octet and triplets. In the
TDG framework the only conceivable interpretation would be in terms of ordinary gluons and
leptoquark-like gluons. This does not fit with the basic vision of TGD.

The choice of twistor as a selection of quantization axes should make sense also in the
M4 degrees of freedom. M4 twistor corresponds to a choice of light-like direction at a given point
of M4. The spatial component of the light-like vector fixes the spin quantization axis. Its
choice together with the light-likeness fixes the time direction and therefore the rest system and
energy quantization axis. Light-like vector fixes also the choice of M2 and of E2 as its orthogonal
complement. Therefore the fixing of M4 twistor as a point of SU(4)/SU(3)×U(1) corresponds
to a choice of the spin quantization axis and the time-like axis defining the rest system in which
the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure
fixing the decompositions M2(x)× E2(x). At a given mass shell the choice of the quantization
axis would be constant for a given X3

i .

1.1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
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Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark Matter as Large ~ Phases

D. Da Rocha and Laurent Nottale [E18] have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c =

1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4.
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of v0 seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hy-
drodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some
levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets
in question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hgr. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hgr would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K89].

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative “pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Certain experimental findings suggest the identification heff = n× = hgr. The large value
of hgr can be seen as a way to reduce the string tension of fermionic strings so that gravitational
(in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces
defining particles (analogous to AdS/CFT description). The values heff/h = n can be interpreted
in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal
generators act as gauge symmetries only for a sub-algebras with conformal weights coming as
multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-
Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac
part of conformal algebra become physical. A possible is that tfermionic oscillator operators
generate super-symmetries and sparticles correspond almost by definition to dark matter with
heff/h = n > 1. One implication would be that at least part if not all gravitons would be dark and
be observed only through their decays to ordinary high frequency graviton (E = hfhigh = heffflow)
of bunch of n low energy gravitons.

Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10−10 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.
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This inspired the hypothesis that these photons correspond to so large a value of Planck
constant that the energy of photons is above the thermal energy. The proposed interpretation was
as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter
with non-standard value of Planck constant. If only particles with the same value of Planck
constant can appear in the same vertex of Feynman diagram, the phases with different value of
Planck constant are dark relative to each other. The phase transitions changing Planck constant
can however make possible interactions between phases with different Planck constant but these
interactions do not manifest themselves in particle physics. Also the interactions mediated by
classical fields should be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heff = hgr - at least for microscopic particles - implies that cyclotron
energies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
heff reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K80, K81, K79] ) support the view that dark
matter might be a key player in living matter.

Dark Matter as a Source of Long Ranged Weak and Color Fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)ew
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z0

field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like heff .

1.1.9 Twistors in TGD and connection with Veneziano duality

The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian
approach emerged first. It was however followed by the realization that also the twistor lift of TGD
at classical space-time level is needed. It turned out that the progress in the understanding of the
classical twistor lift has been much faster - probably this is due to my rather limited technical QFT
skills.

Twistor lift at space-time level

8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K100].
The reason is that M4 and CP2 are completely exceptional in the sense that they are the only 4-D
manifolds allowing twistor space with Kähler structure [A57]. The twistor space of M4 × CP2 is
Cartesian product of those of M4 and CP2. The obvious idea is that space-time surfaces allowing
twistor structure if they are orientable are representable as surfaces in H such that the properly
induced twistor structure co-incides with the twistor structure defined by the induced metric.

In fact, it is enough to generalize the induction of spinor structure to that of twistor structure
so that the induced twistor structure need not be identical with the ordinary twistor structure
possibly assignable to the space-time surface. The induction procedure reduces to a dimensional
reduction of 6-D Kähler action giving rise to 6-D surfaces having bundle structure with twistor
sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in
the product of twistor spheres of twistor spaces of M4 and CP2.
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This condition would define the dynamics, and the original conjecture was that this dynamics
is equivalent with the identification of space-time surfaces as preferred extremals of Kähler action.
The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which
are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of
complex analysis becomes available.

It however turned out that twistor lift of TGD is much more than a mere technical tool.
First of all, the dimensionally reduction of 6-D Kähler action contained besides 4-D Kähler action
also a volume term having interpretation in terms of cosmological constant. This need not bring
anything new, since all known extremals of Kähler action with non-vanishing induced Kähler form
are minimal surfaces. There is however a large number of embeddings of twistor sphere of space-
time surface to the product of twistor spheres. Cosmological constant has spectrum and depends on
length scale, and the proposal is that coupling constant evolution reduces to that for cosmological
constant playing the role of cutoff length. That cosmological constant could transform from a mere
nuisance to a key element of fundamental physics was something totally new and unexpected.

1. The twistor lift of TGD at space-time level forces to replace 4-D Kähler action with 6-D
dimensionally reduced Kähler action for 6-D surface in the 12-D Cartesian product of 6-D
twistor spaces of M4 and CP2. The 6-D surface has bundle structure with twistor sphere as
fiber and space-time surface as base.

Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using
dimensional reduction. The dimensionally reduced 6-D Kähler action is sum of 4-D Kähler
action and volume term having interpretation in terms of a dynamical cosmological constant
depending on the size scale of space-time surface (or of causal diamond CD in zero energy
ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface
in the Cartesian product of the twistor spheres of M4 and CP2.

2. The preferred extremal property as a representation of quantum criticality would naturally
correspond to minimal surface property meaning that the space-time surface is separately
an extremal of both Kähler action and volume term almost everywhere so that there is no
coupling between them. This is the case for all known extremals of Kähler action with non-
vanishing induced Kähler form.

Minimal surface property could however fail at 2-D string world sheets, their boundaries and
perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface
has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which
some partial derivatives of the embedding space coordinates are discontinuous but canonical
momentum densities for the entire action are continuous.

There would be no flow of canonical momentum between interior and string world sheet and
minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart
in twistor bundle is determined by the analog of 4-D Kähler action. These conditions allow the
transfer of canonical momenta between Kähler- and volume degrees of freedom at string world
sheets. These no-flow conditions could hold true at least asymptotically (near the boundaries
of CD).

M8 −H duality suggests that string world sheets (partonic 2-surfaces) correspond to images
of complex 2-sub-manifolds of M8 (having tangent (normal) space which is complex 2-plane
of octonionic M8).

3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete
model for the evolution of cosmological constant as a function of p-adic length scale and other
number theoretic parameters (such as Planck constant as the order of Galois group): this
conforms with the earlier picture.

Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to
flux tubes leads to a transformation of Kähler magnetic energy to ordinary and dark matter.
Since the increase of volume increases volume energy, this leads rapidly to energy minimum
at some flux tube thickness. The reduction of cosmological constant by a phase transition
however leads to a new expansion phase. These jerks would replace smooth cosmic expansion
of GRT. The discrete coupling constant evolution predicted by the number theoretical vision
could be understood as being induced by that of cosmological constant taking the role of
cutoff parameter in QFT picture [L63].
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Twistor lift at the level of scattering amplitudes and connection with Veneziano du-
ality

The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization
at the level of scattering amplitudes the situation is much more difficult conceptually - I already
mentioned my limited QFT skills.

1. From the classical picture described above it is clear that one should construct the 8-D
twistorial counterpart of theory involving space-time surfaces, string world sheets and their
boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the
scattering amplitudes.

The light-like boundaries of string world sheets as carriers of fermion numbers would corre-
spond to twistors as they appear in twistor Grassmann approach and define the analog for
the massless sector of string theories. The attempts to understand twistorialization have been
restricted to this sector.

2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive
in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and
reduces basically to the dynamical cosmological constant provided by classical twistor lift.

One can assign 4-momentum both to the spinor harmonics of the embedding space represent-
ing ground states of super-conformal representations and to light-like boundaries of string
world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical
by quantum classical correspondence: this could be seen as a concretization of Equivalence
Principle. Also a connection with string model emerges.

3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor Grass-
mannian approach boils down to the construction of scattering amplitudes in terms of Yangian
invariants for conformal group of M4. Therefore a generalization of super-symplectic symme-
tries to their Yangian counterpart seems necessary. These symmetries would be gigantic but
how to deduce their implications?

4. The notion of positive Grassmannian is central in the twistor approach to the scattering am-
plitudes in calN = 4 SUSYs. TGD provides a possible generalization and number theoretic
interpretation of this notion. TGD generalizes the observation that scattering amplitudes in
twistor Grassmann approach correspond to representations for permutations. Since 2-vertex
is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering am-
plitudes are representations for braidings.

Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to
ordinary ones by a procedure analogous to the construction of braid (knot) invariants by
gradual un-braiding (un-knotting).

This is however not the only vision about a solution of non-planarity. Quantum criticality
provides different view leading to a totally unexpected connection with string models, actually
with the Veneziano duality, which was the starting point of dual resonance model in turn leading
via dual resonance models to super string models.

1. Quantum criticality in TGD framework means that coupling constant evolution is discrete in
the sense that coupling constants are piecewise constant functions of length scale replaced by
dynamical cosmological constant. Loop corrections would vanish identically and the recursion
formulas for the scattering amplitudes (allowing only planar diagrams) deduced in twistor
Grassmann would involve no loop corrections. In particular, cuts would be replaced by
sequences of poles mimicking them like sequences of point charge mimic line charges. In
momentum discretization this picture follows automatically.

2. This would make sense in finite measurement resolution realized in number theoretical vi-
sion by number-theoretic discretization of the space-time surface (cognitive representation)
as points with coordinates in the extension of rationals defining the adele [L52]. Similar dis-
cretization would take place for momenta. Loops would vanish at the level of discretization
but what would happen at the possibly existing continuum limit: does the sequence of poles
integrate to cuts? Or is representation as sum of resonances something much deeper?
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3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (see http://tinyurl.
com/yyhwvbqb) was Veneziano duality. This 4-particle amplitude was generalized by Yoshiro
Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see http://

tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called dual
resonance model. The model was forgotten as QCD emerged. Later came superstring models
and led to M-theory. Now it has become clear that something went wrong, and it seems that
one must return to the roots. Could the return to the roots mean a careful reconsideration
of the dual resonance model?

4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can
be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano
duality stated that hadronic scattering amplitudes have representation as sums over s- or
t-channel resonance poles identified as excitations of strings. The sum over exchanges defined
by t-channel resonances indeed reduces at larger values of s to Regge form.

The resonances had zero width, which was not consistent with unitarity. Further, there
were no counterparts for the sum of s-, t-, and u-channel diagrams with continuous cuts
in the kinematical regions encountered in QFT approach. What puts bells ringing is the u-
channel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann
approach.

5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy de-
scription makes t-channel and s-channel pictures equivalent. Could it be that in fundamental
description u-channels diagrams cannot be distinguished from s-channel diagrams or t-channel
diagrams? Could the stringy representation of the scattering diagrams make u-channel twist
somehow trivial if handles of string world sheet representing stringy loops in turn representing
the analog of non-planarity of Feynman diagrams are absent? The permutation of external
momenta for tree diagram in absence of loops in planar representation would be a twist of
π in the representation of planar diagram as string world sheet and would not change the
topology of the string world sheet and would not involve non-trivial world sheet topology.

For string world sheets loops would correspond to handles. The presence of handle would
give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles
are not allowed if the induced metric for the string world sheet has Minkowskian signature.
If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should
be absent.

This argument applies only inside the Minkowskian space-time regions. If string world sheets
are present also in Euclidian regions, they might have handles and loop corrections could
emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-D
edges/folds of 3-surface at which minimal surface property and topological QFT property
fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity
of some partial derivatives exclude loopy edges: perhaps the branching points would be too
singular?

A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest.
Could the presence of string world sheets make possible the vanishing of continuous cuts even at
the continuum limit so that continuum cuts would emerge only in the approximation as the density
of resonances is high enough?

The replacement of continuous cut with a sum of infinitely narrow resonances is certainly an
approximation. Could it be that the stringy representation as a sum of resonances with finite width
is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying
loops? Consider now the arguments against this idea.

1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could
finite resonance widths make unitarity possible? Ordinary twistor Grassmannian approach
predicts that the virtual momenta are light-like but complex: obviously, the imaginary part
of the energy in rest frame would have interpretation as resonance with.

In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence
(QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges
in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD

http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyhwvbqb
http://tinyurl.com/yyvkx7as
http://tinyurl.com/yyvkx7as
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indeed predicts complex momenta (Kähler coupling strength is naturally complex). QCC thus
supports this proposal.

2. Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of
particles. Could finite resonance widths due to the complex momenta give rise to the QFT
type scattering amplitudes as one develops the amplitudes in Taylor series with respect to the
resonance width? Unitarity condition indeed gives the first estimate for the resonance width.

QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of
finite width resonances with a cut as the distance between poles is shorter than the resolution
for mass squared.

In superstring models string tension has single very large value and one cannot obtain QFT
type behavior at low energies (for instance, scattering amplitudes in hadronic string model are
concentrated in forward direction). TGD however predicts an entire hierarchy of p-adic length
scales with varying string tension. The hierarchy of mass scales corresponding roughly to the
lengths and thickness of magnetic flux tubes as thickened cosmic strings and characterized
by the value of cosmological constant predicted by twistor lift of TGD. Could this give rise
to continuous QCT type cuts at the limit when measurement resolution cannot distinguish
between resonances?

The dominating term in the sum over sums of resonances in t-channel gives near forward
direction approximately the lowest mass resonance for strings with the smallest string tension.
This gives the behavior 1/(t − m2

min), where mmin corresponds to the longest mass scale
involved (the largest space-time sheet involved), approximating the 1/t-behavior of massless
theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories.
This should give rise to continuous QFT type cuts at the limit when measurement resolution
cannot distinguish between resonances.

1.2 Bird’s Eye of View about the Topics of the Book

This book tries to give an overall view about quantum TGD as it stands now. The topics of this
book are following.

1. In the first part of the book I will try to give an overall view about the evolution of TGD and
about quantum TGD in its recent form. I cannot avoid the use of various concepts without
detailed definitions and my hope is that reader only gets a bird’s eye of view about TGD.
Two visions about physics are discussed. According to the first vision physical states of the
Universe correspond to classical spinor fields in the world of the classical worlds identified as
3-surfaces or equivalently as corresponding 4-surfaces analogous to Bohr orbits and identified
as special extrema of Kähler action. TGD as a generalized number theory vision leading
naturally also to the emergence of p-adic physics as physics of cognitive representations is the
second vision.

2. The second part of the book is devoted to the vision about physics as infinite-dimensional con-
figuration space geometry. The basic idea is that classical spinor fields in infinite-dimensional
“world of classical worlds”, space of 3-surfaces in M4 × CP2 describe the quantum states of
the Universe. Quantum jump remains the only purely quantal aspect of quantum theory in
this approach since there is no quantization at the level of the configuration space. Space-time
surfaces correspond to special extremals of the Kähler action analogous to Bohr orbits and
define what might be called classical TGD discussed in the first chapter. The construction of
the configuration space geometry and spinor structure are discussed in remaining chapters.

3. The third part of the book describes physics as generalized number theory vision. Number
theoretical vision involves three loosely related approaches: fusion of real and various p-adic
physics to a larger whole as algebraic continuations of what might be called rational physics;
space-time as a hyper-quaternionic surface of hyper-octonion space, and space-time surfaces
as a representations of infinite primes.

4. The first chapter in the third part of the book summarizes the basic ideas related to Neumann
algebras known as hyper-finite factors of type II1 about which configuration space Clifford
algebra represents canonical example.
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Second chapter is devoted to the basic ideas related to the hierarchy of Planck constants and
related generalization of the notion of embedding space to a book like structure.

M8 −H duality:

5. The physical applications of TGD are the topic of the second part of the book. The cosmolog-
ical and astrophysical applications of the many-sheeted space-time are summarized and the
applications to elementary particle physics are discussed at the general level. TGD explains
particle families in terms of generation genus correspondences (particle families correspond to
2-dimensional topologies labelled by genus). The notion of elementary particle vacuum func-
tional is developed leading to an argument that the number of light particle families is three
is discussed. The general theory for particle massivation based on p-adic thermodynamics is
discussed at the general level. The detailed calculations of elementary particle masses are not
however carried out in this book.

1.2.1 Organization of “TGD: an Overview: Part II”

The book consists of 2 parts.

1. The first chapter in the 1st part of the book summarizes the basic ideas related to von
Neumann algebras known as hyper-finite factors of type II1 about which configuration space
Clifford algebra represents a canonical example.

Second chapter is devoted to the basic ideas related to the hierarchy of Planck constants and
related generalization of the notion of imbedding space to a book like structure. Third chapter
is about M8 −H duality.

2. The physical applications of TGD are the topic of the 2nd part of the book. The cosmolog-
ical and astrophysical applications of the many-sheeted space-time are summarized and the
applications to elementary particle physics are discussed at the general level. TGD explains
particle families in terms of generation genus correspondences (particle families correspond to
2-dimensional topologies labelled by genus). The notion of elementary particle vacuum func-
tional is developed leading to an argument that the number of light particle families is three
is discussed. The general theory for particle massivation based on p-adic thermodynamics is
discussed at the general level. The detailed calculations of elementary particle masses are not
however carried out in this book.

1.3 Sources

The eight online books about TGD [K109, K101, K84, K73, K26, K68, K49, K92] and nine online
books about TGD inspired theory of consciousness and quantum biology [K98, K20, K78, K19,
K46, K59, K61, K91, K97] are warmly recommended for the reader willing to get overall view
about what is involved.

My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In
particular, a TGD glossary at http://tinyurl.com/yd6jf3o7).

I have published articles about TGD and its applications to consciousness and living mat-
ter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in
Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and
Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl.
com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles pub-
lished at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing
a communication channel, whose importance one cannot overestimate.

http://tinyurl.com/ybv8dt4n
http://tinyurl.com/yd6jf3o7
http://tinyurl.com/ycyrxj4o
http://tinyurl.com/ycvktjhn
http://tinyurl.com/yba4f672
http://tinyurl.com/y9z52khg
http://tinyurl.com/y9z52khg
http://tinyurl.com/ybv8dt4n
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1.4 The contents of the book

1.4.1 PART I: HYPERFINITE FACTORS OF TYPE II1, HIERAR-
CHY OF PLANCK CONSTANTS, AND M8 −H DUALITY

Evolution of Ideas about Hyper-finite Factors in TGD

The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors, could provide the mathematics needed to
develop a more explicit view about the construction of M-matrix generalizing the notion of S-
matrix in zero energy ontology (ZEO). In this chapter I will discuss various aspects of hyper-finite
factors and their possible physical interpretation in TGD framework.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite fac-
tors (HFFs) of type III1 appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. Therefore also the Clifford algebra at a given point (light-like 3-surface)
of world of classical worlds (WCW) is HFF of type II1. If the fermionic Fock algebra defined
by the fermionic oscillator operators assignable to the induced spinor fields (this is actually
not obvious!) is infinite-dimensional it defines a representation for HFF of type II1. Super-
conformal symmetry suggests that the extension of the Clifford algebra defining the fermionic
part of a super-conformal algebra by adding bosonic super-generators representing symmetries
of WCW respects the HFF property. It could however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal
is that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified
as cosmic time. Since Lorentz boosts define a non-compact group, the generalization of so
called crossed product construction strongly suggests that the local Clifford algebra of WCW
is HFF of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of
moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and
γk by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. One can start from a local octonionic
Clifford algebra in M8. Associativity (co-associativity) condition is satisfied if one restricts
the octonionic algebra to a subalgebra associated with any hyper-quaternionic and thus 4-D
sub-manifold of M8. This means that the induced gamma matrices associated with the Kähler
action span a complex quaternionic (complex co-quaternionic) sub-space at each point of the
sub-manifold. This associative (co-associative) sub-algebra can be mapped a matrix algebra.
Together with M8−H duality this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
(co-associative( algebra and thus to HFF of type II1.

2. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could be
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used to define the M-matrix of quantum TGD. This is not the case as is obvious already from
the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors
is a more appropriate starting point than the notion modular automorphism but as a gener-
alization of thermodynamical state is certainly not enough for the purposes of quantum TGD
and quantum field theories (algebraic quantum field theorists might disagree!). Zero energy
ontology requires that the notion of thermodynamical state should be replaced with its “com-
plex square root” abstracting the idea about M-matrix as a product of positive square root
of a diagonal density matrix and a unitary S-matrix. This generalization of thermodynamical
state -if it exists- would provide a firm mathematical basis for the notion of M-matrix and for
the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology (ZEO): the two vacua can be assigned with the positive and negative energy
parts of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions meaning the analog of state function
collapse in zero modes fixing the classical conserved charges equal to the quantal counterparts.
Classical charges would be parameters characterizing zero modes.

A concrete construction of M-matrix motivated the recent rather precise view about basic
variational principles is proposed. Fundamental fermions localized to string world sheets can be
said to propagate as massless particles along their boundaries. The fundamental interaction vertices
correspond to two fermion scattering for fermions at opposite throats of wormhole contact and the
inverse of the conformal scaling generator L0 would define the stringy propagator characterizing
this interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kähler magnetic flux flowing around a loop going through wormhole contacts.

3. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite
measurement resolution in terms of Connes tensor product but do not fix M-matrix as was the
original optimistic belief.

1. In ZEO N would create states experimentally indistinguishable from the original one. There-
fore N takes the role of complex numbers in non-commutative quantum theory. The space
M/N would correspond to the operators creating physical states modulo measurement reso-
lution and has typically fractal dimension given as the index of the inclusion. The correspond-
ing spinor spaces have an identification as quantum spaces with non-commutative N -valued
coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N “averaged” counterparts. The “averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally
or path integral over the degrees of freedom below measurement resolution defined by (say)
length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition thatN acts like complex numbers on M-matrix elements as far asN -“averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
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interpreted as finite-dimensional space with a projection operator to N . The condition that N
averaging in terms of a complex square root of N state produces this kind of M-matrix poses
a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

4. Analogs of quantum matrix groups from finite measurement resolution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions of von
Neumann algebras allowing to describe mathematically the notion of finite measurement resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

5. Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy prob-
abilities. For quantum spinors state function reduction cannot be performed unless quantum
deformation parameter equals to q = 1. The reason is that the components of quantum spinor
do not commute: it is however possible to measure the commuting operators representing moduli
squared of the components giving the probabilities associated with “true” and “false”. The univer-
sal eigenvalue spectrum for probabilities does not in general contain (1,0) so that quantum qbits
are inherently fuzzy. State function reduction would occur only after a transition to q=1 phase
and decoherence is not a problem as long as it does not induce this transition.

Does TGD predict spectrum of Planck constants?

The quantization of Planck constant has been the basic theme of TGD since 2005. The basic idea
was stimulated by the suggestion of Nottale that planetary orbits could be seen as Bohr orbits with
enormous value of Planck constant given by ~gr = GM1M2/v0, where the velocity parameter v0 has
the approximate value v0 ' 2−11 for the inner planets. This inspired the ideas that quantization
is due to a condensation of ordinary matter around dark matter concentrated near Bohr orbits
and that dark matter is in macroscopic quantum phase in astrophysical scales. The second crucial
empirical input were the anomalies associated with living matter. The recent version of the chapter
represents the evolution of ideas about quantization of Planck constants from a perspective given
by seven years’s work with the idea. A very concise summary about the situation is as follows.

1. Basic physical ideas

The basic phenomenological rules are simple.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
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of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Effective embedding spaces with different values of Planck constant form
a book like structure and matter can be transferred between different pages only through the
back of the book where the pages are glued together. One important implication is that light
exotic charged particles lighter than weak bosons are possible if they have non-standard value
of Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies.

2. Large effective or real value of Planck constant scales up Compton length - or at least de
Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kähler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order CP2 size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: E = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) in terms of anyonic phases with non-standard value of effective Planck
constant realized in terms of the effective multi-sheeted covering of embedding space: multi-
sheeted space-time is to be distinguished from many-sheeted space-time.

In astrophysics and cosmology the implications are even more dramatic. The interpretation of
~gr introduced by Nottale in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge
value of ~gr means that the integer ~gr/~0 interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in astronomical scales.
The gravitational Compton lengthGM/v0 = rS/2v0 does not depend onm so that all particles
around say Sun say same gravitational Compton length.

By the independence of gravitational acceleration and gravitational Compton length on par-
ticle mass, it is enough to assume that only microscopic particles couple to the dark gravitons
propagating along flux tubes mediating gravitational interaction. Therefore hgr = heff could
be true in microscopic scales and would predict that cyclotron energies have no dependence on
the mass of the charged particle meaning that the spectrum ordinary photons resulting in the
transformation of dark photons to ordinary photons is universal. An attractive identification
of these photons would be as bio-photons with energies in visible and UV range and thus
inducing molecular transitions making control of biochemistry by dark photons. This changes
the view about gravitons and suggests that gravitational radiation is emitted as dark gravi-
tons which decay to pulses of ordinary gravitons replacing continuous flow of gravitational
radiation. The energy of the graviton is gigantic unless the emission is assume to take place
from a microscopic systems with large but not gigantic hgr.

3. Why Nature would like to have large - maybe even gigantic - value of effective value of
Planck constant? A possible answer relies on the observation that in perturbation theory
the expansion takes in powers of gauge couplings strengths α = g2/4π~. If the effective
value of ~ replaces its real value as one might expect to happen for multi-sheeted particles
behaving like single particle, α is scaled down and perturbative expansion converges for the
new particles. One could say that Mother Nature loves theoreticians and comes in rescue in
their attempts to calculate. In quantum gravitation the problem is especially acute since the
dimensionless parameter GMm/~ has gigantic value. Replacing ~ with ~gr = GMm/v0 the
coupling strength becomes v0 < 1.

2. Space-time correlates for the hierarchy of Planck constants
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The hierarchy of Planck constants was introduced to TGD originally as an additional pos-
tulate and formulated as the existence of a hierarchy of embedding spaces defined as Cartesian
products of singular coverings of M4 and CP2 with numbers of sheets given by integers na and nb
and ~ = n~0. n = nanb.

With the advent of zero energy ontology (ZEO), it became clear that the notion of singular
covering space of the embedding space could be only a convenient auxiliary notion. Singular means
that the sheets fuse together at the boundary of multi-sheeted region. In ZEO 3-surfaces are unions
of space-like 3-surface at opposite boundaries of CD. The non-determinism of Kähler action due
to the huge vacuum degeneracy would naturally explain the existence of several space-time sheets
connecting the two 3-surfaces at the opposite boundaries of CD. Quantum criticality suggests
strongly conformal invariance and the identification of n as the number of conformal equivalence
classes of these space-time sheets. Also a connection with the notion of negentropic entanglement
emerges.

Does M8 −H duality reduce classical TGD to octonionic algebraic geometry?: Part I

TGD leads to several proposals for the exact solution of field equations defining space-time surfaces
as preferred extremals of twistor lift of Kähler action. So called M8 − H duality is one of these
approaches. The beauty of M8 − H duality is that it could reduce classical TGD to algebraic
geometry and would immediately provide deep insights to cognitive representation identified as
sets of rational points of these surfaces.

In the sequel I shall consider the following topics.

1. I will discuss basic notions of algebraic geometry such as algebraic variety, surface, and curve,
all rational point of variety central for TGD view about cognitive representation, elliptic
curves and surfaces, and rational and potentially rational varieties. Also the notion of Zariski
topology and Kodaira dimension are discussed briefly. I am not a mathematician and what
hopefully saves me from horrible blunders is physical intuition developed during 4 decades of
TGD.

2. It will be shown how M8 −H duality could reduce TGD at fundamental level to octonionic
algebraic geometry. Space-time surfaces in M8 would be algebraic surfaces identified as zero
loci for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of complexified
octonionic variable oc decomposing as oc = q1

c + q2
cI

4 and projected to a Minkowskian sub-
space M8 of complexified O. Single real valued polynomial of real variable with algebraic
coefficients would determine space-time surface! As proposed already earlier, spacetime sur-
faces would form commutative and associative algebra with addition, product and functional
composition.

One can interpret the products of polynomials as correlates for free many-particle states with
interactions described by added interaction polynomial, which can vanish at boundaries of
CDs thanks to the vanishing in Minkowski signature of the complexified norm qcqc appearing
in RE(P ) or IM(P ) caused by the quaternionic non-commutativity. This leads to the same
picture as the view about preferred extremals reducing to minimal surfaces near boundaries of
CD. Also zero zero energy ontology (ZEO) could emerge naturally from the failure of number
field property for for quaternions at light-cone boundaries.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
can give rise to associative (co-associative) surfaces as the zero loci of their real part RE(P )
(imaginary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary
to the first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region
turns out to be the correct choice making light-cone boundary a counterpart of point-like
singularity essential for the emergence of causal diamonds (CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for com-
plex numbers, and associativity for quaternions. This suggests a generalization of Cauchy-
Riemann conditions for complex analytic functions to quaternions and octonions. Cauchy
Riemann conditions are linear and constant value manifolds are 1-D and thus well-ordered.
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Quaternionic polynomials with real coefficients define maps for which the 2-D spaces corre-
sponding to vanishing of real/imaginary parts of the polynomial are complex/co-complex or
equivalently commutative/co-commutative. Commutativity is expressed by conditions bilin-
ear in partial derivatives. Octonionic polynomials with real coefficients define maps for which
4-D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units to oc-
tonionic algebra are power associative so that polynomials with real coefficients define an
associative and commutative algebra. Hence octonion analyticity and M8 − H correspon-
dence could generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring
that one of the coordinatesRE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i+IM(Y )iI4
of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki , k = 1, 2, of O
vanishes that is critical as function of quaternionic components zk1 or zk2 associated with q1

and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the generic case this
gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root. The criticality of Xi conforms with the general vision
about quantum criticality of TGD Universe and provides polynomials with universal dynamics
of criticality. A generalization of Thom’s catastrophe theory emerges. Criticality should be
equivalent to the universal dynamics determined by the twistor lift of Kähler action in H in
regions, where Kähler action and volume term decouple and dynamics does not depend on
coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces
can be mapped by M8−H duality to preferred critical extremals for the twistor lift of Kähler
action obeying universal dynamics with no dependence on coupling constants and due to the
decoupling of Kähler action and volume term: these represent external particles. M8 − H
duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-
D boundary surfaces. These regions correspond to interaction regions in which Kähler action
and volume term couple and coupling constants make themselves visible in the dynamics.
M8 −H duality determines boundary conditions.

3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough
to represent fermions? Why fermionic strings serve as correlates of entanglement for bound
states? What selects string world sheets and partonic 2-surfaces from the slicing of space-time
surfaces?

I have proposed commutativity or co-commutatitivity of string worlds sheets/partonic 2-
surfaces in quaternionic sense as number theoretic explanation (tangent space as a sub-space
of quaternionic space is commutative/co-commutative at each point). Why not all string
world sheets/partonic 2-surfaces in the slicing are not commutative/co-commutative? The
answer to these questions is criticality again: in the generic case commutative varieties are
1-D curves. In critical case one has 2-D string worlds sheets and partonic 2-surfaces.

Does M8−H duality reduce classical TGD to octonionic algebraic geometry?: Part II

TGD leads to several proposals for the exact solution of field equations defining space-time surfaces
as preferred extremals of twistor lift of Kähler action. So called M8 − H duality is one of these
approaches. The beauty of M8−H duality is that it could reduce classical TGD to octonionic alge-
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braic geometry and would immediately provide deep insights to cognitive representation identified
as sets of rational points of these surfaces.

The construction and interpretation of the octonionic geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
can give rise to associative (co-associative) surfaces as the zero loci of their real part RE(P )
(imaginary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary
to the first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region
turns out to be the correct choice making light-cone boundary a counterpart of point-like
singularity essential for the emergence of causal diamonds (CDs).

The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for com-
plex numbers, and associativity for quaternions. This suggests a generalization of Cauchy-
Riemann conditions for complex analytic functions to quaternions and octonions. Cauchy
Riemann conditions are linear and constant value manifolds are 1-D and thus well-ordered.
Quaternionic polynomials with real coefficients define maps for which the 2-D spaces corre-
sponding to vanishing of real/imaginary parts of the polynomial are complex/co-complex or
equivalently commutative/co-commutative. Commutativity is expressed by conditions bilin-
ear in partial derivatives. Octonionic polynomials with real coefficients define maps for which
4-D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units to oc-
tonionic algebra are power associative so that polynomials with real coefficients define an
associative and commutative algebra. Hence octonion analyticity and M8 − H correspon-
dence could generalize.

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring
that one of the coordinatesRE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i+IM(Y )iI4
of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki , k = 1, 2, of O
vanishes that is critical as function of quaternionic components zk1 or zk2 associated with q1

and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the generic case this
gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root. The criticality of Xi conforms with the general vision
about quantum criticality of TGD Universe and provides polynomials with universal dynamics
of criticality. A generalization of Thom’s catastrophe theory emerges. Criticality should be
equivalent to the universal dynamics determined by the twistor lift of Kähler action in H in
regions, where Kähler action and volume term decouple and dynamics does not depend on
coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces
can be mapped by M8−H duality to preferred critical extremals for the twistor lift of Kähler
action obeying universal dynamics with no dependence on coupling constants and due to the
decoupling of Kähler action and volume term: these represent external particles. M8 − H
duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-
D boundary surfaces. These regions correspond to interaction regions in which Kähler action
and volume term couple and coupling constants make themselves visible in the dynamics.
M8 −H duality determines boundary conditions.

3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic
dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough
to represent fermions? Why fermionic strings serve as correlates of entanglement for bound
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states? What selects string world sheets and partonic 2-surfaces from the slicing of space-time
surfaces?

I have proposed commutativity or co-commutatitivity of string worlds sheets/partonic 2-
surfaces in quaternionic sense as number theoretic explanation (tangent space as a sub-space
of quaternionic space is commutative/co-commutative at each point). Why not all string
world sheets/partonic 2-surfaces in the slicing are not commutative/co-commutative? The
answer to these questions is criticality again: in the generic case commutative varieties are
1-D curves. In critical case one has 2-D string worlds sheets and partonic 2-surfaces.

4. The super variant of the octonionic geometry relying on octonionic triality makes sense and the
geometry of the space-time variety correlates with fermion and antifermion numbers assigned
with it. This new view about super-geometry involving also automatic SUSY breaking at the
level of space-time geometry.

Also a sketchy proposal for the description of interactions is discussed.

1. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions light-cone
interior and its complement and 6-spheres S6(tn) with radii tn given by the roots of the real
P (t), whose octonionic extension defines the space-time variety X4. The intersections X2 =
X4 ∩ S6(tn) are tentatively identified as partonic 2-varieties defining topological interaction
vertices.

The idea about the reduction of zero energy states to discrete cognitive representations sug-
gests that interaction vertices at partonic varieties X2 are associated with the discrete set of
intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces belonging to
extension of rationals.

2. CDs and therefore also ZEO emerge naturally. For CDs with different origins the products
of polynomials fail to commute and associate unless the CDs have tips along real (time) axis.
The first option is that all CDs under observation satisfy this condition. Second option allows
general CDs.

The proposal is that the product
∏
Pi of polynomials associated with CDs with tips along

real axis the condition IM(
∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside these
CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives rise to

geometric interactions. For general CDs the situation is more complex.

3. The possibility of super octonionic geometry raises the hope that the twistorial construction of
scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightforward manner
to a purely geometric construction. Functional integral over WCW would reduce to sum-
mations over polynomials with coefficients in extension of rationals and criticality conditions
on the coefficients could make the summation well-defined by bringing in finite measurement
resolution.

Scattering diagrams would be determined by points of space-time variety, which are in
extension of rationals. In adelic physics the interpretation is as cognitive representations.

1. Cognitive representations are identified as sets of rational points for algebraic varieties with
”active” points containing fermion. The representations are discussed at both M8- and H
level. General conjectures from algebraic geometry support the vision that these sets are
concentrated at lower-dimensional algebraic varieties such as string world sheets and partonic
2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces. For the
earlier work related to adelic TGD and cognitive representations see [?]

2. Some aspects related to homology charge (Kähler magnetic charge) and genus-generation
correspondence are discussed. Both topological quantum numbers are central in the proposed
model of elementary particles and it is interesting to see whether the picture is internally
consistent and how algebraic variety property affects the situation. Also possible problems
related to heff/h = n hierarchy []adelicphysics realized in terms of n-fold coverings of space-
time surfaces are discussed from this perspective.
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Does M8 − H duality reduce classical TGD to octonionic algebraic geometry?: Part
III

Cognitive representations are the basic topic of the third chapter related to M8 − H duality.
Cognitive representations are identified as sets of points in extension of rationals for algebraic
varieties with ”active” points containing fermion. The representations are discussed at both M8-
and H level. General conjectures from algebraic geometry support the vision that these sets are
concentrated at lower-dimensional algebraic varieties such as string world sheets and partonic
2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces.

The notion is applied in various cases and the connection with M8 − H duality is rather
loose.

1. Extensions of rationals are essentially coders of information. There the possible analogy of
extensions of rationals with genes deserves discussion. Extensions, which are not extensions of
extensions would be analogous to genes. The notion of conserved gene as number theoretical
analogy for Galois extensions as the Galois group of extension which is normal subgroup of
Galois extension.

2. The possible physical meaning of the notion of perfectoid introduced by Peter Scholze is
discussed in the framework of p-adic physics. Extensions of p-adic numbers involving roots
of the prime defining the extension are involved and are not considered previously in TGD
framework. There there possible physical meaning deserves discussion.

3. The construction of cognitive representation reduces to a well-known mathematical problem of
finding the points of space-time surface with embedding space coordinates in given extension
of rationals. The work of Kim and Coates represents new ideas in this respect and there is a
natural connection with TGD.

4. One expects that large cognitive representations are winners in the number theoretical fight
for survival. Strong form of holography suggests that it is enough to consider cognitive
representations restricted to string world sheets and partonic 2-surfaces. If the 2-surface pos-
sesses large group of symmetries acting in extension of rationals, one can have large cognitive
representations as orbit of point in extension. Examples of highly symmetric 2-D surfaces
are geodesic spheres assignable to partonic 2-surfaces and cosmic strings and elliptic curves
assignable with string world sheets and cosmic strings.

5. Rationals and their extensions give rise to a unique discretizations of space-time surface (for
instance) - cognitive representation - having interpretation in terms of finite measurement
resolution. There are however many open questions. Should one allow only octonionic poly-
nomials defined as algebraic continuations of real polynomials or should one allow also analytic
functions and regard polynomials as approximations. Zeta functions are especially interesting
analytic functions and Defekind zetas characterize extensions of rationals and one can pose
physically motivated questions about them.

Could quantum randomness have something to do with classical chaos?

Tim Palmer has proposed that classical chaos and quantum randomness might be related. It came
as a surprise to me that these to notions could a have deep relationship in TGD framework.

1. Strong form of Palmer’s idea stating that quantum randomness reduces to classical chaos cer-
tainly fails but one can consider weaker forms of the idea. Even these variants fail in Copen-
hagen interpretation since strictly speaking there is no classical reality, only wave function
coding for the knowledge about the system. Bohr orbits should be more than approximation
and in TGD framework space-time surface as preferred extremal of action is analogous to
Bohr orbit and classical physics defined by Bohr orbits is an exact part of quantum theory.

2. In the zero energy ontology (ZEO) of TGD the idea works in weaker form and has very
strong implications for the more detailed understanding of ZEO and M8−M4×CP2 duality.
Ordinary (“big”) state functions (BSFRs) meaning the death of the system in a universal
sense and re-incarnation with opposite arrow of time would involve quantum criticality ac-
companied by classical chaos assignable to the correspondence between geometric time and
subjective time identified as sequence of “small” state function reductions (SSFRs) as analogs
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of weak measurements. The findings of Minev et al give strong support for this view and
Libet’s findings about active aspects of consciousness can be understood if the act of free will
corresponds to BSFR.

M8 picture identifies 4-D space-time surfaces X4 as roots for “imaginary” or “real” part of
octonionic polynomial P2P1 obtained as a continuation of real polynomial P2(L− r)P1(r) , whose
arguments have origin at the the tips of B and A and roots a the light-cone boundaries associated
with tips. Causal diamond (CD) is identified intersection of future and past directed light-cones
light-cones A and B. In the sequences of SSFRs P2(L− r) assigned to B varies and P1(r) assigned
to A is unaffected. L defines the size of CD as distance τ = 2L between its tips.

Besides 4-D space-time surfaces there are also brane-like 6-surfaces corresponding to roots
ri,k of Pi(r) and defining “special moments in the life of self” having ti = ri,k ball as M4

+ projection.
The number of roots and their density increases rapidly in the sequence of SSFRs. The condition
that the largest root belongs to CD gives a lower bound to it size L as largest root. Note that L
increases.

Concerning the approach to chaos, one can consider three options.

Option I: The sequence of steps consisting of unitary evolutions followed by SSFR corre-
sponds to a functional factorization at the level of polynomials as sequence P2 = Q1 ◦Q2 ◦ ...Qn.
If the size of CD is assumed to increase, also the tip of active boundary of CD must shift so that
the argument of P2 r − L is replaced in each iteration step to with updated argument with larger
value of L.

Option II: A completely unexpected connection with the iteration of analytic functions
and Julia sets, which are fractals assigned also with chaos interpreted as complexity emerges. In a
reasonable approximation quantum time evolution by SSFRs could be induced by an iteration of
a polynomial or even an analytic function: P2 = P2 → P ◦22 → .... For P2(0) = 0 the roots of the
iterate consists of inverse images of roots of P2 by P ◦−k2 for k = 0, ..., N − 1.

Suppose that M8 and X4 are complexified and thus also t = r and “real” X4 is the projection
ofX4

c to realM8. Complexify also the coefficients of polynomials P . If so, the Mandelbrot and Julia
sets (http://tinyurl.com/cplj9pe and http://tinyurl.com/cvmr83g) characterizing fractals
would have a physical interpretation in ZEO.

One approaches chaos in the sense that the N − 1:th inverse images of the roots of P2

belonging to filled Julia set approach to points of Julia set of P2 as the number N of iterations
increases. Minimal L would increase with N if CD is assumed to contain all roots. The density of
the roots in Julia set increases near L since the size of CD is bounded by the size Julia set. One
could perhaps say that near the t = L in the middle of CD the life of self when the size of CD has
become almost stationary, is the most intensive.

Option III: A conservative option is to consider also real polynomials P2(r) with real
argument r. Only non-negative real roots rn are of interest whereas in the general case one
considers all values of r. For a large N the new roots with possibly one exception would approach
to the real Julia set obtained as a real projection of Julia set for complex iteration.

How the size L of CD is determined and when can BSFR occur?

Option I: If L is minimal and thus given by the largest (non-exceptional) root of iterate of
P2 in Julia set, it is bound to increase in the iteration (this option is perhaps too deterministic). L
should smaller than the sizes of Julia sets of bothA and B since the iteration gives no roots outside
Julia sets.

Could BSFR become probable when L as the largest allowed root for iterate P2 is larger
than the size of Julia set of A? There would be no more new “special moments in the life of
self” and this would make death (in universal sense) and re-incarnation with opposite arrow of
time probable. The size of CD could decrease dramatically in the first iteration for P1 if it is
determined as the largest allowed root of P1: the re-incarnated self would have childhood.

Option II: The size of CD could be determined in SSFR statistically as an allowed root of
P2. Since the density of roots increases, one would have a lot of choices and quantum criticality
and fluctuations of the order of clock time τ = 2L: the order of subjective time would not anymore
correspond to that for clock time. BSFR would occur for the same reason as for the first option.

http://tinyurl.com/cplj9pe
http://tinyurl.com/cvmr83g
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TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of Hyperfinite
Factors, M8 −H Duality, SUSY, and Twistors

In this chapter 4 topics are discussed. McKay correspondence, SUSY, and twistors are discussed
from TGD point of view, and new aspects of M8 −H duality are considered.

1. McKay correspondence in TGD framework

There are two mysterious looking correspondences involving ADE groups. McKay corre-
spondence between McKay graphs characterizing tensor products for finite subgroups of SU(2)
and Dynkin diagrams of affine ADE groups is the first one. The correspondence between principal
diagrams characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams
for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

These correspondences are discussed from number theoretic point of view suggested by TGD
and based on the interpretation of discrete subgroups of SU(2) as subgroups of the covering group
of quaternionic automorphisms SO(3) (analog of Galois group) and generalization of these groups
to semi-direct products Gal(K) / SU(2)K of Galois group for extension K of rationals with the
discrete subgroup SU(2)K of SU(2) with representation matrix elements in K. The identification
of the inclusion hierarchy of HFFs with the hierarchy of extensions of rationals and their Galois
groups is proposed.

A further mystery whether Gal(K)/SU(2)K could give rise to quantum groups or affine al-
gebras. In TGD framework the infinite-D group of isometries of “world of classical worlds” (WCW)
is identified as an infinite-D symplectic group for which the discrete subgroups characterized by
K have infinite-D representations so that hyper-finite factors are natural for their representations.
Symplectic algebra SSA allows hierarchy of isomorphic sub-algebras SSAn. The gauge conditions
for SSAn and [SSAn, SSA] would define measurement resolution giving rise to hierarchies of in-
clusions and ADE type Kac-Moody type algebras or quantum algebras representing symmetries
modulo measurement resolution.

A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra identi-
fying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements defined by the
traces of representation matrices (characters).

2. New aspects of M8 −H duality

M8−H duality is now a central part of TGD and leads to new findings. M8−H duality can
be formulated both at the level of space-time surfaces and light-like 8-momenta. Since the choice of
M4 in the decomposition of momentum space M8 = M4×E4 is rather free, it is always possible to
find a choice for which light-like 8-momentum reduces to light-like 4-momentum in M4 - the notion
of 4-D mass is relative. This leads to what might be called SO(4)− SU(3) duality corresponding
to the hadronic and partonic views about hadron physics. Particles, which are eigenstates of mass
squared are massless in M4 × CP2 picture and massive in M8 picture. The massivation in this
picture is a universal mechanism having nothing to do with dynamics and results in zero energy
ontology automatically if the zero energy states are superpositions of states with different masses.
p-Adic thermodynamics describes this massivation. Also a proposal for the realization of ADE
hierarchy emerges.

4-D space-time surfaces correspond to roots of octonionic polynomials P (o) with real coef-
ficients corresponding to the vanishing of the real or imaginary part of P (o). These polynomials
however allow universal roots, which are not 4-D but analogs of 6-D branes and having topology
of S6. Their M4 projections are time =constant snapshots t = rn, rM ≤ rn 3-balls of M4 light-
cone (rn is root of P (x)). At each point the ball there is a sphere S3 shrinking to a point about
boundaries of the 3-ball. These special values of M4 time lead to a deeper understanding of ZEO
based quantum measurement theory and consciousness theory.

3. Is the identification of twistor space of M4 really correct?

The critical questions concerning the identification of twistor space of M4 as M4 × S2

led to consider a more conservative identification as CP3 with hyperbolic signature (3,-3) and
replacement of H with H = cdconf × CP2, where cdconf is CP2 with hyperbolic signature (1,-3).
This approach reproduces the nice results of the earlier picture but means that the hierarchy of
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CDs in M8 is mapped to a hierarchy of spaces cdconf with sizes of CDs. This conforms with
Poincare symmetry from which everything started since Poincare group acts in the moduli space
of octonionic structures of M8. Note that also the original form of M8 −H duality continues to
make sense and results from the modification by projection from CP3,h to M4 rather than CP2,h.

The outcome of octo-twistor approach applied at level of M8 together with modified M8−H
duality leads to a nice picture view about twistorial description of massive states based on quater-
nionic generalization of twistor (super-)Grassmannian approach. A radically new view is that
descriptions in terms of massive and massless states are alternative options, and correspond to
two different alternative twistorial descriptions and leads to the interpretation of p-adic thermody-
namics as completely universal massivation mechanism having nothing to do with dynamics. As
a side product emerges a deeper understanding of ZEO based quantum measurement theory and
consciousness theory relying on the universal roots of octonionic polynomials of M8, which are
not 4-D but analogs of 6-D branes. This part of article is not a mere side track since by M8 −H
duality the finite sub-groups of SU(2) of McKay correspondence appear quite concretely in the
description of the measurement resolution of 8-momentum.

The Recent View about SUSY in TGD Universe

The progress in understanding of M8−H duality throws also light to the problem whether SUSY
is realized in TGD and what SUSY breaking does mean. It is now rather clear that sparticles are
predicted and SUSY remains exact but that p-adic thermodynamics causes thermal massivation:
unlike Higgs mechanism, this massivation mechanism is universal and has nothing to do with
dynamics. This is due to the fact that zero energy states are superpositions of states with different
masses. The selection of p-adic prime characterizing the sparticle causes the mass splitting between
members of super-multiplets although the mass formula is same for all of them.

The question how to realize super-field formalism at the level of H = M4 × CP2 led to
a dramatic progress in the identification of elementary particles and SUSY dynamics. The most
surprising outcome was the possibility to interpret leptons and corresponding neutrinos as local
3-quark composites with quantum numbers of anti-proton and anti-neutron. Leptons belong to
the same super-multiplet as quarks and are antiparticles of neutron and proton as far quantum
numbers are consided. One implication is the understanding of matter-antimatter asymmetry.
Also bosons can be interpreted as local composites of quark and anti-quark.

Hadrons and hadronic gluons would still correspond to the analog of monopole phase in
QFTs. Homology charge would appear as space-time correlate for color at space-time level and
explain color confinement. Also color octet variants of weak bosons, Higgs, and Higgs like particle
and the predicted new pseudo-scalar are predicted. They could explain the successes of conserved
vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC).

One ends up with the precise understanding of quantum criticality and understand the
relation between its descriptions at M8 level and H-level. Polynomials describing a hierarchy of
dark matters describe also a hierarchy of criticalities and one can identify inclusion hierarchies
as sub-hierarchies formed by functional composition of polynomials. The Wick contractions of
quark-antiquark monomials appearing in the expansion of super-coordinate of H could define the
analog of radiative corrections in discrete approach. M8 −H duality and number theoretic vision
require that the number of non-vanishing Wick contractions is finite. The number of contractions
is indeed bounded by the finite number of points in cognitive representation and increases with
the degree of the octonionic polynomial and gives rise to a discrete coupling constant evolution
parameterized by the extensions of rationals.

Quark oscillator operators in cognitive representation correspond to quark field q. Only
terms with quark number 1 appear in q and leptons emerge in Kähler action as local 3-quark
composites. Internal consistency requires that q must be the super-spinor field satisfying super
Dirac equation. This leads to a self-referential condition qs = q identifying q and its super-
counterpart qs. Also super-coordinate hs must satisfy analogous condition (hs)s = hs, where
hs → (hs)s means replacement of h in the argument of hs with hs.

The conditions have an interpretation in terms of a fixed point of iteration and expression
of quantum criticality. The coefficients of various terms in qs and hs are analogous to coupling
constants can be fixed from this condition so that one obtains discrete number theoretical coupling
constant evolution. The basic equations are quantum criticality condition hs = (hs)s, q = qs,
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Dα,sΓ
α
s = 0 coming from Kähler action, and the super-Dirac equation Dsq = 0.
One also ends up to the first completely concrete proposal for how to construct S-matrix

directly from the solutions of super-Dirac equations and super-field equations for space-time super-
surfaces. The idea inspired by WKB approximation is that the exponent of the super variant
of Kähler function including also super-variant of Dirac action defines S-matrix elements as its
matrix elements between the positive and negative energy parts of the zero energy states formed
from the corresponding vacua at the two boundaries of CD annihilated by annihilation operators
and resp. creation operators. The states would be created by the monomials appearing in the
super-coordinates and super-spinor.

Super-Dirac action vanishes on-mass-shell. The proposed construction relying on ZEO al-
lows however to get scattering amplitudes between all possible states using the exponential of
super-Kähler action. Super-Dirac equation is however needed and makes possible to express the
derivatives of the quark oscillator operators (values of quark field at points of cognitive represen-
tation) so that one can use only the points of cognitive representation without introducing lattice
discretization. Discrete coupling constant evolution conforms with the fact that the contractions of
oscillator operators occur at the boundary of CD and their number is limited by the finite number
of points of cognitive representation.

Zero energy ontology, hierarchy of Planck constants, and Kähler metric replacing
unitary S-matrix: three pillars of new quantum theory

The understanding of the unitarity of the S-matrix has remained a major challenge of Topological
Geometrodynamics (TGD) for 4 decades. It has become clear that some basic principle is still
lacking. Assigning S-matrix to a unitary evolution works in non-relativistic theory but fails already
in the generic quantum field theory (QFT). The solution of the problem turned out to be extremely
simple. Einstein’s great vision was to geometrize gravitation by reducing it to the curvature of
space-time. Could the same recipe work for quantum theory? Could the replacement of the flat
Kähler metric of Hilbert space with a non-flat one allow the identification of the analog of unitary S-
matrix as a geometric property of Hilbert space? Kähler metric is required to geometrize hermitian
conjugation. It turns out that the Kähler metric of a Hilbert bundle determined by the Kähler
metric of its base space would replace unitary S-matrix.

An amazingly simple argument demonstrates that one can construct scattering probabilities
from the matrix elements of Kähler metric and assign to the Kähler metric a unitary S-matrix
assuming that some additional conditions guaranteeing that the probabilities are real and non-
negative are satisfied. If the probabilities correspond to the real part of the complex analogs of
probabilities, it is enough to require that they are non-negative: complex analogs of probabilities
would define the analog of Teichmueller matrix. Teichmueller space parameterizes the complex
structures of Riemann surface: could the allowed WCW Kähler metrics - or rather the associated
complex probability matrices - correspond to complex structures for some space? By the strong
from of holography (SH), the most natural candidate would be Cartesian product of Teichmueller
spaces of partonic 2 surfaces with punctures and string world sheets.

Under some additional conditions one can assign to Kähler metric a unitary S-matrix but
this does not seem necessary. The experience with loop spaces suggests that for infinite-D Hilbert
spaces the existence of non-flat Kähler metric requires a maximal group of isometries. Hence one
expects that the counterpart of S-matrix is highly unique.

In the TGD framework the ”world of classical worlds” (WCW) has Kähler geometry al-
lowing spinor structure. WCW spinors correspond to Fock states for second quantized spinors
at space-time surface and induced from second quantized spinors of the embedding space. Scat-
tering amplitudes would correspond to the Kähler metric for the Hilbert space bundle of WCW
spinor fields realized in zero energy ontology and satisfying Teichmueller condition guaranteeing
non-negative probabilities.

Equivalence Principle generalizes to level of WCW and its spinor bundle. In ZEO one can
assign also to the Kähler space of zero energy states spinor structure and this strongly suggests an
infinite hierarchy of second quantizations starting from space-time level, continuing at the level of
WCW, and continuing further at the level of the space of zero energy states. This would give an
interpretation for an old idea about infinite primes as an infinite hierarchy of second quantizations
of an arithmetic quantum field theory.
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Breakthrough in understanding of M8 −H duality

A critical re-examination of M8−H duality is discussed. M8−H duality is one of the cornerstones
of Topological Geometrodynamics (TGD). The original version of M8 −H duality assumed that
space-time surfaces in M8 can be identified as associative or co-associative surfaces. If the surface
has associative tangent or normal space and contains a complex or co-complex surface, it can be
mapped to a 4-surface in H = M4 × CP2.

Later emerged the idea that octonionic analyticity realized in terms of real polynomials
P algebraically continued to polynomials of complexified octonion could fulfill the dream. The
vanishing of the real part ReQ(P ) (imaginary part ImQ(P )) in the quaternionic sense would give
rise to an associative (co-associative) space-time surface.

The realization of the general coordinate invariance motivated the notion of strong form of
holography (SH) in H allowing realization of a weaker form of M8 −H duality by assuming that
associativity/co-associativity conditions are needed only at 2-D string world sheet and partonic
2-surfaces and possibly also at their light-like 3-orbits.

The outcome of the re-examination yielded both positive and negative surprises.

1. Although no interesting associative space-time surfaces are possible, every distribution of
normal associative planes (co-associativity) is integrable.

2. Another positive surprise was that Minkowski signature is the only possible option. Equiva-
lently, the image of M4 as real co-associative subspace of Oc (complex valued octonion norm
squared is real valued for them) by an element of local G2 or rather, its subgroup SU(3),
gives a real co-associative space-time surface.

3. The conjecture based on naive dimensional counting, which was not correct, was that the
polynomials P determine these 4-D surfaces as roots of ReQ(P ). The normal spaces of these
surfaces possess a fixed 2-D commuting sub-manifold or possibly their distribution allowing
the mapping to H by M8 −H duality as a whole.

If this conjecture were correct, strong form of holography (SH) would not be needed and
would be replaced with extremely powerful number theoretic holography determining space-
time surface from its roots and selection of real subspace of Oc characterizing the state of
motion of a particle. erate

4. The concrete calculation of the octonion polynomial was the most recent step - carried already
earlier [L47, L48, L49] but without realizing the implications of the extremely simple outcome.
The imaginary part of the polynomial is proportional to the imaginary part of octonion itself.
It turned out that the roots P = 0 of the octonion polynomial P are 12-D complex surfaces
in Oc rather than being discrete set of points defined as zeros X = 0, Y = 0 of two complex
functions of 2 complex arguments. The analogs of branes are in question. Already earlier
6-D real branes assignable to the roots of the real polynomial P at the light-like boundary of
8-D light-cone were discovered: also their complex continuations are 12-D [L73, L80].

5. P has quaternionic de-composition P = ReQ(P ) + I4ImQ(P ) to real and imaginary parts in
a quaternionic sense. The naive expectation was that the condition X = 0 implies that the
resulting surface is a 4-D complex surface X4

c with a 4-D real projection X4
r , which could be

co-associative.

The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!) complex
argument o2

c as a complex analog for the Lorentz invariant distance squared from the tip of the
light-cone. This implies a cold shower. Without any additional conditions, X = 0 conditions
have as solutions 7-D complex mass shells H7

c determined by the roots of P . The explanation
comes from the symmetries of the octonionic polynomial.

There are solutions X = 0 and Y = 0 only if the two polynomials considered have a common
a2
c as a root! Also now the solutions are complex mass shells H7

c .

How could one obtain 4-D surfaces X4
c as sub-manifolds of H7

c ? One should pose a condition
eliminating 4 complex coordinates: after that a projection to M4 would produce a real 4-surface
X4 .

1. The key observation is that G2 acts as the automorphism group of octonions respects the co-
associativity of the 4-D real sub-basis of octonions. Therefore a local G2 gauge transformation
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applied to a 4-D co-associative sub-space M4 gives a co-associative four-surface as a real
projection. Octonion analyticity would correspond to G2 gauge transformation: this would
realize the original idea about octonion analyticity.

2. A co-associative X4
c satisfying also the conditions posed by the existence of M8−H duality is

obtained by acting with a local SU3 transformation g to a co-associative plane M4 ⊂M8
c . If

the image point g(p) is invariant under U(2), the transformation corresponds to a local CP2

element and the map defines M8 −H duality even if the co-associativity in geometric sense
were not satisfied.

The co-associativity of the plane M4 is preserved in the map because G2 acts as an auto-
morphism group of the octonions. If this map also preserves the value of 4-D complex mass
squared, one can require that the intersections of X4

c with H7
c correspond to 3-D complex mass

shells. One obtains holography with mass shells defined by the roots of P giving boundary
data. The condition H images are analogous to Bohr orbits, corresponds to number theoretic
holography.

The group SU(3) has interpretation as a Kac-Moody type analog of color group and the
map defining space-time surface. This picture conforms with the H-picture in which gluon
gauge potentials are identified as color gauge potentials. Note that at QFT limit the gauge
potentials are replaced by their sums over parallel space-time sheets to give gauge fields as
the space-time sheets are approximated with a single region of Minkowski space.

3. Octonionic Dirac equation as analog of momentum space variant of ordinary Dirac equation
forces the interpretation of M8 as an analog of momentum space and Uncertainty Principle
forces to modify the map M4 ⊂M8 →M4 ⊂ H from an identification to an almost inversion.
The octonionic Dirac equation reduces to the mass shell condition m2 = rn, where rn is a
root of the polynomial P defining the 4-surface but only in the co-associative case.

This picture combined with zero energy ontology leads also to a view about quantum
TGD at the level of M8. A local SU(3) element defining 4-surface in M8, which suggests a
Yangian symmetry assignable to string world sheets and possibly also partonic 2-surfaces. The
representation of Yangian algebra using quark oscillator operators would allow to construct zero
energy states at representing the scattering amplitudes. The physically allowed momenta would
naturally correspond to algebraic integers in the extension of rationals defined by P . The co-
associative space-time surfaces (unlike generic ones) allow infinite-cognitive representations making
possible the realization of momentum conservation and on-mass-shell conditions.

1.4.2 PART II: SOME APPLICATIONS

Cosmology and Astrophysics in Many-Sheeted Space-Time

This chapter is devoted to the applications of TGD to astrophysics and cosmology.

1. Many-sheeted cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial
and gravitational four-momenta, the basic properties of the paired cosmic strings, the existence
of the limiting temperature, the assumption about the existence of the vapor phase dominated by
cosmic strings, and quantum criticality imply a rather detailed picture of the cosmic evolution,
which differs from that provided by the standard cosmology in several respects but has also strong
resemblances with inflationary scenario.

It should be made clear that many-sheeted cosmology involves a vulnerable assumption. It
is assumed that single-sheeted space-time surface is enough to model the cosmology. This need
not to be the case. GRT limit of TGD is obtained by lumping together the sheets of many-sheeted
space-time to a piece of Minkowski space and endowing it with an effective metric, which is sum
of Minkowski metric and deviations of the induced metrics of space-time sheets from Minkowski
metric. Hence the proposed models make sense only if GRT limits allowing imbedding as a vacuum
extremal of Kähler action have special physical role.

The most important differences are following.

1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a
spectrum of Hubble constants.
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2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each
sub-cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological
length scales so that the use of anthropic principle to explain why fundamental constants are
tuned for life is not necessary.

3. The new view about energy means provided by zero energy ontology (ZEO) means that the
notion of energy and also other quantum numbers is length scale dependent. This allows to
understand the apparent non-conservation of energy in cosmological scales although Poincare
invariance is exact symmetry. In ZEO any cosmology is in principle creatable from vacuum and
the problem of initial values of cosmology disappears. The density of matter near the initial
moment is dominated by cosmic strings approaches to zero so that big bang is transformed
to a silent whisper amplified to a relatively big bang.

4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of
dark space-time sheets which differ from non-dark ones in that they define multiple coverings
of M4. Quantum coherence of dark matter in the length scale of space-time sheet involved
implies that even in cosmological length scales Universe is more like a living organism than a
thermal soup of particles.

5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the
imbeddability requirement apart from a single parameter characterizing the duration of the
period after which transition to sub-critical cosmology necessarily occurs. The fluctuations
of the microwave background reflect the quantum criticality of the critical period rather than
amplification of primordial fluctuations by exponential expansion. This and also the finite
size of the space-time sheets predicts deviations from the standard cosmology.

2. Cosmic strings

Cosmic strings belong to the basic extremals of the Kähler action. The string tension of the
cosmic strings is T ' .2× 10−6/G and slightly smaller than the string tension of the GUT strings
and this makes them very interesting cosmologically. Concerning the understanding of cosmic
strings a decisive breakthrough came through the identification of gravitational four-momentum as
the difference of inertial momenta associated with matter and antimatter and the realization that
the net inertial energy of the Universe vanishes. This forced to conclude cosmological constant
in TGD Universe is non-vanishing. p-Adic length fractality predicts that Λ scales as 1/L2(k)
as a function of the p-adic scale characterizing the space-time sheet. The recent value of the
cosmological constant comes out correctly. The gravitational energy density described by the
cosmological constant is identifiable as that associated with topologically condensed cosmic strings
and of magnetic flux tubes to which they are gradually transformed during cosmological evolution.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of
cosmic strings are responsible for the evolution of astrophysical structures in a very wide length
scale range. Large voids with size of order 108 light years can be seen as structures containing knot-
ted and linked cosmic string pairs wound around the boundaries of the void. Galaxies correspond
to same structure with smaller size and linked around the supra-galactic strings. This conforms
with the finding that galaxies tend to be grouped along linear structures. Simple quantitative esti-
mates show that even stars and planets could be seen as structures formed around cosmic strings
of appropriate size. Thus Universe could be seen as fractal cosmic necklace consisting of cosmic
strings linked like pearls around longer cosmic strings linked like...

3. Dark matter and quantization of gravitational Planck constant

The notion of gravitational Planck constant having possibly gigantic values is perhaps the
most radical idea related to the astrophysical applications of TGD. D. Da Rocha and Laurent
Nottale have proposed that Schrödinger equation with Planck constant ~ replaced with what
might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a velocity parameter

having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4. This is rather near to the peak
orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0 seem to appear.
The support for the hypothesis comes from empirical data.

By Equivalence Principle and independence of the gravitational Compton length on particle
mass m it is enough to assume ggr only for flux tubes mediating interactions of microscopic objects
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with central mass M . In TGD framework hgr relates to the hierarchy of Planck constants heff =
n× h assumed to relate directly to the non-determinism and to the quantum criticality of Kähler
action.

Dark matter can be identified as large heff phases at Kähler magnetic flux tubes and dark
energy as the Kähler magnetic energy of these flux tubes carrying monopole magnetic fluxes. No
currents are needed to create these magnetic fields, which explains the presence of magnetic fields
in cosmological scales.

Overall View About TGD from Particle Physics Perspective

Topological Geometrodynamics is able to make rather precise and often testable predictions. In
this and two other articles I want to describe the recent over all view about the aspects of quantum
TGD relevant for particle physics.

In the first chapter I concentrate the heuristic picture about TGD with emphasis on particle
physics.

• First I represent briefly the basic ontology: the motivations for TGD and the notion of many-
sheeted space-time, the concept of zero energy ontology, the identification of dark matter in
terms of hierarchy of Planck constant which now seems to follow as a prediction of quantum
TGD, the motivations for p-adic physics and its basic implications, and the identification
of space-time surfaces as generalized Feynman diagrams and the basic implications of this
identification.

• Symmetries of quantum TGD are discussed. Besides the basic symmetries of the embedding
space geometry allowing to geometrize standard model quantum numbers and classical fields
there are many other symmetries. General Coordinate Invariance is especially powerful in
TGD framework allowing to realize quantum classical correspondence and implies effective
2-dimensionality realizing strong form of holography. Super-conformal symmetries of super
string models generalize to conformal symmetries of 3-D light-like 3-surfaces.

What GRT limit of TGD and Equivalence Principle mean in TGD framework have are prob-
lems which found a solution only quite recently (2014). GRT space-time is obtained by
lumping together the sheets of many-sheeted space-time to single piece of M4 provided by an
effective metric defined by the sum of Minkowski metric and the deviations of the induced
metrics of space-time sheets from Minkowski metric. Same description applies to gauge po-
tentials of gauge theory limit. Equivalence Principle as expressed by Einstein’s equations
reflects Poincare invariance of TGD.

Super-conformal symmetries imply generalization of the space-time supersymmetry in TGD
framework consistent with the supersymmetries of minimal supersymmetric variant of the
standard model. Twistorial approach to gauge theories has gradually become part of quan-
tum TGD and the natural generalization of the Yangian symmetry identified originally as
symmetry of N = 4 SYMs is postulated as basic symmetry of quantum TGD.

• The so called weak form of electric-magnetic duality has turned out to have extremely far
reaching consequences and is responsible for the recent progress in the understanding of
the physics predicted by TGD. The duality leads to a detailed identification of elementary
particles as composite objects of massless particles and predicts new electro-weak physics at
LHC. Together with a simple postulate about the properties of preferred extremals of Kähler
action the duality allows also to realized quantum TGD as almost topological quantum field
theory giving excellent hopes about integrability of quantum TGD.

• There are two basic visions about the construction of quantum TGD. Physics as infinite-
dimensional Kähler geometry of world of classical worlds (WCW) endowed with spinor struc-
ture and physics as generalized number theory. These visions are briefly summarized as also
the practical constructing involving the concept of Dirac operator. As a matter fact, the
construction of TGD involves four Dirac operators.

1. The Kähler Dirac equation holds true in the interior of space-time surface: the well-
definedness of em charge as quantum number of zero modes implies localization of the
modes of the induced spinor field to 2-surfaces. It is quite possible that this localization is
consistent with Kähler-Dirac equation only in the Minkowskian regions where the effective
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metric defined by Kähler-Dirac gamma matrices can be effectively 2-dimensional and
parallel to string world sheet.

2. Assuming measurement interaction term for four-momentum, the boundary condition
for Kähler-Dirac operator gives essentially massless M4 Dirac equation in algebraic form
coupled to what looks like Higgs term but gives a space-time correlate for the stringy
mass formula at stringy curves at the space-like ends of space-time surface.

3. The ground states of the Super-Virasoro representations are constructed in terms of the
modes of embedding space spinor fields which are massless in 8-D sense.

4. The fourth Dirac operator is associated with super Virasoro generators and super Virasoro
conditions defining Dirac equation in WCW. These conditions characterize zero energy
states as modes of WCW spinor fields and code for the generalization of S-matrix to
a collection of what I call M -matrices defining the rows of unitary U -matrix defining
unitary process.

• Twistor approach has inspired several ideas in quantum TGD during the last years. The
basic finding is that M4 resp. CP2 is in a well-defined sense the only 4-D manifold with
Minkowskian resp. Euclidian signature of metric allowing twistor space with Kähler structure.
It seems that the Yangian symmetry and the construction of scattering amplitudes in terms of
Grassmannian integrals generalizes to TGD framework. This is due to ZEO allowing to assume
that all particles have massless fermions as basic building blocks. ZEO inspires the hypothesis
that incoming and outgoing particles are bound states of fundamental fermions associated with
wormhole throats. Virtual particles would also consist of on mass shell massless particles but
without bound state constraint. This implies very powerful constraints on loop diagrams and
there are excellent hopes about their finiteness: contrary to original expectations the stringy
character of the amplitudes seems necessary to guarantee finiteness.

Particle Massivation in TGD Universe

This chapter represents the most recent (2014) view about particle massivation in TGD frame-
work. This topic is necessarily quite extended since many several notions and new mathematics
is involved. Therefore the calculation of particle masses involves five chapters. In this chapter
my goal is to provide an up-to-date summary whereas the chapters are unavoidably a story about
evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction of
massless states and the identification of the states which remain light in p-adic thermodynamics.
The latter task is relatively straightforward. The thorough understanding of the massless spectrum
requires however a real understanding of quantum TGD. It would be also highly desirable to
understand why p-adic thermodynamics combined with p-adic length scale hypothesis works. A
lot of progress has taken place in these respects during last years.

1. Physical states as representations of super-symplectic and Super Kac-Moody algebras

The basic constraint is that the super-conformal algebra involved must have five tensor
factors. The precise identification of the Kac-Moody type algebra has however turned out to be
a difficult task. The recent view is as follows. Electroweak algebra U(2)ew = SU(2)L × U(1)
and symplectic isometries of light-cone boundary (SU(2)rot × SU(3)c) give 2+2 factors and full
supersymplectic algebra involving only covariantly constant right-handed neutrino mode would give
1 factor. This algebra could be associated with the 2-D surfaces X2 defined by the intersections
of light-like 3-surfaces with δM4

± × CP2. These 2-surfaces have interpretation as partons.
For conformal algebra there are several candidates. For symplectic algebra radial light-like

coordinate of light-cone boundary replaces complex coordinate. Light-cone boundary S2 ×R+ al-
lows extended conformal symmetries which can be interpreted as conformal transformations of S2

depending parametrically on the light-like coordinate of R+. There is infinite-D subgroup of con-
formal isometries with S2 dependent radial scaling compensating for the conformal scaling in S2.
Kähler-Dirac equation allows ordinary conformal symmetry very probably liftable to embedding
space. The light-like orbits of partonic 2-surface are expected to allow super-conformal symme-
tries presumably assignable to quantum criticality and hierarchy of Planck constants. How these
conformal symmetries integrate to what is expected to be 4-D analog of 2-D conformal symmetries
remains to be understood.
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Yangian algebras associated with the super-conformal algebras and motivated by twistorial
approach generalize the super-conformal symmetry and make it multi-local in the sense that gen-
erators can act on several partonic 2-surfaces simultaneously. These partonic 2-surfaces generalize
the vertices for the external massless particles in twistor Grassmann diagrams [?] The implications
of this symmetry are yet to be deduced but one thing is clear: Yangians are tailor made for the
description of massive bound states formed from several partons identified as partonic 2-surfaces.
The preliminary discussion of what is involved can be found in [?]

2. Particle massivation

Particle massivation can be regarded as a generation of thermal mass squared and due to
a thermal mixing of a state with vanishing conformal weight with those having higher conformal
weights. The obvious objection is that Poincare invariance is lost. One could argue that one
calculates just the vacuum expectation of conformal weight so that this is not case. If this is not
assumed, one would have in positive energy ontology superposition of ordinary quantum states with
different four-momenta and breaking of Poincare invariance since eigenstates of four-momentum
are not in question. In Zero Energy Ontology this is not the case since all states have vanishing net
quantum numbers and one has superposition of time evolutions with well-defined four-momenta.
Lorentz invariance with respect to the either boundary of CD is achieved but there is small breaking
of Poincare invariance characterized by the inverse of p-adic prime p characterizing the particle.
For electron one has 1/p = 1/M127 ∼ 10−38.

One can imagine several microscopic mechanisms of massivation. The following proposal is
the winner in the fight for survival between several competing scenarios.

1. Instead of energy, the Super Kac-Moody Virasoro (or equivalently super-symplectic) gener-
ator L0 (essentially mass squared) is thermalized in p-adic thermodynamics (and also in its
real version assuming it exists). The fact that mass squared is thermal expectation of con-
formal weight guarantees Lorentz invariance. That mass squared, rather than energy, is a
fundamental quantity at CP2 length scale is also suggested by a simple dimensional argument
(Planck mass squared is proportional to ~ so that it should correspond to a generator of some
Lie-algebra (Virasoro generator L0!)). What basically matters is the number of tensor factors
involved and five is the favored number.

2. There is also a modular contribution to the mass squared, which can be estimated using
elementary particle vacuum functionals in the conformal modular degrees of freedom of the
partonic 2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both Vira-
soro and modular contributions seem to be negligible and could be due to the smallness of
the p-adic temperature.

3. A natural identification of the non-integer contribution to the mass squared is as stringy
contribution to the vacuum conformal weight (strings are now “weak strings”). TGD predicts
Higgs particle and Higgs is necessary to give longitudinal polarizations for gauge bosons.
The notion of Higgs vacuum expectation is replaced by a formal analog of Higgs vacuum
expectation giving a space-time correlate for the stringy mass formula in case of fundamental
fermions. Also gauge bosons usually regarded as exactly massless particles would naturally
receive a small mass from p-adic thermodynamics. The theoretetical motivation for a small
mass would be exact Yangian symmetry which broken at the QFT limit of the theory using
GRT limit of many-sheeted space-time.

4. Hadron massivation requires the understanding of the CKM mixing of quarks reducing to
different topological mixing of U and D type quarks. Number theoretic vision suggests that
the mixing matrices are rational or algebraic and this together with other constraints gives
strong constraints on both mixing and masses of the mixed quarks.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1 whereas
Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length
scale R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger than
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the naive guess. Hence p-adic thermodynamics describes the mixing of states with vanishing
conformal weights with their Super Kac-Moody Virasoro excitations having masses of order
10−3.5 Planck mass.

New Physics Predicted by TGD

TGD predicts a lot of new physics and it is quite possible that this new physics becomes visible at
LHC. Although the calculational formalism is still lacking, p-adic length scale hypothesis allows
to make precise quantitative predictions for particle masses by using simple scaling arguments.

The basic elements of quantum TGD responsible for new physics are following.

1. The new view about particles relies on their identification as partonic 2-surfaces (plus 4-D
tangent space data to be precise). This effective metric 2-dimensionality implies generalizaton
of the notion of Feynman diagram and holography in strong sense. One implication is the
notion of field identity or field body making sense also for elementary particles and the Lamb
shift anomaly of muonic hydrogen could be explained in terms of field bodies of quarks.

4-D tangent space data must relate to the presence of strings connecting partonic 2-surfaces
and defining the ends of string world sheets at which the modes of induced spinor fields
are localized in the generic case in order to achieve conservation of em charge. The integer
characterizing the spinor mode should charactize the tangent space data. Quantum criticality
suggests strongly and super-conformal invariance acting as a gauge symmetry at the light-
like partonic orbits and leaving the partonic 2-surfaces at their ends invariant. Without the
fermionic strings effective 2-dmensionality would degenerate to genuine 2-dimensionality.

2. The topological explanation for family replication phenomenon implies genus generation cor-
respondence and predicts in principle infinite number of fermion families. One can however
develop a rather general argument based on the notion of conformal symmetry known as
hyper-ellipticity stating that only the genera g = 0, 1, 2 are light. What “light” means is
however an open question. If light means something below CP2 mass there is no hope of
observing new fermion families at LHC. If it means weak mass scale situation changes.

For bosons the implications of family replication phenomenon can be understood from the
fact that they can be regarded as pairs of fermion and antifermion assignable to the opposite
wormhole throats of wormhole throat. This means that bosons formally belong to octet and
singlet representations of dynamical SU(3) for which 3 fermion families define 3-D represen-
tation. Singlet would correspond to ordinary gauge bosons. Also interacting fermions suffer
topological condensation and correspond to wormhole contact. One can either assume that
the resulting wormhole throat has the topology of sphere or that the genus is same for both
throats.

3. The view about space-time supersymmetry differs from the standard view in many respects.
First of all, the super symmetries are not associated with Majorana spinors. Super generators
correspond to the fermionic oscillator operators assignable to leptonic and quark-like induced
spinors and there is in principle infinite number of them so that formally one would have
N =∞ SUSY. I have discussed the required modification of the formalism of SUSY theories
and it turns out that effectively one obtains just N = 1 SUSY required by experimental
constraints. The reason is that the fermion states with higher fermion number define only
short range interactions analogous to van der Waals forces. Right handed neutrino generates
this super-symmetry broken by the mixing of the M4 chiralities implied by the mixing of
M4 and CP2 gamma matrices for induced gamma matrices. The simplest assumption is that
particles and their superpartners obey the same mass formula but that the p-adic length scale
can be different for them.

4. The new view about particle massivation involves besides p-adic thermodynamics also Higgs
particle but there is no need to assume that Higgs vacuum expectation plays any role. All
particles could be seen as pairs of wormhole contacts whose throats at the two space-time
sheets are connected by flux tubes carrying monopole flux: closed monopole flux tube involving
two space-time sheets would be ion question. The contribution of the flux tube to particle
mass would dominate for weak bosons whereas for fermions second wormhole contact would
dominate.
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5. One of the basic distinctions between TGD and standard model is the new view about color.

(a) The first implication is separate conservation of quark and lepton quantum numbers
implying the stability of proton against the decay via the channels predicted by GUTs.
This does not mean that proton would be absolutely stable. p-Adic and dark length
scale hierarchies indeed predict the existence of scale variants of quarks and leptons and
proton could decay to hadons of some zoomed up copy of hadrons physics. These decays
should be slow and presumably they would involve phase transition changing the value
of Planck constant characterizing proton. It might be that the simultaneous increase of
Planck constant for all quarks occurs with very low rate.

(b) Also color excitations of leptons and quarks are in principle possible. Detailed calculations
would be required to see whether their mass scale is given by CP2 mass scale. The so
called leptohadron physics proposed to explain certain anomalies associated with both
electron, muon, and τ lepton could be understood in terms of color octet excitations of
leptons.

6. Fractal hierarchies of weak and hadronic physics labelled by p-adic primes and by the levels of
dark matter hierarchy are highly suggestive. Ordinary hadron physics corresponds to M107 =
2107−1 One especially interesting candidate would be scaled up hadronic physics which would
correspond to M89 = 289 − 1 defining the p-adic prime of weak bosons. The corresponding
string tension is about 512 GeV and it might be possible to see the first signatures of this
physics at LHC. Nuclear string model in turn predicts that nuclei correspond to nuclear
strings of nucleons connected by colored flux tubes having light quarks at their ends. The
interpretation might be in terms of M127 hadron physics. In biologically most interesting
length scale range 10 nm-2.5 µm there are four Gaussian Mersennes and the conjecture is
that these and other Gaussian Mersennes are associated with zoomed up variants of hadron
physics relevant for living matter. Cosmic rays might also reveal copies of hadron physics
corresponding to M61 and M31

7. Weak form of electric magnetic duality implies that the fermions and antifermions associated
with both leptons and bosons are Kähler magnetic monopoles accompanied by monopoles of
opposite magnetic charge and with opposite weak isospin. For quarks Kähler magnetic charge
need not cancel and cancellation might occur only in hadronic length scale. The magnetic flux
tubes behave like string like objects and if the string tension is determined by weak length
scale, these string aspects should become visible at LHC. If the string tension is 512 GeV the
situation becomes less promising.

In this chapter the predicted new physics and possible indications for it are discussed.
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Chapter 2

Evolution of Ideas about
Hyper-finite Factors in TGD

2.1 Introduction

This chapter has emerged from a splitting of a chapter devote to the possible role of von Neumann
algebras known as hyper-finite factors in quantum TGD. Second chapter emerging from the split-
ting is a representation of basic notions to chapter “Was von Neumann right after all?” [K112]
representing only very briefly ideas about application to quantum TGD only briefly.

In the sequel the ideas about TGD applications are reviewed more or less chronologically.
A summary about evolution of ideas is in question, not a coherent final structure, and as always
the first speculations - in this case roughly for a decade ago - might look rather weird. The vision
has however gradually become more realistic looking as deeper physical understanding of factors
has evolved slowly.

The mathematics involved is extremely difficult for a physicist like me, and to really learn
it at the level of proofs one should reincarnate as a mathematician. Therefore the only practical
approach relies on the use of physical intuition to see whether HFFs might the correct structure and
what HFFs do mean. What is needed is a concretization of the extremely abstract mathematics
involved: mathematics represents only the bones to which physics should add flesh.

2.1.1 Hyper-Finite Factors In Quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-surface) of
world of classical worlds (WCW) is therefore HFF of type II1. If the fermionic Fock algebra
defined by the fermionic oscillator operators assignable to the induced spinor fields (this is
actually not obvious!) is infinite-dimensional it defines a representation for HFF of type II1.
Super-conformal symmetry suggests that the extension of the Clifford algebra defining the
fermionic part of a super-conformal algebra by adding bosonic super-generators representing
symmetries of WCW respects the HFF property. It could however occur that HFF of type
II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
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L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified
as cosmic time [K90] . Since Lorentz boosts define a non-compact group, the generalization
of so called crossed product construction strongly suggests that the local Clifford algebra of
WCW is HFF of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the
space of moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products
of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and
γk by octonions. This inspires the idea that it might be possible to end up with quantum
TGD from purely number theoretical arguments. This seems to be the case. One can start
from a local octonionic Clifford algebra in M8. Associativity condition is satisfied if one
restricts the octonionic algebra to a subalgebra associated with any hyper-quaternionic and
thus 4-D sub-manifold of M8. This means that the Kähler-Dirac gamma matrices associated
with the Kähler action span a complex quaternionic sub-space at each point of the sub-
manifold. This associative sub-algebra can be mapped a matrix algebra. Together with
M8 −H duality [K113, K30] this leads automatically to quantum TGD and therefore also to
the notion of WCW and its Clifford algebra which is however only mappable to an associative
algebra and thus to HFF of type II1.

2.1.2 Hyper-Finite Factors And M-Matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could be
used to define the M-matrix of quantum TGD. This is not the case as is obvious already from
the fact that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors
is a more appropriate starting point than the notion modular automorphism but as a gener-
alization of thermodynamical state is certainly not enough for the purposes of quantum TGD
and quantum field theories (algebraic quantum field theorists might disagree!). Zero energy
ontology requires that the notion of thermodynamical state should be replaced with its “com-
plex square root” abstracting the idea about M-matrix as a product of positive square root
of a diagonal density matrix and a unitary S-matrix. This generalization of thermodynamical
state -if it exists- would provide a firm mathematical basis for the notion of M-matrix and for
the fuzzy notion of path integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which as-
sumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero
energy ontology: the two vacua can be assigned with the positive and negative energy parts
of the zero energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing “complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of
WCW.
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2.1.3 Connes Tensor Product As A Realization Of Finite Measurement
Resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The spaceM/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N “averaged” counterparts. The “averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally
or path integral over the degrees of freedom below measurement resolution defined by (say)
length scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition thatN acts like complex numbers on M-matrix elements as far asN “averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that N
averaging in terms of a complex square root of N state produces this kind of M-matrix poses
a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

2.1.4 Concrete Realization Of The Inclusion Hierarchies

A concrete construction of M-matrix motivated by the recent rather precise view about basic
variational principles of TGD allows to identify rather concretely the inclusions of HFFs in TGD
framework and relate them to the hierarchies of broken conformal symmetries accompanying quan-
tum criticalities.

1. Fundamental fermions localized to string world sheets can be said to propagate as massless
particles along their boundaries. The fundamental interaction vertices correspond to two
fermion scattering for fermions at opposite throats of wormhole contact and the inverse of
the conformal scaling generator L0 would define the stringy propagator characterizing this
interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite
throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with
monopole Kähler magnetic flux flowing around a loop going through wormhole contacts.

2. The formulation of scattering amplitudes in terms of Yangian of the super-symplectic alge-
bra leads to a rather detailed view about scattering amplitudes [K100]. In this formulation
scattering amplitudes are representations for sequences of algebraic operations connecting col-
lections of elements of Yangian and sequences produce the same result. A huge generalization
of the duality symmetry of the hadronic string models is in question.

3. The reduction of the hierarchy of Planck constants heff/h = n to a hierarchy of quantum
criticalities accompanied by a hierarchy of sub-algebras of super-symplectic algebra acting as
conformal gauge symmetries leads to the identification of inclusions of HFFs as inclusions of
WCW Clifford algebras characterizing by n(i) and n(i+1) = m(i)×n(i) so that hierarchies of
von Neuman algebras, of Planck constants, and of quantum criticalities would be very closely
related. In the transition n(i) → n(i + 1) = m(i) × n(i) the measurement accuracy indeed
increases since some conformal gauge degrees of freedom are transformed to physical ones. An
open question is whether one could interpret m(i) as the integer characterizing inclusion: the
problem is that also m(i) = 2 with M : N = 4 seems to be allowed whereas Jones inclusions
allow only m ≥ 3.
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Even more, number theoretic universality and strong form of holography leads to a detailed vi-
sion about the construction of scattering amplitudes suggesting that the hierarchy of algebraic
extensions of rationals relates to the above mentioned hierarchies.

2.1.5 Analogs of quantum matrix groups from finite measurement res-
olution?

The notion of quantum group replaces ordinary matrices with matrices with non-commutative
elements. In TGD framework I have proposed that the notion should relate to the inclusions
of von Neumann algebras allowing to describe mathematically the notion of finite measurement
resolution.

In this article I will consider the notion of quantum matrix inspired by recent view about
quantum TGD and it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution. The basic idea is to replace complex matrix
elements with operators expressible as products of non-negative hermitian operators and unitary
operators analogous to the products of modulus and phase as a representation for complex numbers.

The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its
development with respect to a fixed row or column does not pose additional conditions. Strong
definition of determinant requires its invariance under permutations of rows and columns. The
permutation of rows/columns turns out to have interpretation as braiding for the hermitian op-
erators defined by the moduli of operator valued matrix elements. The commutativity of all sub-
determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian
operators and sub-determinants define mutually commuting set of operators.

The resulting quantum matrices define a more general structure than quantum group but
provide a concrete representation and interpretation for quantum group in terms of finite measure-
ment resolution if q is a root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one
obtains quantum matrices for which the determinant is apart from possible change by sign factor
invariant under the permutations of both rows and columns. One could also understand the fractal
structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators
appearing as matrix elements with quantum matrices.

2.1.6 Quantum Spinors And Fuzzy Quantum Mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities.
For quantum spinors state function reduction cannot be performed unless quantum deformation
parameter equals to q = 1. The reason is that the components of quantum spinor do not commute:
it is however possible to measure the commuting operators representing moduli squared of the
components giving the probabilities associated with “true” and “false”. The universal eigenvalue
spectrum for probabilities does not in general contain (1,0) so that quantum qbits are inherently
fuzzy. State function reduction would occur only after a transition to q=1 phase and de-coherence
is not a problem as long as it does not induce this transition.

This chapter represents a summary about the development of the ideas with last sections
representing the recent latest about the realization and role of HFFs in TGD. I have saved the
reader from those speculations that have turned out to reflect my own ignorance or are inconsistent
with what I regarded established parts of quantum TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

2.2 A Vision About The Role Of HFFs In TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have
a profound role in TGD. Whether also HFFs of type III1 appearing also in relativistic quantum
field theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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have proposed several ideas about the role of hyper-finite factors in TGD framework. In particular,
Connes tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by ZEO and the
recent advances in the understanding of M-matrix using the notion of bosonic emergence. The
conclusion is that the notion of state as it appears in the theory of factors is not enough for the
purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart of
thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its “complex square root” natural if quantum theory is regarded
as a “complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace for
the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.

The newest element in the vision is the proposal that quantum criticality of TGD Universe
is realized as hierarchies of inclusions of super-conformal algebras with conformal weights coming
as multiples of integer n, where n varies. If n1 divides n2 then various super-conformal algebras
Cn2

are contained in Cn1
. This would define naturally the inclusion.

2.2.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a
physicist to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space
H bounded in the norm topology with norm defined by the supremum for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that
the counterparts of complex conjugation, order structure and metric structure determined by the
algebraic structure exist. This means the existence involution -that is *- algebra property. The
order structure determined by algebraic structure means following: A ≥ 0 defined as the condition
(Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B|
(Banach algebra property) determined by the algebraic structure. The algebra is also C∗ algebra:
||A∗A|| = ||A||2 meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebraM [A28] is defined as a weakly closed non-degenerate *-subalgebra
of B(H) and has therefore all the above mentioned properties. From the point of view of physicist
it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. Let M be subalgebra of B(H) and denote by M′ its commutant (H) commuting with it and
allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ = M M is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that the
intersection of the algebra and its commutant reduces to a complex line spanned by a unit
operator. The condition that the only operator commuting with all operators of the factor is
unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.
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The definition of the factor might look somewhat artificial unless one is aware of the underly-
ing physical motivations. The motivating question is what the decomposition of a physical system
to non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor products
of mutually commuting operators in M = B(H1) and M′ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators projecting
to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed as
a sum of these projectors. For factors of type I minimal projectors exist. Factors of type
In correspond to sub-algebras of B(H) associated with infinite-dimensional Hilbert space and
I∞ to B(H) itself. These factors appear in the standard quantum measurement theory where
state function reduction can lead to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors
of type II1 all projectors have trace not larger than one and the trace varies in the range
(0, 1]. In this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-
dimensional subspace characterized by a projector with trace smaller than 1 but larger than
zero. The natural interpretation would be in terms of finite measurement resolution. The
tensor product of II1 factor and I∞ is II∞ factor for which the trace for a projector can
have arbitrarily large values. II1 factor has a unique finite tracial state and the set of traces
of projections spans unit interval. There is uncountable number of factors of type II but
hyper-finite factors of type II1 are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators
E spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All projectors
are also related to each other by isometry. Factors of type III are smallest if the factors
are regarded as sub-algebras of a fixed B(H) where H corresponds to isomorphism class of
Hilbert spaces. Situation changes when one speaks about concrete representations. Also now
hyper-finite factors are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.

2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type
I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for
factors of type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.
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2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (2.2.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x→ x∗ is isometric inM and defines a mapM→ L2(M) via x→ xΩ. The
map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A40, A63] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the
factor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
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the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there is
no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that the
automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M′ = JMJ holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a way to construct factors of type III

By using so called crossed product crossedproduct for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization by
starting from the semidirect product G/H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M4 /SO(3, 1) of Lorentz and
translation groups). At the first step one replaces the group H with its group algebra. At the
second step the the group algebra is replaced with a more general algebra. What is formed is the
semidirect product A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) =
(a1g1(a2), g1g2). This construction works for both locally compact groups and quantum groups.
A not too highly educated guess is that the construction in the case of quantum groups gives the
factor M as a crossed product of the included factor N and quantum group defined by the factor
space M/N .

The construction allows to express factors of type III as crossed products of factors of type
II∞ and the 1-parameter group G of modular automorphisms assignable to any vector which is
cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞
factor by λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend
on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the
center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of
type IIIλ and contains all real numbers for factors of type III1 meaning that the flow does not
affect the center.

Inclusions and Connes tensor product

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical de-
scription for sub-system-system relation. In [K112] there is more extensive TGD colored description
of inclusions and their role in TGD. Here only basic facts are listed and the Connes tensor product
is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such.
For factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1 factors
were understood by Vaughan Jones [A1] and those of factors of type III by Alain Connes [A30] .

Formally sub-factor N ofM is defined as a closed ∗-stable C-subalgebra ofM. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M
as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by indexM : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only
the embedding.
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The basic facts proved by Jones are following [A1] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(2.2.2)

the numbers at right hand side are known as Beraha numbers [A54] . The comments below
give a rough idea about what finiteness of principal graph means.

2. As explained in [B33] , for M : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in
terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g) − r)/r. For
M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed. The Dynkin graphs of
Lie algebras of SU(n), E7 and D2n+1 are however not allowed. E6, E7, andE8 correspond
to symmetry groups of tetrahedron, octahedron/cube, and icosahedron/dodecahedron. The
group for octahedron/cube is missing: what could this mean?

For M : N = 4 one can assign to the inclusion an extended Dynkin graph of type ADE
characterizing Kac Moody algebra. Extended ADE diagrams characterize also the subgroups
of SU(2) and the interpretation proposed in [A85] is following-

The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There are
diagrams corresponding to infinite subgroups: A∞ corresponding to SU(2) itself, A−∞,∞
corresponding to circle group U(1), and infinite dihedral groups (generated by a rotation by
a non-rational angle and reflection.

One can construct also inclusions for which the diagrams corresponding to finite subgroups
G ⊂ SU(2) are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n = 6, 7, 8 for tetrahedron, cube, dodecahedron. These extensions correspond to ADE type
Kac-Moody algebras.

The extension is constructed by constructing first factor R as infinite tensor power of M2(C)
(complexified quaternions). Sub-factor R0 consists elements of of R of form Id ⊗ x. SU(2)
preserves R0 and for any subgroup G of SU(2) one can identify the inclusion N ⊂M in terms
of N = RG0 and M = RG, where N = RG0 and M = RG consists of fixed points of R0 and R
under the action of G. The principal graph for N ⊂M is the extended Coxeter-Dynk graph
for the subgroup G.

Physicist might try to interpret this by saying that one considers only sub-algebras RG0 and
RG of observables invariant under G and obtains extended Dynkin diagram of G defining an
ADE type Kac-Moody algebra. Could the condition that Kac-Moody algebra elements with
non-vanishing conformal weight annihilate the physical states state that the state is invariant
under R0 defining measurement resolution. Besides this the states are also invariant under
finite group G? Could RG0 and RG correspond just to states which are also invariant under
finite group G.

Connes tensor product

The basic idea of Connes tensor product is that a sub-space generated sub-factor N takes the role
of the complex ray of Hilbert space. The physical interpretation is in terms of finite measurement
resolution: it is not possible to distinguish between states obtained by applying elements of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (2.2.3)

One could regard the factor space M/N as a non-commutative space in which each point cor-
responds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely relates
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to quantum groups. An alternative interpretation is as an ordinary linear space obtained by map-
ping N rays to ordinary complex rays. These spaces appear in the representations of quantum
groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the spaceM⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One
can imagine variants of the Connes tensor product and in TGD framework one particular variant
appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n×n matrices acts on V from right, V can be regarded
as a space formed by m × n matrices for some value of m. If N acts from left on W , W can be
regarded as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V and W consists of m ×
r matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate states
defined by N brings in mind path integral.

2. An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

3. One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A† ⊗N B or its tensor product counterpart. This case corresponds to
the modification of the Connes tensor product of positive and negative energy states. Since
Hermitian conjugation is involved, matrix product does not define the Connes tensor product
now. For m = r case entanglement coefficients should define a unitary matrix commuting with
the action of the Hermitian matrices of N and interpretation would be in terms of symmetry.
HFF property would encourage to think that this representation has an analog in the case of
HFFs of type II1.

4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A75, A40, A63] . There are good
arguments showing that in HFFs of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is
essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [A63] deserve to be listed
since they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O + x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs of
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type III1 associated with causally disjoint regions are sub-factors of factor of type I∞. This
means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFs of type III1s is induced by set theoretic inclusions.

2.2.2 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is
the physical interpretation of the formula M′ = JMJ relating factor and its commutant in
TGD framework?

2. Is the identification M = ∆it sensible is quantum TGD and ZEO, where M-matrix is “complex
square root” of exponent of Hamiltonian defining thermodynamical state and the notion
of unitary time evolution is given up? The notion of state ω leading to ∆ is essentially
thermodynamical and one can wonder whether one should take also a “complex square root”
of ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of free-
dom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees of
freedom assignable to interior of the space-time sheet. Zero modes have also fermionic coun-
terparts. State preparation should generate entanglement between the quantal and classical
states. What this means at the level of von Neumann algebras?

4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at embedding space level causally disjoint
CDs would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing factor
A? Is A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert space H
in which A acts?

2. What are the geometric transformations inducing modular automorphisms of II∞ inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the
non-unitarity of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the choice
of the sphere S2 defining the radial coordinate playing the role of complex variable in the case
of the radial conformal algebra. Does ∗-operation inM correspond to Hermitian conjugation
for fermionic oscillator operators and change of sign of super conformal weights?
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The exponent of the Kähler-Dirac action gives rise to the exponent of Kähler function
as Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It is
implausible that this exponent could as such correspond to ω or ∆it having conceptual roots in
thermodynamics rather than QFT. If one assumes that the exponent of the Kähler-Dirac action
defines a “complex square root” of ω the situation changes. This raises technical questions relating
to the notion of square root of ω.

1. Does the complex square root of ω have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which
is inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamil-
tonian and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|.
Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

ZEO and factors

The first question concerns the identification of the Hilbert space associated with the factors in
ZEO. As the positive or negative energy part of the zero energy state space or as the entire space
of zero energy states? The latter option would look more natural physically and is forced by the
condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like bound-
aries of CD are analogous to upper and lower hemispheres of S2 in conformal field theory.
The presence of J representing essentially Hermitian conjugation would suggest that positive
and zero energy parts of zero energy states are related by this formula so that state space
decomposes to a tensor product of positive and negative energy states and M -matrix can be
regarded as a map between these two sub-spaces.

2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum is
cyclic and separating means that neither creation nor annihilation operators can annihilate it.
Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting
on the positive energy part of the state to annihilation operators acting on negative energy
part of the state. If J permutes the two Fock vacuums in their tensor product, the action of
S indeed maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in ZEO.

1. In ZEO M -matrix defines time-like entanglement coefficients between positive and negative
energy parts of the state. M -matrix is essentially “complex square root” of the density matrix
and quantum theory similar square root of thermodynamics. The notion of state as it appears
in the theory of HFFs is however essentially thermodynamical. Therefore it is good to ask
whether the “complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit.
In quantum TGD the exponent of Kähler-Dirac action giving exponent of Kähler function as
real exponent could be the manner to take this complex square root. Kähler-Dirac action can
therefore be regarded as a “square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in
ZEO based on CDs? Is the reduction of the quantum dynamics to a flow a realistic idea? As
will be found this automorphism could correspond to a time translation or scaling for either
upper or lower light-cone defining CD and can ask whether ∆it corresponds to the exponent
of scaling operator L0 defining single particle propagator as one integrates over t. Its complex
square root would correspond to fermionic propagator.
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4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M =
J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps positive and
negative energy states to each other: could S or its generalization appear in M -matrix as
a part which gives thermodynamics? The exponent of the Kähler-Dirac action does not
seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly the
presence exponent of exp(−L0/Tp) with Tp chose in such manner that consistency with p-
adic thermodynamics is obtained. Could the generalization of J∆n/2 with ∆ replaced with
its “square root” give rise to padic thermodynamics and also ordinary thermodynamics at
the level of density matrix? The minimal option would be that power of ∆it which imaginary
value of t is responsible for thermodynamical degrees of freedom whereas everything else is
dictated by the unitary S-matrix appearing as phase of the “square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFs involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by zero
modes which by definition do not contribute to WCW line element. The realization of quan-
tum criticality in terms of Kähler-Dirac action [K113] suggests that also fermionic zero mode
degrees of freedom are present and correspond to conserved charges assignable to the critical
deformations of the pace-time sheets. Induced Kähler form characterizes the values of zero
modes for a given space-time sheet and the symplectic group of light-cone boundary charac-
terizes the quantum fluctuating degrees of freedom. The entanglement between zero modes
and quantum fluctuating degrees of freedom is essential for quantum measurement theory.
One should understand this entanglement.

2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD
should correspond to classical degrees of freedom correlating with quantum fluctuating degrees
of freedom of CD.

3. Quantum criticality means that Kähler-Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra asso-
ciated with quantum fluctuating degrees of freedom? Could the restriction of elements of
quantum fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativity.
Quantum holography would suggest a duality between these algebras. Quantum measurement
theory suggests even 1-1 correspondence between the elements of the two super-conformal al-
gebras. The entanglement between classical and quantum degrees of freedom would mean
that prepared quantum states are created by operators for which the operators in the two
algebras are entangled in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of
finite measurement resolution suggests that one should speak about entanglement between
sub-factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex numbers
and tracing over sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond toM′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If
this crazy guess is correct (very probably not!), both positive and negative energy states
would be observed in quantum measurement but in totally different manner. Since this
identity would simplify enormously the structure of the theory, it deserves therefore to be
shown wrong.
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Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFFs of type II∞ emerge, how modular automorphisms act
on them, and how one can understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For a given
CD having compact isotropy group SO(3) leaving the rest frame defined by the tips of CD
invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most naturally
HFF of type II∞. The Hilbert space in which this Clifford algebra acts, consists of spinor fields
in WCW(CD). Also the symplectic transformations of light-cone boundary leaving light-like
3-surfaces inside CD can be included to G. In fact all conformal algebras leaving CD invariant
could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase mul-
tiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value of
the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
modular automorphism. These shifts seem to be necessary to define rest energies of positive
and negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of ω.
The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is part of
the definition of ω. The radial Virasoro algebra of light-cone boundary is generated by Ln =
L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric position.
The conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group defining the
slicing of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely. One can
however consider also alternative choices of SO(3) and each corresponds to a slicing of the
light-cone boundary by spheres but in general the sphere defining the intersection of the two
light-cone does not belong to the slicing. Hence the action of Lorentz transformation inducing
different choice of SO(3) can lead out from the preferred state space so that its representation
must be non-unitary unless Virasoro generators annihilate the physical states. The non-
vanishing of the conformal central charge c and vacuum weight h seems to be necessary and
indeed can take place for super-symplectic algebra and Super Kac-Moody algebra since only
the differences of the algebra elements are assumed to annihilate physical states.

Modular automorphism of HFFs type III1 can be induced by several geometric transforma-
tions for HFFs of type III1 obtained using the crossed product construction from II∞ factor by
extending CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD cannot
correspond to these transformations. Same applies to time translations acting on either
boundary but not to ordinary translations. As found, the modular automorphisms reducing
the size of CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond
to any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The
Lorentz boosts would replace the radial coordinate rM of the light-cone boundary associated
with the radial Virasoro algebra with a new one so that the slicing of light-cone boundary
with spheres would be affected and one could speak of a new conformal gauge. The temporal
distance between tips of CD in the rest frame would not be affected. The effect would seem
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to be however unitary because the transformation does not only modify the states but also
transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal
gauge defining the radial coordinate of the light-cone boundary, they affect also the definition
of the conformal vacuum so that also ω is affected so that the interpretation as a modular
automorphism makes sense. The simplistic intuition of the novice suggests that if one allows
wave functions in the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note
that the hierarchy of Planck constants assigns to CD preferred M2 and thus direction of
quantization axes of angular momentum and boosts in this direction would be in preferred
role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and temperature
as imaginary part, looks at first highly attractive, since it would mean that M -matrix indeed exists
mathematically. The proposed interpretations of modular automorphisms do not support the idea
that they could define the S-matrix of the theory. In any case, the identification as modular
automorphism would not lead to a magic universal formula since arbitrary unitary transformation
is involved.

Quantum criticality and inclusions of factors

Quantum criticality fixes the value of Kähler coupling strength but is expected to have also an
interpretation in terms of a hierarchies of broken conformal gauge symmetries suggesting hierarchies
of inclusions.

1. In ZEO 3-surfaces are unions of space-like 3-surfaces at the ends of causal diamond (CD).
Space-time surfaces connect 3-surfaces at the boundaries of CD. The non-determinism of
Kähler action allows the possibility of having several space-time sheets connecting the ends
of space-time surface but the conditions that classical charges are same for them reduces this
number so that it could be finite. Quantum criticality in this sense implies non-determinism
analogous to that of critical systems since preferred extremals can co-incide and suffer this kind
of bifurcation in the interior of CD. This quantum criticality can be assigned to the hierarchy
of Planck constants and the integer n in heff = n × h [K42] corresponds to the number of
degenerate space-time sheets with same Kähler action and conserved classical charges.

2. Also now one expects a hierarchy of criticalities and since criticality and conformal invariance
are closely related, a natural conjecture is that the fractal hierarchy of sub-algebras of confor-
mal algebra isomorphic to conformal algebra itself and having conformal weights coming as
multiples of n corresponds to the hierarchy of Planck constants. This hierarchy would define
a hierarchy of symmetry breakings in the sense that only the sub-algebra would act as gauge
symmetries.

3. The assignment of this hierarchy with super-symplectic algebra having conformal structure
with respect to the light-like radial coordinate of light-cone boundary looks very attractive.
An interesting question is what is the role of the super-conformal algebra associated with the
isometries of light-cone boundary R+ × S2 which are conformal transformations of sphere
S2 with a scaling of radial coordinate compensating the scaling induced by the conformal
transformation. Does it act as dynamical or gauge symmetries?

4. The natural proposal is that the inclusions of various superconformal algebras in the hierar-
chy define inclusions of hyper-finite factors which would be thus labelled by integers. Any
sequences of integers for which ni divides ni+1 would define a hierarchy of inclusions pro-
ceeding in reverse direction. Physically inclusion hierarchy would correspond to an infinite
hierarchy of criticalities within criticalities.
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2.2.3 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments from the point of view of
factors.

A proposal for M-matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M -matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kähler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes lo-
calized at string world sheets are eigenstates of induced Dirac operator with generalized eigen-
value pkγk defining light-like 8-D momentum so that one would obtain fermionic propagators
massless in 8-D sense at light-light geodesics of embedding space. The 8-D generalization
of twistor Grassmann approach is suggestive and would mean that the residue integral over
fermionic virtual momenta gives only integral over massless momenta and virtual fermions
differ from real fermions only in that they have non-physical polarizations so that massless
Dirac operator replacing the propagator does not annihilate the spinors at the other end of
the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having
fermion and antifermion at opposite throats and bosonic propagators are composite of mass-
less fermion propagators. The directions of virtual momenta are obviously strongly correlated
so that the approximation as a gauge theory with gauge symmetry breaking in almost massless
sector is natural. Massivation follows necessary from the fact that also elementary particles
are bound states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to CP2 topology) implies
that wormhole contacts must appear as pairs (also large numbers of them are possible and 3
valence quarks inside baryons could form Kähler magnetic tripole). Hence elementary parti-
cles would correspond to pairs of monopoles and are accompanied by Kähler magnetic flux
loop running along the two space-time sheets involved as well as fermionic strings connecting
the monopole throats.

There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed CP2 type vacuum extremal this might not be even possible: the Kähler-Dirac
gamma matrices would not span 2-D space in this case since the CP2 projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles
are bound states of massless fundamental fermions and the non-collinearity of their four-
momenta can make them massive. Therefore the breaking of conformal invariance would be
due to the bound state formation and this would also resolve the infrared divergence problems
plaguing Grassmann twistor approach by introducing natural length scale assignable to the
size of particles defined by the string like flux tube connecting the wormhole contacts. This
point is discussed in more detail in [K100].

The bound states would form representations of super-conformal algebras so that stringy
mass formula would emerge naturally. p-Adic mass calculations indeed assume conformal
invariance in CP2 length scale assignable to wormhole contacts. Also the long flux tube
strings contribute to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting in
complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-surface
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the vertices would be represented by partonic 2-surfaces. In [K100] the interpretation of scat-
tering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time re-
versal. At the level of fermions the diagrams reduce to braid diagrams since fermions are
“free”. At vertices fermions can however reflect in time direction so that fermion-antifermion
annihilations in classical fields can be said to appear in the vertices.

The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian
at the opposite boundaries of CD give rise to the same amplitude. This means a huge gen-
eralization of the duality symmetry of hadronic string models that I have proposed already
earlier: the chapter [K15] is a remnant of an “idea that came too early”. The propagators are
associated with the fermionic lines identifiable as boundaries of string world sheets. These
lines are light-like geodesics of H and fermion lines correspond topartial wave in the space
S3 of light like 8-momenta with fixed M4 momentum. For external lines M8 momentum
corresponds to the M4 × CP2 quantum numbers of a spinor harmonic.

The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K100] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

Quantum TGD as square root of thermodynamics

ZEO (ZEO) suggests strongly that quantum TGD corresponds to what might be called square
root of thermodynamics. Since fermionic sector of TGD corresponds naturally to a hyper-finite
factor of type II1, and super-conformal sector relates fermionic and bosonic sectors (WCW degrees
of freedom), there is a temptation to suggest that the mathematics of von Neumann algebras
generalizes: in other worlds it is possible to speak about the complex square root of ω defining a
state of von Neumann algebra [A75] [K112]. This square root would bring in also the fermionic
sector and realized super-conformal symmetry. The reduction of determinant with WCW vacuum
functional would be one manifestation of this supersymmetry.

The exponent of Kähler function identified as real part of Kähler action for preferred ex-
tremals coming from Euclidian space-time regions defines the modulus of the bosonic vacuum
functional appearing in the functional integral over WCW. The imaginary part of Kähler action
coming from the Minkowskian regions is analogous to action of quantum field theories and would
give rise to interference effects distinguishing thermodynamics from quantum theory. This would
be something new from the point of view of the canonical theory of von Neumann algebra. The
saddle points of the imaginary part appear in stationary phase approximation and the imaginary
part serves the role of Morse function for WCW.

The exponent of Kähler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the dependence of the
canonical unitary automorphism ∆it of von Neumann algebra on t [A75], [K112] and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
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for spinors fields of WCW . More formally, the exponent of Kähler function would define ω in
bosonic degrees of freedom.

Note that the imaginary exponent is more natural for the imaginary part of Kähler action
coming from Minkowskian region. In any case, one has combination of thermodynamics and QFT
and the presence of thermodynamics makes the functional integral mathematically well-defined.

Number theoretic vision requiring number theoretical universality suggests that the value of
CD size scales as defined by the distance between the tips is expected to come as integer multiples
of CP2 length scale - at least in the intersection of real and p-adic worlds. If this is the case the
continuous faimily of modular automorphisms would be replaced with a discretize family.

Quantum criticality and hierarchy of inclusions

Quantum criticality and related fractal hierarchies of breakings of conformal symmetry could allow
to understand the inclusion hierarchies for hyper-finite factors. Quantum criticality - implied
by the condition that the Kähler-Dirac action gives rise to conserved currents assignable to the
deformations of the space-time surface - means the vanishing of the second variation of Kähler
action for these deformations. Preferred extremals correspond to these 4-surfaces and M8−M4×
CP2 duality would allow to identify them also as associative (co-associative) space-time surfaces.

Quantum criticality is basically due to the failure of strict determinism for Kähler action
and leads to the hierarchy of dark matter phases labelled by the effective value of Planck constant
heff = n × h. These phases correspond to space-time surfaces connecting 3-surfaces at the ends
of CD which are multi-sheeted having n conformal equivalence classes.

Conformal invariance indeed relates naturally to quantum criticality. This brings in n dis-
crete degrees of freedom and one can technically describe the situation by using n-fold singular
covering of the embedding space [K42]. One can say that there is hierarchy of broken conformal
symmetries in the sense that for heff = n×h the sub-algebra of conformal algebras with conformal
weights coming as multiples of n act as gauge symmetries. This implies that classical symplectic
Noether charges vanish for this sub-algebra. The quantal conformal charges associated with in-
duced spinor fields annihilate the physical states. Therefore it seems that the measured quantities
are the symplectic charges and there is not need to introduce any measurement interaction term
and the formalism simplifies dramatically.

The resolution increases with heff/h = n. Also the number of of strings connecting par-
tonic 2-surfaces (in practice elementary particles and their dark counterparts plus bound states
generated by connecting dark strings) characterizes physically the finite measurement resolution.
Their presence is also visible in the geometry of the space-time surfaces through the conditions that
induced W fields vanish at them (well-definedness of em charge), and by the condition that the
canonical momentum currents for Kähler action define an integrable distribution of planes parallel
to the string world sheet. In spirit with holography, preferred extremal is constructed by fixing
string world sheets and partonic 2-surfaces and possibly also their light-like orbits (should one fix
wormhole contacts is not quite clear). If the analog of AdS/CFT correspondence holds true, the
value of Kähler function is expressible as the energy of string defined by area in the effective metric
defined by the anti-commutators of K-D gamma matrices.

Super-symplectic algebra, whose charges are represented by Noether charges associated with
strings connecting partonic 2-surfaces extends to a Yangian algebra with multi-stringy genera-
tors [K100]. The better the measurement resolution, the larger the maximal number of strings
associated with the multilocal generator.

Kac-Moody type transformations preserving light-likeness of partonic orbits and possibly
also the light-like character of the boundaries of string world sheets carrying modes of induced
spinor field underlie the conformal gauge symmetry. The minimal option is that only the light-
likeness of the string end world line is preserved by the conformal symmetries. In fact, conformal
symmetries was originally deduced from the light-likeness condition for the M4 projection of CP2

type vacuum extremals.
The inclusions of super-symplectic Yangians form a hierarchy and would naturally corre-

spond to inclusions of hyperfinite factors of type II1. Conformal symmetries acting as gauge
transformations would naturally correspond to degrees of freedom below measurement resolution
and would correspond to included subalgebra. As heff increases, infinite number of these gauge
degrees of freedom become dynamical and measurement resolution is increased. This picture is
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definitely in conflict with the original view but the reduction of criticality in the increase of heff
forces it.

Summary

On basis of above considerations it seems that the idea about “complex square root” of the state
ω of von Neumann algebras might make sense in quantum TGD. Also the discretized versions of
modular automorphism assignable to the hierarchy of CDs would make sense and because of its
non-uniqueness the generator ∆ of the canonical automorphism could bring in the flexibility needed
one wants thermodynamics. Stringy picture forces to ask whether ∆ could in some situation be
proportional exp(L0), where L0 represents as the infinitesimal scaling generator of either super-
symplectic algebra or super Kac-Moody algebra (the choice does not matter since the differences of
the generators annihilate physical states in coset construction). This would allow to reproduce real
thermodynamics consistent with p-adic thermodynamics. Note that also p-adic thermodynamics
would be replaced by its square root in ZEO.

2.2.4 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M -matrix for which elements have values in sub-factor N of HFF rather than being
complex numbers. M-matrix in the factor spaceM/N is obtained by tracing overN . The condition
that N acts like complex numbers in the tracing implies that M-matrix elements are proportional
to maximal projectors toN so that M-matrix is effectively a matrix inM/N and situation becomes
finite-dimensional. It is still possible to satisfy generalized unitarity conditions but in general case
tracing gives a weighted sum of unitary M-matrices defining what can be regarded as a square root
of density matrix.

About the notion of observable in ZEO

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on either
positive or negative energy part of the state. One can indeed define hermitian conjugation
for positive and negative energy parts of the states in standard manner.

2. Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by time
reflection in the rest frame of CD with respect to the origin at the center of CD and has a
well defined action on light-like 3-surfaces and space-time surfaces. This operation cannot
correspond to the sought for hermitian conjugation since JAJ and A commute.

3. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

4. ZEO gives Cartan sub-algebra of the Lie algebra of symmetries a special status. Only Cartan
algebra acting on either positive or negative states respects the zero energy property but this
is enough to define quantum numbers of the state. In absence of symmetry breaking positive
and negative energy parts of the state combine to form a state in a singlet representation of
group. Since only the net quantum numbers must vanish ZEO allows a symmetry breaking
respecting a chosen Cartan algebra.

5. In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
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Lorentz boost fixing the other tip. The value of mass squared is identified as proportional to
the average of conformal weight in p-adic thermodynamics for the scaling generator L0 for
either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFs as characterizer of finite measurement resolution at the level of
S-matrix

The inclusion N ⊂M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebraM/N creates physical states
modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension β = M : N creates physical states having
interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct connection with

quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (2.2.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator in M defines an operator in M/N by a projection to the preferred elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (2.2.5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (2.2.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (2.2.7)

5. Unitarity at the level of M/N can be achieved if the unit operator Id for M can be de-
composed into an analog of tensor product for the unit operators of M/N and N and M
decomposes to a tensor product of unitary M-matrices in M/N and N . For HFFs of type II
projection operators of N with varying traces are present and one expects a weighted sum of
unitary M-matrices to result from the tracing having interpretation in terms of square root
of thermodynamics.
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6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1 this
assumption must be given up. This might be possible if one compensates the trace over N by
dividing with the trace of the infinite trace of the projection operator to N . This probably
requires a limiting procedure which indeed makes sense for HFFs.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in
N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with
their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in
the state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commutingN -valued matrix elements. This suggests that full
M -matrix can be expressed as M -matrix withN -valued elements satisfyingN -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-
matrix must be commuting hermitian N -valued operators inside every row and column. The
traces of these operators giveN -averaged transition probabilities. The eigenvalue spectrum of these
Hermitian matrices gives more detailed information about details below experimental resolution.
N -hermicity and commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states
with N -valued coefficients. How this affects the situation? The non-commutativity of quantum
spinors has a natural interpretation in terms of fuzzy state function reduction meaning that quan-
tum spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by “quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase “long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group Ga × Gb could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of embedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of embedding space with larger Planck constant meaning zooming
up of various quantal lengths.

3. For M -matrix in M/N regarded as calN module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M -matrix. The
properties of the number theoretic braids contributing to the M -matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for Ga ×Gb or
its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M -matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of ω with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFFs of type III1.
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1. In ZEO the counterpart of Hermitian conjugation for operator is replaced with M→ JMJ
permuting the factors. Therefore N ∈ N acting to positive (negative) energy part of state
corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.

2. The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2

have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect of
JN1iJ ∨N2i and JN2iJi ∨N1i to the trace are identical and correspond to a multiplication
by a constant. If N is HFF of type II1 this follows from the decomposition M =M/N ⊗N
and from Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to
the original hopes that Connes tensor product could fix the M-matrix there are no conditions
on MM/N which would give rise to a finite-dimensional M-matrix for Jones inclusions. One
can replaced the projector PN with a more general state if one takes this into account in ∗

operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart of ∗

operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2. The
exchange of N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) = ωN∆A)
guarantees the effective complex number property [A13] .

5. Quantum TGD more or less requires the replacement of ω with its “complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A13] in
this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff in
the functional integral over WCW and for the modes of the second quantized induced spinor
fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids replacing
light-like 3-surfaces should be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂ M. This would mean that
one can write

M = MM/N ⊗MN (2.2.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that
MN is essentially the same as MM in the same sense as N is same as M. It might be that
the trivial solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the “complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would be path
integration over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of “complex square root” of ω or for the S-matrix part of M :
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S = SM/N ⊗ SN (2.2.9)

for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the Kähler-Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is “complex
square root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new choices.
This would actually be a well-come result and make possible quantum measurement theory.

In the section “Handful of problems with a common resolution” it was found that one can add
to both Kähler action and Kähler-Dirac action a measurement interaction term characterizing the
values of measured observables. The measurement interaction term in Kähler action is Lagrange
multiplier term at the space-like ends of space-time surface fixing the value of classical charges
for the space-time sheets in the quantum superposition to be equal with corresponding quantum
charges. The term in Kähler-Dirac action is obtained from this by assigning to this term canonical
momentum densities and contracting them with gamma matrices to obtain Kähler-Dirac gamma
matrices appearing in 3-D analog of Dirac action. The constraint terms would leave Kähler function
and Kähler metric invariant but would restrict the vacuum functional to the subset of 3-surfaces
with fixed classical conserved charges (in Cartan algebra) equal to their quantum counterparts.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation
could be in terms of the formation of bound states. The reducibility of HFFs and inclusions means
that the tensor product is not uniquely fixed and ordinary entanglement could correspond to this
kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to some
subgroup of U(n) associated with the measurement resolution: the analog of color confinement
would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A58] are playing with very formal looking formal structures obtained
by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with
morphisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-
wise product and sum. They obtain results which make them happy. For instance, the category of
linear representations of a given group forms 2-vector spaces since direct sums and tensor products
of representations as well as n-tuples make sense. The 2-vector space however looks more or less
trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II1. The
reason is that Connes tensor product replaces ordinary tensor product and brings in interactions
via irreducible entanglement as a representation of finite measurement resolution. The category in
question could give Connes tensor products of quantum state spaces and describing interactions.
For instance, one could multiply M -matrices via Connes tensor product to obtain category of
M -matrices having also the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-D
sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor takes the
role of complex numbers in generalized QM so that one obtains non-commutative quantum
mechanics. For instance, quantum entanglement for two systems of this kind would not be
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between rays but between infinite-D subspaces corresponding to sub-factors. One could build
a generalization of QM by replacing rays with sub-spaces and it would seem that quantum
group concept does more or less this: the states in representations of quantum groups could
be seen as infinite-dimensional Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the action
of included HFF. Possible values of the fractal dimension are fixed completely for Jones inclu-
sions. Maybe these quantum state spaces could define the notions of quantum 2-Hilbert space
and 2-operator algebra via direct sum and tensor production operations. Fractal dimensions
would make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF con-
taining included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not anymore
trivial. The condition that measurement algebras act effectively like complex numbers would
require Connes tensor product involving irreducible entanglement between elements belonging
to the two HFFs. This would have direct physical relevance since this entanglement cannot
be reduced in state function reduction. The category would defined interactions in terms of
Connes tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

2.2.5 Questions about quantum measurement theory in Zero Energy
Ontology

The following summary about quantum measurement theory in ZEO is somewhat out-of-date and
somewhat sketchy. For more detailed view see [K63, K108, K9].

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale
imply the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion
would be deeper and would give rise to a larger reducibility of the representation of N in M.
Formally, as N approaches to a trivial algebra, one would have a square root of density matrix
and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy N -rays.
The projectors give rise to the averaging over the initial and final states inside N ray. The
reduction could continue step by step to shorter length scales so that one would obtain a sequence
of inclusions. If the U -process of the next quantum jump can return the M -matrix associated with
M or some larger HFF, U process would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have
an intriguing resemblance to the fractal state function reduction process proceeding to shorter and
shorter time scales. Since this means increasing thermality of M -matrix, U process as a reversal
of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by
U process giving rise to new zero energy states can bring in something new and is responsible for
evolution. The non-conservative option is that the biological death is the U -process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for what
happens in quantum Universe. The 4-D body would be lived again and again.
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quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand. This
action would be defined for the induced gauge fields. YM action seems to be excluded since it is
singular for light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3)

but also
√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct

gauge charges. Kind of electric-magnetic duality should relate the normal components Fni of the
gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is
in terms of quantum gravitational holography.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

Quantum measurements in ZEO

ZEO based quantum measurement theory leads directly to a theory of conscious entities. The
basic idea is that state function reduction localizes the second boundary of CD so that it becomes
a piece of light-cone boundary (more precisely δM4

± × CP2).

Repeated reductions are possible as in standard quantum measurement theory and leave the
passive boundary of CD. Repeated reduction begins with U process generating a superposition of
CDs with the active boundary of CD being de-localized in the moduli space of CDs, and is followed
by a localization in this moduli space so that single CD is the outcome. This process tends to
increase the distance between the ends of the CD and has interpretation as a space-time correlate
for the flow of subjective time.

Self as a conscious entity corresponds to this sequence of repeated reductions on passive
boundary of CD. The first reduction at opposite boundary means death of self and its re-incarnation
at the opposite boundary of CD. Also the increase of Planck constant and generation of negentropic
entanglement is expected to be associated with this state function reduction.

Weak form of NMP is the most plausible variational principle to characterize the state
function reduction. It does not require maximal negentropy gain for state function reductions but
allows it. In other words, the outcome of reduction is n-dimensional eigen space of density matrix
space but this space need not have maximum possible dimension and even 1-D ray is possible in
which case the entanglement negentropy vanishes for the final state and system becomes isolated
from the rest of the world. Weak form of NMP brings in free will and can allow also larger
negentropy gain than the strong form if n is a product of primes. The beauty of this option is that
one can understand how the generalization of p-adic length scale hypothesis emerges.
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Hyper-finite factors of type II1 and quantum measurement theory with a finite mea-
surement resolution

The realization that the von Neumann algebra known as hyper-finite factor of type II1 is tailor made
for quantum TGD has led to a considerable progress in the understanding of the mathematical
structure of the theory and these algebras provide a justification for several ideas introduced earlier
on basis of physical intuition.

Hyper-finite factor of type II1 has a canonical realization as an infinite-dimensional Clifford
algebra and the obvious guess is that it corresponds to the algebra spanned by the gamma matrices
of WCW. Also the local Clifford algebra of the embedding space H = M4 × CP2 in octonionic
representation of gamma matrices of H is important and the entire quantum TGD emerges from
the associativity or co-associativity conditions for the sub-algebras of this algebra which are local
algebras localized to maximal associative or co-associate sub-manifolds of the embedding space
identifiable as space-time surfaces.

The notion of inclusion for hyper-finite factors provides an elegant description for the notion
of measurement resolution absent from the standard quantum measurement theory.

1. The included sub-factor creates in ZEO states not distinguishable from the original one and
the formally the coset space of factors defining quantum spinor space defines the space of
physical states modulo finite measurement resolution.

2. The quantum measurement theory for hyperfinite factors differs from that for factors of type
I since it is not possible to localize the state into single ray of state space. Rather, the ray
is replaced with the sub-space obtained by the action of the included algebra defining the
measurement resolution. The role of complex numbers in standard quantum measurement
theory is taken by the non-commutative included algebra so that a non-commutative quantum
theory is the outcome.

3. This leads also to the notion of quantum group. For instance, the finite measurement reso-
lution means that the components of spinor do not commute anymore and it is not possible
to reduce the state to a precise eigenstate of spin. It is however perform a reduction to an
eigenstate of an observable which corresponds to the probability for either spin state.

4. For HFFs the dimension of infinite-dimensional state space is finite and 1 by convention. For
included HFF N ⊂M the dimension of the tensor factor space containing only the degrees of
freedom which are above measurement resolution is given by the index of inclusion d =M :
N . One can say that the dimension associated with degrees of freedom below measurement
resolution is D = 1/d. This number is never large than 1 for the inclusions and contains
a set of discrete values d = 4cos2(2π/n), n ≥ 3, plus the continuum above it. The fractal
generalization of the formula for entanglement entropy gives S = −log(1/D) = −log(d) ≤ 0
so that one can say that the entanglement negentropy assignable to the projection operators
to the sub-factor is positive except for n = 3 for which it vanishes. The non-measured degrees
of freedom carry information rather than entropy.

5. Clearly both HFFs of type I and II allow entanglement negentropy and allow to assign it with
finite measurement resolution. In the case of factors its is not clear whether the weak form
of NMP allows makes sense.

As already explained, the topology of the many-sheeted space-time encourages the general-
ization of the notion of quantum entanglement in such a way that unentangled systems can possess
entangled sub-systems. One can say that the entanglement between sub-selves is not visible in the
resolution characterizing selves. This makes possible sharing and fusion of mental images central
for TGD inspired theory of consciousness. These concepts find a deeper justification from the
quantum measurement theory for hyper-finite factors of type II1 for which the finite measurement
resolution is basic notion.

Hierarchies of conformal symmetry breakings, Planck constants, and inclusions of
HFFs

The basic almost prediction of TGD is a fractal hierarchy of breakings of symplectic symmetry as
a gauge symmetry.
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It is good to briefly summarize the basic facts about the symplectic algebra assigned with
δM4
± × CP2 first.

1. Symplectic algebra has the structure of Virasoro algebra with respect to the light-like radial
coordinate rM of the light-cone boundary taking the role of complex coordinate for ordinary
conformal symmetry. The Hamiltonians generating symplectic symmetries can be chosen to
be proportional to functions fn(rM ). What is the natural choice for fn(rM ) is not quite clear.
Ordinary conformal invariance would suggests fn(rM ) = rnM . A more adventurous possibility
is that the algebra is generated by Hamiltonians with fn(rM ) = r−s, where s is a root of
Riemann Zeta so that one has either s = 1/2 + iy (roots at critical line) or s = −2n, n > 0
(roots at negative real axis).

2. The set of conformal weights would be linear space spanned by combinations of all roots
with integer coefficients s = n − iy, s =

∑
niyi, n > −n0, where −n0 ≥ 0 is negative

conformal weight. Mass squared is proportional to the total conformal weight and must be
real demanding y =

∑
yi = 0 for physical states: I call this conformal confinement analogous

to color confinement. One could even consider introducing the analog of binding energy as
“binding conformal weight”.

Mass squared must be also non-negative (no tachyons) giving n0 ≥ 0. The generating confor-
mal weights however have negative real part -1/2 and are thus tachyonic. Rather remarkably,
p-adic mass calculations force to assume negative half-integer valued ground state conformal
weight. This plus the fact that the zeros of Riemann Zeta has been indeed assigned with
critical systems forces to take the Riemannian variant of conformal weight spectrum with
seriousness. The algebra allows also now infinite hierarchy of conformal sub-algebras with
weights coming as n-ples of the conformal weights of the entire algebra.

3. The outcome would be an infinite number of hierarchies of symplectic conformal symmetry
breakings. Only the generators of the sub-algebra of the symplectic algebra with radial con-
formal weight proportional to n would act as gauge symmetries at given level of the hierarchy.
In the hierarchy ni divides ni+1. In the symmetry breaking ni → ni+1 the conformal charges,
which vanished earlier, would become non-vanishing. Gauge degrees of freedom would trans-
form to physical degrees of freedom.

4. What about the conformal Kac-Moody algebras associated with spinor modes. It seems that
in this case one can assume that the conformal gauge symmetry is exact just as in string
models.

The natural interpretation of the conformal hierarchies ni → ni+1 would be in terms of
increasing measurement resolution.

1. Conformal degrees of freedom below measurement resolution would be gauge degrees of free-
dom and correspond to generators with conformal weight proportional to ni. Conformal
hierarchies and associated hierarchies of Planck constants and n-fold coverings of space-time
surface connecting the 3-surfaces at the ends of causal diamond would give a concrete real-
ization of the inclusion hierarchies for hyper-finite factors of type II1 [K112].

ni could correspond to the integer labelling Jones inclusions and associating with them the
quantum group phase factor Un = exp(i2π/n), n ≥ 3 and the index of inclusion given by
|M : N | = 4cos2(2π/n) defining the fractal dimension assignable to the degrees of freedom
above the measurement resolution. The sub-algebra with weights coming as n-multiples of the
basic conformal weights would act as gauge symmetries realizing the idea that these degrees
of freedom are below measurement resolution.

2. If heff = n × h defines the conformal gauge sub-algebra, the improvement of the resolution
would scale up the Compton scales and would quite concretely correspond to a zoom analogous
to that done for Mandelbrot fractal to get new details visible. From the point of view of
cognition the improving resolution would fit nicely with the recent view about heff/h as a
kind of intelligence quotient.

This interpretation might make sense for the symplectic algebra of δM4
±×CP2 for which the

light-like radial coordinate rM of light-cone boundary takes the role of complex coordinate.
The reason is that symplectic algebra acts as isometries.
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3. If Kähler action has vanishing total variation under deformations defined by the broken con-
formal symmetries, the corresponding conformal charges are conserved. The components of
WCW Kähler metric expressible in terms of second derivatives of Kähler function can be
however non-vanishing and have also components, which correspond to WCW coordinates
associated with different partonic 2-surfaces. This conforms with the idea that conformal
algebras extend to Yangian algebras generalizing the Yangian symmetry of N = 4 symmetric
gauge theories. The deformations defined by symplectic transformations acting gauge sym-
metries the second variation vanishes and there is not contribution to WCW Kähler metric.

4. One can interpret the situation also in terms of consciousness theory. The larger the value
of heff , the lower the criticality, the more sensitive the measurement instrument since new
degrees of freedom become physical, the better the resolution. In p-adic context large n
means better resolution in angle degrees of freedom by introducing the phase exp(i2π/n) to
the algebraic extension and better cognitive resolution. Also the emergence of negentropic
entanglement characterized by n×n unitary matrix with density matrix proportional to unit
matrix means higher level conceptualization with more abstract concepts.

The extension of the super-conformal algebra to a larger Yangian algebra is highly suggestive
and gives and additional aspect to the notion of measurement resolution.

1. Yangian would be generated from the algebra of super-conformal charges assigned with the
points pairs belonging to two partonic 2-surfaces as stringy Noether charges assignable to
strings connecting them. For super-conformal algebra associated with pair of partonic surface
only single string associated with the partonic 2-surface. This measurement resolution is the
almost the poorest possible (no strings at all would be no measurement resolution at all!).

2. Situation improves if one has a collection of strings connecting set of points of partonic 2-
surface to other partonic 2-surface(s). This requires generalization of the super-conformal
algebra in order to get the appropriate mathematics. Tensor powers of single string super-
conformal charges spaces are obviously involved and the extended super-conformal generators
must be multi-local and carry multi-stringy information about physics.

3. The generalization at the first step is simple and based on the idea that co-product is the
”time inverse” of product assigning to single generator sum of tensor products of generators
giving via commutator rise to the generator. The outcome would be expressible using the
structure constants of the super-conformal algebra schematically a Q1

A = fBCA QB ⊗ QC .
Here QB and QC are super-conformal charges associated with separate strings so that 2-local
generators are obtained. One can iterate this construction and get a hierarchy of n-local
generators involving products of n stringy super-conformal charges. The larger the value of
n, the better the resolution, the more information is coded to the fermionic state about the
partonic 2-surface and 3-surface. This affects the space-time surface and hence WCW metric
but not the 3-surface so that the interpretation in terms of improved measurement resolution
makes sense. This super-symplectic Yangian would be behind the quantum groups and Jones
inclusions in TGD Universe.

4. n gives also the number of space-time sheets in the singular covering. One possible interpre-
tation is in terms measurement resolution for counting the number of space-time sheets. Our
recent quantum physics would only see single space-time sheet representing visible manner
and dark matter would become visible only for n > 1.

It is not an accident that quantum phases are assignable to Yangian algebras, to quantum
groups, and to inclusions of HFFs. The new deep notion added to this existing complex of high
level mathematical concepts are hierarchy of Planck constants, dark matter hierarchy, hierarchy
of criticalities, and negentropic entanglement representing physical notions. All these aspects
represent new physics.

2.2.6 Planar Algebras And Generalized Feynman Diagrams

Planar algebras [A18] are a very general notion due to Vaughan Jones and a special class of
them is known to characterize inclusion sequences of hyper-finite factors of type II1 [A41] . In
the following an argument is developed that planar algebras might have interpretation in terms
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of planar projections of generalized Feynman diagrams (these structures are metrically 2-D by
presence of one light-like direction so that 2-D representation is especially natural). In [K24] the
role of planar algebras and their generalizations is also discussed.

Planar algebra very briefly

First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks are
empty. Big disk contains 2k braid strands starting from its boundary and returning back or
ending to the boundaries of small empty disks in the interior containing also even number of
incoming lines. It is possible to have also loops. Disk boundaries and braid strands connecting
them are different objects. A black-white coloring of the disjoint regions of k-tangle is assumed
and there are two possible options (photo and its negative). Equivalence of planar tangles
under diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number
of inner disks is larger than one. In the product one deletes the inner disk boundary but if
one interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor
product of spaces Vki associated with the inner disks such that this map is consistent with
the decomposition k-tangles. Under certain additional conditions the resulting algebra gives
rise to an algebra characterizing multi-step inclusion of HFFs of type II1.

4. It is possible to bring in additional structure and in TGD framework it seems necessary to
assign to each line of tangle an arrow telling whether it corresponds to a strand of a braid
associated with positive or negative energy parton. One can also wonder whether disks could
be replaced with closed 2-D surfaces characterized by genus if braids are defined on partonic
surfaces of genus g. In this case there is no topological distinction between big disk and
small disks. One can also ask why not allow the strands to get linked (as suggested by
the interpretation as planar projections of generalized Feynman diagrams) in which case one
would not have a planar tangle anymore.

General arguments favoring the assignment of a planar algebra to a generalized Feyn-
man diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes tensor
powers in the simplest situation corresponding to Jones inclusion sequence. Suppose that
also general Connes tensor product has a description in terms of planar diagrams. This might
be trivial.

2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers meaning
that due to a finite measurement resolution one can speak only about N-rays of state space
and the situation becomes effectively finite-dimensional but non-commutative.

3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to
plane or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces.
Some of them would correspond vertices and the rest to partonic 2-surfaces at future and past
directed light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing partons.
If one does not delete the disk boundary of inner disk in the product, the fact that lines
arrive at it from both sides could distinguish it as a vertex-parton whereas outgoing partons
would correspond to empty disks. The direction of the arrows associated with the lines of
planar diagram would allow to distinguish between positive and negative energy partons (note
however line returning back).
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5. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S2 the big disk exterior
becomes an interior of a small disk.

A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two disks
with identical boundary data together. One should understand the counterpart of this in more
detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands
of number theoretic braids and thus to braidy time evolutions. The intersection points of
lines with disk boundaries would correspond to the intersection points of strands of number
theoretic braids meeting at the generalized vertex.

[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
“vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise manner
since they correspond to zeros of a polynomial and can transform from complex to real and
vice versa under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if
really possible!).

5. There is also something to worry about. The number of lines associated with disks is even
in the case of k-tangles. In TGD framework incoming and outgoing tangles could have odd
number of strands whereas partonic vertices would contain even number of k-tangles from
fermion number conservation. One can wonder whether the replacement of boson lines with
fermion lines could imply naturally the notion of half-k-tangle or whether one could assign
half-k-tangles to the spinors of WCW (“world of classical worlds”) whereas corresponding
Clifford algebra defining HFF of type II1 would correspond to k-tangles.

2.2.7 Miscellaneous

The following considerations are somewhat out-of-date: hence the title “Miscellaneous”.

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion rules for
conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with
3-surfaces at the boundary of causal diamond CD in M4), extended to local fields in M4 with
gamma matrices acting on WCW spinor s assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A85] and refers to the work of Wassermann about the fusion of loop
group representations as a demonstration of the possibility to formula the fusion rules in terms of
Connes tensor product [A32] .

Fusion rules are indeed something more intricate that the näıve product of free fields ex-
panded using oscillator operators. By its very definition Connes tensor product means a dramatic
reduction of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody group
associated with the conformal fields must give singlet representation.
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2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [A38] . For instance, in case of SU(2)k Kac
Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum phase corresponds
to n = k + 2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace näıve tensor product with something more intricate. The näıvest approach
would start from M4 local variants of gamma matrices since gamma matrices generate the Clifford
algebra Cl associated with CH(CD). This is certainly too näıve an approach. The next step
would be the localization of more general products of Clifford algebra elements elements of Kac
Moody algebras creating physical states and defining free on mass shell quantum fields. In standard
quantum field theory the next step would be the introduction of purely local interaction vertices
leading to divergence difficulties. In the recent case one transfers the partonic states assignable to
the light-cone boundaries δM4

±(mi) × CP2 to the common partonic 2-surfaces X2
V along X3

L,i so
that the products of field operators at the same space-time point do not appear and one avoids
infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor product
M⊗NM are identical so that the elements nm1 ⊗m2 and m1 ⊗m2n are identified. This implies
a reduction of degrees of freedom so that free tensor product is not in question. One might hope
that at least in the simplest choices for N characterizing the limitations of quantum measurement
this reduction is equivalent with the reduction of degrees of freedom caused by the integrability
constraints for Kac-Moody representations and dropping away of higher spins from the ordinary
tensor product for the representations of quantum groups. If fusion rules are equivalent with
Connes tensor product, each type of quantum measurement would be characterized by its own
conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by
quantum field theories. In [K29] a rather precise vision about generalized Feynman diagrams is
developed and the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [A46] .

1. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix characterizing

the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the
M -matrix. Also entanglement between different partonic boundary components of a given
incoming 3-surface by a modular S-matrix is possible.

2. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung
like exchanges always accompanied by exchanges of CP2 type extremals making possible
momentum conservation. Also light-like boundaries of magnetic flux tubes having macroscopic
size could carry light-like momenta and represent similar brehmstrahlung like exchanges. In
this case the modular S-matrix could make possible topological quantum computations in
q 6= 1 phase [K7] . Notice the somewhat counter intuitive implication that magnetic flux
tubes of macroscopic size would represent change in quantum jump rather than quantum
state. These quantum jumps can have an arbitrary long geometric duration in macroscopic
quantum phases with large Planck constant [K38] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A46] . If the light-like CDs X3

L,i are boundary
components, the 3-surfaces associated with particles are glued together somewhat like they are
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glued in the process allowing to construct 3-manifold by gluing them together along boundaries.
All 3-manifold topologies can be constructed by using only torus like boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-
manifolds using surgery along links in terms of Wilson lines. In these theories one consider gluing
of two 3-manifolds, say 3-spheres S3 along a link to obtain a topologically non-trivial 3-manifold.
The replacement of link with Wilson lines in S3#S3 = S3 reduces the calculation of link invariants
defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like structure
are possible. The allowance of CDs which are not boundaries, typically 3-D light-like throats of
wormhole contacts at which induced metric transforms from Minkowskian to Euclidian, brings in
additional richness of structure. If the scaling factor of CP2 metric can be arbitrary large as the
quantization of Planck constant predicts, this kind of structure could be macroscopic and could
be also linked and knotted. In fact, topological condensation could be seen as a process in which
two 4-manifolds are glued together by drilling light-like CDs and connected by a piece of CP2 type
extremal.

2.3 Fresh View About Hyper-Finite Factors In TGD Frame-
work

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD with the
background given by a work of more than half decade. First I summarize the input ideas which
I combine with the TGD inspired intuitive wisdom about HFFs of type II1 and their inclusions
allowing to represent finite measurement resolution and leading to notion of quantum spaces with
algebraic number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define “skewed” inclusions of lattices to
larger lattices giving rise to quasicrystals is proposed. The core of the argument is that the
included HFF of type II1 algebra is a projection of the including algebra to a subspace with
dimension D ≤ 1. The projection operator defines the analog of a projection of a bigger lattice to
the included lattice. Also the fact that the dimension of the tensor product is product of dimensions
of factors just like the number of elements in finite group is product of numbers of elements of
coset space and subgroup, supports this interpretation.

One also ends up with a detailed identification of the hyper-finite factors in orbital degrees
of freedom in terms of symplectic group associated with δM4

± × CP2 and the group algebras of
their discrete subgroups define what could be called “orbital degrees of freedom” for WCW spinor
fields. By very general argument this group algebra is HFF of type II, maybe even II1.

2.3.1 Crystals, Quasicrystals, Non-Commutativity And Inclusions Of
Hyperfinite Factors Of Type II1

I list first the basic ideas about non-commutative geometries and give simple argument suggesting
that inclusions of HFFs correspond to “skewed” inclusions of lattices as quasicrystals.

1. Quasicrystals (see http://tinyurl.com/67kz3qo) (say Penrose tilings) [A20] can be regarded
as subsets of real crystals and one can speak about “skewed” inclusion of real lattice to larger
lattice as quasicrystal. What this means that included lattice is obtained by projecting the
larger lattice to some lower-dimensional subspace of lattice.

2. The argument of Connes concerning definition of non-commutative geometry can be found in
the book of Michel Lapidus at page 200. Quantum space is identified as a space of equivalence
classes. One assigns to pairs of elements inside equivalence class matrix elements having the
element pair as indices (one assumes numerable equivalence class). One considers irreducible
representations of the algebra defined by the matrices and identifies the equivalent irreducible
representations. If I have understood correctly, the equivalence classes of irreps define a
discrete point set representing the equivalence class and it can often happen that there is just

http://tinyurl.com/67kz3qo
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single point as one might expect. This I do not quite understand since it requires that all
irreps are equivalent.

3. It seems that in the case of linear spaces - von Neumann algebras and accompanying Hilbert
spaces - one obtains a connection with the inclusions of HFFs and corresponding quantum
factor spaces that should exist as analogs of quantum plane. One replaces matrices with
elements labelled by element pairs with linear operators in HFF of type II1. Index pairs
correspond to pairs in linear basis for the HFF or corresponding Hilbert space.

4. Discrete infinite enumerable basis for these operators as a linear space generates a lattice in
summation. Inclusion N ⊂M defines inclusion of the lattice/crystal for N to the correspond-
ing lattice of M . Physical intuition suggests that if this inclusion is “skewed” one obtains
quasicrystal. The fact the index of the inclusion is algebraic number suggests that the coset
space M/N is indeed analogous to quasicrystal.

More precisely, the index of inclusion is defined for hyper-finite factors of type II1 using the
fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1, and from the tensor
product composition M = (M/N)×N given Tr(Id(M)) = 1 = Ind(M/N)Tr(P (M → N)),
where P (M → N is projection operator from M to N . Clearly, Ind(M/N) = 1/Tr(P (M →
N)) defines index as a dimension of quantum space M/N .

For Jones inclusions characterized by quantum phases q = exp(i2π/n), n = 3, 4, ... the values
of index are given by Ind(M/N) = 4cos2(π/n), n = 3, 4, .... There is also another range
inclusions Ind(M/N) ≥ 4: note that Tr(P (M → N)) defining the dimension of N as included
sub-space is never larger than one for HFFs of type II1. The projection operator P (M → N)
is obviously the counterpart of the projector projecting lattice to some lower-dimensional
sub-space of the lattice.

5. Jones inclusions are between linear spaces but there is a strong analogy with non-linear coset
spaces since for the tensor product the dimension is product of dimensions and for discrete
coset spaces G/H one has also the product formula n(G) = n(H)× n(G/H) for the numbers
of elements. Noticing that space of quantum amplitudes in discrete space has dimension
equal to the number of elements of the space, one could say that Jones inclusion represents
quantized variant for classical inclusion raised from the level of discrete space to the level
of space of quantum states with the number of elements of set replaced by dimension. In
fact, group algebras of infinite and enumerable groups defined HFFs of type II under rather
general conditions (see below).

Could one generalize Jones inclusions so that they would apply to non-linear coset spaces
analogs of the linear spaces involved ? For instance, could one think of infinite-dimensional
groups G and H for which Lie-algebras defining their tangent spaces can be regarded as HFFs
of type II1? The dimension of the tangent space is dimension of the non-linear manifold:
could this mean that the non-linear infinite-dimensional inclusions reduce to tangent space
level and thus to the inclusions for Lie-algebras regarded hyper-finite factors of type II1 or
more generally, type II? This would would rise to quantum spaces which have finite but
algebraic valued quantum dimension and in TGD framework take into account the finite
measurement resolution.

6. To concretize this analogy one can check what is the number of points map from 5-D space
containing aperiodic lattice as a projection to a 2-D irrational plane containing only origin as
common point with the 5-D lattice. It is easy to get convinced that the projection is 1-to-1
so that the number of points projected to a given point is 1. By the analogy with Jones
inclusions this would mean that the included space has same von Neumann dimension 1 -
just like the including one. In this case quantum phase equals q = exp(i2π/n), n = 3 - the
lowest possible value of n. Could one imagine the analogs of n > 3 inclusions for which the
number of points projected to a given point would be larger than 1? In 1-D case the rational
lines y = (k/l)x define 1-D rational analogs of quasi crystals. The points (x, y) = (m,n),
m mod l = 0 are projected to the same point. The number of points is now infinite and the
ratio of points of 2-D lattice and 1-D crystal like structure equals to l and serves as the analog
for the quantum dimension dq = 4cos2(π/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally
trivial from the point of view of mathematician. The main message is that the inclusions of HFFs
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might define also inclusions of lattices as quasicrystals.

2.3.2 HFFs And Their Inclusions In TGD Framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measurement
resolution. If the inclusions define quasicrystals then finite measurement resolution would lead to
quasicrystals.

1. The automorphic action of N in M ⊃ N and in associated Hilbert space HM where N acts
generates physical operators and accompanying stas (operator rays and rays) not distinguish-
able from the original one. States in finite measurement resolution correspond to N -rays
rather than complex rays. It might be natural to restrict to unitary elements of N .

This leads to the need to construct the counterpart of coset space M/N and corresponding
linear space HM/HN . Physical intuition tells that the indices of inclusions defining the
“dimension” of M/N are algebraic numbers given by Jones index formula.

2. Here the above argument would assign to the inclusions also inclusions of lattices as qua-
sicrystals.

Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

1. Very roughly, WCW (“world of classical worlds”) spinor is a state generated by fermionic
creation operators from vacuum at given 3-surface. WCW spinor field assigns this kind of
spinor to each 3-surface. WCW spinor fields decompose to tensor product of spin part (Fock
state) and orbital part (“wave” in WCW) just as ordinary spinor fields.

2. The conjecture motivated by super-symmetry has been that both WCW spinors and their
orbital parts (analogs of scalar field) define HFFs of type II1 in quantum fluctuating degrees
of freedom.

3. Besides these there are zero modes, which by definition do not contribute to WCW Kähler
metric.

(a) If the zero zero modes are symplectic invariants, they appear only in conformal factor of
WCW metric. Symplectically invariant zero modes represent purely classical degrees of
freedom - direction of a pointer of measurement apparatus in quantum measurement -
and in given experimental arrangement they entangle with quantum fluctuating degrees
of freedom in one-one manner so that state function reduction assigns to the outcome of
state function reduction position of pointer. I forget symplectically invariant zero modes
and other analogous variables in the following and concentrate to the degrees of freedom
contributing WCW line-element.

(b) There are also zero modes which are not symplectic invariants and are analogous to
degrees of freedom generated by the generators of Kac-Moody algebra having vanishing
conformal weight. They represent “center of mass degrees of freedom” and this part
of symmetric algebra creates the representations representing the ground states of Kac-
Moody representations. Restriction to these degrees of freedom gives QFT limit in string
theory. In the following I will speak about “cm degrees of freedom”.

The general vision about symplectic degrees of freedom (the analog of “orbital degrees of
freedom” for ordinary spinor field) is following.

1. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes and
each sub-WCW representing quantum fluctuating degrees of freedom and “cm degrees of
freedom” is infinite-D symmetric space. If symplectic group assignable to δM4

+×CP2 acts as
as isometries of WCW then “orbital degrees of freedom” are parametrized by the symplectic
group or its coset space (note that light-cone boundary is 3-D but radial dimension is light-like
so that symplectic - or rather contact structure - exists).

Let S2 be rM = constant sphere at light-cone boundary (rM is the radial light-like coordinate
fixed apart from Lorentz transformation). The full symplectic group would act as isometries
of WCW but does not - nor cannot do so - act as symmetries of Kähler action except in the
huge vacuum sector of the theory correspond to vacuum extremals.



2.3. Fresh View About Hyper-Finite Factors In TGD Framework 83

2. WCW Hamiltonians can be deduced as “fluxes” of the Hamiltonians of δM4
+ × CP2 taken

over partonic 2-surfaces. These Hamiltonians expressed as products of Hamiltonians of S2

and CP2 multiplied by powers rnM . Note that rM plays the role of the complex coordinate z
for Kac-Moody algebras and the group G defining KM is replaced with symplectic group of
S2×CP2. Hamiltonians can be assumed to have well-defined spin (SO(3)) and color (SU(3))
quantum numbers.

3. The generators with vanishing radial conformal weight (n = 0) correspond to the symplectic
group of S2 × CP2. They are not symplectic invariants but are zero modes. They would
correspond to “cm degrees of freedom” characterizing the ground states of representations of
the full symplectic group.

Discretization at the level of WCW

The general vision about finite measurement resolution implies discretization at the level of WCW.

1. Finite measurement resolution at the level of WCW means discretization. Therefore the
symplectic groups of δM4

+ × CP2 resp. S2 × CP2 are replaced by an enumerable discrete
subgroup. WCW is discretized in both quantum fluctuating degrees of freedom and “center
of mass” degrees of freedom.

2. The elements of the group algebras of these discrete groups define the “orbitals parts” of
WCW spinor fields in discretization. I will later develop an argument stating that they are
HFFs of type II - maybe even II1. Note that also function spaces associated with the coset
spaces of these discrete subgroups could be considered.

3. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis generates
quantum counterpart of Boolean algebra the interpretation in terms of the physical correlates
of Boolean cognition is motivated (fermion number 1/0 and various spins in decomposition
to a tensor product of lower-dimensional spinors represent bits). Note that in ZEO fermion
number conservation does not pose problems and zero states actually define what might be
regarded as quantum counterparts of Boolean rules A→ B.

4. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of par-
tonic 2-surfaces and string world sheets of space-time surface intersecting at discrete set of
points carrying fermionic quantum numbers. WCW spinors are constructed from second
quantized induced spinor fields and fermionic Fock algebra generates HFF of type II1.

Does WCW spinor field decompose to a tensor product of two HFFs of type II1?

The group algebras associated with infinite discrete subgroups of the symplectic group define the
discretized analogs of waves in WCW having quantum fluctuating part and cm part. The proposal
is that these group algebras are HFFs of type II1. The spinorial degrees of freedom correspond to
fermionic Fock space and this is known to be HFF. Therefore WCW spinor fields would defined
tensor product of HFFs of type II1. The interpretation would be in terms of supersymmetry at
the level of WCW. Super-conformal symmetry is indeed the basic symmetry of TGD so that this
result is a physical “must”. The argument goes as follows.

1. In non-zero modes WCW is symplectic group of δM4
+ × CP2 (call this group just Sympl)

reduces to the analog of Kac-Moody group associated with S2 × CP2, where S2 is rM =
constant sphere of light-cone boundary and z is replaced with radial coordinate. The Hamil-
tonians, which do not depend on rM would correspond to zero modes and one could not assign
metric to them although symplectic structure is possible. In “cm degrees of freedom” one has
symplectic group associated with S2 × CP2.

2. Finite measurement resolution, which seems to be coded already in the structure of the
preferred extremals and of the solutions of the Kähler-Dirac equation, suggests strongly that
this symplectic group is replaced by its discrete subgroup or symmetric coset space. What this
group is, depends on measurement resolution defined by the cutoffs inherent to the solutions.
These subgroups and coset spaces would define the analogs of Platonic solids in WCW!
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3. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type II? There
is a very general result stating that group algebra of an enumerable discrete group, which has
infinite conjugacy classes, and is amenable so that its regular representation in group algebra
decomposes to all unitary irreducibles is HFF of type II. See for examples about HFFs of type
II listed in Wikipedia article (see http://tinyurl.com/y8445w8q) [A10].

4. Suppose that the group algebras associated the discrete subgroups Sympl are indeed HFFs
of type II or even type II1. Their inclusions would define finite measurement resolution
the orbital degrees of freedom for WCW spinor fields. Included algebra would create rays of
state space not distinguishable experimentally. The inclusion would be characterized by the
inclusion of the lattice defined by the generators of included algebra by linearity. One would
have inclusion of this lattice to a lattice associated with a larger discrete group. Inclusions of
lattices are however known to give rise to quasicrystals (Penrose tilings are basic example),
which define basic non-commutative structures. This is indeed what one expects since the
dimension of the coset space defined by inclusion is algebraic number rather than integer.

5. Also in fermionic degrees of freedom finite measurement resolution would be realized in terms
of inclusions of HFFs- now certainly of type II1. Therefore one could obtain hierarchies of
lattices included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables? They
are certainly discretized too. One might hope that one-one correlation between zero modes (clas-
sical variables) and quantum fluctuating degrees of freedom suggested by quantum measurement
theory allows to effectively eliminate them. Besides zero modes there are also modular degrees of
freedom associated with partonic 2-surfaces defining together with their 4-D tangent space data
basis objects by strong form of holography. Also these degrees of freedom are automatically dis-
cretized. But could one consider finite measurement resolution also in these degrees of freedom. If
the symplectic group of S2 × CP2 defines zero modes then one could apply similar argument also
in these degrees of freedom to discrete subgroups of S2 × CP2.

2.3.3 Little Appendix: Comparison Of WCW Spinor Fields With Ordi-
nary Second Quantized Spinor Fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with ordinary
spinor field helps to understand what they are. I try to explain by comparison with QFT.

Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached to an space-
time point and there is 2D/2 dimensional space of spin degrees of freedom. Spinor field attaches
spinor to every point of space-time in a continuous/smooth manner. Spinor fields satisfying Dirac
equation define in Euclidian metric a Hilbert space with a unitary inner product. In Minkowskian
case this does not work and one must introduce second quantization and Fock space to get a
unitary inner product. This brings in what is essentially a basic realization of HFF of type II1 as
allowed operators acting in this Fock space. It is operator algebra rather than state space which
is HFF of type II1 but they are of course closely related.

Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by GCI/partonic
2-surfaces with 4-D tangent space data by strong form of GCI.

1. First guess: space-time point is replaced with 3-surface. Point like particle becomes 3-surface
representing particle. WCW spinors are fermionic Fock states at this surface. WCW spinor
fields are Fock state as a functional of 3-surface. Inner product decomposes to Fock space
inner product plus functional integral over 3-surfaces (no path integral!). One could speak
of quantum multiverse. Not single space-time but quantum superposition of them. This
quantum multiverse character is something new as compared to QFT.

2. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.

http://tinyurl.com/y8445w8q
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(a) 3-surfaces are actually not connected 3-surfaces. They are collections of components at
both ends of CD and connected to single connected structure by 4-surface. Components
of 3-surface are like incoming and outgoing particles in connected Feynman diagrams.
Lines are identified as regions of Euclidian signature or equivalently as the 3-D light-like
boundaries between Minkowskian and Euclidian signature of the induced metric.

(b) Spinors(!!) are defined now by the fermionic Fock space of second quantized induced
spinor fields at these 3-surfaced and by holography at 4-surface. This fermionic Fock
space is assigned to all multicomponent 3-surfaces defined in this manner and WCW
spinor fields are defined as in the first guess. This brings integration over WCW to the
inner product.

3. Third, even more improved guess: motivated by the solution ansatz for preferred extremals
and for Kähler-Dirac equation [K113] giving a connection with string models.

The general solution ansatz restricts all spinor components but right-handed neutrino to
string world sheets and partonic 2-surfaces: this means effective 2-dimensionality. String
world sheets and partonic 2-surfaces intersect at the common ends of light-like and space-like
braids at ends of CD and at along wormhole throat orbits so that effectively discretization
occurs. This fermionic Fock space replaces the Fock space of ordinary second quantization.

2.4 The idea of Connes about inherent time evolution of
certain algebraic structures from TGD point of view

Jonathan Disckau asked me about what I think about the proposal of Connes represented in the
summary of progress of noncommutative geometry in ”Noncommutative Geometry Year 2000”
[A31] (see https://arxiv.org/abs/math/0011193) that certain mathematical structures have
inherent time evolution coded into their structure.

I have written years ago about Connes’s proposal. At that time I was trying to figure out how
to understand the construction of scattering amplitudes in the TGD framework and the proposal
of Connes looked attractive. Later I had to give up this idea. However, the basic idea is beautiful.
One should only replace the notion of time evolution from a one-parameter group of automorphisms
to something more interesting. Also time evolution as increasing algebraic complexity is a more
attractive interpretation.

The inclusion hierarchies of hyperfinite factors (HFFs) - closely related to the work of Connes
- are a key element of TGD and crucial for understanding evolutionary hierarchies in TGD. Is it
possible that mathematical structure evolves in time in some sense? The TGD based answer is
that quantum jump as a fundamental evolutionary step - moment of subjective time evolution - is a
necessary new element. The sequence of moments of consciousness as quantum jumps would have
an interpretation as hopping around in the space of mathematical structures leading to increasingly
complex structures.

The generalization of the idea of Connes is discussed in this framework. In particular,
the inclusion hierarchies of hyper-finite factors, the extension hierarchies of rationals, and fractal
inclusion hierarchies of subalgebras of supersymplectic algebra isomorphic with the entire algebra
are proposed to be more or less one and the same thing in TGD framework.

The time evolution operator of Connes could corresponds to super-symplectic algebra (SSA)
to the time evolution generated by exp(iL0τ) so that the operator ∆ of Connes would be identified
as ∆ = exp(L0). This identification allows number theoretical universality if τ is quantized.
Furthermore, one ends up with a model for the subjective time evolution by small state function
reductions (SSFRs) for SSA with SSAn gauge conditions: the unitary time evolution for given
SSFR would be generated by a linear combination of Virasoro generators not annihilating the
states. This model would generalize the model for harmonic oscillator in external force allowing
exact S-matrix.

2.4.1 Connes proposal and TGD

In this section I develop in more detail the analog of Connes proposal in TGD framework.

https://arxiv.org/abs/math/0011193
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What does Connes suggest?

One must first make clear what the automorphism of HFFs discovered by Connes is.

1. Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. I have described the theory
earlier [K67, K43].

First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (2.4.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x→ x∗ is isometric inM and defines a mapM→ L2(M) via x→ xΩ. The
map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decom-
position analogous that for complex number and generalizing polar decomposition of linear
operators by replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0
is positive self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the
fact that the state is not trace so that hermitian conjugation represented by S in the state
space brings in additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in ZEO.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies thatM andM′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [A40, A63] ∆ is Hermitian and
positive definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however
not unitary for factors of type II and III. Physically the non-unitarity must relate to the fact
that the flow is contracting so that hermiticity as a local condition is not enough to guarantee
unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

The definition of ∆it reduces in eigenstate basis of ∆ to the definition of complex function
dit. Note that is positive so that the logarithm of d is real.

In TGD framework number theoretic universality poses additional conditions. In diagonal
basis elog(d)it must exist. A simply manner to solve the conditions is e = exp(m/r) existing p-
adically for an extension of rational allowing r:th root of e. This requires also quantization of as a
root of unity so that the exponent reduces to a root of unity.
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2. Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the
factor and connected to identity by a flow. Outer automorphisms do not allow a representation
as a unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of corre-
sponding II∞ factor characterizes partially a factor of type II1. This group consists of real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow in
the center of the factor known as flow of weights. The set of parameter values λ for which ω
is mapped to itself and the center of the factor defined by the identity operator (projector to
the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines
the Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of
λ < 1. For factors of type III0 this set contains only identity automorphism so that there is
no periodicity. For factors of type III1 Connes spectrum contains all real numbers so that the
automorphisms do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not integer
valued in general. The so called standard module has a cyclic separating vector and each factor
has a standard representation possessing antilinear involution J such that M′ = JMJ holds true
(note that J changes the order of the operators in conjugation). The inclusions of factors define
modules having interpretation in terms of a finite measurement resolution defined by M.

3. Objections against the idea of Connes

One can represent objections against this idea.

1. Ordinary time evolution in wave mechanics is a unitary automorphism, so that in this frame-
work they would not have physical meaning but act as gauge transformations. If outer auto-
morphisms define time evolutions, they must act as gauge transformations. One would have
an analog of gauge field theory in HFF. This would be of course highly interesting: when
I gave up the idea of Connes, I did not consider this possibility. Super-symplectic algebras
having fractal structure are however extremely natural candidate for defining HFF and there
is infinite number of gauge conditions.

2. An automorphism is indeed in question so that the algebraic system would not be actually
affected. Therefore one cannot say that HFF has inherent time evolution and time. However,
one can represent in HFF dynamical systems obeying this inherent time evolution. This
possibility is highly interesting as a kind of universal gauge theory.

On the other hand, outer automorphisms affect the trace of the projector defining the identity
matrix for a given factor. Does the scaling factor Λ represent some kind of renormalization
operation? Could it relate to the action of scalings in the TGD framework where scalings
replace time translations at the fundamental level? What the number theoretic vision of TGD
could mean? Could this quantize the continuous spectrum of the scalings Λ for HFFs so that
they belong to the extension? Could one have a spectrum of Λ for each extension of rationals?
Are different extensions related by inclusions of HFFs?

3. The notion of time evolution itself is an essentially Newtonian concept: selecting a preferred
time coordinate breaks Lorentz invariance. In TGD however time coordinate is replace by
scaling parameter and the situation changes.

4. The proposal of Connes is not general enough if evolution is interpreted as an increase of
complexity.

For these reasons I gave up the automorphism proposed by Connes as a candidate for defining
time evolution giving rise to scattering amplitudes in TGD framework.
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Two views about TGD

The two dual views about what TGD is described briefly in [L107].

1. Physics as geometry of the world of ”world of classical worlds” (WCW) identified as the
space of space-time surfaces in M4 × CP2 [K85]. Twistor lift of TGD [K87] implies that
the space-time surfaces are minimal surfaces which can be also regarded as extermals of the
Kähler action. This implies holography required by the general coordinate invariance in TGD
framework.

2. TGD as generalized number theory forcing to generalize physics to adelic physics [L52] fus-
ing real physics as correlate of sensory experience and various p-adic physics as correlates of
cognition. Now space-times are naturally co-associative surfaces in complexified M8 (com-
plexified octonions) defined as ”roots” of octonionic polynomials determined by polynomials
with rational coefficients [L99, L100, L117]. Now holography extends dramatically: finite
number of rational numbers/roots of rational polynomial/points of space-time region dictate
it.

M8−H duality relates these two views and is actually a generalization of Fourier transform
and realizes generalization of momentum-position duality.

The notion of time evolution in TGD

Concerning various time evolutions in TGD, the general situation is now rather well understood.
There are two quantal time evolutions: geometric one assignable to single CD and and

subjective time evolution which reflects the generalization of point-like particle to a 3-surface and
the introduction of CD as 4-D perceptive field of particle in ZEO [L80].

1. Geometric time evolution corresponds to the standard scattering amplitudes for which I have
a general formula now in terms of zero energy ontology (ZEO) [L111, L99, L100, L117]. The
analog of S-matrix corresponds to entanglement coefficients between members of zero energy
state at opposite boundaries of causal diamond (CD).

2. Subjective time evolution of conscious entity corresponds to a sequence of ”small” state func-
tion reductions (SSFRs) as moments of consciousness: each SSFR is preceded by an analog of
unitary time evolution, call it U . SSFRs are the TGD counterparts of ”weak” measurements.

U(t) is generated by the scaling generator L0 scaling light-like radial coordinate of light-
cone boundary and is a generalization of corresponding operator in superconformal and string
theories and defined for super-symplectic algebras acting as isometries of the world of classical
worlds (WCW) [L117]. U(t) is not the exponential of energy as a generator of time translation
as in QFTs but an exponential of the mass squared operator and corresponds to the scaling of
radial light-like coordinate r of the light-like boundary of CD: r is analogous to the complex
coordinate z in conformal field theories.

Also ”big” SFRs (BSFRs) are possible and correspond to ”ordinary” SFRs and in TGD
framework mean death of self in the universal sense and followed by reincarnation as time
reversed subjective time evolution [L69].

3. There is also classical time evolution at the level of space-time surfaces. Here the assumption
that X4 belongs to H = M4 × CP2 defines Minkowski coordinates of M4 as almost unique
space-time coordinates of X4 is the M4 projection of X4 is 4-D. This generalizes also to the
case of M8. Symmetries make it possible to identify an essentially a unique time coordinate.

This means enormous simplification. General coordinate invariance is a marvellous symmetry
but it leads to the problem of specifying space-time coordinates that is finding preferred
coordinates. This seems impossible since 3-metric is dynamical. M4 provides a fixed reference
system and the problem disappears. M4 is dynamical by its Minkowskian signature and one
can speak about classical signals.

4. There is also classical time evolution for the induced spinor fields. At the level of H the spinor
field is a superposition of modes of the massless Dirac operator (massless in 8-D sense). This
spinor field is free and second quantized. Second quantization of induced spinor trivializes
and this is absolutely crucial for obtaining scattering amplitudes for fermions and avoiding
the usual problems for quantization of fermions in curved background.
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The induced spinor field is a restriction of this spinor field to the space-time surface and
satisfies modified Dirac equation automatically. There is no need for second quantization
at the level of space-time surface and propagators etc.... are directly calculable. This is an
enormous simplification.

There are therefore as many as 4 time evolutions and subjective time evolution by BSFRs
and possibly also by SSFRs is a natural candidate for time evolution as genuine evolution as
emergence of more complex algebraic structures.

Could the inherent time evolution of HFF have a physical meaning in TGD after all?

The idea about inherent time evolution defined by HFF itself as one parameter group of outer
automorphisms is very attractive by its universality: physics would become part of mathematics.

1. Thermodynamic interpretation, with inverse temperature identified as an analog of time co-
ordinate, comes first in mind but need not be the correct interpretation.

2. Outer automorphisms should act at a very fundamental level analogous to the state space
of topological field theories. Fundamental group is after all in question! The assignment of
the S-matrix of particle physics to the outer automorphism does not look reasonable since
the time evolution would be with respect to the linear Minkowski coordinate, which is not
Lorentz invariant.

For these reasons I gave up the idea of Connes when considering it for the first time.
However, TGD inspired theory of consciousness as a generalization of quantum measurement theory
has evolved since then and the situation is different now.

The sequence of SSFRs defines subjective time evolution having no counterpart in QFTs.
Each SSFR is preceded by a unitary time evolution, which however corresponds to the scaling
of the light-like radial coordinate of the light-cone boundary [L117] rather than time translation.
Hamiltonian is replaced with the scaling generator L0 acting as Lorentz invariant mass squared
operator so that Lorentz invariance is not lost.

Could the time evolution assignable to L0 correspond to the outer automorphism of Connes
when one poses an infinite number of gauge conditions making inner automorphisms gauge trans-
formations? The connection of Connes proposal with conformal field theories and with TGD is
indeed suggestive.

1. Conformally invariant systems obey infinite number of gauge conditions stating that the
conformal generators Ln, n > 0, annihilate physical states and carry vanishing Noether
charges.

These gauge conditions bring in mind the condition that infinitesimal inner automorphisms
do not change the system physically. Does this mean that Connes outer automorphism gen-
erates the time evolution and inner automorphisms act as gauge symmetries? One would
have an analog of gauge field theory in HFF.

2. In TGD framework one has an infinite hierarchy of systems satisfying conditions analogous
to the conformal gauge conditions. The generators of the super-symplectic algebra (SCA)
acting as isometries of the ”world of classical worlds” (WCW) are labelled by non-negative
conformal weight n and it has infinite hierarchy of algebras SCAk isomorphic to it with
conformal weights given by k-multiple of those of the entire algebra, k = 1, 2, .....

Gauge conditions state for SCAk that the generators of SCAk and its commutator with
SCA annihilate physical states. The interpretation is in terms of a hierarchy of improving
measurement resolutions with degrees of freedom below measurement resolution acting like
gauge transformations.

The Connes automorphism would ”see” only the time evolution in the degrees of freedom
above measurement resolution and as k increases, their number would increase.

In the case of hyperfinite factors of type II1 (HFFs) the fundamental group of corresponding
factor II∞ consists of all reals: I hope I am right here.

1. The hyperfinite factors of type II1 and corresponding factors II∞ are natural in the TGD
context. Therefore the spectrum would consist of reals unless one poses additional conditions.
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2. Could the automorphisms correspond to the scalings of the lightcone proper time, which
replace time translations as fundamental dynamics. Also in string models scalings take the
role of time translations.

3. In zero energy ontology (ZEO) the scalings would act in the moduli space of causal diamonds
which is finite-dimensional. This moduli space defines the backbone of the ”world of classical
worlds”. WCW itself consists of a union of sub-WCs as bundle structures over CDs [L136].
The fiber consists of space-time surfaces inside a given CD analogous to Bohr orbits and
satisfying holography reducing to generalized holomorphy. The scalings as automorphisms
scale the causal diamonds. The space of CDs is a finite-dimensional coset space and has
also other symmetry transformations.

4. The number theoretic vision suggests a quantization of the spectrum of Λ so that for a given
extension of rationals the spectrum would belong to the extension. HFFs would be labelled
at least partially by the extensions of rationals. The recent view of M8 − H duality [L138]
is dramatically simpler than the earlier view [L99, L100, ?] and predicts that the space-time
regions are determined by a pair of analytic functions with rational coefficients forced by
number theoretical universality meaning that the space-time surfaces have interpretation also
as p-adic surfaces.

The simplest analytic functions are polynomials with integer coefficients and if one requires
that the coefficients are smaller than the degree of the polynomial, the number of polynomials
is finite for a given degree. This would give very precise meaning for the concept of number
theoretic evolution.

There would be an evolutionary hierarchy of pairs of polynomials characterized by increasing
complexity and one can assign to these polynomials extension of rationals characterized by
ramified primes depending on the polynomials. The ramified primes would have interpretation
as p-adic primes characterizing the space-time region considered. Extensions of rationals and
ramified primes could also characterize HFFs. This is a rather dramatic conjecture at the
level of pure mathematics.

5. Scalings define renormalization group in standard physics. Now they scale the size of the
CD. Could the scalings as automorphisms of HFFs correspond to discrete renormalization
operations?

Three views about finite measurement resolution

Evolution could be seen physically as improving finite measurement resolution: this applies to both
sensory experience and cognition. There are 3 views about finite measurement resolution (FMR)
in TGD.

1. Hyper finite factors (HFFs) and FMR

HFFs are an essential part of Connes’s work and I encountered them about 15 years ago or
so [K112, K43].

The inclusions of hyper-finite factors HFFs provide one of the three - as it seems equivalent
- ways to describe finite measurement resolution (FMR) in TGD framework: the included factor
defines an analog for gauge degrees of freedom which correspond to those below measurement
resolution.

2. Cognitive representations and FMR

Another description for FMR in the framework of adelic physics would be in terms of cog-
nitive representations [L73]. First some background about M8 −H duality.

1. There are number theoretic and geometric views about dynamics. In algebraic dynamics at
the level of M8, the space-time surfaces are roots of polynomials. There are no partial
differential equations like in the geometric dynamics at the level of H.

2. The algebraic ”dynamics” of space-time surfaces in M8 is dictated by co-associativity, which
means that the normal space of the space-time surface is associative and thus quaternionic.
That normal space rather than tangent space must be associative became clear last year
[L99, L100].
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3. M8 −H duality maps these algebraic surfaces in M8 to H = M4 ×CP2 and the one obtains
the usual dynamics based on variational principle giving minimal surfaces which are non-
linear analogs for the solutions of massless field equations. Instead of polynomials the natural
functions at the level of H are periodic functions used in Fourier analysis [L117].

At level of complexified M8 cognitive representation would consist of points of co-associative
space-time surface X4 in complexified M8 (complexified octonions), whose coordinates belong to
extension of rationals and therefore make sense also p-adically for extension of p-adic numbers
induced by extension of rationals. M8 −H duality maps the cognitive representations to H.

Cognitive representations form a hierarchy: the larger the extension of rationals, the larger
the number of points in the extension and in the unique discretization of space-time surface.
Therefore also the measurement resolution improves.

The surprise was that the cognitive representations which are typically finite, are for the
”roots” of octonionic polynomials infinite [L99, L100]. Also in this case the density of points of
cognitive representation increases as the dimension of extensions increases.

The understanding of the physical interpretation of M8 −H duality increased dramatically
during the last half year.

1. X4 in M8 is highly analogous to momentum space (4-D analog of Fermi ball one might say)
and H to position space. Physical states correspond to discrete sets of points - 4-momenta -
in X4. This is just the description used in particle physics for physical states. Time and space
in this description are replaced by energy and 4-momentum. At the level of H one space-time
and classical fields and one talks about frequencies and wavelengths instead of momenta.

2. M8 − H duality is a generalization of Fourier transform. Hitherto I have assumed that the
space-time surface in M8 is mapped to H. The momentum space interpretation at the level
of M8 however requires that the image must be a superposition of translates of the image in
plane wave with some momentum: only the translates inside some bigger CD are allowed -
this means infrared cutoff.

The total momentum as sum of momenta for two half-cones of CD in M8 is indeed well-
defined. One has a generalization of a plane wave over translational degrees of freedom of
CD and restricted to a bigger CD.

At the limit of infinitely large size for bigger CD, the result is non-vanishing only when the
sum of the momenta for two half-cones of CD vanishes: this corresponds to conservation of
4-momentum as a consequence of Poincare invariance rather than assumption as in the earlier
approach [L117].

This generalizes the position-momentum duality of wave mechanics lost in quantum field
theory. Point-like particle becomes a quantum superposition of space-time surfaces inside the
causal diamond (CD). Plane wave is a plane wave for the superposition of space-time surfaces
inside CD having the cm coordinates of CD as argument.

3. Inclusion hierarchy of supersymplectic algebras and FMR

The third inclusion hierarchy allowing to describe finite measurement resolution is defined
by supersymplectic algebras acting as the isometries of the ”world of classical worlds” (WCW)
consisting of space-time surfaces are preferred extremals (”roots” of polynomials inM8 and minimal
surfaces satisfying infinite-D set of additional ”gauge conditions” in H).

At a given level of hierarchy generators with conformal weight larger than n act like gauge
generators as also their commutators with generators with conformal weight smaller than n corre-
spond to vanishing Noether charges. This defines ”gauge conditions”.

To sum up, there are therefore 3 hierarchies allowing to describe finite measurement resolu-
tion and they must be essentially equivalent in TGD framework.

Three evolutionary hierarchies

There are three evolutionary hierarchies: hierarchies of extensions of extensions of... ofrationals...;
inclusions of inclusions of .... of HFFs, and inclusions of isomorphic super symplectic algebras.

1. Extensions of rationals
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The extensions of rationals become algebraically increasingly complex as their dimension
increases. The co-associative space-time surfaces in M8 are ”roots” of real polynomials with ra-
tional coefficients to guarantee number theoretical universality and this means space-time surfaces
are characterized by extension of rationals.

Each extension of rationals defines extensions for p-adic number fields and entire adele. The
interpretation is as a cognitive leap: the system’s intelligence/algebraic complexity increases when
the extension is extended further.

The extensions of extensions of .... define hierarchies with Galois groups in certain sense
products of extensions involved. Exceptional extensions are those which do not allow this decom-
position. In this case Galois group is a simple group. Simple groups are primes of finite groups and
correspond to elementary particles of cognition. Kind of fundamental, non-decomposable ideas.
Mystic might speak of pure states of consciousnesswith no thoughts.

In the evolution by quantum jumps the dimension of extension increases in statistical sense
and evolution is unavoidable. This evolution is due to subjective time evolution by quantum jumps,
something which is in spirit with Connes proposal but replaces time evolution by a sequence of
evolutionary leaps.

2. Inclusions of HFFs as a hierarchy

HFFs are fractals. They have infinite inclusion hierarchies in which sub-HFF isomorphicto
entire HFFs is included to HFF.

Also the hierarchies of inclusions define evolutionary hierarchies: HFF which is isomorphic
with original becomes larger and in some sense more complex than the included factor. Also now
one has sequences of inclusions of inclusions of.... These sequences would correspond to sequences
for extensions of extensions... of rationals. Note that the inclusion hierarchy would be the basic
object: not only single HFF in the hierarchy.

3. Inclusions of supersymplectic algebras as an evolutionary hierarchy

The third hierarchy is defined by the fractal hierarchy of sub-algebras of supersymplectic
algebra isomorphic to the algebra itself. At a given level of hierarchy generators with conformal
weight larger than n correspond to gauge degrees of freedom. As n increases the number of physical
degrees of freedom above measurement resolution increases which means evolution. This hierarchy
should correspond rather concretely to that for the extensions of rationals. These hierarchies would
be essentially one and the same thing in the TGD Universe.

TGD based model for subjective time development

The understanding of subjective time development as sequences of SSFRs preceded by unitary
”time” evolution has improved quite considerably recently [L117]. The idea is that the subjective
time development as a sequence of scalings at the light-cone boundary generated by the vibrational
part L̂0 of the scaling generator L0 = p2 − L̂0 (L0 annihilates the physical states). Also p-adic
mass calculations use L̂0 .

For more than 10 years ago [K67, K43], I considered the possibility that Connes time
evolution operator that he assigned with thermo-dynamical time could have a significant role in
the definition of S-matrix in standard sense but had to give up the idea.

It however seems that for super-symplectic algebra L̂0 generates an outer automorphism
since the algebra has only generators with conformal with n > 0 and its extension to included
also generators with n ≤ 0 is required to introduce L0: since L0 contains annihilation operators,
it indeed generates outer automorphism in SCA. The two views could be equivalent! Whereas
Connes considered thermo-dynamical time evolution, in TGD framework the time evolution would
be subjective time evolution by SSFRs.

1. The guess would be that the exponential of the scaling operator L0 gives the time evolution.
The problem is that L0 annihilates the physical states. The solution of the problem would be
the same as in p-adic thermodynamics. L0 decomposes as L0 = p2− L̂0 and the vibrational
part L̂0 this gives mass spectrum as eigenvalues of p2. The thermo-dynamical state in p-adic

thermodynamics is pL̂0β . This operator exists p-adically in the p-adic number field defined
by prime p.
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2. Could unitary subjective time development involve the operator exp(i2πL0τ) τ = log(T/T0)?
This requires T/T0 = exp(n/m) guaranteeing that exponential is a root of unity for an
eigenstate of L0. The scalings are discretized and scalings come as powers of e1/m. This is
possible using extensions of rationals generated by a root of e. The unique feature of p-adics
is that ep is ordinary p-adic number. This alone would give periodic time evolution for
eigenstates of L0 with integer eigenvalues n.

SSA and SSAn

Supersymplectic algebra SSA has fractal hierarchies of subalgebras SSAn. The integers in a
given hierarchy are of forn n1, n1n2, n1n2n3, ... and correspond naturally to hierarchies of inclusions
of HFFs. Conformal weights are positive: n > 0. For ordinary conformal algebras also negative
weights are allowed. Yangians have only non-negative weights. This is of utmost importance.

SSAn with generators have radial light-like conformal weights coming as multiples of
n. SSAn annihilates physical states and [SSAn, SSA] does the same. Hence the generators with
conformal weight larger than n annihilate the physical states.

What about generators with conformal weights smaller than n? At least a subset of them
need not annihilate the physical states. Since Ln are superpositions of creation operators, the idea
that analogs of coherent states could be in question.

It would be nice to have a situation in which Ln, n < m commute. [Lk, Ll] = 0 effectively
for k + l ≥ m.

The simplest way to obtain a set of effectively commuting operators is to take the generators
Lk, [m/2] < k < m, where [m/2] is nearest integer larger than m/2.

This raises interesting questions.

1. Could the Virasoro generators O({ck}) =
∑
k∈[m/2],m] ckLk as linear combinations of creation

operators generate a set of coherent states as eigenstates of their Hermitian conjugates.

2. Some facts about coherent states are in order.

(a) When one adds to quantum harmonic oscillator Hamiltonian oscillator a time depen-
dent perturbation which lasts for a finite the vacuum state evolves to an oscillator vacuum
whose position is displacemented. The displacement is complex and is a Fourier com-
ponent of the external force f(t) corresponding to the harmonic oscillator frequency ω.
Time evolution picks up only this component.

(b) Coherent state property means that the state is eigenstate of the annihilation creation
operator with eivengeu α = −ig(ω) where g(omega) =

∫
f(u)exp(−iωu)du is Fourier

transform of f(t).

(c) Coherent states are not orthogonal and form an overcomplete set. The overlaps of
coherent states are proportional to a Gaussian depending on the complex parameters
characterizing them. One can however develop any state in terms of coherent states as
a unique expansion since one can represent unitary in terms of coherent states.

(d) Coherent state obtained from the vacuum state by time evolution in presence of f(t)
by a unitary displacement operator D(α) = exp(αa† − αa). (https://en.wikipedia.
org/wiki/Displacement_operator).
The displacement operator is a unitary operator and in the general case the displacement
is complex. The product of two displacement operators would be apart from a phase
factor a displacement operator associated with the sum of displacements.

(e) Harmonic oscillator coherent states are indeed maximally classical since wave packets
have minimal width in both q and p space. Furthermore, the classical expectation values
for q and p obey classical equations of motion.

These observations raise interesting questions about how the evolution by SSFRs could be
modelled.

1. Instead of harmonic oscillator in q-space, one would have time evolution in the space of
scalings of causal diamond parameterized by the scaling parameter τ = log(T/T0), where T
can be identified as the radial light-like coordinate of light-cone boundary.

The analogs of harmonic oscillator states would be defined in this space and would be essen-
tially wave packets with ground state minimizing the width of the wave packet.

https://en.wikipedia.org/wiki/Displacement_operator
https://en.wikipedia.org/wiki/Displacement_operator
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2. The role of harmonic oscillator Hamiltonian in absence of external force would be taken by
the generator L̂0 (L0 = p2 − L̂0 acts trivially) and gives rise to mass squared quantization.
The situation would be highly analogous to that in p-adic thermodynamics. The role of ω
would be taken by the minimal conformal weight hmin such that the eigenvalues of L0 are
its multiples. It seems that this weight must be equal to hmin = 1.

The commutations of ~L0 with Lk, k > 0 would be as for L0 so what the replacement should
not affect the situation.

3. The scaling parameter τ is analogous to the spatial coordinate q for the harmonic oscillator.
Can one identify the analog of the external force f(t) acting during unitary evolution between
two SSFRs? Or is it enough to use only the analog of g(ω → hmin = 1) - that is the coefficients
Ck.

To identify f(t), one needs a time coordinate t. This was already identified as τ . This one
would have q = t, which looks strange. The space in which time evolution is the space of
scalings and the time evolutions are scalings and thus time evolution means translation in
this space. The analog for this would be Hamiltonian H = i~d/dq.
Number theoretical universality allows only the values of τ = r/s whose exponents give roots
of unity. Also exp(nτ) makes sense p-adically for these values. This would mean that the
Fourier transform defining g would become discrete and be sum over the values f(τ = r/s).

4. What happens if one replaces L̂0 with L0. In this case one would have the replacement of ω
with hvac = 0. Also the analog of Fourier transform with zero frequency makes sense. L̂0 =
p2−L0 is the most natural choice for the Hamiltonian defining the time evolution operator but
is trivial. Could ∆iτ describe the inherent time evolution. It would be outer automorphism
since it is not defined solely in terms of SCA. So: could one have ∆ = exp(L̂0) so that ∆iτ

coincide with exp(iL̂0τ)? This would mean the identification

∆ = exp(L̂0) ,

which is a positive definite operator. The exponents coming from exp(iL0τ) can be number
theoretically universal if τ = log(T/T0) is a rational number implying T/T0 = exp(r/s),
which is possible number theoretically) and the extension of rationals contains some roots of
e.

5. Could one have ∆ = L0? Also now that positivity condition would be satisfied if SSA
conformal weights satisfy n > 0.

The problem with this operation is that it is not number theoretically universal since the
exponents exp(ilog(n)τ) do not exist p-adically without introducing infinite-D extension of
p-adic number making log(n) well-defined.

What is however intriguing is that the ”time” evolution operator ∆iτ in the eigenstate basis
would have trace equal to Tr(∆iτ )

∑
d(n)niτ , where d(n) is the degeneracy of the state. This

is a typical zeta function: for Riemann Zeta one has d(n) = 1.

For ∆ = exp(L0) option Tr(∆iτ ) =
∑
d(n)exp(inτ) exists for τ = r/s if r:th root of e belongs

to the extension of p-adics.

To sum up, one would have Gaussian wave packet as harmonic oscillator vacuum in the
space of scaled variants of CD. The unitary time evolution associated with SSFR would displace
the peak of the wave packet to a larger scalings. The Gaussian wave function in the space of
scaled CDs has been proposed earlier.

Could this time evolution make sense and be even realistic?

1. The analogs of harmonic oscillator states are defined in the space of scalings as Gaussians
and states obtained from them using oscillator operators. There would be a wave function in
the moduli space of CDs analogous to a state of harmonic oscillator.

2. SSFR following the time evolutions would project to an eigenstate of harmonic oscillator
having in general displaced argument. The unitary displacement operator D should commute
with the operators having the members of zero energy states at the passive boundary of CD
as eigenstates. This poses strong conditions. At least number theoretic measurements could
satisfy these conditions.
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3. SSFRs are identified as weak measurements as near as possible to classical measurements.
Time evolution by the displacement would be indeed highly analogous to classical time evo-
lution for theeharmonic oscillator.

4. The unitary displacement operator corresponds to the arbitrary external force on the harmonic
oscillator and it seems that it would be selected in SSFR for the unitary evolution after SSFR.
This means fixing the coefficients Ck in the operator

∑
CkLk.

What is the subjective ”time” evolution operator when in the case of SSAn?

1. The scaling analog of the unitary displacement operator D as D =
∑
exp(

∑
CkLk−CkL−k)

is highly suggestive and would take the oscillator vacuum to a coherent state. Coefficients
Ck would be proportional to τ . There would be a large number of choices for the unitary
displacement operator. One can also consider complex values of τ since one has complexified
M8.

2. There should be a normalization for the coefficients: without this it is not possible to talk
about a special value of τ does not make sense. For instance, the sum of their moduli
squared could be equal to 1. This would give interpretation as a quantum state in the degrees
of freedom considered. The width of the Gaussian would increase slowly during the unitary
time evolution and be proportional to log(T/T0).

The width of the Gaussian would increase slowly as a function of T during the unitary time
evolution and be proportional to log(T/T0). The condition that ck are proportional the same
complex number times τ is too strong.

3. The arbitrariness in the choice of Ck would bring in a kind of non-determinism as a selection
of this superposition. The ability to engineer physical systems is in conflict with the de-
terminism of classical physics and also difficult to understand in standard quantum physics.
Could one interpret this choice as an analog for engineering a Hamiltonian as in say quan-
tum computation or build-up of an electric circuit for some purpose? Could goal directed
action correspond to this choice?

If so engineerable degrees of freedom would correspond to intermediate degrees of freedom
associated with Lk, [m/2] ≤ k ≤ m. They would be totally absent for k = 1 and this would
correspond to a situation analogous to the standard physics without any intentional action.

2.5 MIP*= RE: What could this mean physically?

I received a very interesting link to a popular article (https://cutt.ly/sfd5UQF) explaining a
recently discovered deep result in mathematics having implications also in physics. The article
[A65] (https://cutt.ly/rffiYdc) by Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John
Wright, and Henry Yuen has a rather concise title “MIP*=RE”. In the following I try to express
the impressions of a (non-mainstream) physicist about the result.

The following is the result expressed using the concepts of computer science about which I
know very little at the hard technical level. The results are however told to state something highly
non-trivial about physics.

1. RE (recursively enumerable languages) denotes all problems solvable by computer. P denotes
the problems solvable in a polynomial time. NP does not refer to a non-polynomial time but
to “non-deterministic polynomial acceptable problems” - I hope this helps the reader- I am a
little bit confused! It is not known whether P = NP is true.

2. IP problems (P is now for “prover” that can be solved by a collaboration of an interrogator and
prover who tries to convince the interrogator that her proof is convincing with high enough
probability. MIP involves multiple l provers treated as criminals trying to prove that they
are innocent and being not allowed to communicate. MIP* is the class of solvable problems
in which the provers are allowed to entangle.

The finding, which is characterized as shocking, is that all problems solvable by a Turing
computer belong to this class: MIP*=RE. All problems solvable by computer would reduce to
problems in the class MIP*! Quantum computation would indeed add something genuinely new
to the classical computation.

https://cutt.ly/sfd5UQF
https://cutt.ly/rffiYdc
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Quantum entanglement would play an essential role in quantum computation. Also the
implications for physics are highly non-trivial.

1. Connes embedding problem asking whether all infinite-D matrices can always be approxi-
mated by finite-D matrices has a negative solution.Therefore MIP*= RE does not hold true
for hyperfinite factors of type II1 (HFFs) central in quantum TGD. Also the Tirelson prob-
lem finds a solution. The measurements of commuting observers performed by two observers
are equivalent to the measurements of tensor products of observables only in finite-D case and
for HFFs. That quantum entanglement would not have any role in HFFs is in conflict
with intuition.

2. In the TGD framework finite measurement resolution is realized in terms of HFFs at Hilbert
space level and in terms of cognitive representations at space-time level defined purely number-
theoretically. This leads to a hierarchy of adeles defined by extensions of rationals and the
Hilbert spaces must have algebraic extensions of rationals as a coefficient field. Therefore one
cannot in general case find a unitary transformation mapping the entangled situation to an
unentangled one, and quantum entanglement plays a key role. It seems that computationalism
formulated in terms of recursive functions of natural numbers must be formulated for the
hierarchy of extensions of rationals in terms of algebraic integers.

3. In TGD inspired theory of consciousness entanglement between observers could be seen as
a kind of telepathy helping to perform conscious quantum computations. Zero energy
ontology also suggests a modification of the views about quantum computation. TGD can
be formulated also for real and p-adic continua identified as correlates of sensory experience
and cognition, and it seems that computational paradigm need not apply in the continuum
cases.

2.5.1 Two physically interesting applications

There are two physically interesting applications of the theorem interesting also from the TGD
point of view and force to make explicit the assumptions involved.

About the quantum physical interpretation of MP*

To proceed one must clarify the quantum physical interpretation of MIP*.

Quantum measurement requires entanglement of the observer O with the measured system
M . What is basically measured is the density matrix of M (or equivalently that of O).
State function reduction gives as an outcome a state, which corresponds to an eigenvalue
of the density matrix. Note that this state can be an entangled state if the density matrix
has degenerate eigenvalues. Quantum measurement can be regarded as a question to the
measured system: “What are the values of given commuting observables?”. The final
state of quantum measurement provides an eigenstate of the observables as the answer to
this question. M would be in the role of the prover and Oi would serve as interrogators.

In the first case multiple interrogators measurements would entangle M with unentangled
states of the tensor product H1 ⊗H2 for O followed by a state function reduction splitting
the state of M to un-entangled state in the tensor product M1 ⊗M2.

In the second case the entire M would be interrogated using entanglement of M with
entangled states of H1 ⊗H2 using measurements of several commuting observables. The
theorem would state that interrogation in this manner is more efficient in infinite-D case
unless HFFs are involved.

3. This interpretation differs from the interpretation in terms of computational problem solving
in which one would have several provers and one interrogator. Could these interpretations
be dual as the complete symmetry of the quantum measurement with respect to O and M
suggests? In the case of multiple provers (analogous to accused criminals) it is advanta-
geous to isolate them. In the case of multiple interrogators the best result is obtained if the
interrogator does not effectively split itself into several ones.
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Connes embedding problem and the notion of finite measurement/cognitive resolution

Alain Connes formulated what has become known as Connes embedding problem. The question
is whether infinite matrices forming factor of type II1 can be always approximated by finite-D
matrices that is imbedded in a hyperfinite factor of type II1 (HFF). Factors of type II and their
HFFs are special classes of von Neumann algebras possibly relevant for quantum theory.

This result means that if one has measured of a complete set of for a product of commuting
observables acting in the full space, one can find in the finite-dimensional case a unitary transfor-
mation transforming the observables to tensor products of observables associated with the factors
of a tensor product. In the infinite-D case this is not true.

What seems to put alarms ringing is that in TGD there are excellent arguments suggesting
that the state space has HFFs as building bricks. Does the result mean that entanglement cannot
help in quantum computation in TGD Universe? I do not want to live in this kind of Universe!

Tsirelson problem

Tsirelson problem (see this) is another problem mentioned in the popular article as a physically
interesting application. The problem relates to the mathematical description of quantum measure-
ment.

Three systems are considered. There are two systems O1 and O2 representing observers
and the third representing the measured system M . The measurement reducing the entanglement
between M and O1 or O2 can regarded as producing correspondence between state of M and O1

or O2, and one can think that O1 or O2 measures only obserservables in its own state space as a
kind of image of M . There are two ways to see the situation. The provers correspond now to the
observers and the two situations correspond to provers without and with entanglement.

Consider first a situation in which one has single Hilbert space H and single observer O.
This situation is analogous to IP.

1. The state of the system is described statistically by a density matrix - not necessarily pure
state -, whose diagonal elements have interpretation as reduction probabilities of states in
this bases. The measurement situation fixes the state basis used. Assume an ensemble of
identical copies of the system in this state. Assume that one has a complete set of commuting
observables.

2. By measuring all observables for the members of the ensemble one obtains the probabilities
as diagonal elements of the density matrix. If the observable is the density matrix having
no- degenerate eigenvalues, the situation is simplified dramatically. It is enough to use the
density matrix as an observable. TGD based quantum measurement theory assumes that
the density matrix describing the entanglement between two subsystems is in a universal
observable measure in state function reductions reducing their entanglement.

3. Can one deduce also the state of M as a superposition of states in the basic chosen by the
observer? This basis need not be the same as the basis defined by - say density matrix if the
system has interacted with some system and this ineracton has led to an eigenstate of the
density matrix. Assume that one can prepare the latter basis by a physical process such as
this kind of interaction.

The coefficients of the state form a set of N2 complex numbers defining a unitary N × N
matrix. Unitarity conditions give N conditions telling that the complex rows and unit vectors:
these numbers are given by the measurement of all observables. There are also N(N − 1)
conditions telling that the rows are orthogonal. Together these N +N(N − 1) = N2 numbers
fix the elements of the unitary matrix and therefore the complex coefficients of the state basis
of the system can be deduced from a complete set of measurements for all elements of the
basis.

Consider now the analog of the MIS* involving more than one observer. For simplicity
consider two observers.

1. Assume that the state space H of M decomposes to a tensor product H = H1 ⊗H2 of state
spaces H1 and H2 such that O1 measures observables X1 in H1 and O2 measuresobservables
X2 in H2. The observables X1 and X2 commute since they act in different tensor factors.

https://arxiv.org/abs/0812.4305
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The absence of interaction between the factors corresponds to the inability of the provers to
communicate. As in the previous case, one can deduce the probabilities for the various out-
comes of the joint measurements interpreted as measurements of a complete set of observables
X1 ⊗X2.

2. One can also think that the two systems form a single system O so that O1 and O2 can
entangle. This corresponds to a situation in which entanglement between the provers is
allowed. Now X1 and X2 are not in general independent but also now they must commute.
One can deduce the probabilities for various outcomes as eigenstates of observables X1X2 and
deduce the diagonal elements of the density matrix as probabilities.

Are these ways to see the situation equivalent? Tsirelson demonstrated that this is the case
for finite-dimensional Hilbert spaces, which can indeed be decomposed to a tensor product of factors
associated with O1 and O2. This means that one finds a unitary transformation transforming the
entangled situation to an unentangled one and to tensor product observables.

For the infinite-dimensional case the situation remained open. According to the article,
the new result implies that this is not the case. For hyperfinite factors the situation can be
approximated with a finite-D Hilbert space so that the situations are equivalent in arbitrary precise
approximation.

2.5.2 The connection with TGD

The result looks at first a bad news from the TGD point of view, where HFFs are highly suggestive.
One must be however very careful with the basic definitions.

Measurement resolution

Measurement resolution is the basic notion.

1. There are intuitive physicist’s arguments demonstrating that in TGD the operator algebras
involved with TGD are HFFs provides a description of finite measurement resolution. The
inclusion of HFFs defines the notion of resolution: included factor represents the degrees
of freedom not seen in the resolution used [K112, K43] (http://tgdtheoryd.fi/pfpool/
vNeumann.pdf) and http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf).

Hyperfinite factors involve new structures like quantum groups and quantum algebras reflect-
ing the presence of additional symmetries: actually the “world of classical worlds” (WCW) as
the space of space-time surfaces as maximal group of isometries and this group has a fractal
hierarchy of isomorphic groups imply inclusion hierarchies of HFFs. By the analogs of gauge
conditions this infinite-D group reduces to a hierarchy of effectively finite-D groups. For
quantum groups the infinite number of irreps of the corresponding compact group effectively
reduces to a finite number of them, which conforms with the notion of hyper-finiteness.

It looks that the reduction of the most general quantum theory to TGD-like theory relying on
HFFs is not possible. This would not be surprising taking into account gigantic symmetries
responsible for the cancellation of infinities in TGD framework and the very existence of
WCW geometry.

2. Second TGD based approach to finite resolution is purely number theoretic [L53] and involves
adelic physics as a fusion of the real physics with various p-adic physics as correlates of cog-
nition. Cognitive representations are purely number theoretic and unique discretizations of
space-time surfaces defined by a given extension of rationals forming an evolutionary hier-
archy: the coordinates for the points of space-time as a 4-surface of the embedding space
H = M4 × CP2 or of its dual M8 are in the extension of rationals defining the adele. In the
case of M8 the preferred coordinates are unique apart from time translation. These two views
would define descriptions of the finite resolution at the level of space-time and Hilbert space.
In particular, the hierarchies of extensions of rationals should define hierarchies of inclusions
of HFFs.

For hyperfinite factors the analog of MIP*=RE cannot hold true. Doesn’t the TGD Universe
allow a solution of all the problems solvable by Turing Computer? There is a loophole in this
argument.

http://tgdtheoryd.fi/pfpool/vNeumann.pdf
http://tgdtheoryd.fi/pfpool/vNeumann.pdf
http://tgdtheoryd.fi/pfpool/vNeumannnew.pdf
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1. The point is that for the hierarchy of extensions of rationals also Hilbert spaces have as a
coefficient field the extension of rationals! Unitary transformations are restricted to matrices
with elements in the extension. In general it is not possible to realize the unitary transforma-
tion mapping the entangled situation to an un-entangled one! The weakening of the theorem
would hold true for the hierarchy of adeles and entanglement would give something genuinely
new for quantum computation!

2. A second deep implication is that the density matrix characterizing the entanglement between
two systems cannot in general be diagonalized such that all diagonal elements identifiable as
probabilities would be in the extension considered. One would have stable or partially stable
entanglement (could the projection make sense for the states or subspaces with entanglement
probability in the extension). For these bound states the binding mechanism is purely number
theoretical. For a given extension of p-adic numbers one can assign to algebraic entanglement
also information measure as a generalization of Shannon entropy as a p-adic entanglement
entropy (real valued). This entropy can be negative and the possible interpretation is that
the entanglement carries conscious information.

What about transcendental extensions?

During the writing of this article an interesting question popped up.

1. Also transcendental extensions of rationals are possible, and one can consider the gener-
alization of the computationalism by also allowing functions in transcendental extensions.
Could the hierarchy of algebraic extensions could continue with transcendental extensions?
Could one even play with the idea that the discovery of transcendentals meant a quantum
leap leading to an extension involving for instance e and π as basic transcendentals? Could
one generalize the notion of polynomial root to a root of a function allowing Taylor expansion
f(x) =

∑
qnx

n with rational coefficients so that the roots of f(x) = 0 could be used define
transcendental extensions of rationals?

2. Powers of e or its root define and infinite-D extensions having the special property that they
are finite-D for p-adic number fields because ep is ordinary p-adic number. In the p-adic
context e can be defined as a root of the equation xp −

∑
pn/n! = 0 making sense also for

rationals. The numbers log(pi) such that pi appears a factor for integers smaller than p
define infinite-D extension of both rationals and p-adic numbers. They are obtained as roots
of ex − pi = 0.

3. The numbers (2n + 1)π (2nπ) can be defined as roots of sin(x) = 0 (cos(x) = 0. The
extension by π is infinite-dimensional and the conditions defining it would serve as consistency
conditions when the extension contains roots of unity and effectively replaces them.

4. What about other transcendentals appearing in mathematical physics? The values ζ(n) of
Riemann Zeta appearing in scattering amplitudes are for even values of n given by ζ(2n) =
(−1)n+1B2n(2π)2n/2(2n + 1)!. This follows from the functional identity for Riemann zeta
and from the expression ζ(−n) = (−1)nBn+1/(n+ 1) ( (B(−1/2) = −1/2) (https://cutt.
ly/dfgtgmw). The Bernoulli numbers Bn are rational and vanish for odd values of n. An
open question is whether also the odd values are proportional to πn with a rational coefficient
or whether they represent “new” transcendentals.

What about the situation for the continuum version of TGD?

At least the cognitively finitely representable physics would have the HFF property with coefficient
field of Hilbert spaces replaced by an extension of rationals. Number theoretical universality would
suggest that HFF property characterizes also the physics of continuum TGD. This leads to a series
of questions.

1. Does the new theorem imply that in the continuum version of TGD all quantum computations
allowed by the Turing paradigm for real coefficients field for quantum states are not possible:
MIP∗ ⊂ RE? The hierarchy of extensions of rationals allows utilization of entanglement, and
one can even wonder whether one could have MIP∗ = RE at the limit of algebraic numbers.

https://cutt.ly/dfgtgmw
https://cutt.ly/dfgtgmw
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2. Could the number theoretic vision force change also the view about quantum computation?
What does RE actually mean in this framework? Can one really assume complex entanglement
coefficients in computation. Does the computational paradigm makes sense at all in the
continuum picture?

Are both real and p-adic continuum theories unreachable by computation giving rise to cog-
nitive representations in the algebraic intersubsection of the sensory and cognitive worlds? I
have indeed identified real continuum physics as a correlate for sensory experience and vari-
ous p-adic physics as correlates of cognition in TGD: They would represent the computionally
unreachable parts of existence.

Continuum physics involves transcendentals and in mathematics this brings in analytic for-
mulas and partial differential equations. At least at the level of mathematical consciousness
the emergence of the notion of continuum means a gigantic step. Also this suggests that
transcendentality is something very real and that computation cannot catch all of it.

3. Adelic theorem allows to express the norm of a rational number as a product of inverses of its
p-adic norms. Very probably this representation holds true also for the analogs of rationals
formed from algebraic integeres. Reals can be approximated by rationals. Could extensions
of all p-adic numbers fields restricted to the extension of rationals say about real physics only
what can be expressed using language?

Also fermions are highly interesting in the recent context. In TGD spinor structure can be
seen as a square root of Kähler geometry, in particular for the “world of classical worlds” (WCW).
Fermions are identified as correlates of Boolean cognition. The continuum case for fermions does
not follow as a näıve limit of algebraic picture.

1. The quantization of the induced spinors in TGD looks different in discrete and continuum
cases. Discrete case is very simple since equal-time anticommutators give discrete Kronecker
deltas. In the continuum case one has delta functions possibly causing infinite vacuum energy
like divergences in conserved Noether charges (Dirac sea).

2. In [L104] (https://cutt.ly/zfftoK6) I have proposed how these problems could be avoided
by avoiding anticommutators giving delta-function. The proposed solution is based on zero
energy ontology and TGD based view about space-time. One also obtains a long-sought-for
concrete realization for the idea that second quantized induce spinor fields are obtained as
restrictions of second quantized free spinor fields in H = M4 × CP2 to space-time surface.
The fermionic variant of M8 − H-duality [L105] provides further insights and gives a very
concrete picture about the dynamics of fermions in TGD.

These considerations relate in an interesting manner to consciousness. Quantum entangle-
ment makes in the TGD framework possible telepathic sharing of mental images represented by
sub-selves of self. For the series of discretizations of physics by HFFs and cognitive representations
associated with extensions of rationals, the result indeed means something new.

What does one mean with quantum computation in TGD Universe?

The TGD approach raises some questions about computation.

1. The ordinary computational paradigm is formulated for Turing machines manipulating natural
numbers by recursive algorithms. Programs would essentially represent a recursive function
n → f(n). What happens to this paradigm when extensions of rationals define cognitive
representations as unique space-time discretizations with algebraic numbers as the limit giving
rise to a dense in the set of reals.

The usual picture would be that since reals can be approximated by rationals, the situation is
not changed. TGD however suggests that one should replace at least the quantum version of
the Turing paradigm by considering functions mapping algebraic integers (algebraic rational)
to algebraic integers.

Quite concretely, one can manipulate algebraic numbers without approximation as a rational
and only at the end perform this approximation and computations would construct recursive
functions in this manner. This would raise entanglement to an active role even if one has

https://cutt.ly/zfftoK6
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HFFs and even if classical computations could still look very much like ordinary computation
using integers.

This suggests that computationalism usually formulated in terms of recursive functions of
natural or rational numbers could be replaced with a hierarchy of computationalisms for the
hierarchy of extensions of rationals. One would have recursively definable functions defined
and having values in the extensions of rationals. These functions would be analogs of analytic
functions (or polynomials) with the complex variable replaced with an integer or a rational
of the extension. This poses very powerful constraints and there are good reasons to expect
an increase of computational effectiveness. One can hope that at the limit of algebraic
numbers of these functions allow arbitrarily precise approximations to real functions. If
the real world phenomena can be indeed approximated by cognitive representations in the
TGD sense, one can imagine a highly interesting approach to AI.

2. ZEO brings in also time reversal occurring in “big” (ordinary) quantum jumps and this mod-
ifies the views about quantum computation. In ZEO based conscious quantum computation
halting means “death” and “reincarnation” of conscious entity, self? How the processes in-
volving series of haltings in this sense differs from ordinary quantum computation: could one
shorten the computation time by going forth and back in time.

There are many interesting questions to be considered. M8 −H duality gives justifications
for the vision about algebraic physics. TGD leads also to the notion of infinite prime and I have
considered the possibility that infinite primes could give a precise meaning for the dimension of
infinite-D Hilbert space. Could the number-theoretic view about infinite be considerably richer
than the idea about infinity as limit would suggest [K94].

The construction of infinite primes is analogous to a repeated second quantization of arith-
metic supersymmetric quantum field theory allowing also bound states at each level and a concrete
correspondence with the hierarchy of space-time sheets is suggestive. For the infinite primes at
the lowest level of the hierarchy single particle states correspond to rationals and bound states to
polynomials and therefore to the sets of their roots. This strongly suggests a connection with M8

picture.

Could the number field of computable reals (p-adics) be enough for physics?

For some reason I have managed to not encounter the notion of computable number (see
https://cutt.ly/pTeSSfR) as opposed to that of non-computable number (see https://cutt.

ly/gTeD9vF). The reason is perhaps that I have been too lazy to take computationalism seriously
enough.

Computable real number is a number, which can be produced to an arbitrary accuracy by
a Turing computer, which by definition has a finite number of internal states, has input which
is natural number and produces output which is natural numbers. Turing computer computes
values of a function from natural numbers to itself by applying a recursive algorithm.

The following three formal definitions of the notion are equivalent.

1. The real number a is computable, if it can be expressed in terms of a computable function
n→ f(n) from natural numbers to natural numbers characterized by the property

f(n)− 1)

n
≤ a ≤ (

f(n) + 1)

n
.

For rational a = q, f(n) = nq satisfies the conditions. Note that this definition does not
work for p-adic numbers since they are not well-ordered.

2. The number a is computable if for an arbitrarily small rational number ε there exists a
computable function producing a rational number r satisfying |r − x≤ ε. This definition
works also for p-adic numbers since it involves only the p-adic norm which has values which
are powers of p and is therefore real valued.

3. a is computable if there exists a computable sequence of rational numbers ri converging to
a such that |a − ri| ≤ 2−i holds true. This definition works also for 2-adic numbers and its
variant obtained by replacing 2 with the p-adic prime p makes sense for p-adic numbers.

https://cutt.ly/pTeSSfR
https://cutt.ly/gTeD9vF
https://cutt.ly/gTeD9vF
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The set Rc of computable real numbers and the p-adic counterparts Qp,c of Rc, have
highly interesting properties.

1. Rc is enumerable and therefore can be mapped to a subset of rationals: even the ordering
can be preserved. Also Qp,c is enumerable but now one cannot speak of ordering. As a
consequence, most real (p-adic) numbers are non-computable. Note that the pinary expansion
of a rational is periodic after some pinary digit. For a p-adic transcendental this is not
the case.

2. Algebraic numbers are computable so that one can regard Rc as a kind of completion of
algebraic numbers obtained by adding computable reals. For instance, π and e are computable.
2π can be computed by replacing the unit circle with a regular polygon with n sides and
estimating the length as nLn. Ln the length of the side. e can be computed from the standard
formula. Interestingly, ep is an ordinary p-adic number. An interesting question is whether
there are other similar numbers. Certainly many algebraic numbers correspond to ordinary
p-adic numbers.

3. Rc (Qp,c) is a number field since the arithmetic binary operations +,−×, / are computable.
Also differential and integral calculus can be constructed. The calculation of a derivative
as a limit can be carried out by restricting the consideration to computable reals and there
is always a computable real between two computable reals. Also Riemann sum can be
evaluated as a limit involving only computable reals.

4. An interesting distinction between real and p-adic numbers is that in the sum of real numbers
the sum of arbitrarily high digits can affect even all lower digits so that it requires computa-
tional work to predict the outcome. For p-adic numbers memory digits affect only the higher
digits. This is why p-adic numbers are tailor made for computational purposes.Canonical
identification

∑
xnp

n →
∑
xnp

−n used in p-adic mass calculations to map p-adic mass
squared to its real counterpart [K60] maps p-adics to reals in a continuous manner. For inte-
gers this corresponds is 2-to-1 due to the fact that the p-adic numbers −1 = (p− 1)/(1− p)
and 1/p are mapped to p.

5. For computable numbers, one cannot define the relation =. One can only define equality in
some resolution ε. The category theoretical view about equality is also effective and conforms
with the physical view.

Also the relations ≤ and ≥ fail to have computable counterparts since only the absolute value
|x−y| can appear in the definition and one loses the information about the well-ordered nature
of reals. For p-adic numbers there is no well-ordering so that nothing is lost. A restriction to
non-equal pairs however makes order relation computable. For p-adic numbers the same is
true.

6. Computable number is obviously definable but there are also definanable numbers, which
are not computable. Examples are Gödel numbers in a given coding scheme for statements,
which are true but not provable. More generally, the Gödel numbers coding for undecidable
problems such as the halting problem are uncomputable natural numbers in a given coding
scheme. Chaitin’s constant, which gives the probability that random Turing computation
halts, is a non-computable but definable real number.

7. Computable numbers are arithmetic numbers, which are numbers definable in terms of first
order logic using Peano’s axioms. First order logic does not allow statements about statements
and one has an entire hierarchy of statements about... about statements. The hierarchy of
infinite primes defines an analogous hierarchy in the TGD framework and is formally similar
to a hierarchy of second quantizations [K94].

2.6 Analogs Of Quantum Matrix Groups From Finite Mea-
surement Resolution?

The notion of quantum group [?]eplaces ordinary matrices with matrices with non-commutative
elements. This notion is physically very interesting, and in TGD framework I have proposed that
it should relate to the inclusions of von Neumann algebras allowing to describe mathematically
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the notion of finite measurement resolution [?] These ideas have developed slowly through various
side tracks.

In the sequel I will consider the notion of quantum matrix inspired by the recent view about
quantum TGD relying on the notion of finite measurement resolution and show that under some
additional conditions it provides a concrete representation and physical interpretation of quantum
groups in terms of finite measurement resolution.

1. The basic idea is to replace complex matrix elements with operators, which are products of
non-negative hermitian operators and unitary operators analogous to the products of modulus
and phase as a representation for complex numbers. Modulus and phase would be non-
commuting and have commutation relation analogous to that between momentum and plane-
wave in accordance with the idea about quantization of complex numbers.

2. The condition that determinant and sub-determinants exist is crucial for the well-definedness
of eigenvalue problem in the generalized sense. Strong/weak permutation symmetry of de-
terminant requires its invariance apart from sign change under permutations of rows and/or
columns. Weak permutation symmetry means development of determinant with respect to a
fixed row or column and does not pose additional conditions. For weak permutation symme-
try the permutation of rows/columns would however have a natural interpretation as braiding
for the hermitian operators defined by the moduli of operator valued matrix elements and
here quantum group structure emerges.

3. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with
eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting
set of operators.

Quantum matrices define a more general structure than quantum group but provide a con-
crete representation for them in terms of finite measurement resolution, in particular when q is a
root of unity. For q = ±1 (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matri-
ces for which the determinant is apart from possible change by a sign factor invariant under the
permutations of both rows and columns. One can also understand the recursive fractal structure
of inclusion sequences of hyper-finite factors resulting by replacing operators appearing as matrix
elements with quantum matrices and a concrete connection with quantum groups emerges.

In Zero Energy Ontology (ZEO) M-matrix serving as the basic building brick of unitary U-
matrix and identified as a hermitian square root of density matrix provides a possible application
for this vision. Especially fascinating is the possibility of hierarchies of measurement resolutions
represented as inclusion sequences realized as recursive construction of M-matrices. Quantization
would emerge already at the level of complex numbers appearing as M-matrix elements.

This approach might allow to unify various ideas behind TGD. For instance, Yangian alge-
bras emerging naturally in twistor approach are examples of quantum algebras. The hierarchy of
Planck constants should have close relationship with inclusions and fractal hierarchy of sub-algebras
of super-symplectic and other conformal algebras.

2.6.1 Well-definedness Of The Eigenvalue Problem As A Constraint To
Quantum Matrices

Intuition suggests that the presence of degrees of freedom below measurement resolution implies
that one must use density matrix description obtained by taking trace over the unobserved degrees
of freedom. One could argue that in state function reduction with finite measurement resolution
the outcome is not a pure state, or not even negentropically entangled state (possible in TGD
framework) but a state described by a density matrix. The challenge is to describe the situation
mathematically in an elegant manner.

1. There is present an infinite number of degrees of freedom below measurement resolution with
which measured degrees of freedom entangle so that their presence affects the situation. One
has a system with finite number degrees of freedom such as two-state system described by a
quantum spinor. In this case observables as hermitian operators described by 2× 2 matrices
would be replaced by quantum matrices with elements, which in general do not commute.

An attractive generalization of complex numbers appearing as elements of matrices is obtained
by replacing them with products Hij = hijuij of hermitian operators hij with non-negative
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spectrum (modulus of complex number) and unitary operators uij (phase of complex number)
suggests itself. The commutativity of hij and uij would look nice but is not necessary and
is in conflict with the idea that modulus and phase of an amplitudes do not commute in
quantum mechanics.

Very probably this generalization is trivial for mathematician. One could indeed interpret
the generalization in terms of a tensor product of finite-dimensional matrices with possibly
infinite-dimensional space of operators of Hilbert space. For the physicist the situation might
be different as the following proposal for what hermitian quantum matrices could be suggests.

2. The modulus of complex number is replaced with a hermitian operator having non-negative
eigenvalues. The representation as h = AA†+A†A is would guarantee this. The phase of com-
plex number would be replaced by a unitary operator U possibly allowing the representation
U = exp(iT ), T hermitian. The commutativity condition

[hij , uij ] = 0 (2.6.1)

for a given matrix element is also suggestive but as already noticed, Uncertainty Principle
suggests that modulus and phase do not commute as operators. The commutator of modulus
and phase would naturally be equal to that between momentum operator and plane wave:

[hij , uij ] = i~× uij , (2.6.2)

Here ~ = h/2π can be chosen to be unity in standard quantum theory. In TGD it can be
generalized to a hermitian operator Heff/h with an integer valued spectrum of eigenvalues
given by heff/h = n so that ordinary and dark matter sectors would be unified to single
structure mathematically.

3. The notions of eigenvalues and eigenvectors for a hermitian operator should generalize. Now
hermitian operator H would be a matrix with formally the same structure as N×N hermitian
matrix in commutative number field - say complex numbers - possibly satisfying additional
conditions.

Hermitian matrix can be written as

Hij = hijuij for i>j Hij = uijhij for i<j , Hii = hi . (2.6.3)

Hermiticity conditions Hij = H†ji give

hij = hji , uij = u†ji . (2.6.4)

Here it has been assumed that one has quantum SU(2). For quantum U(2) one would have

U11 = U†22 = haua with ua commuting with other operators. The form of the conditions
is same as for ordinary hermitian matrices and it is not necessary to assume commutativity
[hij , uij ] = 0. Generalization of Pauli spin matrices provides a simple illustration.

4. The well-definedness of eigenvalue problem gives a strong constraint on the notion of her-
mitian quantum matrix. Eigenvalues of hermitian operator are determined by the vanishing
of determinant det(H − λI). Its expression involves sub-determinants and one must decide
whether to demand that the definition of determinant is independent of which column or row
one chooses to develop the determinant.

For ordinary matrix the determinant is expressible as sum of symmetric functions:

det(H − λI) =
∑

λnSn(H) . (2.6.5)

Elementary symmetric functions Sn - n-functions in following - have the property that they
are sums of contributions from to n-element paths along the matrix with the property that
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path contains no vertical or horizontal steps. One has a discrete analog of path integral
in which time increases in each step by unit. The analogy with fermionic path integral is
also obvious. In the non-commutative case non-commutativity poses problems since different
orderings of rows (or columns) along the same n-path give different results.

(a) For the first option one gives up the condition that determinant can be developed with
respect to any row or column and defines determinant by developing it with respect to say
first row or first column. If one developing with respect to the column (row) the permu-
tations of rows (columns) do not affect the value of determinant or sub-determinants but
permutations of columns (rows) do so unless one poses additional conditions stating that
the permutations do not affect given contribution to the determinant or sub-determinant.
It turns out that this option must be applied in the case of ordinary quantum group. For
quantum phase q = ±1 the determinant is invariant under permutations of both rows
and columns.

(b) Second manner to get rid of difficulty would be that n-path does not depend on the
ordering of the rows (columns) differ only by the usual sign factor. For 2 × 2 case this
would give

ad− bc = da− cb , (Option 2) (2.6.6)

These conditions state the invariance of the n-path under permutation group Sn permut-
ing rows or columns.

(c) For the third option the elements along n-paths commute: paths could be said to be
“classical”. The invariance of N -path in this sense guarantees the invariance of all n-
paths. In 2-D case this gives

[a, d] = 0 , [b, c] = 0 . (Option 3) (2.6.7)

5. One should have a well-defined eigenvalue problem. If the n-functions commute, one can
diagonalize the corresponding operators simultaneously and the eigenvalues problem reduces
to possibly infinite number of ordinary eigenvalue problems corresponding to restrictions to
given set of eigenvalues associated with N − 1 symmetric functions. This gives an additional
constraint on quantum matrices.

In 2-dimensional case one would have the condition

[ad− bc, a+ d] = 0 . (2.6.8)

Depending on how strong S2 invariance one requires, one obtains 0, 1, 2 nontrivial conditions
for 2 × 2 quantum matrices and 1 condition from the commutativity of n-functions besides
hermiticity conditions.

For N × N -matrices one would have N ! − 1 non-trivial conditions from the strong form of
permutation invariance guaranteeing the permutation symmetry of n-functions and N(N −
1)/2 conditions from the commutativity of n-functions.

6. The eigenvectors of the density matrix are obtained in the usual manner for each eigenvalue
contributing to quantum eigenvalue. Also the diagonalization can be carried out by a uni-
tary transformation for each eigenvalue separately. Hence the standard approach seems to
generalize almost trivially.

What makes the proposal non-trivial and possibly physically interesting is that the hermitian
operators are not assumed to be just tensor products of N × N hermitian matrices with
hermitian operators in Hilbert space.

The notion of unitary quantum matrix should also make sense. The näıve guess is that
the exponentiation of a linear combination of ordinary hermitian matrices with coefficients, which
are hermitian matrices gives quantum unitary matrices. In the case of U(1) the replacement of
exponentiation parameter t in exp(itX) with a hermitian operator gives standard expression for
the exponent and it is trivial to see that unitary conditions are satisfied also in this case. Also in
the case of SU(2) it is easy to verify that the guess is correct. One must also check that one indeed
obtains a group: it could also happen that only semi-group is obtained.
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In any case, one could speak of quantum matrix groups with coordinates replaced by her-
mitian matrices. These quantum matrix group need not be identical with quantum groups in the
standard sense of the word. Maybe this could provide one possible meaning for quantization in
the case of groups and perhaps also in the case of coset spaces G/H.

2.6.2 The Relationship To Quantum Groups And Quantum Lie Algebras

It is interesting to find out whether quantum matrices give rise to quantum groups under suitable
additional conditions. The child’s guess for these conditions is that the permutation of rows and
columns correspond to braiding for the hermitian moduli hij defined by unitary operators Uij .

Quantum groups and quantum matrices

The conditions for hermiticity and unitary do not involve quantum parameter q, which suggests
that the näıve generalization of the notion of unitary matrix gives unitary group obtained by
replacing complex number field with operator algebra gives group with coordinates defined by
hermitian operators rather than standard quantum group. This turns out to be the case and it
seems that quantum matrices provide a concrete representation for quantum group. The notion of
braiding as that for operators hij can be said to emerge from the notion of quantum matrix.

1. Exponential of quantum hermitian matrix is excellent candidate for quantum unitary matrix.
One should check the exponentiation indeed gives rise to a quantum unitary matrix. For
q = ±1 this seems obvious but one should check this separately for other roots of unity.
Instead of considering the general case, we consider explicit ansatz for unitary U(2) quantum
matrix as U = [a, b;−b†, a†]. The conditions for unitary quantum group in the proposed sense
would state the orthonormality and unit norm property of rows/columns.

The explicit form of the conditions reads as

ab− ba = 0 , ab† = b†a ,
aa† + bb† = 1 , a†a+ b†b = 1 .

(2.6.9)

The orthogonality conditions are unique and reduce to the vanishing of commutators.

Normalization conditions involve a choice of ordering. One possible manner to avoid the
problem is to assume that both orderings give same unit length for row or column (as done
above). If only the other option is assumed then only third or fourth equations is needed.
The invariance of determinant under permutation of rows would imply [a, a†] = [b, b†] = 0
and the ordering problem would disappear.

2. One can look what conditions the explicit representation Uij = hijuij or equivalently [haua, hbub;−u†bhb, u†aha]
gives. The intuitive expectation is that U(2) matrix decomposes to a product of commutat-
ing SU(2) matrix and U(1) matrices. This implies that ua commutes with the other matrices
involved. One obtains the conditions

hahb = hb(ubhau
†
b) , hbha = (ubhau

†
b)hb . (2.6.10)

These conditions state that the permutation of ha and hb analogous to braiding operation is
a unitary operation.

For the purposes of comparison consider now the corresponding conditions for SU(2)q ma-
trix.

1. The SU(2)q matrix [a, b; b†, a†] with real value of q (see http://tinyurl.com/yb8tycag)
satisfies the conditions

ba = qab , b†a = qab†, bb† = b†b ,
a†a+ q2b†b = 1 , aa† + bb† = 1 .

(2.6.11)

http://tinyurl.com/yb8tycag


2.6. Analogs Of Quantum Matrix Groups From Finite Measurement Resolution? 107

This gives [a†, a] = (1 − q2)b†b. The above conditions would correspond to q = ±1 but
with complex numbers replaced with operator algebra. q-commutativity obviously replaces
ordinary commutativity in the conditions and one can speak of q-orthonormality.

For complex values of q - in particular roots of unity - the condition a†a + q2b†b = 1 is in
general not self-consistent since hermitian conjugation transforms q2 to its complex conjugate.
Hence this condition must be dropped for complex roots of unity.

2. Only for q = ±1 corresponding to Bose-Einstein and Fermi-Dirac statistics the conditions
are consistent with the invariance of n-functions (determinant) under permutations of both
rows and columns. Indeed, if 2 × 2 q-determinant is developed with respect to column, the
permutation of rows does not affect its value. This is trivially true also in N ×N dimensional
case since the permutation of rows does not affect the n-paths at all.

If the symmetry under permutations is weakened, nothing prevents from posing quantum or-
thogonality conditions also now and the decomposition to a product of positive and hermitian
matrices give a concrete meaning to the notion of quantum group.

Do various n−functions commute with each other for SU(2)q? The only commutator of this
kind is that for the trace and determinant and should vanish:

[
b+ b†, aa† + bb†

]
= 0 . (2.6.12)

Since a†a and aa† are linear combinations of b†b = b†b, they vanish. Hence it seems that TGD
based view about quantum groups is consistent with the standard view.

3. One can look these conditions in TGD framework by restricting the consideration to the case
of SU(2) (ua = 1) and using the ansatz U = [ha, hbub;−u†bhb, ha]. Orthogonality conditions
read as

hahb = qhb(ubhau
†
b) , hbha = q(ubhau

†
b)hb .

If q is root of unity, these conditions state that the permutation of ha and hb analogous to a
unitary braiding operation apart from a multiplication with quantum phase q. For q = ±1 the
sign-factor is that in standard statistics. Braiding picture could help guess the commutators of
hij in the case of N×N quantum matrices. The permutations of rows and columns would have
interpretation as braidings and one could say that braided commutators of matrix elements
vanish.

The conditions from the normalization give

h2
a + h2

b = 1 , h2
a + q2(u†bh

2
bub) = 1 . (2.6.13)

For complex q the latter condition does not make sense since h2
a−1 and u†bh

2
bub are hermitian

matrices with real eigenvalues. Also for real values of q 6= ±1 one obtains contradicion since
the spectra of unitarily related hermitian operators would differ by scaling factor q2. Hence
one must give up the condition involving q2 unless one has q = ±1. Note that the term
proportional to q2 does not allow interpretation in terms of braiding.

4. Roots of unity are natural number theoretically as values of q but number theoretical univer-
sality allows the generic value of q would be a complex number existing simultaneously in all
p-adic number properly extended. This would suggest the spectrum of q to come as

q(m,n) = e1/mexp(
ı2π

n
) . (2.6.14)

The motivation comes from the fact that ep is ordinary p-adic number for all p-adic number
fields so e and also any root of e defines a finite-dimensional extension of p-adic numbers [K111]
[L25]. The roots of unity would be associated to the discretization of the ordinary angles in
case of compact matrix groups. Roots of e would be associated with the discretization of
hyperbolic angles needed in the case of non-compact matrix groups such as SL(2,C).
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Also now unification of various values of q to single single operator Q, which is product of
commuting hermitian and unitary operators and commuting with the hermitian operator H
representing the spectrum of Planck constant would code the spectrum. Skeptic can of course
wonder, whether the modulus and phase of Q can be assumed to commute. The relationship
between integers associated with H and Q is interesting.

Quantum Lie algebras and quantum matrices

What about quantum Lie algebras? There are many notions of quantum Lie algebra and quantum
group. General formulas for the commutation relations are well-known for Drinfeld-Jimbo type
quantum groups (see http://tinyurl.com/yb8tycag). The simplest guess is that one just poses
the defining conditions for quantum group, replaces complex numbers as coefficient module with
operator algebra, and poses the above described conditions making possible to speak about eigen-
values and eigen vectors. One might however hope that this representation allows to realize the
non-commutativity of matrix elements of quantum Lie algebra in a concrete manner.

1. For SU(2) the commutation relations for the elements X+, X−, h read as

[h,X±] = ±X± , [X+, X−] = h . (2.6.15)

Here one can use the 2× 2 matrix representations for the ladder operators X± and diagonal
angular momentum generator h.

2. For SU(2)q one has

[h,X±] = ±X± , [X+, X−] = qh−q−h
q−q−1 . (2.6.16)

3. Using the ansatz for the generators but allowing hermitian operator coefficients in non-
diagonal generators X±, one obtains the condition

For SU(2)q one would have

[X+, X−] = h2
+ = h2

− =
qh − q−h

q − q−1
. (2.6.17)

Clearly, the proposal might make possible to have concrete representations for the quantum
Lie algebras making the decomposition to measurable and directly non-measurable degrees of
freedom explicit.

The conclusion is that finite measurement resolution does not lead automatically to standard
quantum groups although the proposed realization is consistent with them. Also the quantum
phases q = ±1 n = 1, 2 are realized and correspond to strong permutation symmetry and Bose-
Einstein and Fermi statistics.

2.6.3 About Possible Applications

The realization for the notion of finite measurement resolution is certainly the basic application
but one can imagine also other applications where hermitian and unitary matrices appear.

Density matrix description of degrees of freedom below measurement resolution

Density matrix ρ obtained by tracing over non-observable degrees of freedom is a fundamental
example about a hermitian matrix satisfying the additional condition Tr(ρ) = 1.

1. A state function reduction with a finite measurement resolution would lead to a non-pure state.
This state would be describable using N×N -dimensional quantum hermitian quantum density
matrix satisfying the condition Tr(ρ) = 1 (or more generally Trq(ρ) = 1), and satisfying the
additional conditions allowing to reduce its diagonalization to that for a collection of ordinary
density matrices so that the eigenvalues of ordinary density matrix would be replaced by N
quantum eigenvalues defined by infinite-dimensional diagonalized density matrices.

http://tinyurl.com/yb8tycag
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2. One would have N quantum eigenvalues - quantum probabilities - each decomposing to pos-
sibly infinite set of ordinary probabilities assignable to the degrees of freedom below measure-
ment resolution and defining density matrix for non-pure states resulting in state function
reduction.

Some questions

Some further questions pop up naturally.

1. One might hope that the quantum counterparts of hermitian operators are in some sense
universal, at least in TGD framework (by quantum criticality). Could the condition that
the commutator of hermitian generators is proportional to i~ times hermitian generator pose
additional constraints? In 2-D case this condition is satisfied for quantum SU(2) generators
and very probably the same is true also in the general case. The possible problems result from
the non-commutativity but (XY )† = Y †X† identity takes care that there are no problems.

2. One can also raise physics related questions. What one can say about most general quantum
Hamiltonians and their energy spectra, say quantum hydrogen atom? What about quantum
angular momentum? If the proposed construction is only a concretization of abstract quantum
group construction, then nothing new is expected at the level of representations of quantum
groups.

3. Could the spectrum of heff define a quantum h as a hermitian positive definite operator?
Could this allow a description for the presence of dark matter, which is not directly observable?
Same question applies to the quantum parameter q.

4. M-matrices are basic building bricks of scattering amplitudes in ZEO. M-matrix is produce
of hermitian ”complex” square root H of density matrix satisfying H2 = ρ and unitary S-
matrix S. It has been proposed that these matrices commute. The previous consideration
relying on basic quantum thinking suggests that they relate like translation generator in radial
direction and phase defined by angle and thus satisfy [H,S] = i(Heff/h) × S. This would
give enormously powerful additional condition to S-matrix. One can also ask whether M-
matrices in presence of degrees of freedom below measurement resolution is quantum version
of M-matrix in the proposed sense.

5. Fractality is of of the key notions of TGD and characterizes also hyperfinite factors. I have
proposed some realizations of fractality such as infinite primes and finite-dimensional Hilbert
spaces taking the role of natural numbers and ordinary sum and product replaced with direct
sum and tensor product. One could also imagine a fractal hierarchy of quantum matrices
obtained by replacing the operators appearing as matrix elements of quantum matrix element
by quantum matrices. This hierarchy could relate to the sequence of inclusions of HFFs.

2.7 Jones Inclusions And Cognitive Consciousness

WCW spinors have a natural interpretation in terms of a quantum version of Boolean algebra.
Beliefs of various kinds are the basic element of cognition and obviously involve a representation
of the external world or part of it as states of the system defining the believer. Jones inclusions
mediating unitary mappings between the spaces of WCWs spinors of two systems are excellent
candidates for these maps, and it is interesting to find what one kind of model for beliefs this
picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quantum
groups and predicts a universal spectrum for the probabilities that a given belief is true. This
spectrum depends only on the integer n characterizing the quantum phase q = exp(i2π/n) charac-
terizing the Jones inclusion. For n 6=∞ the logic is inherently fuzzy so that absolute knowledge is
impossible. q = 1 gives ordinary quantum logic with qbits having precise truth values after state
function reduction.

2.7.1 Does One Have A Hierarchy Of U- And M-Matrices?

U -matrix describes scattering of zero energy states and since zero energy states can be illustrated
in terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question.
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The initial and final states of the scattering are superpositions of Feynman diagrams characterizing
the corresponding M -matrices which contain also the positive square root of density matrix as a
factor.

The hypothesis that U -matrix is the tensor product of S-matrix part of M -matrix and its
Hermitian conjugate would make U -matrix an object deducible by physical measurements. One
cannot of course exclude that something totally new emerges. For instance, the description of
quantum jumps creating zero energy state from vacuum might require that U -matrix does not
reduce in this manner. One can assign to the U -matrix a square like structure with S-matrix and
its Hermitian conjugate assigned with the opposite sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy
states by replacing the S-matrix with M -matrix in the square like structure. These states would
provide a physical representation of U -matrix. One could define U -matrix for these states in a
similar manner. This kind of hierarchy could be continued indefinitely and the hierarchy of higher
level U and M -matrices would be labeled by a hierarchy of n-cubes, n = 1, 2,... TGD inspired
theory of consciousness suggests that this hierarchy can be interpreted as a hierarchy of abstractions
represented in terms of physical states. This hierarchy brings strongly in mind also the hierarchies
of n-algebras and n-groups and this forces to consider the possibility that something genuinely new
emerges at each step of the hierarchy. A connection with the hierarchies of infinite primes [K94]
and Jones inclusions are suggestive.

2.7.2 Feynman Diagrams As Higher Level Particles And Their Scatter-
ing As Dynamics Of Self Consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted space-time
lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized Feynman
diagrams for which Feynman diagrams at a given level become particles at the next level. Accepting
this idea, one is led to ask what kind of quantum states these Feynman diagrams correspond, how
one could describe interactions of these higher level particles, what is the interpretation for these
higher level states, and whether they can be detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and state
space in the sense that Jones inclusion can be seen as a representation of the operator algebra N
as infinite-dimensional linear sub-space (surface) of the operator algebra M. This encourages to
think that generalized Feynman diagrams could correspond to image surfaces in II1 factor having
identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k

assigned to the external lines of Feynman diagrams. This would mean that N ⊂Mk moves inside
calMk along a geodesic line determined by the inner automorphism. At the vertex the factors
calMk to fuse along N to form a Connes tensor product. Hence the copies of N move inside Mk

like incoming 3-surfaces in H and fuse together at the vertex. Since all Mk are isomorphic to
a universal factor M, many-sheeted space-time would have a kind of quantum image inside II1
factor consisting of pieces which are d = M : N/2-dimensional quantum spaces according to the
identification of the quantum space as subspace of quantum group to be discussed later. In the
case of partonic Clifford algebras the dimension would be indeed d ≤ 2.

The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂ M an entire hierarchy of Jones inclusions
M0 ⊂ M1 ⊂ M2..., M0 = N , M1 = M . A possible interpretation for these inclusions would be
as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The
factor M containing the Feynman diagram having as its lines the unitary orbits of N under ∆M
becomes a parton inM1 and its unitary orbits under ∆M1 define lines of Feynman diagrams in M1.
The concrete representation for M -matrix or projection of it to some subspace as entanglement
coefficients of partons at the ends of a braid assignable to the space-like 3-surface representing a
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vertex of a higher level Feynman diagram. In this manner quantum dynamics would be coded and
simulated by quantum states.

The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles at
the next level. The particles at the next level represent dynamics at the lower level: they have the
property of “being about” representing perhaps the most crucial element of conscious experience.
Since net conserved quantum numbers can vanish for a system in TGD Universe, this kind of
hierarchy indeed allows a realization as zero energy states. Crossing symmetry can be understood
in terms of this picture and has been applied to construct a model for M -matrix at high energy
limit [K29] .

One might perhaps say that quantum space-time corresponds to a double inclusion and that
further inclusions bring in N -parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram inMn+1 are geodesic lines representing orbits ofMn and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by ∆Mn+1 . These
lines contain within themselves Mn Feynman diagrams with similar structure and the hierarchy
continues down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams
obtained by thickening the ordinary diagrams in the new time direction. The interpretation as
ribbon diagrams crucial for topological quantum computation and suggested to be realizable in
terms of zero energy states in [K7] is natural. At each level a new time parameter is introduced so
that the dimension of the diagram can be arbitrarily high. The dynamics is not that of ordinary
surfaces but the dynamics induced by the ∆Mn

.

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect
of existence and must provide representations for the quantum dynamics of lower levels in their
own structure. This dynamics is characterized by M -matrix whose elements have representation
in terms of Feynman diagrams.

1. These states correspond to zero energy states in which initial states have “positive energies”
and final states have “negative energies”. The net conserved quantum numbers of initial
and final state partons compensate each other. Gravitational energies, and more generally
gravitational quantum numbers defined as absolute values of the net quantum numbers of
initial and final states do not vanish. One can say that thoughts have gravitational mass but
no inertial mass.

2. States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the
particles can be characterized as ordinary Feynman diagrams, or more precisely as scattering
events so that the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin resp. Pout
is the projection to a subspace of initial resp. final states. An entangled state with the projection
of S-matrix giving the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity of
the state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and at the limit
Ŝ = S the norm equals to 1. Hence, by II1 property, the state always entangles infinite number of
states, and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of
S-matrix might define only a particular instance of states for which conserved quantum numbers
vanish. The model for the interaction of Feynman diagrams discussed below applies also to these
more general states.
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The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M1), the first levelM0 being assigned
to the interactions of the ordinary matter.

1. Conservation laws pose constraints on the scattering at level M1. The Feynman diagrams
can transform to new Feynman diagrams only in such a way that the net quantum numbers
are conserved separately for the initial positive energy states and final negative energy states
of the diagram. The simplest assumption is that positive energy matter and negative energy
matter know nothing about each other and effectively live in separate worlds. The scattering
matrix form Feynman diagram like states would thus be simply the tensor product S ⊗ S†,
where S is the S-matrix characterizing the lowest level interactions and identifiable as unitary
factor of M -matrix for zero energy states. Reductionism would be realized in the sense that,
apart from the new elements brought in by ∆Mn

defining single particle free dynamics, the
lowest level would determine in principle everything occurring at the higher level providing
representations about representations about... for what occurs at the basic level. The lowest
level would represent the physical world and higher levels the theory about it.

2. The description of hadronic reactions in terms of partons serves as a guide line when one
tries to understand higher level Feynman diagrams. The fusion of hadronic space-time sheets
corresponds to the vertices M1. In the vertex the analog of parton plasma is formed by a
process known as parton fragmentation. This means that the partonic Feynman diagrams
belonging to disjoint copies ofM0 find themselves inside the same copy ofM0. The standard
description would apply to the scattering of the initial resp. final state partons.

3. After the scattering of partons hadronization takes place. The analog of hadronization in
the recent case is the organization of the initial and final state partons to groups Ii and Fi
such that the net conserved quantum numbers are same for Ii and Fi. These conditions can
be satisfied if the interactions in the plasma phase occur only between particles belonging
to the clusters labeled by the index i. Otherwise only single particle states in M1 would be
produced in the reactions in the generic case. The cluster decomposition of S-matrix to a
direct sum of terms corresponding to partitions of the initial state particles to clusters which
do not interact with each other obviously corresponds to the “hadronization”. Therefore no
new dynamics need to be introduced.

4. One cannot avoid the question whether the parton picture about hadrons indeed corresponds
to a higher level physics of this kind. This would require that hadronic space-time sheets
carry the net quantum numbers of hadrons. The net quantum numbers associated with the
initial state partons would be naturally identical with the net quantum numbers of hadron.
Partons and they negative energy conjugates would provide in this picture a representation of
hadron about hadron. This kind of interpretation of partons would make understandable why
they cannot be observed directly. A possible objection is that the net gravitational mass of
hadron would be three times the gravitational mass deduced from the inertial mass of hadron
if partons feed their gravitational fluxes to the space-time sheet carrying Earth’s gravitational
field.

5. This picture could also relate to the suggested duality between string and parton pictures
[K96] . In parton picture hadron is formed from partons represented by space-like 2-surfaces
X2
i connected by join along boundaries bonds. In string picture partonic 2-surfaces are

replaced with string orbits. If one puts positive and negative energy particles at the ends of
string diagram one indeed obtains a higher level representation of hadron. If these pictures
are dual then also in parton picture positive and negative energies should compensate each
other. Interestingly, light-like 3-D causal determinants identified as orbits of partons could
be interpreted as orbits of light like string word sheets with “time” coordinate varying in
space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.
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1. Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

2. The lines of diagrams are classified as incoming or outgoing lines according to whether the
time orientation of the line is positive or negative. The time orientation is associated with
the time parameter tn characterizing the automorphism ∆itn

M\ . The incoming and outgoing

net quantum numbers compensate each other. These quantum numbers are basically the
quantum numbers of the state at the lowest level of the hierarchy.

3. In the vertices the Mn+1 particles fuse and Mn particles form the analog of quark gluon
plasma. The initial and final state particles of Mn Feynman diagram scatter independently
and the S-matrix Sn+1 describing the process is tensor product Sn ⊗ S†n. By the clustering
property of S-matrix, this scattering occurs only for groups formed by partons formed by
the incoming and outgoing particlesMn particles and each outgoingMn+1 line contains and
irreducible Mn diagram. By continuing the recursion one finally ends down with ordinary
Feynman diagrams.

2.7.3 Logic, Beliefs, And Spinor Fields In The World Of Classical Worlds

Beliefs can be characterized as Boolean value maps βi(p) telling whether i believes in proposition
p or not. Additional structure is brought in by introducing the map λi(p) telling whether p is true
or not in the environment of i. The task is to find quantum counterpart for this model.

The spectrum of probabilities for outcomes in state function reduction with finite
measurement resolution is universal

Consider quantum two-spinor as a model of a system with finite measurement resolution implying
that state function reduction do not anymore lead to a spin state with a precise value but that one
can only predict the probability distribution for the outcome of measurement. These probabilities
can be also interpreted as truth values of a belief in finite cognitive resolution.

It is actually possible to calculate the spectrum of the probabilities of truth values with
rather mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n
and implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This
must somehow reflect the fractal dimension. The fact that large values of oscillator quantum
numbers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
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N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density matrix
obtained by tracing over non-visible degrees of freedom.

WCW spinors as logic statements

In TGD framework the infinite-dimensional WCW (CH) spinor fields defined in CH, the “world
of classical worlds”, describe quantum states of the Universe [K113] . WCW spinor field can be
regarded as a state in infinite-dimensional Fock space and are labeled by a collection of various
two valued indices like spin and weak isospin. The interpretation is as a collection of truth values
of logic statements one for each fermionic oscillator operator in the state. For instance, spin up
and down would correspond to two possible truth values of a proposition characterized by other
quantum numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of higher
order logics (statements about statements about...). The space-time sheet containing N fermions
topologically condensed at a larger space-time sheet behaves as a fermion or boson depending on
whether N is odd or even. This hierarchy has also a number theoretic counterpart: the construc-
tion of infinite primes [K94] corresponds to a repeated second quantization of a super-symmetric
quantum field theory.

Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental description
of beliefs.

1. Beliefs define a model about some subsystem of universe constructed by the believer. This
model can be understood as some kind of representation of real word in the state space
representing the beliefs.

2. One can wonder what is the difference between real and p-adic variants of WCW spinor fields
and whether they could represent reality and beliefs about reality. WCW spinors (as opposed
to spinor fields) are constructible in terms of fermionic oscillator operators and seem to be
universal in the sense that one cannot speak about p-adic and real WCW spinors as different
objects. Real/p-adic spinor fields however have real/p-adic space-time sheets as arguments.
This would suggest that there is no fundamental difference between the logic statements
represented by p-adic and real WCW spinors.

3. This vision is realized if the intersection of reality and various p-adicities corresponds to an
algebraically universal set of consisting of partonic 2-surfaces and string world sheets for which
defining parameters are WCW coordinates in an algebraic extension of rationals defining that
for p-adic number fields. Induced spinor fields would be localized at string world sheets and
their intersections with partonic 2-surfaces and would be number theoretically universal. If
second quantized induced spinor fields are correlates of Boolean cognition, which is behind the
entire mathematics, their number theoretical universality is indeed a highly natural condition.
Also fermionic anticommutation relations are number theoretically universal. By conformal
invariance the conformal moduli of string world sheets and partonic 2-surface would be the
natural WCW coordinates for the 2-surfaces in question and I proposed their p-adicization
already in p-adic mass calculations for two decades ago.

This picture would provide an elegant realization for the p-adicization. There would be ne
need to map real space-time surfaces directly to p-adic ones and vice versa and one would
avoid problems related to general coordinate invariance (GCI) completely. Strong form of
holography would assign to partonic surfaces the real and p-adic variants. Already p-adic
mass calculations support the presence of cognition in all length scales.

These observations suggest a more concrete view about how beliefs emerge physically.
The idea that p-adic WCW spinor fields could serve as representations of beliefs and real

WCW spinor fields as representations of reality looks very nice and conforms with the adelic vision
that space-time is adele - a book-like structure contains space-time sheets in various number fields
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as pages glued together along back for which the parameters characterizing space-time surface are
numbers in an algebraic extension of rationals. Real space-time surfaces would be correlates for
sensory experience and p-adic space-time sheets for cognition.

2.7.4 Jones Inclusions For Hyperfinite Factors Of Type II1 As A Model
For Symbolic And Cognitive Representations

Consider next a more detailed model for how cognitive representations and beliefs are realized at
quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with WCW spinor fields corresponds
to a von Neumann algebra known as hyper-finite factor of type II1. The mathematics of these
algebras is extremely beautiful and reproduces basic mathematical structures of modern physics
(conformal field theories, quantum groups, knot and braid groups,....) from the mere assumption
that the world of classical worlds possesses infinite-dimensional Kähler geometry and allows spinor
structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford algebra
in question has by definition unit trace. Type II1 factors allow also what are known as Jones
inclusions of Clifford algebras N ⊂M. What is special to II1 factors is that the induced unitary
mappings between spinor spaces are genuine inclusions rather than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from
reality would naturally define Jones inclusion of CH Clifford algebra N associated with the real
space-time sheet to the Clifford algebraM associated with the p-adic space-time sheet. The moduli
squared of S-matrix elements would define probabilities for pairs or real and belief states.

In Jones inclusion N ⊂ M the factor N is included in factor M such that M can be
expressed as N -module over quantum space M/N which has fractal dimension given by Jones
index M : N = 4cos2(π/n) ≤ 4, n = 3, 4, .... varying in the range [1, 4]. The interpretation is
as the fractal dimension corresponding to a dimension of Clifford algebra acting in d =

√
M : N -

dimensional spinor space: d varies in the range [1, 2]. The interpretation in terms of a quantal
variant of logic is natural.

Probabilistic beliefs

ForM : N = 4 (n =∞) the dimension of spinor space is d = 2 and one can speak about ordinary
2-component spinors with N -valued coefficients representing generalizations of qubits. Hence the
inclusion of a given N -spinor as M-spinor can be regarded as a belief on the proposition and for
the decomposition to a spinor in N-module M/N involves for each index a choice M/N spinor
component selecting super-position of up and down spins. Hence one has a superposition of truth
values in general and one can speak only about probabilistic beliefs. It is not clear whether one
can choose the basis in such a way that M/N spinor corresponds always to truth value 1. Since
WCW spinor field is in question and even if this choice might be possible for a single 3-surface,
it need not be possible for deformations of it so that at quantum level one can only speak about
probabilistic beliefs.

Fractal probabilistic beliefs

For d < 2 the spinor space associated with M/N can be regarded as quantum plane having
complex quantum dimension d with two non-commuting complex coordinates z1 and z2 satisfying
z1z2 = qz2z1 and z1z2 = qz2z1. These relations are consistent with hermiticity of the real and
imaginary parts of z1 and z2 which define ordinary quantum planes. Hermiticity also implies that
one can identify the complex conjugates of zi as Hermitian conjugates.

The further commutation relations [z1, z2] = [z2, z1] = 0 and [z1, z1] = [z2, z2] = r give a
closed algebra satisfying Jacobi identities. One could argue that r ≥ 0 should be a function r(n)
of the quantum phase q = exp(i2π/n) vanishing at the limit n→∞ to guarantee that the algebra
becomes commutative at this limit and truth values can be chosen to be non-fuzzy. r = sin(π/n)
would be the simplest choice. As will be found, the choice of r(n) does not however affect at all the
spectrum for the probabilities of the truth values. n =∞ case corresponding to non-fuzzy quantum
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logic is also possible and must be treated separately: it corresponds to Kac Moody algebra instead
of quantum groups.

The non-commutativity of complex spinor components means that z1 and z2 are not inde-
pendent coordinates: this explains the reduction of the number of the effective number of truth
values to d < 2. The maximal reduction occurs to d = 1 for n = 3 so that there is effectively only
single truth value and one could perhaps speak about taboo or dogma or complete disappearance
of the notions of truth and false (this brings in mind reports about meditative states: in fact n = 3
corresponds to a phase in which Planck constant becomes infinite so that the system is maximally
quantal).

As non-commuting operators the components of d-spinor are not simultaneously measurable
for d < 2. It is however possible to measure simultaneously the operators describing the probabil-
ities z1z1 and z2z2 for truth values since these operators commute. An inherently fuzzy Boolean
logic would be in question with the additional feature that the spinorial counterparts of state-
ment and its negation cannot be regarded as independent observables although the corresponding
probabilities satisfy the defining conditions for commuting observables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary
quantum measurement in the sense that it cannot involve a state function reduction to a pure
qubit meaning irreducible quantal fuzziness. One could speak of fuzzy qbits or fqbits (or quantum
qbits) instead of qbits. This picture would provide the long sought interpretation for quantum
groups.

The previous picture applies to all representations M1 ⊂ M2, where M1 and M2 denote
either real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclusion
could be interpreted as symbolic representations assignable to a unitary mapping of the states of
a subsystem M1 of the external world to the state space M2 of another real subsystem. p1 → p2

unitary inclusions would in turn map cognitive representations to cognitive representations. There
is a strong temptation to assume that these Jones inclusions define unitary maps realizing universe
as a universal quantum computer mimicking itself at all levels utilizing cognitive and symbolic
representations. Subsystem-system inclusion would naturally define one example of Jones inclusion.

The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with rather
mild additional assumptions.

1. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 commute,
physical states can be chosen to be eigen states of these operators and it is possible to assign
to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as

X1 = (1/2 + n1q
n2)r , X2 = (1/2 + n2q

n1)r .

The reality of eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n
and implies that the spectrum of eigen states gets increasingly thinner for n → ∞. This
must somehow reflect the fractal dimension. The fact that large values of oscillator quantum
numbers n1 and n2 correspond to the classical limit suggests that modulo condition guarantees
approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2+N1n, 1/2+N2n)/[1+
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. This
also conforms with the frequency interpretation for probabilities. All states are are inherently
fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result. As noticed,
n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit logic. At
n→∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are
non-fuzzy.

4. A possible interpretation for the fuzziness is in terms of finite measurement resolution. The
quantized probabilities could be assigned with diagonalized density matrix regarded as matrix
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with elements which are commuting hermitian operators. The generalized eigenvalues would
be eigenvalues spectra. States would not be pure expect at the limitsN1 � N2 and N2 �
N1. The non-purity of the state could be understood in terms of entanglement with the
degrees of freedom below measurement resolution describable in terms of inclusion of von
Neumann algebras. One could perhaps say that in finite measurement resolution the outcome
of state function reduction is always non-pure state characterized by a universal density matrix
obtained by tracing over non-visible degrees of freedom.

How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief and
one can ask whether this description is enough to characterize states such as knowledge, misbelief,
doubt, delusion, and ignorance. The truth value of βi(p) is determined by the measurement of
probability assignable to Jones inclusion on the p-adic side. The truth value of λi(p) is determined
by a similar measurement on the real side. β and λ appear completely symmetrically and one can
consider all kinds of triplets M1 ⊂ M2 ⊂ M3 assuming that there exist unitary S-matrix like
maps mediating a sequence M1 ⊂ M2 ⊂ M3 of Jones inclusions. Interestingly, the hierarchies
of Jones inclusions are a key concept in the theory of hyper-finite factors of type II1 and pair of
inclusions plays a fundamental role.

Let us restrict the consideration to the situation whenM1 corresponds to a real subsystem
of the external world, M2 its real representation by a real subsystem, andM3 to p-adic cognitive
representation of M3. Assume that both real and p-adic sides involve a preferred state basis for
qubits representing truth and false.

Assume first that both M1 ⊂ M2 and M2 ⊂ M3 correspond to d = 2 case for which
ordinary quantum measurement or truth value is possible giving outcome true or false. Assume
further that the truth values have been measured in both M2 and M3.

1. Knowledge corresponds to the proposition βi(p) ∧ λi(p).
2. Misbelief to the proposition βi(p)∧ 6= λi(p).

Knowledge and misbelief would involve both the measurement of real and p-adic probabilities
.

3. Assume next that one has d < 2 form M2 ⊂ M3. Doubt can be regarded neither belief or
disbelief: βi(p)∧ 6= βi(6= p): belief is inherently fuzzy although proposition can be non-fuzzy.

Assume next that truth values inM1 ⊂M2 inclusion corresponds to d < 2 so that the basic
propositions are inherently fuzzy.

4. Delusion is a belief which cannot be justified: βi(p)∧ λi(p)∧ 6= λ( 6= p)). This case is possible
if d = 2 holds true for M2 ⊂ M3. Note that also misbelief that cannot be shown wrong is
possible.
In this case truth values cannot be quantum measured for M1 ⊂ M2 but can be measured
for M2 ⊂M3. Hence the states are products of pure M3 states with fuzzy M2 states.

5. Ignorance corresponds to the proposition βi(p)∧ 6= βi( 6= p) ∧ λi(p)∧ 6= λ(6= p)). Both real
representational states and belief states are inherently fuzzy.

Quite generally, only for d1 = d2 = 2 ideal knowledge and ideal misbelief are possible. Fuzzy
beliefs and logics approach to ordinary one at the limit n → ∞, which according to the proposal
of [K89] corresponds to the ordinary value of Planck constant. For other cases these notions are
only approximate and quantal approach allows to characterize the goodness of the approximation.
A new kind of inherent quantum uncertainty of knowledge is in question and one could speak
about a Uncertainty Principle for cognition and symbolic representations. Also the unification of
symbolic and various kinds of cognitive representations deserves to be mentioned.

2.7.5 Intentional Comparison Of Beliefs By Topological Quantum Com-
putation?

Intentional comparison would mean that for a given initial state also the final state of the quantum
jump is fixed. This requires the ability to engineer S-matrix so that it leads from a given state
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to single state only. Any S-matrix representing permutation of the initial states fulfills these
conditions. This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a super-
position of parallel computations. In TGD framework topological quantum computation based on
the braiding of magnetic flux tubes would be represented as an evolution characterized by braid [K7]
. The dynamical evolution would be associated with light-like boundaries of braids. This evolution
has dual interpretations either as a limit of time evolution of quantum state (program running) or
a quantum state satisfying conformal invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with en-
gineered time evolutions and topological computation realized as braiding connecting the quantum
states to be compared (beliefs represented as many-fermion states at the boundaries of magnetic
flux tubes) could give rise to conscious computational comparison of beliefs. The complexity of
braiding would give a measure for how much the states to be compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted
as symbolic representation of states of system M1 as states of system M2 mediated by the braid of
join along boundaries bonds connecting the two space-time sheets in question and having light-like
boundaries. These considerations suggest that the idea about S-matrix of the Universe should be
generalized so that the dynamics of the Universe is dynamics of mimicry described by an infinite
collection of fermionic S-matrices representable in terms of Jones inclusions.

2.7.6 The Stability Of Fuzzy Qbits And Quantum Computation

The stability of fqbits against state function reduction might have deep implications for quantum
computation since quantum spinors would be stable against state function reduction induced by
the perturbations inducing de-coherence in the normal situation. If this is really true, and if the
only dangerous perturbations are those inducing the phase transition to qbits, the implications for
quantum computation could be dramatic. Of course, the rigidity of qbits could be just another
way to say that topological quantum computations are stable against thermal perturbations not
destroying anyons [K7] .

The stability of fqbits could also be another manner to state the stability of rational, or
more generally algebraic, bound state entanglement against state function reduction, which is one
of the basic hypothesis of TGD inspired theory of consciousness [K62] . For sequences of Jones
inclusions or equivalently, for multiple Connes tensor products, one would obtain tensor products
of quantum spinors making possible arbitrary complex configurations of fqbits. Anyonic braids
in topological quantum computation would have interpretation as representations for this kind of
tensor products.

2.7.7 Fuzzy Quantum Logic And Possible Anomalies In The Experimen-
tal Data For The EPR-Bohm Experiment

The experimental data for EPR-Bohm experiment [J7] excluding hidden variable interpretations
of quantum theory. What is less known that the experimental data indicates about possibility of
an anomaly challenging quantum mechanics [J1] . The obvious question is whether this anomaly
might provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum
measurement theory with finite measurement resolution.

The anomaly

The experimental situation involves emission of two photons from spin zero system so that photons
have opposite spins. What is measured are polarizations of the two photons with respect to
polarization axes which differ from standard choice of this axis by rotations around the axis of
photon momentum characterized by angles α and β. The probabilities for observing polarizations
(i, j), where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted
to be P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.
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1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [J7] are not consistent with this prediction [J2]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not
discussed in [J2] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns out
that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly b) but not anomaly
a). A “mundane” explanation for anomaly a) is proposed.

Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble

The fuzzy quantum logic implies that the predictions Pi,j for the probabilities should be
replaced with ensemble averages over the ensembles defined by fuzzy quantum logic. In practice
this means that following replacements should be carried out:

Pi,j → P 2Pi,j + (1− P )2Pi+1,j+1

+ P (1− P ) [Pi,j+1 + Pi+1,j ] . (2.7.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some value of
n characterizing the measurement situation. The concrete predictions would be following

P0,0 = P1,1 → A
cos2(α− β)

2
+B

sin2(α− β)

2

= (A−B)
cos2(α− β)

2
+
B

2
,

P0,1 = P1,0 → A
sin2(α− β)

2
+B

cos2(α− β)

2

= (A−B)
sin2(α− β)

2
+
B

2
,

A = P 2 + (1− P )2 , B = 2P (1− P ) . (2.7.2)

The prediction is that the graphs of probabilities as a function as function of the angle α− β are
scaled by a factor 1 − 4P (1 − P ) and shifted upwards by P (1 − P ). The value of P , and one
might hope even the value of n labeling Jones inclusion and the integer m labeling the quantum
state might be deducible from the experimental data as the upward shift. The basic prediction is
that the maxima of curves measuring probabilities P(i, j) have minimum at B/2 = P (1− P ) and
maximum is scaled down to (A−B)/2 = 1/2− 2P (1− P ).

If the P is same for all pairs i, j, the correlation E =
∑
i(Pii − Pi,i+1) transforms as

E(α, β) → [1− 4P (1− P )]E(α, β) . (2.7.3)

Only the normalization of E(α, β) as a function of α− β reducing the magnitude of E occurs. In
particular the maximum/minimum of E are scaled down from E = ±1 to E = ±(1− 4P (1− P )).

From the figure 1b) of [J2] the scaling down indeed occurs for magnitudes of E with same
amount for minimum and maximum. Writing P = 1 − ε one has A − B ' 1 − 4ε and B ' 2ε so
that the maximum is in the first approximation predicted to be at 1 − 4ε. The graph would give
1− P ' ε ' .025. Thus the model explains the reduction of the magnitude for the maximum and
minimum of E which was not however considered to be an anomaly in [J1, J2] .

A further prediction is that the identities P (i, i) + P (i + 1, i) = 1/2 should still hold true
since one has Pi,i + Pi,i+1 = (A−B)/2 +B = 1. This is implied also by probability conservation.
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The four curves corresponding to these identities do not however co-incide as the figure 6 of [J2]
demonstrates. This is regarded as the basic anomaly in [J1, J2] . From the same figure it is also
clear that below α − β < 10 degrees P++ = P−− ∆P+− = −∆P−+ holds true in a reasonable
approximation. After that one has also non-vanishing ∆Pii satisfying ∆P++ = −∆P−−. This kind
of splittings guarantee the identity

∑
ij Pij = 1. These splittings are not visible in E.

Since probability conservation requires Pii + Pii+1 = 1, a mundane explanation for the
discrepancy could be that the failure of the conditions Pi,i+Pii+1 = 1 means that the measurement
efficiency is too low for P+− and yields too low values of P+−+P−− and P+−+P++. The constraint∑
ij Pij = 1 would then yield too high value for P−+. Similar reduction of measurement efficiency

for P++ could explain the splitting for α− β > 10 degrees.
Clearly asymmetry with respect to exchange of photons or of detectors is in question.

1. The asymmetry of two photon state with respect to the exchange of photons could be con-
sidered as a source of asymmetry. This would mean that the photons are not maximally
entangled. This could be seen as an alternative “mundane” explanation.

2. The assumption that the parameter P is different for the detectors does not change the
situation as is easy to check.

3. One manner to achieve splittings which resemble observed splittings is to assume that the value
of the probability parameter P depends on the polarization pair : P = P (i, j) so that one has
(P (−,+), P (+,−)) = (P + ∆, P −∆) and (P (−,−), P (+,+)) = (P + ∆1, P −∆1). ∆ ' .025
and ∆1 ' ∆/2 could produce the observed splittings qualitatively. One would however always
have P (i, i) + P (i, i + 1) ≥ 1/2. Only if the procedure extracting the correlations uses the
constraint

∑
i,j Pij = 1 effectively inducing a constant shift of Pij downwards an asymmetry

of observed kind can result. A further objection is that there are no special reason for the
values of P (i, j) to satisfy the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ∼ .9
in the experiment discussed above one should have p1 ' .9. It is interesting to look whether this
allows to deduce any information about the valued of n. At the limit of large values of Nin one
would have (N1 − N2)/(N1 + N2) ' .4 so that one cannot say anything about n in this case.
(N1, N2) = (3, 1) satisfies the condition exactly. For n = 3, the smallest possible value of n, this
would give p1 ' .88 and for n = 4 p1 = .41. With high enough precision it might be possible to
select between n = 3 and n = 4 options if small values of Ni are accepted.

2.7.8 Category Theoretic Formulation For Quantum Measurement The-
ory With Finite Measurement Resolution?

I have been trying to understand whether category theory might provide some deeper understand-
ing about quantum TGD, not just as a powerful organizer of fuzzy thoughts but also as a tool
providing genuine physical insights. Marni Dee Sheppeard (or Kea in her blog Arcadian Functor at
http://tinyurl.com/yb3lsbjq) is also interested in categories but in much more technical sense.
Her dream is to find a category theoretical formulation of M-theory as something, which is not the
11-D something making me rather unhappy as a physicist with second foot still deep in the muds
of low energy phenomenology.

Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of locale and
frame [A6] . In Wikipedia I learned that complete Heyting algebras, which are fundamental to
category theory, are objects of three categories with differing arrows. CHey, Loc and its opposite
category Frm (arrows reversed). Complete Heyting algebras are partially ordered sets which are
complete lattices. Besides the basic logical operations there is also algebra multiplication (I have
considered the possible role of categories and Heyting algebras in TGD in [K25] ). From Wikipedia
I also learned that locales and the dual notion of frames form the foundation of pointless topology
[A19] . These topologies are important in topos theory which does not assume axiom of choice.

http://tinyurl.com/yb3lsbjq
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The so called particular point topology [A17] assumes a selection of single point but I have the
physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski topology [A22]
is this kind of topology. Sierpinski topology is defined in a simple manner: the set is open only
if it contains a given preferred point p. The dual of this topology defined in the obvious sense
exists also. Sierpinski space consisting of just two points 0 and 1 is the universal building block of
these topologies in the sense that a map of an arbitrary space to Sierpinski space provides it with
Sierpinski topology as the induced topology. In category theoretical terms Sierpinski space is the
initial object in the category of frames and terminal object in the dual category of locales. This
category theoretic reductionism looks highly attractive.

Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s point of
view. After all, every classical physical measurement has a finite space-time resolution. In TGD
framework discretization by number theoretic braids replaces partonic 2-surface with a discrete
set consisting of algebraic points in some extension of rationals: this brings in mind something
which might be called a topology with a set of particular algebraic points. Could this preferred
set belongs to any open set in the particular point topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets
of algebraic points in some extension of rationals can be chosen freely and the choices is defined
by the intersection of p-adic and real partonic 2-surfaces and in the framework of TGD inspired
theory of consciousness would thus involve the interaction of cognition with the material world.
The extension would depend on the position of the physical system in the algebraic evolutionary
hierarchy defining also a cognitive hierarchy. Certainly this would fit very nicely to the formulation
of quantum TGD unifying real and p-adic physics by gluing real and p-adic number fields to single
super-structure via common algebraic points.

Analogs of particular point topologies at the level of state space: finite measurement
resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account in the
standard quantum measurement theory based on factors of type I. In TGD framework one indeed
introduces quantum measurement theory with a finite measurement resolution so that complex
rays become included hyper-finite factors of type II1 (HFFs).

1. Could topology with particular algebraic points have a generalization allowing a category
theoretic formulation of the quantum measurement theory without states identified as complex
rays?

2. How to achieve this? In the transition of ordinary Boolean logic to quantum logic in the old
fashioned sense (von Neuman again!) the set of subsets is replaced with the set of subspaces
of Hilbert space. Perhaps this transition has a counterpart as a transition from Sierpinski
topology to a structure in which sub-spaces of Hilbert space are quantum sub-spaces with
complex rays replaced with the orbits of subalgebra defining the measurement resolution.
Sierpinski space {0,1} would in this generalization be replaced with the quantum counterpart
of the space of 2-spinors. Perhaps one should also introduce q-category theory with Heyting
algebra being replaced with q-quantum logic.

Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced by Kea’s
blog was to the ideas about fuzzy quantum logic realized in terms of quantum 2-spinor that I
had developed a couple of years ago. Fuzzy quantum logic would reflect the finite measurement
resolution. I just list the pieces of the argument.

Spinors and qbits: Spinors define a quantal variant of Boolean statements, qbits. One
can however go further and define the notion of quantum qbit, qqbit. I indeed did this for couple
of years ago (the last section of this chapter).

Q-spinors and qqbits: For q-spinors the two components a and b are not commuting
numbers but non-Hermitian operators: ab = qba, q a root of unity. This means that one cannot
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measure both a and b simultaneously, only either of them. aa† and bb† however commute so
that probabilities for bits 1 and 0 can be measured simultaneously. State function reduction is
not possible to a state in which a or b gives zero. The interpretation is that one has q-logic
is inherently fuzzy: there are no absolute truths or falsehoods. One can actually predict the
spectrum of eigenvalues of probabilities for say 1. Obviously quantum spinors would be state space
counterparts of Sierpinski space and for q 6= 1 the choice of preferred spinor component is very
natural. Perhaps this fuzzy quantum logic replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using
the idea that sets are replaced by sub-spaces of Hilbert space in the conventional quantum logic.
Q-openness would be defined by identifying quantum spinors as the initial object, q-Sierpinski
space. a (resp. b for the dual category) would define q-open set in this space. Q-open sets for
other quantum spaces would be defined as inverse images of a (resp. b) for morphisms to this
space. Only for q=1 one could have the q-counterpart of rather uninteresting topology in which
all sets are open and every map is continuous.

Q-locale and HFFs: The q-Sierpinski character of q-spinors would conform with the very
special role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones
inclusions to which one can assign spinor representations of SU(2). The Clifford algebra and
spinors of the world of classical worlds identifiable as Fock space of quark and lepton spinors is
the fundamental example in which 2-spinors and corresponding Clifford algebra serves as basic
building brick although tensor powers of any matrix algebra provides a representation of HFF.

Q-measurement theory: Finite measurement resolution (q-quantum measurement the-
ory) means that complex rays are replaced by sub-algebra rays. This would force the Jones inclu-
sions associated with SU(2) spinor representation and would be characterized by quantum phase q
and bring in the q-topology and q-spinors. Fuzzyness of qqbits of course correlates with the finite
measurement resolution.

Q-n-logos: For other q-representations of SU(2) and for representations of compact groups
(Appendix) one would obtain something which might have something to do with quantum n-logos,
quantum generalization of n-valued logic. All of these would be however less fundamental and
induced by q-morphisms to the fundamental representation in terms of spinors of the world of
classical worlds. What would be however very nice that if these q-morphisms are constructible
explicitly it would become possible to build up q-representations of various groups using the fun-
damental physical realization - and as I have conjectured [K84] - McKay correspondence and huge
variety of its generalizations would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally,
the groups Zn associated with Jones inclusions and leaving the choice of quantization axes invariant,
bring in mind the n-point analogs of Sierpinski space with unit element defining the particular point.
Note however that n ≥ 3 holds true always so that one does not obtain Sierpinski space itself. If
all these n preferred points belong to any open set it would not be possible to decompose this
preferred set to two subsets belonging to disjoint open sets. Recall that the generalized embedding
space related to the quantization of Planck constant is obtained by gluing together coverings
M4 × CP2 → M4 × CP2/Ga × Gb along their common points of base spaces. The topology in
question would mean that if some point in the covering belongs to an open set, all of them do so.
The interpretation would be that the points of fiber form a single inseparable quantal unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic
variants of algebraic partonic 2-surface define a second candidate for the generalized Sierpinski
space with a set of preferred points.



Chapter 3

Does TGD Predict a Spectrum of
Planck Constants?

3.1 Introduction

The quantization of Planck constant has been the basic them of TGD since 2005 and the perspective
in the earlier version of this chapter reflected the situation for about year and one half after the
basic idea stimulated by the finding of Nottale [E18] that planetary orbits could be seen as Bohr
orbits with enormous value of Planck constant given by ~gr = GM1M2/v0, v0 ' 2−11 for the inner
planets. The general form of ~gr is dictated by Equivalence Principle. This inspired the ideas that
quantization is due to a condensation of ordinary matter around dark matter concentrated near
Bohr orbits and that dark matter is in macroscopic quantum phase in astrophysical scales.

The second crucial empirical input were the anomalies associated with living matter. Men-
tion only the effects of ELF radiation at EEG frequencies on vertebrate brain and anomalous
behavior of the ionic currents through cell membrane. If the value of Planck constant is large,
the energy of EEG photons is above thermal energy and one can understand the effects on both
physiology and behavior. If ionic currents through cell membrane have large Planck constant the
scale of quantum coherence is large and one can understand the observed low dissipation in terms
of quantum coherence. This approach led to the formula heff = n× h. Rather recently (2014) it
became clear that for microscopic systems the identification heff = hgr makes sense and predicts
universal energy spectrum for cyclotron energies of dark photons identifiable as energy spectrum
of bio-photons in TGD inspired quantum biology.

3.1.1 Evolution Of Mathematical Ideas

The original formulation for the hierarchy of Planck constants was in terms of heff/h = n-fold
singular coverings of the embedding space H = M4×CP2. Later it turned out that there is no need
to postulate these covering spaces although they are a nice auxiliary tool allowing to understand
why the phase of matter with different values of n behave like dark matter relative to each other:
they are simply at different pages of the book-like structure formed by the covering spaces.

Few years ago it became clear that the hierarchy of Planck constants could be only effective
but have the same practical implications. The basic observation was that the effective hierarchy
need not be postulated separately but follows as a prediction from the vacuum degeneracy of
Kähler action. In this formulation Planck constant at fundamental level has its standard value
and its effective values come as its integer multiples so that one should write heff = n× h rather
than ~ = n~0 as I have done. For most practical purposes the states in question would behave as
if Planck constant were an integer multiple of the ordinary one. This reduces the understanding of
the effective hierarchy of Planck constants to quantum variant of multi-furcations for the dynamics
of preferred extremals of Kähler action. The number of branches of multi-furcation defines the
integer n in ~eff = n~.

One of the latest steps in the progress was the realization that the hierarchy of Planck con-
stants can be understood in terms of quantum criticality of TGD Universe postulated from the
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beginning as a way to obtain a unique theory. In accordance with what is known about 2-D critical
systems, quantum criticality should correspond to a generalization of conformal invariance. TGD
indeed predicts several analogs of super-conformal algebras: so called super-symplectic algebra
acting in δM4

±×CP2 should act as isometries of WCW and its generators are labeled by conformal
weights. Light-cone boundary δM4

± has an extension of conformal symmetries as conformal sym-
metries and an algebra isomorphic to the ordinary conformal algebra acts as its isometries. The
light-like orbits of partonic 2-surfaces allow similar algebra of conformal symmetries and string
world sheets and partonic 2-surfaces allow conformal symmetries.

The proposal is that super-symplectic algebra (at least it) defines a hierarchy of broken super-
conformal gauge symmetries in the sense that the sub-algebra for which the conformal weights are
n-ples of those for the entire algebra acts as gauge conformal symmetries. n = heff/h giving a
connection to the hierarchy of Planck constants would hold true. These sub-algebras are isomorphic
to the full algebra and thus form a fractal hierarchy. One has infinite number of hierarchies of
broken conformal symmetries defined by the sequences n(i+1) = mi×n(i). In the phase transition
increasing n conformal gauge symmetry is reduced and some gauge degrees of freedom transform
to physical ones and criticality is reduced so that the transition takes place spontaneously. TGD
Universe is like a ball at the top of hill at the top of hill at....

This view has far reaching implication for the understanding of living matter and leads to
deep connections between different key ideas of TGD. The hierarchy has also a purely number
theoretical interpretation in terms of hierarchy of algebraic extensions of rationals appearing nat-
urally in the adelic formulation of quantum TGD. n = heff/h would naturally correspond to an
integer, which is product of so called ramified primes (rational primes for which the decomposition
to primes of extension contains higher powers of these primes).

In this framework it becomes obvious that - instead of coverings of embedding space pos-
tulated in the original formulation - one has space-time surfaces representable as singular n-fold
coverings. The non-determinism of Kähler action - key element of criticality - would be the basic
reason for the appearance of singular coverings: two 3-surfaces at the opposite boundaries of CD
are connected by n-sheeted space-time surfaces for which the sheets co-incide at the boundaries.
Criticality must be accompanied by 4-D variant of conformal gauge invariance already described
so that these space-time surfaces are replaced by conformal gauge equivalence classes.

These coverings are highly analogous to the covering space associated with the analytic
function w(z) = z1/n. If one uses w as a variable, the ordinary conformal symmetries generated
by functions of z indeed correspond to the algebra generated by wn and the sheets of covering
correspond to conformal gauge equivalence classes not transformed to each other by conformal
transformations.

3.1.2 The Evolution Of Physical Ideas

The evolution of physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than
the evolution of mathematical ideas and quite a number of applications have been developed during
last five years.

1. The basic idea was that ordinary matter condenses around dark matter which is a phase of
matter characterized by non-standard value of Planck constant.

2. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of anyonic
phase [K77] . If the partonic 2-surface, which can have even astrophysical size, surrounds the
tip of CD, the matter at the surface is anyonic and particles are confined at this surface. Dark
matter could be confined inside this kind of light-like 3-surfaces around which ordinary matter
condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to
a connected structure by flux tubes mediating gravitational interaction - are given by Bohr
rules, the findings of Nottale [E18] can be understood. Dark matter would resemble to a high
degree matter in black holes replaced in TGD framework by light-like partonic 2-surfaces with
minimum size of order Schwarstchild radius rS of order scaled up Planck length: rS ∼

√
~G.

Black hole entropy being inversely proportional to ~ is predicted to be of order unity so that
dramatic modification of the picture about black holes is implied.
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3. Darkness is a relative concept and due to the fact that particles at different pages of book
cannot appear in the same vertex of the generalized Feynman diagram. The phase transitions
in which partonic 2-surface X2 during its travel along X3

l leaks to different page of book
are however possible and change Planck constant so that particle exchanges of this kind
allow particles at different pages to interact. The interactions are strongly constrained by
charge fractionization and are essentially phase transitions involving many particles. Classical
interactions are also possible. This allows to conclude that we are actually observing dark
matter via classical fields all the time and perhaps have even photographed it [K103] , [I8] .

4. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic
currents through cell membrane (low dissipation, quantal character, no change when the
membrane is replaced with artificial one) has a natural explanation in terms of dark supra
currents. This leads to a vision about how dark matter and phase transitions changing
the value of Planck constant could relate to the basic functions of cell, functioning of DNA
and amino-acids, and to the mysteries of bio-catalysis. This leads also a model for EEG
interpreted as a communication and control tool of magnetic body containing dark matter
and using biological body as motor instrument and sensory receptor. One especially shocking
outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as
nuclear strings [L3, K103] , [L3] .

3.1.3 Basic Physical Picture As It Is Now

The basic phenomenological rules are simple and remained roughly the same during years.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Embedding spaces with different values of Planck constant form a book
like structure and matter can be transferred between different pages only through the back of
the book where the pages are glued together. One important implication is that light exotic
charged particles lighter than weak bosons are possible if they have non-standard value of
Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies [K104].

2. Large effective or real value of Planck constant scales up Compton length - or at least de
Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kähler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order CP2 size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: E = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) [K77] in terms of anyonic phases with non-standard value of effective
Planck constant realized in terms of the effective multi-sheeted covering of embedding space:
multi-sheeted space-time is to be distinguished from many-sheeted space-time.

In astrophysics and cosmology the implications are even more dramatic. It was [E18] who
first introduced the notion of gravitational Planck constant as ~gr = GMm/v0, v0 < 1 has
interpretation as velocity light parameter in units c = 1. This would be true for GMm/v0 ≥ 1.
The interpretation of ~gr in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge



126 Chapter 3. Does TGD Predict a Spectrum of Planck Constants?

value of ~gr means that the integer ~gr/~0 interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in super-astronomical
scales for masses which are large. This changes the view about gravitons and suggests that
gravitational radiation is emitted as dark gravitons which decay to pulses of ordinary gravitons
replacing continuous flow of gravitational radiation.

3. Why Nature would like to have large effective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers of gauge
couplings strengths α = g2/4π~. If the effective value of ~ replaces its real value as one
might expect to happen for multi-sheeted particles behaving like single particle, α is scaled
down and perturbative expansion converges for the new particles. One could say that Mother
Nature loves theoreticians and comes in rescue in their attempts to calculate. In quantum
gravitation the problem is especially acute since the dimensionless parameter GMm/~ has
gigantic value. Replacing ~ with ~gr = GMm/v0 the coupling strength becomes v0 < 1.

4. The interpretation of the hierarchy of Planck constants as labels for quantum critical systems is
especially powerful in TGD inspired quantum biology and consciousness theory. The increase
of Planck constant by integer factor occurs spontaneously and means an increase of complexity
and sensory and cognitive resolution - in other words evolution. Living matter is however
fighting to stay at the existing level of criticality. The reason is that the changes involves
state function reduction at the opposite boundary of CD and means death of self followed by
re-incarnation.

Negentropy Maximization Principle [K63] saves the system from this fate if it is able to
generate negentropic entanglement by some other means. Metabolic energy suggested already
earlier to be a carrier of negentropic entanglement makes this possible. Also other metabolites
can carry negentropy. Therefore living systems are eating each other to satisfy the demands
of NMP! Why this non-sensical looking Karma’s cycle? The sub-systems of self defining
sub-selves (mental images) are dying and re-incarnating and generating negentropy: self is
a gardener and sub-selves are the fruit trees and the longer self lives, the more fruits are
produced. Hence this process, which Buddhist would call attachment to ego is the ways to
generate what I have called “Akashic records”. Everything has its purpose.

In this chapter I try to summarize the evolution of the ideas related to Planck constant. I
have worked hardly to achieve internal consistency but the old theory layers are there and might
cause confusion.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

3.2 Experimental Input

In this section basic experimental inputs suggesting a hierarchy of Planck constants and the iden-
tification of dark matter as phases with non-standard value of Planck constant are discussed.

3.2.1 Hints For The Existence Of Large ~ Phases

Quantum classical correspondence suggests the identification of space-time sheets identifiable as
quantum coherence regions. Since they can have arbitrarily large sizes, phases with arbitrarily
large quantum coherence lengths and arbitrarily long de-coherence times seem to be possible in
TGD Universe. In standard physics context this seems highly implausible. If Planck constant
can have arbitrarily large values, the situation changes since Compton lengths and other quantum
scales are proportional to ~. Dark matter is excellent candidate for large ~ phases.

The expression for ~gr in the model explaining the Bohr orbits for planets is of form ~gr =
GM1M2/v0 [K89]. This suggests that the interaction is associated with some kind of interface
between the systems, perhaps join along boundaries bonds/flux tubes connecting the space-time
sheets associated with systems possessing gravitational masses M1 and M2. Also a large space-
time sheet carrying the mutual classical gravitational field could be in question. This argument

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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generalizes to the case ~/~0 = Q1Q2α/v0 in case of generic phase transition to a strongly interacting
phase with α describing gauge coupling strength.

There exist indeed some experimental indications for the existence of phases with a large ~.

1. With inspiration coming from the finding of Nottale [E18] I have proposed an explanation of
dark matter as a macroscopic quantum phase with a large value of ~ [K89]. Any interaction,
if sufficiently strong, can lead to this kind of phase. The increase of ~ would make the fine
structure constant α in question small and guarantee the convergence of perturbation series.

2. Living matter could represent a basic example of large ~ phase [K37, K11]. Even ordinary
condensed matter could be “partially dark” in many-sheeted space-time [K39]. In fact, the
realization of hierarchy of Planck constants leads to a considerably weaker notion of darkness
stating that only the interaction vertices involving particles with different values of Planck
constant are impossible and that the notion of darkness is relative notion. For instance,
classical interactions and photon exchanges involving a phase transition changing the value
of ~ of photon are possible in this framework.

3. There is claim about a detection in RHIC (Relativistic Heavy Ion Collider in Brookhaven)
of states behaving in some respects like mini black holes [C56]. These states could have
explanation as color flux tubes at Hagedorn temperature forming a highly tangled state and
identifiable as stringy black holes of strong gravitation. The strings would carry a quantum
coherent color glass condensate, and would be characterized by a large value of ~ naturally
resulting in confinement phase with a large value of αs [K90] . The progress in hadronic
mass calculations led to a concrete model of color glass condensate of single hadron as many-
particle state of super-symplectic gluons [K70, K64] - something completely new from the
point of QCD - responsible for non-perturbative aspects of hadron physics. In RHIC events
these color glass condensate would fuse to single large condensate. This condensate would be
present also in ordinary black-holes and the blackness of black-hole would be darkness.

4. I have also discussed a model for cold fusion based on the assumption that nucleons can
be in large ~ phase. In this case the relevant strong interaction strength is Q1Q2αem for
two nucleon clusters inside nucleus which can increase ~ so large that the Compton length
of protons becomes of order atomic size and nuclear protons form a macroscopic quantum
phase [K39, K37].

3.2.2 Quantum Coherent Dark Matter And ~
The argument based on gigantic value of ~gr explaining darkness of dark mater is attractive but
one should be very cautious.

Consider first ordinary QEde =
√
α4π~ appears in vertices so that perturbation expansion

in powers of
√
~ basically. This would suggest that large ~ leads to large effects. All predictions

are however in powers of alpha and large ~ means small higher order corrections. What happens
can be understood on basis of dimensional analysis. For instance, cross sections are proportional
to (~/m)2, where m is the relevant mass and the remaining factor depends on α = e2/(4π~) only.
In the more general case tree amplitudes with n vertices are proportional to en and thus to ~n/2
and loop corrections give only powers of α which get smaller when ~ increases. This must relate
to the powers of 1/~ from the integration measure associated with the momentum loop integrals
affected by the change of α.

Consider now the effects of the scaling of ~. The scaling of Compton lengths and other
quantum kinematical parameters is the most obvious effect. An obvious effect is due to the change
of ~ in the commutation relations and in the change of unit of various quantum numbers. In
particular, the right hand side of oscillator operator commutation and anti-commutation relations
is scaled. A further effect is due to the scaling of the eigenvalues of the Kähler-Dirac operator
~ΓαDα.

The exponent exp(K) of Kähler function K defining perturbation series in WCW degrees
of freedom is proportional to 1/g2

K and does not depend on ~ at all if there is only single Planck
constant. The propagator is proportional to g2

K . This can be achieved also in QED by absorbing e
from vertices to e2 in photon propagator. Hence it would seem that the dependence on αK (and ~)
must come from vertices which indeed involve Jones inclusions of the II1 factors of the incoming
and outgoing lines.
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This however suggests that the dependence of the scattering amplitudes on ~ is purely
kinematical so that all higher radiative corrections would be absent. This seems to leave only
one option: the scale factors of covariant CD and CP2 metrics can vary and might have discrete
spectrum of values.

1. The invariance of Kähler action with respect to overall scaling of metric however allows to
keep CP2 metric fixed and consider only a spectrum for the scale factors of M4 metric.

2. The first guess motivated by Schrödinger equation is that the scaling factor of covariant CD
metric corresponds the ratio r2 = (~/~0)2. This would mean that the value of Kähler action
depends on r2. The scaling of M4 coordinate by r the metric reduces to the standard form
but if causal diamonds with quantized temporal distance between their tips are the basic
building blocks of WCW geometry as zero energy ontology requires, this scaling of ~ scales
the size of CD by r so that genuine effect results since M4 scalings are not symmetries of
Kähler action.

3. In this picture r would code for radiative corrections to Kähler function and thus space-time
physics. Even in the case that the radiative corrections to WCW functional integral vanish,
as suggested by quantum criticality, they would be actually taken into account.

This kind of dynamics is not consistent with the original view about embedding space and
forces to generalize the notion of embedding spaces since it is clear that particles with different
Planck constants cannot appear in the same vertex of Feynman diagram. Somehow different
values of Planck constant must be analogous to different pages of book having almost copies of
embedding space as pages. A possible resolution of the problem cames from the realization that
the fundamental structure might be the inclusion hierarchy of number theoretical Clifford algebras
from which entire TGD could emerge including generalization of the embedding space concept.

3.2.3 The Phase Transition Changing The Value Of Planck Constant As
A Transition To Non-Perturbative Phase

A phase transition increasing ~ as a transition guaranteeing the convergence of per-
turbation theory

The general vision is that a phase transition increasing ~ occurs when perturbation theory ceases
to converge. Very roughly, this would occur when the parameter x = Q1Q2α becomes larger than
one. The net quantum numbers for “spontaneously magnetized” regions provide new natural units
for quantum numbers. The assumption that standard quantization rules prevail poses very strong
restrictions on allowed physical states and selects a subspace of the original configuration space.
One can of course, consider the possibility of giving up these rules at least partially in which case
a spectrum of fractionally charged anyon like states would result with confinement guaranteed by
the fractionization of charges.

The necessity of large ~ phases has been actually highly suggestive since the first days of
quantum mechanics. The classical looking behavior of macroscopic quantum systems remains still
a poorly understood problem and large ~ phases provide a natural solution of the problem.

In TGD framework quantum coherence regions correspond to space-time sheets. Since
their sizes are arbitrarily large the conclusion is that macroscopic and macro-temporal quantum
coherence are possible in all scales. Standard quantum theory definitely fails to predict this and
the conclusion is that large ~ phases for which quantum length and time scales are proportional
to ~ and long are needed.

Somewhat paradoxically, large ~ phases explain the effective classical behavior in long length
and time scales. Quantum perturbation theory is an expansion in terms of gauge coupling strengths
inversely proportional to ~ and thus at the limit of large ~ classical approximation becomes exact.
Also the Coulomb contribution to the binding energies of atoms vanishes at this limit. The fact
that we experience world as a classical only tells that large ~ phase is essential for our sensory
perception. Of course, this is not the whole story and the full explanation requires a detailed
anatomy of quantum jump.
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The criterion for the occurrence of the phase transition increasing the value of ~

In the case of planetary orbits the large value of ~gr = 2GM/v0 makes possible to apply Bohr
quantization to planetary orbits. This leads to a more general idea that the phase transition
increasing ~ occurs when the system consisting of interacting units with charges Qi becomes non-
perturbative in the sense that the perturbation series in the coupling strength αQiQj , where α is
the appropriate coupling strength and QiQj represents the maximum value for products of gauge
charges, ceases to converge. Thus Mother Nature would resolve the problems of theoretician. A
primitive formulation for this criterion is the condition αQiQj ≥ 1.

The first working hypothesis was the existence of dark matter hierarchies with ~ = λk~0,
k = 0, 1, ..., λ = n/v0 or λ = 1/nv0, v0 ' 2−11. This rule turned out to be quite too specific.
The mathematically plausible formulation predicts that in principle any rational value for r =
~(M4)/~(CP2) is possible but there are certain number theoretically preferred values of r such as
those coming powers of 2.

3.3 A Generalization of the Notion of Embedding Space as
a Realization of the Hierarchy of Planck Constants

In the following the basic ideas concerning the realization of the hierarchy of Planck constants
are summarized and after that a summary about generalization of the embedding space is given.
In [K77] the important delicacies associated with the Kähler structure of generalized embedding
space are discussed. The background for the recent vision is quite different from that for half decade
ago. Zero energy ontology and the notion of causal diamond, number theoretic compactification
leading to the precise identification of number theoretic braids, the realization of number theoretic
universality, and the understanding of the quantum dynamics at the level of Kähler-Dirac action
fix to a high degree the vision about generalized embedding space.

3.3.1 Basic Ideas

The first key idea in the geometric realization of the hierarchy of Planck constants emerges from
the study of Schrödinger equation and states that Planck constant appears a scaling factor of M4

metric. Second key idea is the connection with Jones inclusions inspiring an explicit formula for
Planck constants. For a long time this idea remained heuristic must-be-true feeling but the recent
view about quantum TGD provide a justification for it.

Scaling of Planck constant and scalings of CD and CP2 metrics

The key property of Schrödinger equation is that kinetic energy term depends on ~ whereas the
potential energy term has no dependence on it. This makes the scaling of ~ a non-trivial transfor-
mation. If the contravariant metric scales as r = ~/~0 the effect of scaling of Planck constant is
realized at the level of embedding space geometry provided it is such that it is possible to compare
the regions of generalized embedding space having different value of Planck constant.

In the case of Dirac equation same conclusion applies and corresponds to the minimal sub-
stitution p− eA→ i~∇− eA. Consider next the situation in TGD framework.

1. The minimal substitution p− eA→ i~∇− eA does not make sense in the case of CP2 Dirac
operator since, by the non-triviality of spinor connection, one cannot choose the value of ~
freely. In fact, spinor connection of CP2 is defined in such a way that spinor connection
corresponds to the quantity ~eQA, where denotes A gauge potential, and there is no natural
manner to separate ~e from it.

2. The contravariant CD metric scales like ~2. In the case of Dirac operator in M4 × CP2 one
can assign separate Planck constants to Poincare and color algebras and the scalings of CD
and CP2 metrics induce scalings of corresponding values of ~2. As far as Kähler action is
considered, CP2 metric could be always thought of being scaled to its standard form.

3. Dirac equation gives the eigenvalues of wave vector squared k2 = kiki rather than four-
momentum squared p2 = pipi in CD degrees of freedom and its analog in CP2 degrees of
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freedom. The values of k2 are proportional to 1/r2 so that p2 does not depend on it for
pi = ~ki: analogous conclusion applies in CP2 degrees of freedom. This gives rise to the
invariance of mass squared and the desired scaling of wave vector when ~ changes.

This consideration generalizes to the case of the induced gamma matrices and induced
metric in X4, Kähler-Dirac operator, and Kähler action which carry dynamical information about
the ratio r = ~eff/~0.

Kähler function codes for a perturbative expansion in powers of ~(CD)/~(CP2)

Suppose that one accepts that the spectrum of CD resp. CP2 Planck constants is accompanied
by a hierarchy of overall scalings of covariant CD (causal diamond) metric by (~(M4)/~0)2 and
CP2 metric by (~(CP2)/~0)2 followed by overall scaling by r2 = (~0/~(CP2))2 so that CP2 metric
suffers no scaling and difficulties with isometric gluing procedure of sectors are avoided.

The first implication of this picture is that the Kähler-Dirac operator determined by the
induced metric and spinor structure depends on r in a highly nonlinear manner but there is no
dependence on the overall scaling of the H metric. This in turn implies that the fermionic oscillator
algebra used to define WCW spinor structure and metric depends on the value of r. Same is true
also for Kähler action and configuration space Kähler function. Hence Kähler function is analogous
to an effective action expressible as infinite series in powers of r.

This interpretation allows to overcome the paradox caused by the hypothesis that loop
corrections to the functional integral over WCW defined by the exponent of Kähler function serving
as vacuum functional vanish so that tree approximation is exact. This would imply that all higher
order corrections usually interpreted in terms of perturbative series in powers of 1/~ vanish. The
paradox would result from the fact that scattering amplitudes would not receive higher order
corrections and classical approximation would be exact.

The dependence of both states created by Super Kac-Moody algebra and the Kähler func-
tion and corresponding propagator identifiable as contravariant WCW metric would mean that
the expressions for scattering amplitudes indeed allow an expression in powers of r. What is so
remarkable is that the TGD approach would be non-perturbative from the beginning and “semi-
classical” approximation, which might be actually exact, automatically would give a full expansion
in powers of r. This is in a sharp contrast to the usual quantization approach.

Jones inclusions and hierarchy of Planck constants

From the beginning it was clear that Jones inclusions of hyper-finite factors of type II1 are somehow
related to the hierarchy of Planck constants. The basic motivation for this belief has been that
WCW Clifford algebra provides a canonical example of hyper-finite factor of type II1 and that
Jones inclusion of these Clifford algebras is excellent candidate for a first principle description of
finite measurement resolution.

Consider the inclusion N ⊂ M of hyper-finite factors of type II1 [K112]. A deep result
is that one can express M as N : M-dimensional module over N with fractal dimension N :
M = Bn.

√
bn represents the dimension of a space of spinor space renormalized from the value

2 corresponding to n = ∞ down to
√
bn = 2cos(π/n) varying thus in the range [1, 2]. Bn in

turn would represent the dimension of the corresponding Clifford algebra. The interpretation is
that finite measurement resolution introduces correlations between components of quantum spinor
implying effective reduction of the dimension of quantum spinors providing a description of the
factor space N/M.

This would suggest that somehow the hierarchy of Planck constants must represent finite
measurement resolution and since phase factors coming as roots of unity are naturally associated
with Jones inclusions the natural guess was that angular resolution and coupling constant evolution
associated with it is in question. This picture would suggest that the realization of the hierarchy
of Planck constant in terms of a book like structure of generalized embedding space provides also
a geometric realization for a hierarchy of Jones inclusions.

The notion of number theoretic braid and realization that the modified Dirac operator has
only finite number of generalized eigenmodes -thanks to the vacuum degeneracy of Kähler action-
finally led to the understanding how the notion of finite measurement resolution is coded to the
Kähler action and the realized in practice by second quantization of induced spinor fields and
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how these spinor fields endowed with q-anti-commutation relations give rise to a representations of
finite-quantum dimensional factor spaces N/M associated with the hierarchy of Jones inclusions
having generalized embedding space as space-time correlate. This means enormous simplification
since infinite-dimensional spinor fields in infinite-dimensional world of classical worlds are replaced
with finite-quantum-dimensional spinor fields in discrete points sets provided by number theoretic
braids.

The study of a concrete model for Jones inclusions in terms of finite subgroups G of SU(2)
defining sub-algebras of infinite-dimensional Clifford algebra as fixed point sub-algebras leads to
what looks like a correct track concerning the understanding of quantization of Planck constants.

The ADE diagrams of An and D2n characterize cyclic and dihedral groups whereas those of
E6 and E8 characterize tetrahedral and icosahedral groups. This approach leads to the hypothesis
that the scaling factor of Planck constant assignable to Poincare (color) algebra corresponds to
the order of the maximal cyclic subgroup of Gb ⊂ SU(2) (Ga ⊂ SL(2, C)) acting as symmetry of
space-time sheet in CP2 (CD) degrees of freedom. It predicts arbitrarily large CD and CP2 Planck
constants in the case of An and D2n under rather general assumptions.

There are two ways for how Ga and Gb can act as symmetries corresponding to Gi coverings
and factors spaces. These coverings and factor spaces are singular and associated with spaces
ĈD\M2 and CP2\S2

I , where S2
I is homologically trivial geodesic sphere of CP2. The physical

interpretation is that M2 and S2
I fix preferred quantization axes for energy and angular moment

and color quantum numbers so that also a connection with quantum measurement theory emerges.

3.3.2 The Vision

A brief summary of the basic vision behind the generalization of the embedding space concept
needed to realize the hierarchy of Planck constants is in order before going to the detailed repre-
sentation.

1. The hierarchy of Planck constants cannot be realized without generalizing the notions of
embedding space and space-time because particles with different values of Planck constant
cannot appear in the same interaction vertex. Some kind of book like structure for the
generalized embedding space forced also by p-adicization but in different sense is suggestive.
Both M4 and CP2 factors would have the book like structure so that a Cartesian product of
books would be in question.

2. The study of Schrödinger equation suggests that Planck constant corresponds to a scaling
factor of CD metric whose value labels different pages of the book. The scaling of M4

coordinate so that original metric results in CD factor is possible so that the interpretation
for scaled up value of ~ is as scaling of the size of causal diamond CD.

3. The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key role in the
realization of zero energy states, and the infinite-D spaces of light-like 3-surfaces inside scaled
variants of CD define the fundamental building brick of WCW (world of classical worlds).
Since the scaling of CD does not simply scale space-time surfaces the effect of scaling on
classical and quantum dynamics is non-trivial and a coupling constant evolution results and
the coding of radiative corrections to the geometry of space-time sheets becomes possible. The
basic geometry of CD suggests that the allowed sizes of CD come in the basic sector ~ = ~0 as
powers of two. This predicts p-adic length scale hypothesis and lead to number theoretically
universal discretized p-adic coupling constant evolution. Since the scaling is accompanied
by a formation of singular coverings and factor spaces, different scales are distinguished at
the level of topology. p-Adic length scale hierarchy affords similar characterization of length
scales in terms of effective topology.

4. The idea that TGD Universe is quantum critical in some sense is one of the key postulates
of quantum TGD. The basic ensuing prediction is that Kähler coupling strength is analogous
to critical temperature. Quantum criticality in principle fixes the p-adic evolution of various
coupling constants also the value of gravitational constant. The exact realization of quantum
criticality would be in terms of critical sub-manifolds of M4 and CP2 common to all sectors
of the generalized embedding space. Quantum criticality of TGD Universe means that the
two kinds of number theoretic braids assignable to M4 and CP2 projections of the partonic 2-
surface belong by the very definition of number theoretic braids to these critical sub-manifolds.
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At the boundaries of CD associated with positive and negative energy parts of zero energy
state in a given time scale partonic two-surfaces belong to a fixed page of the Big Book
whereas light-like 3-surface decomposes to regions corresponding to different values of Planck
constant much like matter decomposes to several phases at criticality.

The connection with Jones inclusions was originally a purely heuristic guess, and it took half
decade to really understand why and how they are involved. The notion of measurement resolution
is the key concept.

1. The key observation is that Jones inclusions are characterized by a finite subgroup G ⊂ SU(2)
and the this group also characterizes the singular covering or factor spaces associated with
CD or CP2 so that the pages of generalized embedding space could indeed serve as correlates
for Jones inclusions.

2. The dynamics of Kähler action realizes finite measurement resolution in terms of finite number
of modes of the induced spinor field automatically implying cutoffs to the representations of
various super-conformal algebras typical for the representations of quantum groups associated
with Jones inclusions. The interpretation of the Clifford algebra spanned by the fermionic
oscillator operators is as a realization for the concept of the factor space N/M of hyper-finite
factors of type II1 identified as the infinite-dimensional Clifford algebra N of the configura-
tion space and included algebra M determining the finite measurement resolution for angle
measurement in the sense that the action of this algebra on zero energy state has no de-
tectable physical effects. M takes the role of complex numbers in quantum theory and makes
physics non-commutative. The resulting quantum Clifford algebra has anti-commutation re-
lations dictated by the fractionization of fermion number so that unit becomes r = ~/~0.
SU(2) Lie algebra transforms to its quantum variant corresponding to the quantum phase
q = exp(i2π/r).

3. G invariance for the elements of the included algebra can be interpreted in terms of finite
measurement resolution in the sense that action by G invariant Clifford algebra element has
no detectable effects. Quantum groups realize this view about measurement resolution for
angle measurement. The G-invariance of the physical states created by fermionic oscillator
operators which by definition are not G invariant guarantees that quantum states as a whole
have non-fractional quantum numbers so that the leakage between different pages is possible
in principle. This hypothesis is consistent with the TGD inspired model of quantum Hall
effect [K77].

4. Concerning the formula for Planck constant in terms of the integers na and nb characterizing
orders of the maximal cyclic subgroups of groups Ga and Gb defining coverings and factor
spaces associated with CD and CP2 the basic constraint is that the overall scaling of H metric
has no effect on physics. What matters is the ratio of Planck constants r = ~(M4)/~(CP2)
appearing as a scaling factor of M4 metric. This leaves two options if one requires that the
Planck constant defines a homomorphism. The model for dark gravitons suggests a unique
choice between these two options but one must keep still mind open for the alternative.

5. Jones inclusions appear as two variants corresponding to N : M < 4 and N : M = 4. The
tentative interpretation is in terms of singular G-factor spaces and G-coverings of M4 and
CP2 in some sense. The alternative interpretation assigning the inclusions to the two different
geodesic spheres of CP2 would mean asymmetry between M4 and CP2 degrees of freedom
and is therefore not convincing.

6. The natural question is why the hierarchy of Planck constants is needed. Is it really necessary?
Number theoretic Universality suggests that this is the case. One must be able to define the
notion of angle -or at least the notion of phase and of trigonometric functions- also in the
p-adic context. All that one can achieve naturally is the notion of phase defined as a root of
unity and introduced by allowing algebraic extension of p-adic number field by introducing the
phase. In the framework of TGD inspired theory of consciousness this inspires a vision about
cognitive evolution as the gradual emergence of increasingly complex algebraic extensions of
p-adic numbers and involving also the emergence of improved angle resolution expressible
in terms of phases exp(i2π/n) up to some maximum value of n. The coverings and factor
spaces would realize these phases purely geometrically and quantum phases q assignable to
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Jones inclusions would realize them algebraically. Besides p-adic coupling constant evolution
based on the hierarchy of p-adic length scales there would be coupling constant evolution with
respect to ~ and associated with angular resolution.

3.3.3 Hierarchy Of Planck Constants And The Generalization Of The
Notion Of Embedding Space

In the following the recent view about structure of embedding space forced by the quantization
of Planck constant is summarized. The question is whether it might be possible in some sense
to replace H or its Cartesian factors by their necessarily singular multiple coverings and factor
spaces. One can consider two options: either M4 or the causal diamond CD. The latter one is the
more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter
as a hierarchy of phases of matter with non-standard value of Planck constants was much faster
than the evolution of mathematical ideas and quite a number of applications have been developed
during last five years.

1. The starting point was the proposal of Nottale [E18] that the orbits of the 4 inner planets
correspond to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with
Planck constant ~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [K89] was that ordinary
matter condenses around dark matter which is a phase of matter characterized by a non-
standard value of Planck constant whose value is gigantic for the space-time sheets mediating
gravitational interaction. The interpretation of these space-time sheets could be as magnetic
flux quanta or as massless extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Comp-
ton length meaning that the density of matter at these space-time sheets must be very slowly
varying. The string tension of string like objects implies effective negative pressure character-
izing dark energy so that the interpretation in terms of dark energy might make sense [K90].
TGD predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-
critical mass density and the “pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different
worlds in the sense local interactions of particles with different values of ~ are not possible.
This inspires the idea about the book like structure of the embedding space obtained by gluing
almost copies of H together along common “back” and partially labeled by different values
of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually
observing dark matter via classical fields all the time and perhaps have even photographed
it [K103].

5. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of anyonic
phase [K77]. If the partonic 2-surface, which can have even astrophysical size, surrounds the
tip of CD, the matter at the surface is anyonic and particles are confined at this surface.
Dark matter could be confined inside this kind of light-like 3-surfaces around which ordinary
matter condenses. If the radii of the basic pieces of these nearly spherical anyonic surfaces -
glued to a connected structure by flux tubes mediating gravitational interaction - are given
by Bohr rules, the findings of Nottale [E18] can be understood. Dark matter would resemble
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to a high degree matter in black holes replaced in TGD framework by light-like partonic
2-surfaces with a minimum size of order Schwartschild radius rS of order scaled up Planck
length lPl =

√
~grG = GM . Black hole entropy is inversely proportional to ~ and predicted

to be of order unity so that dramatic modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic
currents through cell membrane (low dissipation, quantal character, no change when the
membrane is replaced with artificial one) has a natural explanation in terms of dark supra
currents. This leads to a vision about how dark matter and phase transitions changing
the value of Planck constant could relate to the basic functions of cell, functioning of DNA
and amino-acids, and to the mysteries of bio-catalysis. This leads also a model for EEG
interpreted as a communication and control tool of magnetic body containing dark matter
and using biological body as motor instrument and sensory receptor. One especially amazing
outcome is the emergence of genetic code of vertebrates from the model of dark nuclei as
nuclear strings [L3, K103], [L3].

The most general option for the generalized embedding space

Simple physical arguments pose constraints on the choice of the most general form of the embedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies
a selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of
CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension
of the excluded sub-manifold is equal to two and homotopically the situation is like that for a
punctured plane. The exclusion of these sub-manifolds defined by the choice of quantization
axes could naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is
homologically non-trivial. For homologically non-trivial geodesic sphere H4 = M2×S2 repre-
sents a straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily
preferred extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-
vacuum extremals so that only homologically trivial geodesic sphere S2 would be acceptable.
One could go even further. If the extremals in M2 × CP2 can be preferred non-vacuum ex-
tremals, the singular coverings of M4 are not possible. Therefore only the singular coverings
and factor spaces of CP2 over the homologically trivial geodesic sphere S2 would be possible.
This however looks a non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the Kähler-Dirac gamma matrices associated with the tangent spaces
of Y 2 should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 ×CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have
only piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Carte-
sian products of singular coverings and factor spaces. These options can be denoted by C−C,
C − F , F − C, and F − F , where C (F ) signifies for covering (factor space) and first (sec-
ond) letter signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb),
(ĈD×̂Ga)× ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tetrahedral, octahedral,
or icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally
in this framework if one allows the action of these groups on the singular sub-manifolds M2

or S2. This would replace the singular manifold with a set of its rotated copies in the case
that the subgroups have genuinely 3-dimensional action (the subgroups which corresponds



3.3. A Generalization of the Notion of Embedding Space as a Realization of the
Hierarchy of Planck Constants 135

to exceptional groups in the ADE correspondence). For instance, in the case of M2 the
quantization axes for angular momentum would be replaced by the set of quantization axes
going through the vertices of tetrahedron, octahedron, or icosahedron. This would bring
non-commutative homotopy groups into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the embedding space to another one.

1. How the gluing of copies of embedding space at M2 × CP2 takes place? It would seem that
the covariant metric of CD factor proportional to ~2 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of CD metric can
make sense. On the other hand, one can always scale the M4 coordinates so that the metric
is continuous but the sizes of CDs with different Planck constants differ by the ratio of the
Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M4 degrees of freedom. This is not the
case. Light-likeness in M2 × S2 makes sense only for surfaces X1 × D2 ⊂ M2 × S2, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M2×S2 irrespective of the value of Planck constant
requires that X2 has single point of M2 as M2 projection. Hence no sudden change of the
size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunnelling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to ho-
mologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of partonic 2-surfaces with

vanishing total homology charge (Kähler magnetic charge) can in principle move from sector
to another one, and this process involves fusion of these 2-surfaces such that CP2 projection
becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of
CP2 can be deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2

to curve. If this homotopy cannot be chosen to be light-like, the phase transitions changing
Planck constant take place only via quantum tunnelling. Obviously the notions of light-like
homotopies (cobordisms) are very relevant for the understanding of phase transitions changing
Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the
covering and factors spaces, is far from trivial and I have considered several options. The basic
physical inputs are the condition that scaling of Planck constant must correspond to the scaling
of the metric of CD (that is Compton lengths) on one hand and the scaling of the gauge coupling
strength g2/4π~ on the other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in
the commutation relations of corresponding symmetry algebras. Algebraist would argue that
Planck constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication
and division (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and
r(X) = 1/n for factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of
Kähler action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant
metric by r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
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multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD × CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0.
Note that the descriptions using ordinary Planck constant and coverings and scaled Planck
constant but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF
of fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental
constant expressible as a combination of Kähler coupling strength, CP2 radius and Planck length
appearing in the expression for the tension of cosmic strings, and the powers of 211 was proposed
to define favored as values of na in living matter [K38].

The hypothesis that Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian
Mersennes MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} (the number theoreti-
cal miracle is that all the four scaled up electron Compton lengths Le(k) =

√
5L(k) with k ∈

{151, 157, 163, 167} are in the biologically highly interesting range 10 nm-2.5 µm) define scaled up
copies of electro-weak and QCD type physics with ordinary value of ~ and that these physics are
induced by dark variants of corresponding lower level physics leads to a prediction for the preferred
values of r = 2kd , kd = ki−kj , and the resulting picture finds support from the ensuing models for
biological evolution and for EEG [K38]. This hypothesis - to be referred to as Mersenne hypothesis
- replaces the rather ad hoc proposal r = ~/~0 = 211k for the preferred values of Planck constant.

How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anti-commutation relations of various super-
conformal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action
and is due to the fact that the M4 and CP2 metrics of the embedding space sector with given
values of Planck constants are proportional to the corresponding Planck. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the
ideal case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths
and other quantal lengths and times. If so, large ~ phases could be crucial for understanding of
quantum critical superconductors, in particular high Tc superconductors.

3.4 Updated View About The Hierarchy Of Planck Con-
stants

During last years the work with TGD proper has transformed from the discovery of brave visions
to the work of clock smith. The challenge is to fill in the details, to define various notions more
precisely, and to eliminate the numerous inconsistencies.

Few years has passed from the latest formulation for the hierarchy of Planck constant. The
original hypothesis was that the hierarchy is real. In this formulation the embedding space was
replaced with its covering space assumed to decompose to a Cartesian product of singular finite-
sheeted coverings of M4 and CP2.
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Few years ago came the realization that it could be only effective but have same practical
implications. The basic observation was that the effective hierarchy need not be postulated sepa-
rately but follows as a prediction from the vacuum degeneracy of Kähler action. In this formulation
Planck constant at fundamental level has its standard value and its effective values come as its
integer multiples so that one should write ~eff = n~ rather than ~ = n~0 as I have done. For
most practical purposes the states in question would behave as if Planck constant were an integer
multiple of the ordinary one. It was no more necessary to assume that the covering reduces to a
Cartesian product of singular coverings of M4 and CP2 but for some reason I kept this assumption.

It seems that the time is ripe for checking whether some polishing of this formulation might
be needed. In particular, the work with TGD inspired quantum biology suggests a close connection
between the hierarchy of Planck constants and negentropic entanglement. Also the connection with
anyons and charge fractionalization (see http://tinyurl.com/y89xp4bu) has remained somewhat
fuzzy [K77]. In particular, it seems that the formulation based on multi-furcations of space-time
surfaces to N branches is not general enough: the N branches are very much analogous to single
particle states and second quantization allowing all 0 < n ≤ N -particle states for given N rather
than only N -particle states looks very natural: as a matter fact, this interpretation was the original
one and led to the very speculative and fuzzy notion of N -atom, which I later more or less gave
up. Quantum multi-furcation could be the root concept implying the effective hierarchy of Planck
constants, anyons and fractional charges, and related notions- even the notions of N -nuclei, N -
atoms, and N -molecules.

3.4.1 Basic Physical Ideas

The basic phenomenological rules are simple and there is no need to modify them.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms of
the book metaphor. Embedding spaces with different values of Planck constant form a book
like structure and matter can be transferred between different pages only through the back of
the book where the pages are glued together. One important implication is that light exotic
charged particles lighter than weak bosons are possible if they have non-standard value of
Planck constant. The standard argument excluding them is based on decay widths of weak
bosons and has led to a neglect of large number of particle physics anomalies [K104].

2. Large effective or real value of Planck constant scales up Compton length - or at least de
Broglie wave length - and its geometric correlate at space-time level identified as size scale of
the space-time sheet assignable to the particle. This could correspond to the Kähler magnetic
flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets
and short flux tubes at ends with length of order CP2 size.

This rule has far reaching implications in quantum biology and neuroscience since macro-
scopic quantum phases become possible as the basic criterion stating that macroscopic quan-
tum phase becomes possible if the density of particles is so high that particles as Compton
length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One
implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG
frequency range on vertebrate brain: E = hf implies that the energies for the ordinary value
of Planck constant are much below the thermal threshold but large value of Planck constant
changes the situation. Also the phase transitions modifying the value of Planck constant and
changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also
reconnections of the flux tubes.

The hierarchy of Planck constants suggests also a

new interpretation for FQHE (see http://tinyurl.com/y89xp4bu) (fractional quantum Hall
effect) [K77] in terms of anyonic phases with non-standard value of effective Planck constant
realized in terms of the effective multi-sheeted covering of embedding space: multi-sheeted
space-time is to be distinguished from many-sheeted space-time.

3. In astrophysics and cosmology the implications are even more dramatic if one believes that
also ~gr corresponds to effective Planck constant interpreted as number of sheets of multi-
furcation. It was Nottale (see http://tinyurl.com/ya6f3s4l) [E18] who first introduced

http://tinyurl.com/y89xp4bu
http://tinyurl.com/y89xp4bu
http://tinyurl.com/ya6f3s4l
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the notion of gravitational Planck constant as ~gr = GMm/v0, v0 < 1 has interpretation
as velocity light parameter in units c = 1. This would be true for GMm/v0 ≥ 1. The
interpretation of ~gr in TGD framework is as an effective Planck constant associated with
space-time sheets mediating gravitational interaction between masses M and m. The huge
value of ~gr means that the integer ~gr/~0 interpreted as the number of sheets of covering is
gigantic and that Universe possesses gravitational quantum coherence in super-astronomical
scales for masses which are large. This would suggest that gravitational radiation is emitted
as dark gravitons which decay to pulses of ordinary gravitons replacing continuous flow of
gravitational radiation.

It must be however emphasized that the interpretation of ~gr could be different, and it will
be found that one can develop an argument demonstrating how ~gr with a correct order
of magnitude emerges from the effective space-time metric defined by the anti-commutators
appearing in the Kähler-Dirac equation.

4. Why Nature would like to have large effective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers of gauge
couplings strengths α = g2/4π~. If the effective value of ~ replaces its real value as one
might expect to happen for multi-sheeted particles behaving like single particle, α is scaled
down and perturbative expansion converges for the new particles. One could say that Mother
Nature loves theoreticians and comes in rescue in their attempts to calculate. In quantum
gravitation the problem is especially acute since the dimensionless parameter GMm/~ has
gigantic value. Replacing ~ with ~gr = GMm/v0 the coupling strength becomes v0 < 1.

3.4.2 Space-Time Correlates For The Hierarchy Of Planck Constants

The hierarchy of Planck constants was introduced to TGD originally as an additional postulate
and formulated as the existence of a hierarchy of embedding spaces defined as Cartesian products
of singular coverings of M4 and CP2 with numbers of sheets given by integers na and nb and
~ = n~0. n = nanb.

With the advent of zero energy ontology, it became clear that the notion of singular covering
space of the embedding space could be only a convenient auxiliary notion. Singular means that
the sheets fuse together at the boundary of multi-sheeted region. The effective covering space
emerges naturally from the vacuum degeneracy of Kähler action meaning that all deformations
of canonically imbedded M4 in M4 × CP2 have vanishing action up to fourth order in small
perturbation. This is clear from the fact that the induced Kähler form is quadratic in the gradients
of CP2 coordinates and Kähler action is essentially Maxwell action for the induced Kähler form.
The vacuum degeneracy implies that the correspondence between canonical momentum currents
∂LK/∂(∂αh

k) defining the Kähler-Dirac gamma matrices [K113] and gradients ∂αh
k is not one-to-

one. Same canonical momentum current corresponds to several values of gradients of embedding
space coordinates. At the partonic 2-surfaces at the light-like boundaries of CD carrying the
elementary particle quantum numbers this implies that the two normal derivatives of hk are many-
valued functions of canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear
systems and Kähler action is an extreme example about non-linear system (see Fig. http:

//tgdtheory.fi/appfigures/planckhierarchy.jpg or Fig. ?? in the appendix of this book).
What multi-furcation means in quantum theory? The branches of multi-furcation are obviously
analogous to single particle states. In quantum theory second quantization means that one con-
structs not only single particle states but also the many particle states formed from them. At
space-time level single particle states would correspond to N branches bi of multi-furcation car-
rying fermion number. Two-particle states would correspond to 2-fold covering consisting of 2
branches bi and bj of multi-furcation. N−particle state would correspond to N -sheeted covering
with all branches present and carrying elementary particle quantum numbers. The branches co-
incide at the partonic 2-surface but since their normal space data are different they correspond
to different tensor product factors of state space. Also now the factorization N = nanb occurs
but now na and nb would relate to branching in the direction of space-like 3-surface and light-like
3-surface rather than M4 and CP2 as in the original hypothesis.

In light of this the working hypothesis adopted during last years has been too limited: for
some reason I ended up to propose that only N -sheeted covering corresponding to a situation in

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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which all N branches are present is possible. Before that I quite correctly considered more general
option based on intuition that one has many-particle states in the multi-sheeted space. The erratic
form of the working hypothesis has not been used in applications.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigenbaum
bifurcations (see http://tinyurl.com/2swb2p) represent a toy example of a system which via
successive bifurcations approaches chaos. Now more general multi-furcations in which each branch
of given multi-furcation can multi-furcate further, are possible unless on poses any additional
conditions. This allows to identify additional aspect of the geometric arrow of time. Either the
positive or negative energy part of the zero energy state is “prepared” meaning that single n-sub-
furcations of N -furcation is selected. The most general state of this kind involves superposition of
various n-sub-furcations.

3.4.3 The Relationship To The Original View About The Hierarchy Of
Planck Constants

Originally the hierarchy of Planck constant was assumed to correspond to a book like structure
having as pages the n-fold coverings of the embedding space for various values of n serving therefore
as a page number. The pages are glued together along a 4-D “back” at which the branches of n-
furcations are degenerate. This leads to a very elegant picture about how the particles belonging
to the different pages of the book interact. All vertices are local and involve only particles with the
same value of Planck constant: this is enough for darkness in the sense of particle physics. The
interactions between particles belonging to different pages involve exchange of a particle travelling
from page to another through the back of the book and thus experiencing a phase transition
changing the value of Planck constant.

Is this picture consistent with the picture based on n-furcations? This seems to be the
case. The conservation of energy in n-furcation in which several sheets are realized simultaneously
is consistent with the conservation of classical conserved quantities only if the space-time sheet
before n-furcation involves n identical copies of the original space-time sheet or if the Planck
constant is heff = nh. This kind of degenerate many-sheetedness is encountered also in the case of
branes. The first option means an n-fold covering of embedding space and heff is indeed effective
Planck constant. Second option means a genuine quantization of Planck constant due to the fact
the value of Kähler coupling strength αK = g2

K/4π~eff is scaled down by 1/n factor. The scaling
of Planck constant consistent with classical field equations since they involve αK as an overall
multiplicative factor only.

3.4.4 Basic Phenomenological Rules Of Thumb In The New Framework

It is important to check whether or not the refreshed view about dark matter is consistent with
existent rules of thumb.

1. The interpretation of quantized multi-furcations as WCW anyons explains also why the ef-
fective hierarchy of Planck constants defines a hierarchy of phases which are dark relative
to each other. This is trivially true since the phases with different number of branches in
multi-furcation correspond to disjoint regions of WCW so that the particles with different
effective value of Planck constant cannot appear in the same vertex.

2. The phase transitions changing the value of Planck constant are just the multi-furcations and
can be induced by changing the values of the external parameters controlling the properties
of preferred extremals. Situation is very much the same as in any non-linear system.

3. In the case of massless particles the scaling of wavelength in the effective scaling of ~ can be
understood if dark n-photons consist of n photons with energy E/n and wavelength nλ.

4. For massive particle it has been assumed that masses for particles and they dark counterparts
are same and Compton wavelength is scaled up. In the new picture this need not be true.
Rather, it would seem that wave length are same as for ordinary electron.

On the other hand, p-adic thermodynamics predicts that massive elementary particles are
massless most of the time. ZEO predicts that even virtual wormhole throats are massless.
Could this mean that the picture applying on massless particle should apply to them at least

http://tinyurl.com/2swb2p
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at relativistic limit at which mass is negligible. This might be the case for bosons but for
fermions also fermion number should be fractionalized and this is not possible in the recent
picture. If one assumes that the n-electron has same mass as electron, the mass for dark
single electron state would be scaled down by 1/n. This does not look sensible unless the
p-adic length defined by prime is scaled down by this fact in good approximation.

This suggests that for fermions the basic scaling rule does not hold true for Compton length
λc = ~/m. Could it however hold for de-Broglie lengths λ = ~/p defined in terms of 3-
momentum? The basic overlap rule for the formation of macroscopic quantum states is
indeed formulated for de Broglie wave length. One could argue that an 1/N -fold reduction of
density that takes place in the de-localization of the single particle states to the N branches
of the cover, implies that the volume per particle increases by a factor N and single particle
wave function is de-localized in a larger region of 3-space. If the particles reside at effectively
one-dimensional 3-surfaces - say magnetic flux tubes - this would increase their de Broglie
wave length in the direction of the flux tube and also the length of the flux tube. This seems
to be enough for various applications.

One important notion in TGD inspired quantum biology is dark cyclotron state.

1. The scaling ~→ k~ in the formula En = (n+ 1/2)~eB/m implies that cyclotron energies are
scaled up for dark cyclotron states. What this means microscopically has not been obvious
but the recent picture gives a rather clearcut answer. One would have k-particle state formed
from cyclotron states in N -fold branched cover of space-time surface. Each branch would
carry magnetic field B and ion or electron. This would give a total cyclotron energy equal to
kEn. These cyclotron states would be excited by k-photons with total energy E = khf and
for large enough value of k the energies involved would be above thermal threshold. In the
case of Ca++ one has f = 15 Hz in the field Bend = .2 Gauss. This means that the value
of ~ is at least the ratio of thermal energy at room temperature to E = hf . The thermal
frequency is of order 1012 Hz so that one would have k ' 1011. The number branches would
be therefore rather high.

2. It seems that this kinds of states which I have called cyclotron Bose-Einstein condensates could
make sense also for fermions. The dark photons involved would be Bose-Einstein condensates
of k photons and wall of them would be simultaneously absorbed. The biological meaning of
this would be that a simultaneous excitation of large number of atoms or molecules can take
place if they are localized at the branches of N -furcation. This would make possible coherent
macroscopic changes. Note that also Cooper pairs of electrons could be n = 2-particle states
associated with N -furcation.

There are experimental findings suggesting that photosynthesis involves de-localized excita-
tions of electrons and it is interesting so see whether this could be understood in this framework.

1. The TGD based model relies on the assumption that cyclotron states are involved and that
dark photons with the energy of visible photons but with much longer wavelength are involved.
Single electron excitations (or single particle excitations of Cooper pairs) would generate
negentropic entanglement (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig.
?? in the appendix of this book) automatically.

2. If cyclotron excitations are the primary ones, it would seem that they could be induced
by dark n-photons exciting all n electrons simultaneously. n-photon should have energy of
a visible photon. The number of cyclotron excited electrons should be rather large if the
total excitation energy is to be above thermal threshold. In this case one could not speak
about cyclotron excitation however. This would require that solar photons are transformed
to n-photons in N -furcation in biosphere.

3. Second - more realistic looking - possibility is that the incoming photons have energy of visible
photon and are therefore n = 1 dark photons de-localized to the branches of the N -furcation.
They would induce de-localized single electron excitation in WCW rather than 3-space.

3.4.5 Charge Fractionalization And Anyons

It is easy to see how the effective value of Planck constant as an integer multiple of its standard
value emerges for multi-sheeted states in second quantization. At the level of Kähler action one can

http://tgdtheory.fi/appfigures/cat.jpg
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assume that in the first approximation the value of Kähler action for each branch is same so that
the total Kähler action is multiplied by n. This corresponds effectively to the scaling αK → αK/n
induced by the scaling ~0 → n~0.

Also effective charge fractionalization and anyons emerge naturally in this framework.

1. In the ordinary charge fractionalization (see http://tinyurl.com/26tmhoe) the wave func-
tion decomposes into sharply localized pieces around different points of 3-space carrying frac-
tional charges summing up to integer charge. Now the same happens at at the level of WCW
(“world of classical worlds” ) rather than 3-space meaning that wave functions in E3 are re-
placed with wave functions in the space-time of 3-surfaces (4-surfaces by holography implied
by General Coordinate Invariance) replacing point-like particles. Single particle wave function
in WCW is a sum of N sharply localized contributions: localization takes place around one
particular branch of the multi-sheeted space time surface. Each branch carries a fractional
charge q/N for teh analogs of plane waves.

Therefore all quantum numbers are additive and fractionalization is only effective and observ-
able in a localization of wave function to single branch occurring with probability p = 1/N
from which one can deduce that charge is q/N .

2. The is consistent with the proposed interpretation of dark photons/gravitons since they
could carry large spin and this kind of situation could decay to bunches of ordinary pho-
tons/gravitons. It is also consistent with electromagnetic charge fractionization and fraction-
ization of spin.

3. The original - and it seems wrong - argument suggested what might be interpreted as a genuine
fractionization for orbital angular momentum and also of color quantum numbers, which are
analogous to orbital angular momentum in TGD framework. The observation was that a
rotation through 2π at space-time level moving the point along space-time surface leads to a
new branch of multi-furcation and N + 1: th branch corresponds to the original one. This
suggests that angular momentum fractionization should take place for M4 angle coordinate
φ because for it 2π rotation could lead to a different sheet of the effective covering.

The orbital angular momentum eigenstates would correspond to waves exp(iφm/N), m =

0, 2, ..., N−1 and the maximum orbital angular momentum would correspond the sum
∑N−1
m=0 m/N =

(N − 1)/2. The sum of spin and orbital angular momentum be therefore fractional.

The different prediction is due to the fact that rotations are now interpreted as flows rotating
the points of 3-surface along 3-surface rather than rotations of the entire partonic surface
in embedding space. In the latter interpretation the rotation by 2π does nothing for the
3-surface. Hence fractionization for the total charge of the single particle states does not
take place unless one adopts the flow interpretation. This view about fractionization however
leads to problems with fractionization of electromagnetic charge and spin for which there is
evidence from fractional quantum Hall effect.

3.4.6 Negentropic Entanglement Between Branches Of Multi-Furcations

The application of negentropic entanglement and effective hierarchy of Planck constants to pho-
tosynthesis and metabolism (see http://tinyurl.com/yd7j9f5j) [K57] suggests that these two
notions might be closely related. Negentropic entanglement is possible for rational (and even al-
gebraic) entanglement probabilities. If one allows number theoretic variant of Shannon entropy
(see http://tinyurl.com/y6v73ryc) based on the p-adic norm for the probability appearing as
argument of logarithm [K63], it is quite possible to have negative entanglement entropy and the
interpretation is as genuine information carried by entanglement. The superposition of state pairs
ai ⊗ bi in entangled state would represent instances of a rule. In the case of Schrödinger cat the
rule states that it is better to not open the bottle: understanding the rule consciously however
requires that cat is somewhat dead! Entanglement provides information about the relationship
between two systems. Shannon entropy represents lack of information about single particle state.

Negentropic entanglement would replace metabolic energy as the basic quantity making life
possible. Metabolic energy could generate negentropic entanglement by exciting biomolecules to
negentropically entangled states. ATP providing the energy for generating the metabolic entangle-
ment could also itself carry negentropic entanglement, and transfer it to the target by the emission
of large ~ photons.

http://tinyurl.com/26tmhoe
http://tinyurl.com/yd7j9f5j
http://tinyurl.com/y6v73ryc
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How the large ~ photons could carry negentropic entanglement? There are several options
to consider and at this stage it is not possible to pinpoint anyone of them as the only possible one.
Several of them could also be realized.

1. In zero energy ontology large ~ photons could carry the negentropic entanglement as entan-
glement between positive and negative energy parts of the photon state.

2. The negentropic entanglement of large ~ photon could be also associated with its positive or
energy part or both. Large ~eff = n~ photon with n-fold energy E = n × hf is n-sheeted
structure consisting of n-photons with energy E = hf de-localized in the discrete space
formed by the N space-time sheets. The n single photon states can entangle and since the
branches effectively form a discrete space, rational and algebraic entanglement is very natural.
There are many options for how this could happen. For instance, for N -fold branching the
superposition of all N !/(N − n)!n! states obtained by selecting n branches are possible and
the resulting state is entangled state. If this interpretation is correct, the vacuum degeneracy
and multi-furcations implied by it would the quintessence of life.

3. A further very attractive possibility discovered quite recently is that large heff = nh is closely
related to the negentropic entanglement between the states of two n-furcated - that is dark
- space-time sheets. In the most recent formulation negentropic entanglement corresponds
to a state characterized by n × n identity matrix resulting from the measurement of density
matrix. The number theoretic entanglement negentropy is positive for primes dividing p and
there is unique prime for which it is maximal.

The identification of negentropic entanglement as entanglement between branches of a multi-
furcation is not the only possible option.

1. One proposal is that non-localized single particle excitations of cyclotron condensate at mag-
netic flux tubes give rise to negentropic entanglement relevant to living matter. Dark photons
could transfer the negentropic entanglement possibly assignable to electron pairs of ATP
molecule.

The negentropic entanglement associated with cyclotron condensate could be associated with
the branches of the large ~ variant of the condensate. In this case single particle excitation
would not be sum of single particle excitations at various positions of 3-space but at various
sheet of covering representing points of WCW . If each of the n branches carries 1/n: th part
of electron one would have an anyonic state in WCW .

2. One can also make a really crazy question. Could it be that ATP and various bio-molecules
form n-particle states at the n-sheet of n-furcation and that the bio-chemistry involves si-
multaneous reactions of large numbers of biomolecules at these sheets? If so, the chemical
reactions would take place as large number of copies.

Note that in this picture the breaking of time reversal symmetry [K9] in the presence of
metabolic energy feed would be accompanied by evolution involving repeated multi-furcations
leading to increased complexity. TGD based view about the arrow of time implies that for a given
CD this evolution has definite direction of time. At the level of ensemble it implies second law but
at the level of individual system means increasing complexity.

3.4.7 Dark Variants Of Nuclear And Atomic Physics

During years I have in rather speculative spirit considered the possibility of dark variants of nuclear
and atomic - and perhaps even molecular physics. Also the notion of dark cyclotron state is central
in the quantum model of living matter. One such notion is the idea that dark nucleons could realize
vertebrate genetic code [K107].

Before the real understanding what charge fractionization means it was possible to imagine
several variants of say dark atoms depending on whether both nuclei and electrons are dark or
whether only electrons are dark and genuinely fractionally charged. The recent picture however
fixes these notions completely. Basic building bricks are just ordinary nuclei and atoms and they
form n-particle states associated with n-branches of N -furcation with n = 1, ..., N . The fraction-
ization for a single particle state de-localized completely to the discrete space of N branches as the
analog of plane wave means that single branch carriers charge 1/N .
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The new element is the possibility of n-particle states populating n branches of the N -
furcation: note that there is superposition over the states corresponding to different selections of
these n branches. N − k and k-nuclei/atoms are in sense conjugates of each other and they can
fuse to form N -nuclei/N -atoms which in fermionic case are analogous to Fermi sea with all states
filled.

Bio-molecules seem to obey symbolic dynamics which does not depend much on the chemical
properties: this has motivated various linguistic metaphors applied in bio-chemistry to describe the
interactions between DNA and related molecules. This motivated the wild speculation was that
N -atoms and even N -molecules could make possible the emergence of symbolic representations
with n ≤ N serving as a name of atom/molecule and that k- and N − k atom/molecule would be
analogous to opposite sexes in that there would be strong tendency for them to fuse together to
form N -atom/-molecule. For instance, in bio-catalysis k- and N − k-atoms/molecules would be
paired. The recent picture about n and N−k atoms seems to be consistent with these speculations
which I had already given up as too crazy. It is difficult to avoid even the speculation that bio-
chemistry could replace chemical reactions with their n-multiples. Synchronized quantum jumps
would allow to avoid the disastrous effects of state function reductions on quantum coherence. The
second manner to say the same thing is that the effective value of Planck constant is large.

3.4.8 What About The Relationship Of Gravitational Planck Constant
To Ordinary Planck Constant?

Gravitational Planck constant is given by the expression ~gr = GMm/v0, where v0 < 1 has
interpretation as velocity parameter in the units c = 1. Can one interpret also ~gr as effective
value of Planck constant so that its values would correspond to multi-furcation with a gigantic
number of sheets. This does not look reasonable.

Could one imagine any other interpretation for ~gr? Could the two Planck constants cor-
respond to inertial and gravitational dichotomy for four-momenta making sense also for angular
momentum identified as a four-vector? Could gravitational angular momentum and the momen-
tum associated with the flux tubes mediating gravitational interaction be quantized in units of ~gr
naturally?

1. Gravitational four-momentum can be defined as a projection of the M4-four-momentum to
space-time surface. It’s length can be naturally defined by the effective metric gαβeff defined
by the anti-commutators of the modified gamma matrices. Gravitational four-momentum
appears as a measurement interaction term in the Kähler-Dirac action and can be restricted
to the space-like boundaries of the space-time surface at the ends of CD and to the light-like
orbits of the wormhole throats and which induced 4- metric is effectively 3-dimensional.

2. At the string world sheets and partonic 2-surfaces the effective metric degenerates to 2-D one.
At the ends of braid strands representing their intersection, the metric is effectively 4-D. Just
for definiteness assume that the effective metric is proportional to the M4 metric or rather -
to its M2 projection: gkleff = K2mkl.

One can express the length squared for momentum at the flux tubes mediating the gravita-
tional interaction between massive objects with masses M and m as

gαβeffpαpβ = gαβeff∂αh
k∂βh

lpkpl ≡ gkleffpkpl = n2 ~2

L2
. (3.4.1)

Here L would correspond to the length of the flux tube mediating gravitational interaction
and pk would be the momentum flowing in that flux tube. gkleff = K2mkl would give

p2 =
n2~2

K2L2
.

~gr could be identifed in this simplified situation as ~gr = ~/K.

3. Nottale’s proposal requires K = GMm/v0 for the space-time sheets mediating gravitational
interacting between massive objects with masses M and m. This gives the estimate
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pgr =
GMm

v0

1

L
. (3.4.2)

For v0 = 1 this is of the same order of magnitude as the exchanged momentum if gravitational
potential gives estimate for its magnitude. v0 is of same order of magnitude as the rotation
velocity of planet around Sun so that the reduction of v0 to v0 ' 2−11 in the case of the 4
inner planets does not mean that the propagation velocity of gravitons is reduced.

4. Nottale’s formula requires that the order of magnitude for the components of the energy mo-
mentum tensor at the ends of braid strands at partonic 2-surface should have value GMm/v0.
Einstein’s equations T = κG+ Λg give a further constraint. For the vacuum solutions of Ein-
stein’s equations with a vanishing cosmological constant the value of hgr approaches infinity.
At the flux tubes mediating gravitational interaction one expects T to be proportional to the
factor GMm simply because they mediate the gravitational interaction.

5. One can consider similar equation for gravitational angular momentum:

gαβeffLαLβ = gkleffLkLl = l(l + 1)~2 . (3.4.3)

This would give under the same simplifying assumptions

L2 = l(l + 1)
~2

K2
. (3.4.4)

This would justify the Bohr quantization rule for the angular momentum used in the Bohr
quantization of planetary orbits.

One might counter argue that if gravitational 4- momentum square is proportional to inertial
4-momentum squared, then Equivalence Principle implies that hgr can have only single value. In
ZEO however all wormhole throats - also virtual - are massless and the argument fails. The varying
hgr can be assigned only with longitudinal and transversal momentum squared separately but not
to the ratio of gravitational and inertial 4-momenta squared which both vanish.

Maybe the proposed connection might make sense in some more refined formulation. In
particular the proportionality between mkl

eff = Kmkl could make sense as a quantum average.
Also the fact, that the constant v0 varies, could be understood from the dynamical character of
mkl
eff .

3.4.9 Hierarchy Of Planck Constants And Non-Determinism Of Kähler
Action

Originally the hierarchy of Planck constant was inspired by empirical inputs from neuroscience,
biology, and from Nottale’s observations. That it is possible to understand the hierarchy in terms
of non-determinism of Kähler action - the fundamental difference between TGD and quantum field
theories and string models - is a victory for TGD approach (see Fig. http://tgdtheory.fi/

appfigures/planckhierarchy.jpg, or Fig. ?? in the appendix of this book).
Recall that non-determinism means that all space-time surfaces with CP2 projection, which

is Lagrangian sub-manifold (at most 2-D) of CP2, carries a vanishing induced Kähler form and is
vacuum extremal. The first guess would be that there is a finite number n of space-time sheets
connecting given pair of 3-surfaces at the ends of space-time surface at the light-like boundaries
of causal diamond (CD). Planck constant would be given as heff = n× h in accordance with the
earlier interpretation. The degenerate extremals would have same Kähler action and conserved
quantities as assumed also in the earlier approach. That the degenerate extremals co-incide at the
ends of space-time surface was motivated by mathemtical aesthetics in the earlier approach but
finds an interpretation in terms of non-uniqueness of the preferred extremals.

It is essential that these n degrees of freedom are regarded as genuine physical degrees
of freedom, which are however discrete. Negentropic entanglement and dark matter would be

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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associated with them naturally. The effective description would be in terms of n-fold singular
covering of embedding space becoming singular at the ends of the space-time surface.

I have also assigned hierarchy of Planck constants with the quantum criticality. Quantum
criticality means the existence of an entire continuous family of deformations of space-time sheet
with same Kähler action and conserved quantities. The deformations would by definition vanish
at the ends of space-time surface. The critical deformations would act as gauge transformations
identifiable as conformal symmetries indeed expected to be presents since WCW isometries form
a conformal algebra and there is also Kac-Moody type algebra present. The proposal has been
that the sub-algebras of conformal algebra for which conformal weights are integer multiples of
integer n = 1, 2, .. defined a hierarchy of gauge algebras so that the dynamical algebra reduces to
n-dimensional one.

These two identifications seem to be mutually inconsistent. The resolution of the conflict
comes from the gauge invariance. For a given Kähler action and conserved quantities there would
be n conformal equivalence classes of these 4-surfaces rather than n surfaces, and one would have
n-fold degeneracy but for conformal equivalence classes of 4-surfaces rather than 4-surfaces. In
Minkowskian regions the degenerate preferred extremals are sheets (graphs of a map from M4 to
CP2).

3.5 Vision About Dark Matter As Phases With Non-Standard
Value Of Planck Constant

3.5.1 Dark Rules

It is useful to summarize the basic phenomenological view about dark matter.

The notion of relative darkness

The essential difference between TGD and more conventional models of dark matter is that darkness
is only relative concept.

1. Generalized embedding space forms a book like structure and particles at different pages of
the book are dark relative to each other since they cannot appear in the same vertex identified
as the partonic 2-surface along which light-like 3-surfaces representing the lines of generalized
Feynman diagram meet.

2. Particles at different space-time sheets act via classical gauge field and gravitational field and
can also exchange gauge bosons and gravitons (as also fermions) provided these particles can
leak from page to another. This means that dark matter can be even photographed [I8]. This
interpretation is crucial for the model of living matter based on the assumption that dark
matter at magnetic body controls matter visible to us. Dark matter can also suffer a phase
transition to visible matter by leaking between the pages of the Big Book.

3. The notion of standard value ~0 of ~ is not a relative concept in the sense that it corresponds
to rational r = 1. In particular, the situation in which both CD and CP2 correspond to trivial
coverings and factor spaces would naturally correspond to standard physics.

Is dark matter anyonic?

In [K77] a detailed model for the Kähler structure of the generalized embedding space is con-
structed. What makes this model non-trivial is the possibility that CP2 Kähler form can have
gauge parts which would be excluded in full embedding space but are allowed because of singular
covering/factor-space property. The model leads to the conclusion that dark matter is anyonic
if the partonic 2-surface, which can have macroscopic or even astrophysical size, encloses the tip
of CD within it. Therefore the partonic 2-surface is homologically non-trivial when the tip is re-
garded as a puncture. Fractional charges for anyonic elementary particles imply confinement to
the partonic 2-surface and the particles can escape the two surface only via reactions transforming
them to ordinary particles. This would mean that the leakage between different pages of the big
book is a rare phenomenon. This could partially explain why dark matter is so difficult to observe.
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Field body as carrier of dark matter

The notion of “field body” implied by topological field quantization is essential. There would be em,
Z0, W , gluonic, and gravitonic field bodies, each characterized by its one prime. The motivation for
considering the possibility of separate field bodies seriously is that the notion of induced gauge field
means that all induced gauge fields are expressible in terms of four CP2 coordinates so that only
single component of a gauge potential allows a representation as and independent field quantity.
Perhaps also separate magnetic and electric field bodies for each interaction and identifiable as
flux quanta must be considered. This kind of separation requires that the fermionic content of the
flux quantum (say fermion and anti-fermion at the ends of color flux tube) is such that it conforms
with the quantum numbers of the corresponding boson.

What is interesting that the conceptual separation of interactions to various types would
have a direct correlate at the level of space-time topology. From a different perspective inspired
by the general vision that many-sheeted space-time provides symbolic representations of quantum
physics, the very fact that we make this conceptual separation of fundamental interactions could
reflect the topological separation at space-time level.

p-Adic mass calculations for quarks encourage to think that the p-adic length scale charac-
terizing the mass of particle is associated with its electromagnetic body and in the case of neutrinos
with its Z0 body. Z0 body can contribute also to the mass of charged particles but the contribution
would be small. It is also possible that these field bodies are purely magnetic for color and weak
interactions. Color flux tubes would have exotic fermion and anti-fermion at their ends and define
colored variants of pions. This would apply not only in the case of nuclear strings but also to
molecules and larger structures so that scaled variants of elementary particles and standard model
would appear in all length scales as indeed implied by the fact that classical electro-weak and color
fields are unavoidable in TGD framework.

One can also go further and distinguish between magnetic field body of free particle for
which flux quanta start and return to the particle and “relative field” bodies associated with pairs
of particles. Very complex structures emerge and should be essential for the understanding the
space-time correlates of various interactions. In a well-defined sense they would define space-time
correlate for the conceptual analysis of the interactions into separate parts. In order to minimize
confusion it should be emphasized that the notion of field body used in this chapter relates to those
space-time correlates of interactions, which are more or less static and related to the formation of
bound states.

3.5.2 Phase Transitions Changing Planck Constant

The general picture is that p-adic length scale hierarchy corresponds to p-adic coupling constant
evolution and hierarchy of Planck constants to the coupling constant evolution related to phase
resolution. Both evolutions imply a book like structure of the generalized embedding space.

Transition to large ~ phase and failure of perturbation theory

One of the first ideas was that the transition to large ~ phase occurs when perturbation theory based
on the expansion in terms of gauge coupling constant ceases to converge: Mother Nature would take
care of the problems of theoretician. The transition to large ~ phase obviously reduces the value of
gauge coupling strength α ∝ 1/~ so that higher orders in perturbation theory are reduced whereas
the lowest order “classical” predictions remain unchanged. A possible quantitative formulation
of the criterion is that maximal 2-particle gauge interaction strength parameterized as Q1Q2α
satisfies the condition Q1Q2α ' 1.

A justification for this picture would be that in non-perturbative phase large quantum
fluctuations are present (as functional integral formalism suggests). At space-time level this could
mean that space-time sheet is near to a non-deterministic vacuum extremal -at least if homologically
trivial geodesic sphere defines the number theoretic braids. At certain critical value of coupling
constant strength one expects that the transition amplitude for phase transition becomes very
large. The resulting phase would be of course different from the original since typically charge
fractionization would occur.

One should understand why the failure of the perturbation theory (expected to occur for
αQ1Q2 > 1) induces the reduction of Clifford algebra, scaling down of CP2 metric, and whether the
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G-symmetry is exact or only approximate. A partial understanding already exists. The discrete
G symmetry and the reduction of the dimension of Clifford algebra would have interpretation in
terms of a loss of degrees of freedom as a strongly bound state is formed. The multiple covering of
M4
± accompanying strong binding can be understood as an automatic consequence of G-invariance.

A concrete realization for the binding could be charge fractionization which would not allow the
particles bound on large light-like 3-surface to escape without transformation to ordinary particles.

Two examples perhaps provide more concrete view about this idea.

1. The proposed scenario can reproduce the huge value of the gravitational Planck constant. One
should however develop a convincing argument why non-perturbative phase for the gravitating
dark matter leads to a formation of Ga× covering of CD\M2 ×CP2\S2

I with the huge value
of ~eff = na/nb ' GM1M2/v0. The basic argument is that the dimensionless parameter
αgr = GM1M2/4π~ should be so small that perturbation theory works. This gives ~gr ≥
GM1M2/4π so that order of magnitude is predicted correctly.

2. Color confinement represents the simplest example of a transition to a non-perturbative phase.
In this case A2 and n = 3 would be the natural option. The value of Planck constant would
be 3 times higher than its value in perturbative QCD. Hadronic space-time sheets would be
3-fold coverings of M4

± and baryonic quarks of different color would reside on 3 separate sheets
of the covering. This would resolve the color statistics paradox suggested by the fact that
induced spinor fields do not possess color as spin like quantum number and by the facts that
for orbifolds different quarks cannot move in independent CP2 partial waves assignable to
CP2 cm degrees of freedom as in perturbative phase.

The mechanism of phase transition and selection rules

The mechanism of phase transition is at classical level similar to that for ordinary phase tran-
sitions. The partonic 2-surface decomposes to regions corresponding to difference values of ~ at
quantum criticality in such a way that regions in which induced Kähler form is non-vanishing are
contained within single page of embedding space. It might be necessary to assume that only a
region corresponding to single value of ~ is possible for partonic 2-surfaces and δCD×CP2 so that
quantum criticality would be associated with the intermediate state described by the light-like
3-surface. One could also see the phase transition as a leakage of X2 from given page to another:
this is like going through a closed door through a narrow slit between door and floor. By quantum
criticality the points of number theoretic braid are already in the slit.

As in the case of ordinary phase transitions the allowed phase transitions must be consistent
with the symmetries involved. This means that if the state is invariant under the maximal cyclic
subgroups Ga and Gb then also the final state must satisfy this condition. This gives constraints to
the orders of maximal cyclic subgroups Za and Zb for initial and final state: n(Zai) resp. n(Zbi))
must divide n(Zaf ) resp. n(Zbf or vice versa in the case that factors of Zi do not leave invariant the
states. If this is the case similar condition must hold true for appropriate subgroups. In particular,
powers of prime Zpn , n = 1, 2, ... define hierarchies of allowed phase transitions.

3.5.3 Coupling Constant Evolution And Hierarchy Of Planck Constants

If the overall vision is correct, quantum TGD would be characterized by two kinds of couplings
constant evolutions. p-Adic coupling constant evolution would correspond to length scale resolution
and the evolution with respect to Planck constant to phase resolution. Both evolution would have
number theoretic interpretation.

Evolution with respect to phase resolution

The coupling constant evolution in phase resolution in p-adic degrees of freedom corresponds to
emergence of algebraic extensions allowing increasing variety of phases exp(i2π/n) expressible p-
adically. This evolution can be assigned to the emergence of increasingly complex quantum phases
and the increase of Planck constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only iterated
square root operation are number theoretically very special since they correspond to algebraic
extensions of p-adic numbers obtained by an iterated square root operation, which should emerge
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first. Therefore systems involving these values of q should be especially abundant in Nature.
That arbitrarily high square roots are involved as becomes clear by studying the case n = 2k:
cos(π/2k) =

√
[1 + cos(π/2k−1)]/2.

These polygons are obtained by ruler and compass construction and Gauss showed that
these polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices: all

Fermat primes Fns in this expression must be different. The analog of the p-adic length scale
hypothesis emerges since larger Fermat primes are near a power of 2. The known Fermat primes
Fn = 22n + 1 correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
It is not known whether there are higher Fermat primes. n = 3, 5, 15-multiples of p-adic length
scales clearly distinguishable from them are also predicted and this prediction is testable in living
matter. I have already earlier considered the possibility that Fermat polygons could be of special
importance for cognition and for biological information processing [K71].

This condition could be interpreted as a kind of resonance condition guaranteeing that scaled
up sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF could take
the same role in the evolution of Planck constant assignable with the phase resolution as Mersenne
primes have in the evolution assignable to the p-adic length scale resolution.

The Dynkin diagrams of exceptional Lie groups E6 and E8 are exceptional as subgroups of
rotation group in the sense that they cannot be reduced to symmetry transformations of plane.
They correspond to the symmetry group S4 × Z2 of tetrahedron and A5 × Z2 of dodecahedron or
its dual polytope icosahedron (A5 is 60-element subgroup of S5 consisting of even permutations).
Maximal cyclic subgroups are Z4 and Z5andthus their orders correspond to Fermat polygons.
Interestingly, n = 5 corresponds to minimum value of n making possible topological quantum
computation using braids and also to Golden Mean.

Is there a correlation between the values of p-adic prime and Planck constant?

The obvious question is whether there is a correlation between p-adic length scale and the value
of Planck constant. One-to-one correspondence is certainly excluded but loose correlation seems
to exist.

1. In [L63] the information about the number theoretic anatomy of Kähler coupling strength
is combined with input from p-adic mass calculations predicting αK to be the value of fine
structure constant at the p-adic length scale associated with electron. One can also develop an
explicit expression for gravitational constant assuming its renormalization group invariance on
basis of dimensional considerations and this model leads to a model for the fraction of volume
of the wormhole contact (piece of CP2 type extremal) from the volume of CP2 characterizing
gauge boson and for similar volume fraction for the piece of the CP2 type vacuum extremal
associated with fermion.

2. The requirement that gravitational constant is renormalization group invariant implies that
the volume fraction depends logarithmically on p-adic length scale and Planck constant (char-
acterizing quantum scale). The requirement that this fraction in the range (0, 1) poses a
correlation between the rational characterizing Planck constant and p-adic length scale. In
particular, for space-time sheets mediating gravitational interaction Planck constant must be
larger than ~0 above length scale which is about .1 Angstrom. Also an upper bound for ~
for given p-adic length scale results but is very large. This means that quantum gravitational
effects should become important above atomic length scale [L63].

3.6 Some Applications

Below some applications of the hierarchy of Planck constants as a model of dark matter are briefly
discussed. The range of applications varying from elementary particle physics to cosmology and I
hope that this will convince the reader that the idea has strong physical motivations.

3.6.1 A Simple Model Of Fractional Quantum Hall Effect

The generalization of the embedding space suggests that it could possible to understand fractional
quantum Hall effect [D2] at the level of basic quantum TGD. This section represents the first rough
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model of QHE constructed for a couple of years ago is discussed. Needless to emphasize, the model
represents only the basic idea and involves ad hoc assumption about charge fractionization.

Recall that the formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (3.6.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denomi-
nator have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [D2].

The model of Laughlin [D20] cannot explain all aspects of FQHE. The best existing model
proposed originally by Jain is based on composite fermions resulting as bound states of electron
and even number of magnetic flux quanta [D15]. Electrons remain integer charged but due to the
effective magnetic field electrons appear to have fractional charges. Composite fermion picture
predicts all the observed fractions and also their relative intensities and the order in which they
appear as the quality of sample improves.

The generalization of the notion of embedding space suggests the possibility to interpret
these states in terms of fractionized charge, spin, and electron number. There are 2 × 2 = 4
combinations of covering and factors spaces of CP2 and three of them can lead to the increase of
Planck constant. Besides this one can consider two options for the formula of Planck constant so
that which the very meager theoretical background one can make only guesses. In the following
a model based on option II for which the number of states is conserved in the phase transition
changing ~.

1. The easiest manner to understand the observed fractions is by assuming that both CD and
CP2 correspond to covering spaces so that both spin and electric charge and fermion number
are fractionized. This means that e in electronic charge density is replaced with fractional
charge. Quantized magnetic flux is proportional to e and the question is whether also here
fractional charge appears. Assume that this does not occur.

2. With this assumption the expression for the Planck constant becomes for Option II as r =
~/~0 = na/nb and charge and spin units are equal to 1/nb and 1/na respectively. This gives
ν = nna/nb. The values m = 2, 3, 5, 7, .. are observed. Planck constant can have arbitrarily
large values. There are general arguments stating that also spin is fractionized in FQHE.

3. Both ν = 1/2 and ν = 5/2 state has been observed [D2, D8]. The fractionized charge is
e/4 in the latter case [D8, D4]. Since ni > 3 holds true if coverings and factor spaces are
correlates for Jones inclusions, this requires na = 4 and nb = 8 for ν = 1/2 and nb = 4 and
na = 10 for ν = 5/2. Correct fractionization of charge is predicted. For nb = 2 also Z2 would
appear as the fundamental group of the covering space. Filling fraction 1/2 corresponds in
the composite fermion model and also experimentally to the limit of zero magnetic field [D15].
nb = 2 is inconsistent with the observed fractionization of electric charge for ν = 5/2 and
with the vision inspired by Jones inclusions.

4. A possible problematic aspect of the TGD based model is the experimental absence of even
values of nb except nb = 2 (Laughlin’s model predicts only odd values of n). A possible
explanation is that by some symmetry condition possibly related to fermionic statistics (as
in Laughlin model) na/nb must reduce to a rational with an odd denominator for nb > 2. In
other words, one has na ∝ 2r, where 2r the largest power of 2 divisor of nb.

5. Large values of na emerge as B increases. This can be understood from flux quantization.
One has e

∫
BdS = n~(M4) = nna~0. By using actual fractional charge eF = e/nb in the

flux factor would give eF
∫
BdS = n(na/nb)~0 = n~. The interpretation is that each of the

na sheets contributes one unit to the flux for e. Note that the value of magnetic field in given
sheet is not affected so that the build-up of multiple covering seems to keep magnetic field
strength below critical value.

6. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
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the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6×105

Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field varying
in the range 1-10 Tesla. This raises the question why the original FQHE requires so low
temperature. The magnetic energy of a flux tube of length L is by flux quantization roughly
e2B2S ∼ Ec(e)meL (~0 = c = 1) and exceeds cyclotron roughly by a factor L/Le, Le electron
Compton length so that thermal stability of magnetic flux quanta is not the explanation.
A possible explanation is that since FQHE involves several values of Planck constant, it is
quantum critical phenomenon and is characterized by a critical temperature. The differences
of the energies associated with the phase with ordinary Planck constant and phases with
different Planck constant would characterize the transition temperature.

As already noticed, it is possible to imagine several other options and the assumption about
charge fractionization -although consistent with fractionization for ν = 5/2, is rather ad hoc.
Therefore the model can be taken as a warm-up exercise only. In [K77], where the delicacies of
Kähler structure of generalized embedding space are discussed, also a more detailed of QHE is
discussed.

3.6.2 Gravitational Bohr Orbitology

The basic question concerns justification for gravitational Bohr orbitology [K89]. The basic vision
is that visible matter identified as matter with ~ = ~0 (na = nb = 1) concentrates around dark
matter at Bohr orbits for dark matter particles. The question is what these Bohr orbits really
mean. Should one in improved approximation relate Bohr orbits to 3-D wave functions for dark
matter as ordinary Bohr rules would suggest or do the Bohr orbits have some deeper meaning
different from that in wave mechanics. Anyonic variants of partonic 2-surfaces with astrophysical
size are a natural guess for the generalization of Bohr orbits.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale have proposed that Schrödinger equation with Planck constant
~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is

a velocity parameter having the value v0 = 144.7± .7 km/s giving v0/c = 4.6×10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive [K89] .
Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydro-

dynamics. Many-sheeted space-time however suggests astrophysical systems are not only quantum
systems at larger space-time sheets but correspond to a gigantic value of gravitational Planck con-
stant. The gravitational (ordinary) Schrödinger equation -or at least Bohr rules with appropriate
interpretation - would provide a solution of the black hole collapse (IR catastrophe) problem en-
countered at the classical level. The resolution of the problem inspired by TGD inspired theory of
living matter is that it is the dark matter at larger space-time sheets which is quantum coherent
in the required time scale.

Prediction for the parameter v0

One of the key questions relate to the value of the parameter v0. Before the introduction of the
hierarchy of Planck constants I proposed that the value of the parameter v0 assuming that cosmic
strings and their decay remnants are responsible for the dark matter. The harmonics of v0 can
be understood as corresponding to perturbations replacing cosmic strings with their n-branched
coverings so that tension becomes n-fold much like the replacement of a closed orbit with an orbit
closing only after n turns. 1/n-sub-harmonic would result when a magnetic flux tube split into n
disjoint magnetic flux tubes. The planetary mass ratios can be produced with an accuracy better
than 10 per cent assuming ruler and compass phases.

Further predictions

The study of inclinations (tilt angles with respect to the Earth’s orbital plane) leads to a concrete
model for the quantum evolution of the planetary system. Only a stepwise breaking of the rota-
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tional symmetry and angular momentum Bohr rules plus Newton’s equation (or geodesic equation)
are needed, and gravitational Schrödinger equation holds true only inside flux quanta for the dark
matter.

1. During pre-planetary period dark matter formed a quantum coherent state on the (Z0) mag-
netic flux quanta (spherical cells or flux tubes). This made the flux quantum effectively a
single rigid body with rotational degrees of freedom corresponding to a sphere or circle (full
SO(3) or SO(2) symmetry).

2. In the case of spherical shells associated with inner planets the SO(3) → SO(2) symmetry
breaking led to the generation of a flux tube with the inclination determined by m and j and
a further symmetry breaking, kind of an astral traffic jam inside the flux tube, generated a
planet moving inside flux tube. The semiclassical interpretation of the angular momentum
algebra predicts the inclinations of the inner planets. The predicted (real) inclinations are 6
(7) resp. 2.6 (3.4) degrees for Mercury resp. Venus). The predicted (real) inclination of the
Earth’s spin axis is 24 (23.5) degrees.

3. The v0 → v0/5 transition allowing to understand the radii of the outer planets in the model
of Da Rocha and Nottale can be understood as resulting from the splitting of (Z0) magnetic
flux tube to five flux tubes representing Earth and outer planets except Pluto, whose orbital
parameters indeed differ dramatically from those of other planets. The flux tube has a shape
of a disk with a hole glued to the Earth’s spherical flux shell.

It is important to notice that effectively a multiplication n → 5n of the principal quantum
number is in question. This allows to consider also alternative explanations. Perhaps external
gravitational perturbations have kicked dark matter from the orbit or Earth to n = 5k,
k = 2, 3, ..., 7 orbits: the fact that the tilt angles for Earth and all outer planets except Pluto
are nearly the same, supports this explanation. Or perhaps there exist at least small amounts
of dark matter at all orbits but visible matter is concentrated only around orbits containing
some critical amount of dark matter and these orbits satisfy n mod 5 = 0 for some reason.

4. A remnant of the dark matter is still in a macroscopic quantum state at the flux quanta. It
couples to photons as a quantum coherent state but the coupling is extremely small due to
the gigantic value of ~gr scaling alpha by ~/~gr: hence the darkness.

The rather amazing coincidences between basic bio-rhythms and the periods associated with
the states of orbits in solar system suggest that the frequencies defined by the energy levels of
the gravitational Schrödinger equation might entrain with various biological frequencies such
as the cyclotron frequencies associated with the magnetic flux tubes. For instance, the period
associated with n = 1 orbit in the case of Sun is 24 hours within experimental accuracy for
v0.

Comparison with Bohr quantization of planetary orbits

The predictions of the generalization of the p-adic length scale hypothesis are consistent with
the TGD based model for the Bohr quantization of planetary orbits and some new non-trivial
predictions follow.

1. The model can explain the enormous values of gravitational Planck constant ~gr/~0 ='
GMm/v0) = na/nb. The favored values of this parameter should correspond to nFa/nFb so
that the mass ratios m1/m2 = nFa,1nFb,2/nFb,1nFa,2 for planetary masses should be preferred.
The general prediction GMm/v0 = na/nb is of course not testable.

2. Nottale [E18] has suggested that also the harmonics and sub-harmonics of ~gr are possible
and in fact required by the model for planetary Bohr orbits (in TGD framework this is not
absolutely necessary [K89] ). The prediction is that favored values of n should be of form
nF = 2k

∏
Fi such that Fi appears at most once. In Nottale’s model for planetary orbits

as Bohr orbits in solar system [K89] n = 5 harmonics appear and are consistent with either
nF,a → F1nFa or with nF,b → nFb/F1 if possible.

The prediction for the ratios of planetary masses can be tested. In the table below are the ex-
perimental mass ratios rexp = m(pl)/m(E), the best choice of rR = [nF,a/nF,b]∗X, X common fac-
tor for all planets, and the ratios rpred/rexp = nF,a(planet)nF,b(Earth)/nF,a(Earth)nF,b(planet).
The deviations are at most 2 per cent.
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planet Me V E M J

y 213×5
17 211 × 17 29 × 5× 17 28 × 17 223×5

7

y/x 1.01 .98 1.00 .98 1.01
planet S U N P

y 214 × 3× 5× 17 221×5
17

217×17
3

24×17
3

y/x 1.01 .98 .99 .99

Table 3.1: Table compares the ratios x = m(pl)/(m(E) of planetary mass to the mass of Earth
to prediction for these ratios in terms of integers nF associated with Fermat polygons. y gives the
best fit for the allowed factors of the known part y of the rational nF,a/nF,b = yX characterizing
planet, and the ratios y/x. Errors are at most 2 per cent.

A stronger prediction comes from the requirement that GMm/v0 equals to n = nFa/nF,b
nF = 2k

∏
k Fnk , where Fi = 22i + 1, i = 0, 1, 2, 3, 4 is Fibonacci prime. The fit using solar mass

and Earth mass gives nF = 2254× 5× 17 for 1/v0 = 2044, which within the experimental accuracy
equals to the value 211 = 2048 whose powers appear as scaling factors of Planck constant in the
model for living matter [K38]. For v0 = 4.6 × 10−4 reported by Nottale the prediction is by a
factor 16/17.01 too small (6 per cent discrepancy).

A possible solution of the discrepancy is that the empirical estimate for the factor GMm/v0

is too large since m contains also the the visible mass not actually contributing to the gravitational
force between dark matter objects whereas M is known correctly. The assumption that the dark
mass is a fraction 1/(1 + ε) of the total mass for Earth gives

1 + ε =
17

16
(3.6.2)

in an excellent approximation. This gives for the fraction of the visible matter the estimate
ε = 1/16 ' 6 per cent. The estimate for the fraction of visible matter in cosmos is about 4 per
cent so that estimate is reasonable and would mean that most of planetary and solar mass would
be also dark (as a matter dark energy would be in question).

That v0(eff) = v0/(1− ε) ' 4.6× 10−4 equals with v0(eff) = 1/(27×F2) = 4.5956× 10−4

within the experimental accuracy suggests a number theoretical explanation for the visible-to-dark
fraction.

The original unconsciously performed identification of the gravitational and inertial Planck
constants leads to some confusing conclusions but it seems that the new view about the quantization
of Planck constants resolves these problems and allows to see ~gr as a special case of ~I .

1. ~gr is proportional to the product of masses of interacting systems and not a universal con-
stant like ~. One can however express the gravitational Bohr conditions as a quantization of
circulation

∮
v · dl = n(GM/v0)~0 so that the dependence on the planet mass disappears as

required by Equivalence Principle. This would suggest that gravitational Bohr rules relate to
velocity rather than inertial momentum as is indeed natural. The quantization of circulation
is consistent with the basic prediction that space-time surfaces are analogous to Bohr orbits.

2. ~gr seems to characterize a relationship between planet and central mass and quite generally
between two systems with the property that smaller system is topologically condensed at the
space-time sheet of the larger system. Thus it would seem that ~gr is not a universal constant
and cannot correspond to a special value of ordinary Planck constant. Certainly this would
be the case if ~I is quantized as λk-multiplet of ordinary Planck constant with λ ' 211.

The recent view about the quantization of Planck constant in terms of coverings of CD seems to
resolve these problems.

1. The integer quantization of Planck constants is consistent with the huge values of gravitational
Planck constant within experimental resolution and the killer test for ~ = ~gr emerges if one
takes seriously the stronger prediction ~gr = nF,a/nF,b.
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2. One can also regard ~gr as ordinary Planck constant ~eff associated with the space-time
sheet along which the masses interact provided each pair (M,mi) of masses is characterized
by its own sheets. These sheets could correspond to flux tube like structures carrying the
gravitational flux of dark matter. If these sheets corresponds to nFa -fold covering of CD, one
can understand ~gr as a particular instance of the ~eff .

Quantum Hall effect and dark anyonic systems in astrophysical scales

Bohr orbitology could be understood if dark matter concentrates on 2-dimensional partonic surfaces
usually assigned with elementary particles and having size of order CP2 radius. The interpreta-
tion is in terms of wormhole throats assignable to topologically condensed CP2 type extremals
(fermions) and pairs of them assignable to wormhole contacts (gauge bosons). Wormhole throat
defines the light-like 3-surface at which the signature of metric of space-time surface changes from
Minkowskian to Euclidian.

Large value of Planck constant would allow partons with astrophysical size. Since anyonic
systems are 2-dimensional, the natural idea is that dark matter corresponds to systems carrying
large fermion number residing at partonic 2-surfaces of astrophysical size and that visible matter
condenses around these. Not only black holes but also ordinary stars, planetary systems, and
planets could correspond at the level of dark matter to atom like structures consisting of anyonic
2-surfaces which can have complex topology (flux tubes associated with planetary orbits connected
by radial flux tubes to the central spherical anyonic surface). Charge and spin fractionization are
key features of anyonic systems and Jones inclusions inspiring the generalization of embedding
space indeed involve quantum groups central in the modelling of anyonic systems. Hence one has
could hopes that a coherent theoretical picture could emerge along these lines.

This seems to be the case. Anyons and charge and spin fractionization are discussed in
detail [K77] and leads to a precise identification of the delicacies involved with the Kähler gauge
potential of CP2 Kähler form in the sectors of the generalized embedding space corresponding to
various pages of boook like structures assignable to CD and CP2. The basic outcome is that anyons
correspond geometrically to partonic 2-surfaces at the light-like boundaries of CD containing the
tip of CD inside them. This is what gives rise to charge fractionization and also to confinement
like effects since elementary particles in anyonic states cannot as such leak to the other pages of
the generalized embedding space. Ga and Gb invariance of the states imply that fractionization
occurs only at single particle level and total charge is integer valued.

This picture is much more flexible that based on Ga symmetries of CD orbifold since partonic
2-surfaces do not possess any orbifold symmetries in CD sector anymore. In this framework
various astrophysical structures such as spokes and circles would be parts of anyonic 2-surfaces
with complex topology representing quantum geometrically quantum coherence in the scale of say
solar system. Planets would have formed by the condensation of ordinary matter in the vicinity of
the anyonic matter. This would predict stars, planetary system, and even planets to have onion-
like structure consisting of shells at the level of dark matter. Similar conclusion is suggested also
by purely classical model for the final state of star predicting that matter is strongly concentrated
at the surface of the star [K106].

Anyonic view about blackholes

A new element to the model of black hole comes from the vision that black hole horizon as a
light-like 3-surface corresponds to a light-like orbit of light-like partonic 2-surface. This allows two
kinds of black holes. Fermion like black hole would correspond to a deformed CP2 type extremal
which Euclidian signature of metric and topologically condensed at a space-time sheet with a
Minkowskian signature. Boson like black hole would correspond to a wormhole contact connecting
two space-time sheets with Minkowskian signature. Wormhole contact would be a piece deformed
CP2 type extremal possessing two light-like throats defining two black hole horizons very near
to each other. It does not seem absolutely necessary to assume that the interior metric of the
black-hole is realized in another space-time sheet with Minkowskian signature.

Second new element relates to the value of Planck constant. For ~gr = 4GM2 the Planck

length LP (~) =
√
~G equals to Schwartschild radius and Planck mass equals to MP (~) =

√
~/G =
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2M . If the mass of the system is below the ordinary Planck mass: M ≤ mP (~0)/2 =
√

~0/4G,
gravitational Planck constant is smaller than the ordinary Planck constant.

Black hole surface contains ultra dense matter so that perturbation theory is not expected to
converge for the standard value of Planck constant but do so for gravitational Planck constant. If
the phase transition increasing Planck constant is a friendly gesture of Nature making perturbation
theory convergent, one expects that only the black holes for which Planck constant is such that
GM2/4π~ < 1 holds true are formed. Black hole entropy -being proportional to 1/~- is of order
unity so that TGD black holes are not very entropic.

If the partonic 2-surface surrounds the tip of causal diamond CD, the matter at its surface
is in anyonic state with fractional charges. Anyonic black hole can be seen as single gigantic
elementary particle stabilized by fractional quantum numbers of the constituents preventing them
from escaping from the system and transforming to ordinary visible matter. A huge number of
different black holes are possible for given value of ~ since there is infinite variety of pairs (na, nb)
of integers giving rise to same value of ~.

One can imagine that the partonic surface is not exact sphere except for ideal black holes
but contains large number of magnetic flux tubes giving rise to handles. Also a pair of spheres
with different radii can be considered with surfaces of spheres connected by braided flux tubes.
The braiding of these handles can represent information and one can even consider the possibility
that black hole can act as a topological quantum computer. There would be no sharp difference
between the dark parts of black holes and those of ordinary stars. Only the volume containing
the complex flux tube structures associated with the orbits of planets and various objects around
star would become very small for black hole so that the black hole might code for the topological
information of the matter collapsed into it.

3.6.3 Accelerating Periods Of Cosmic Expansion As PhaseTransitions
Increasing The Value Of Planck Constant

There are several pieces of evidence for accelerated expansion, which need not mean cosmological
constant, although this is the interpretation adopted in [E11, E5]. Quantum cosmology predicts
that astrophysical objects do not follow cosmic expansion except in jerk-wise quantum leaps in-
creasing the value of the gravitational Planck constant. This assumption provides explanation for
the apparent cosmological constant. Also planets are predicted to expand in this manner. This
provides a new version of Expanding Earth theory originally postulated to explain the intriguing
findings suggesting that continents have once formed a connected continent covering the entire
surface of Earth but with radius which was one half of the recent one.

The four pieces of evidence for accelerated expansion

1. Supernovas of type Ia

Supernovas of type Ia define standard candles since their luminosity varies in an oscillatory
manner and the period is proportional to the luminosity. The period gives luminosity and from
this the distance can be deduced by using Hubble’s law: d = cz/H0, H0 Hubble’s constant. The
observation was that the farther the supernova was the more dimmer it was as it should have
been. In other words, Hubble’s constant increased with distance and the cosmic expansion was
accelerating rather than decelerating as predicted by the standard matter dominated and radiation
dominated cosmologies.

2. Mass density is critical and 3-space is flat

It is known that the contribution of ordinary and dark matter explaining the constant
velocity of distance stars rotating around galaxy is about 25 per cent from the critical density.
Could it be that total mass density is critical?

From the anisotropy of cosmic microwave background one can deduce that this is the case.
What criticality means geometrically is that 3-space defined as surface with constant value of
cosmic time is flat. This reflects in the spectrum of microwave radiation. The spots representing
small anisotropies in the microwave background temperature is 1 degree and this correspond to
flat 3-space. If one had dark matter instead of dark energy the size of spot would be.5 degrees!
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Thus in a cosmology based on general relativity cosmological constant remains the only
viable option. The situation is different in TGD based quantum cosmology based on sub-manifold
gravity and hierarchy of gravitational Planck constants.

3. The energy density of vacuum is constant in the size scale of big voids

It was observed that the density of dark energy would be constant in the scale of 108 light
years. This length scale corresponds to the size of big voids containing galaxies at their boundaries.

4. Integrated Sachs-Wolf effect

Also so called integrated Integrated Sachs-Wolf effect supports accelerated expansion. Very
slow variations of mass density are considered. These correspond to gravitational potentials. Cos-
mic expansion tends to flatten them but mass accretion to form structures compensates this effect
so that gravitational potentials are unaffected and there is no effect of CMB. Situation changes
if dark matter is replaced with dark energy the accelerated expansion flattening the gravitational
potentials wins the tendency of mass accretion to make them deeper. Hence if photon passes by
an over-dense region, it receives a little energy. Similarly, photon loses energy when passign by an
under-dense region. This effect has been observed.

Accelerated expansion in classical TGD

The minimum TGD based explanation for accelerated expansion involves only the fact that the
embeddings of critical cosmologies correspond to accelerated expansion. A more detailed model
allows to understand why the critical cosmology appears during some periods.

The first observation is that critical cosmologies (flat 3-space) imbeddable to 8-D embedding
space H correspond to negative pressure cosmologies and thus to accelerating expansion. The
negativity of the counterpart of pressure in Einstein tensor is due to the fact that space-time sheet
is forced to be a 4-D surface in 8-D embedding space. This condition is analogous to a force
forcing a particle at the surface of 2-sphere and gives rise to what could be called constraint force.
Gravitation in TGD is sub-manifold gravitation whereas in GRT it is manifold gravitation. This
would be minimum interpretation involving no assumptions about what mechanism gives rise to
the critical periods.

Accelerated expansion and hierarchy of Planck constants

One can go one step further and introduce the hierarchy of Planck constants. The basic difference
between TGD and GRT based cosmologies is that TGD cosmology is quantum cosmology. Smooth
cosmic expansion is replaced by an expansion occurring in discrete jerks corresponding to the
increase of gravitational Planck constant. At space-time level this means the replacement of 8-D
embedding space H with a book like structure containing almost-copies of H with various values
of Planck constant as pages glued together along critical manifold through which space-time sheet
can leak between sectors with different values of ~. This process is the geometric correlate for the
phase transition changing the value of Planck constant.

During these phase transition periods critical cosmology applies and predicts automatically
accelerated expansion. Neither genuine negative pressure due to “quintessence” nor cosmological
constant is needed. Note that quantum criticality replaces inflationary cosmology and predicts
a unique cosmology apart from single parameter. Criticality also explains the fluctuations in
microwave temperature as long range fluctuations characterizing criticality.

Accelerated expansion and flatness of 3-cosmology

Observations 1) and 2) about super-novae and critical cosmology (flat 3-space) are consistent with
this cosmology. In TGD dark energy must be replaced with dark matter because the mass density is
critical during the phase transition. This does not lead to wrong sized spots since it is the increase
of Planck constant which induces the accelerated expansion understandable also as a constraint
force due to embedding to H.
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The size of large voids is the characteristic scale

The TGD based model in its simplest form model assigns the critical periods of expansion to large
voids of size 108 ly. Also larger and smaller regions can express similar periods and dark space-time
sheets are expected to obey same universal “cosmology” apart from a parameter characterizing the
duration of the phase transition. Observation 3) that just this length scale defines the scale below
which dark energy density is constant is consistent with TGD based model.

The basic prediction is jerk-wise cosmic expansion with jerks analogous to quantum transi-
tions between states of atom increasing the size of atom. The discovery of large voids with size of
order 108 ly but age much longer than the age of galactic large voids conforms with this prediction.
One the other hand, it is known that the size of galactic clusters has not remained constant in very
long time scale so that jerk-wise expansion indeed seems to occur.

Do cosmic strings with negative gravitational mass cause the phase transition inducing
accelerated expansion

Quantum classical correspondence is the basic principle of quantum TGD and suggest that the
effective antigravity manifested by accelerated expansion might have some kind of concrete space-
time correlate. A possible correlate is super heavy cosmic string like objects at the center of
large voids which have negative gravitational mass under very general assumptions. The repulsive
gravitational force created by these objects would drive galaxies to the boundaries of large voids.
At some state the pressure of galaxies would become too strong and induce a quantum phase
transition forcing the increase of gravitational Planck constant and expansion of the void taking
place much faster than the outward drift of the galaxies. This process would repeat itself. In the
average sense the cosmic expansion would not be accelerating.

3.6.4 Phase Transition Changing Planck Constant And Expanding Earth
Theory

TGD predicts that cosmic expansion at the level of individual astrophysical systems does not
take place continuously as in classical gravitation but through discrete quantum phase transitions
increasing gravitational Planck constant and thus various quantum length and time scales. The
reason would be that stationary quantum states for dark matter in astrophysical length scales
cannot expand. One would have the analog of atomic physics in cosmic scales. Increases of ~ by a
power of two are favored in these transitions but also other scalings are possible.

This has quite far reaching implications.

1. These periods have a highly unique description in terms of a critical cosmology for the ex-
panding space-time sheet. The expansion is accelerating. The accelerating cosmic expansion
can be assigned to this kind of phase transition in some length scale (TGD Universe is fractal).
There is no need to introduce cosmological constant and dark energy would be actually dark
matter.

2. The recently observed void which has same size of about 108 light years as large voids having
galaxies near their boundaries but having an age which is much higher than that of the large
voids, would represent one example of jerk-wise expansion.

3. This picture applies also to solar system and planets might be perhaps seen as having once
been parts of a more or less connected system, the primordial Sun. The Bohr orbits for inner
and outer planets correspond to gravitational Planck constant which is 5 times larger for
outer planets. This suggests that the space-time sheet of outer planets has suffered a phase
transition increasing the size scale by a factor of 5. Earth can be regarded either as n=1 orbit
for Planck constant associated with outer planets or n= 5 orbit for inner planetary system.
This might have something to do with the very special position of Earth in planetary system.
One could even consider the possibility that both orbits are present as dark matter structures.
The phase transition would also explain why n=1 and n=2 Bohr orbits are absent and one
only n=3, 4, and 5 are present.

4. Also planets should have experienced this kind of phase transitions increasing the radius: the
increase by a factor two would be the simplest situation.
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The obvious question - that I did not ask - is whether this kind of phase transition might
have occurred for Earth and led from a completely granite covered Earth - Pangeia without seas
- to the recent Earth. Neither it did not occur to me to check whether there is any support for a
rapid expansion of Earth during some period of its history.

Situation changed when my son visited me last Saturday and told me about a Youtube
video [F8] by Neal Adams, an American comic book and commercial artist who has also produced
animations for geologists. We looked the amazing video a couple of times and I looked it again
yesterday. The video is very impressive artwork but in the lack of references skeptic probably
cannot avoid the feeling that Neal Adams might use his highly developed animation skills to
cheat you. I found also a polemic article [F1] of Adams but again the references were lacking.
Perhaps the reason of polemic tone was that the concrete animation models make the expanding
Earth hypothesis very convincing but geologists refuse to consider seriously arguments by a layman
without a formal academic background.

The claims of Adams

The basic claims of Adams were following.

1. The radius of Earth has increased during last 185 million years (dinosaurs [I1] appeared for
about 230 million years ago) by about factor 2. If this is assumed all continents have formed
at that time a single super-continent, Pangeia, filling the entire Earth surface rather than only
1/4 of it since the total area would have grown by a factor of 4. The basic argument was that
it is very difficult to imagine Earth with 1/4 of surface containing granite and 3/4 covered by
basalt. If the initial situation was covering by mere granite -as would look natural- it is very
difficult for a believer in thermodynamics to imagine how the granite would have gathered to
a single connected continent.

2. Adams claims that Earth has grown by keeping its density constant, rather than expanded,
so that the mass of Earth has grown linearly with radius. Gravitational acceleration would
have thus doubled and could provide a partial explanation for the disappearance of dinosaurs:
it is difficult to cope in evolving environment when you get slower all the time.

3. Most of the sea floor is very young and the areas covered by the youngest basalt are the largest
ones. This Adams interprets this by saying that the expansion of Earth is accelerating. The
alternative interpretation is that the flow rate of the magma slows down as it recedes from the
ridge where it erupts. The upper bound of 185 million years for the age of sea floor requires
that the expansion period - if it is already over - lasted about 185 million years after which
the flow increasing the area of the sea floor transformed to a convective flow with subduction
so that the area is not increasing anymore.

4. The fact that the continents fit together - not only at the Atlantic side - but also at the
Pacific side gives strong support for the idea that the entire planet was once covered by the
super-continent. After the emergence of subduction theory this evidence as been dismissed.

5. I am not sure whether Adams mentions the following objections [F2]. Subduction only occurs
on the other side of the subduction zone so that the other side should show evidence of being
much older in the case that oceanic subduction zones are in question. This is definitely not
the case. This is explained in plate tectonics as a change of the subduction direction. My
explanation would be that by the symmetry of the situation both oceanic plates bend down
so that this would represent new type of boundary not assumed in the tectonic plate theory.

6. As a master visualizer Adams notices that Africa and South-America do not actually fit
together in absence of expansion unless one assumes that these continents have suffered a
deformation. Continents are not easily deformable stuff. The assumption of expansion implies
a perfect fit of all continents without deformation.

Knowing that the devil is in the details, I must admit that these arguments look rather
convincing to me and what I learned from Wikipedia articles supports this picture.

The critic of Adams of the subduction mechanism

The prevailing tectonic plate theory [F5] has been compared to the Copernican revolution in
geology. The theory explains the young age of the seafloor in terms of the decomposition of the
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litosphere to tectonic plates and the convective flow of magma to which oceanic tectonic plates
participate. The magma emerges from the crests of the mid ocean ridges representing a boundary
of two plates and leads to the expansion of sea floor. The variations of the polarity of Earth’s
magnetic field coded in sea floor provide a strong support for the hypothesis that magma emerges
from the crests.

The flow back to would take place at so called oceanic trenches [F3] near continents which
represent the deepest parts of ocean. This process is known as subduction. In subduction oceanic
tectonic plate bends and penetrates below the continental tectonic plate, the material in the oceanic
plate gets denser and sinks into the magma. In this manner the oceanic tectonic plate suffers
a metamorphosis returning back to the magma: everything which comes from Earth’s interior
returns back. Subduction mechanism explains elegantly formation of mountains [F4] (orogeny),
earth quake zones, and associated zones of volcanic activity [F6] .

Adams is very polemic about the notion of subduction, in particular about the assumption
that it generates steady convective cycle. The basic objections of Adams against subduction are
following.

1. There are not enough subduction zones to allow a steady situation. According to Adams, the
situation resembles that for a flow in a tube which becomes narrower. In a steady situation the
flow should accelerate as it approaches subduction zones rather than slow down. Subduction
zones should be surrounded by large areas of sea floor with constant age. Just the opposite
is suggested by the fact that the youngest portion of sea-floor near the ridges is largest. The
presence of zones at which both ocean plates bend down could improve the situation. Also
jamming of the flow could occur so that the thickness of oceanic plate increases with the
distance from the eruption ridge. Jamming could increase also the density of the oceanic
plate and thus the effectiveness of subduction.

2. There is no clear evidence that subduction has occurred at other planets. The usual defense
is that the presence of sea is essential for the subduction mechanism.

3. One can also wonder what is the mechanism that led to the formation of single super continent
Pangeia covering 1/4 of Earth’s surface. How probable the gathering of all separate continents
to form single cluster is? The later events would suggest that just the opposite should have
occurred from the beginning.

Expanding Earth theories are not new

After I had decided to check the claims of Adams, the first thing that I learned is that Expanding
Earth theory [F2], whose existence Adams actually mentions, is by no means new. There are
actually many of them.

The general reason why these theories were rejected by the main stream community was
the absence of a convincing physical mechanism of expansion or of growth in which the density of
Earth remains constant.

1. 1888 Yarkovski postulated some sort of aether absorbed by Earth and transforming to chemical
elements (TGD version of aether could be dark matter). 1909 Mantovani postulated thermal
expansion but no growth of the Earth’s mass.

2. Paul Dirac’s idea about changing Planck constant led Pascual Jordan in 1964 to a modification
of general relativity predicting slow expansion of planets. The recent measurement of the
gravitational constant imply that the upper bound for the relative change of gravitational
constant is 10 time too small to produce large enough rate of expansion. Also many other
theories have been proposed but they are in general conflict with modern physics.

3. The most modern version of Expanding Earth theory is by Australian geologist Samuel W.
Carey. He calculated that in Cambrian period (about 500 million years ago) all continents
were stuck together and covered the entire Earth. Deep seas began to evolve then.

Summary of TGD based theory of Expanding Earth

TGD based model differs from the tectonic plate model but allows subduction which cannot imply
considerable back-flow of magma. Let us sum up the basic assumptions and implications.
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1. The expansion is or was due to a quantum phase transition increasing the value of gravitational
Planck constant and forced by the cosmic expansion in the average sense.

2. Tectonic plates do not participate to the expansion and therefore new plate must be formed
and the flow of magma from the crests of mid ocean ridges is needed. The decomposition of a
single plate covering the entire planet to plates to create the mid ocean ridges is necessary for
the generation of new tectonic plate. The decomposition into tectonic plates is thus prediction
rather than assumption.

3. The expansion forced the decomposition of Pangeia super-continent covering entire Earth
for about 530 million years ago to split into tectonic plates which began to recede as new
non-expanding tectonic plate was generated at the ridges creating expanding sea floor. The
initiation of the phase transition generated formation of deep seas.

4. The eruption of plasma from the crests of ocean ridges generated oceanic tectonic plates
which did not participate to the expansion by density reduction but by growing in size. This
led to a reduction of density in the interior of the Earth roughly by a factor 1/8. From
the upper bound for the age of the seafloor one can conclude that the period lasted for
about 185 million years after which it transformed to convective flow in which the material
returned back to the Earth interior. Subduction at continent-ocean floor boundaries and
downwards double bending of tectonic plates at the boundaries between two ocean floors were
the mechanisms. Thus tectonic plate theory would be more or less the correct description for
the recent situation.

5. One can consider the possibility that the subducted tectonic plate does not transform to
magma but is fused to the tectonic layer below continent so that it grows to an iceberg
like structure. This need not lead to a loss of the successful predictions of plate tectonics
explaining the generation of mountains, earthquake zones, zones of volcanic activity, etc...

6. From the video of Adams it becomes clear that the tectonic flow is East-West asymmetric in
the sense that the western side is more irregular at large distances from the ocean ridge at
the western side. If the magma rotates with slightly lower velocity than the surface of Earth
(like liquid in a rotating vessel), the erupting magma would rotate slightly slower than the
tectonic plate and asymmetry would be generated.

7. If the planet has not experienced a phase transition increasing the value of Planck constant,
there is no need for the decomposition to tectonic plates and one can understand why there
is no clear evidence for tectonic plates and subduction in other planets. The conductive flow
of magma could occur below this plate and remain invisible.

The biological implications might provide a possibility to test the hypothesis.

1. Great steps of progress in biological evolution are associated with catastrophic geological
events generating new evolutionary pressures forcing new solutions to cope in the new situa-
tion. Cambrian explosion indeed occurred about 530 years ago (the book “Wonderful Life”
of Stephen Gould [I14] explains this revolution in detail) and led to the emergence of multi-
cellular creatures, and generated huge number of new life forms living in seas. Later most of
them suffered extinction: large number of phylae and groups emerged which are not present
nowadays.

Thus Cambrian explosion is completely exceptional as compared to all other dramatic events
in the evolution in the sense that it created something totally new rather than only making
more complex something which already existed. Gould also emphasizes the failure to identify
any great change in the environment as a fundamental puzzle of Cambrian explosion. Cam-
brian explosion is also regarded in many quantum theories of consciousness (including TGD)
as a revolution in the evolution of consciousness: for instance, micro-tubuli emerged at this
time. The periods of expansion might be necessary for the emergence of multicellular life
forms on planets and the fact that they unavoidably occur sooner or later suggests that also
life develops unavoidably.

2. TGD predicts a decrease of the surface gravity by a factor 1/4 during this period. The
reduction of the surface gravity would have naturally led to the emergence of dinosaurs 230
million years ago as a response coming 45 million years after the accelerated expansion ceased.
Other reasons led then to the decline and eventual catastrophic disappearance of the dinosaurs.
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The reduction of gravity might have had some gradually increasing effects on the shape of
organisms also at microscopic level and manifest itself in the evolution of genome during
expansion period.

3. A possibly testable prediction following from angular momentum conservation (ωR2 = constant)
is that the duration of day has increased gradually and was four times shorter during the Cam-
brian era. For instance, genetically coded bio-clocks of simple organisms during the expansion
period could have followed the increase of the length of day with certain lag or failed to follow
it completely. The simplest known circadian clock is that of the prokaryotic cyanobacteria.
Recent research has demonstrated that the circadian clock of Synechococcus elongatus can
be reconstituted in vitro with just the three proteins of their central oscillator. This clock
has been shown to sustain a 22 hour rhythm over several days upon the addition of ATP: the
rhythm is indeed faster than the circadian rhythm. For humans the average innate circadian
rhythm is however 24 hours 11 minutes and thus conforms with the fact that human genome
has evolved much later than the expansion ceased.

4. Scientists have found a fossil of a sea scorpion with size of 2.5 meters [I3], which has lived for
about 10 million years for 400 million years ago in Germany. The gigantic size would conform
nicely with the much smaller value of surface gravity at that time. The finding would conform
nicely with the much smaller value of surface gravity at that time. Also the emergence of
trees could be understood in terms of a gradual growth of the maximum plant size as the
surface gravity was reduced. The fact that the oldest known tree fossil is 385 million years
old [I9] conforms with this picture.

Did intra-terrestrial life burst to the surface of Earth during Cambrian expansion?

The possibility of intra-terrestrial life [?] is one of the craziest TGD inspired ideas about the
evolution of life and it is quite possible that in its strongest form the hypothesis is unrealistic.
One can however try to find what one obtains from the combination of the IT hypothesis with
the idea of pre-Cambrian granite Earth. Could the harsh pre-Cambrian conditions have allowed
only intra-terrestrial multicellular life? Could the Cambrian explosion correspond to the moment
of birth for this life in the very concrete sense that the magma flow brought it into the day-light?

1. Gould emphasizes the mysterious fact that very many life forms of Cambrian explosion looked
like final products of a long evolutionary process. Could the eruption of magma from the
Earth interior have induced a burst of intra-terrestrial life forms to the Earth’s surface? This
might make sense: the life forms living at the bottom of sea do not need direct solar light
so that they could have had intra-terrestrial origin. It is quite possible that Earth’s mantle
contained low temperature water pockets, where the complex life forms might have evolved
in an environment shielded from meteoric bombardment and UV radiation.

2. Sea water is salty. It is often claimed that the average salt concentration inside cell is that of
the primordial sea: I do not know whether this claim can be really justified. If the claim is
true, the cellular salt concentration should reflect the salt concentration of the water inside
the pockets. The water inside water pockets could have been salty due to the diffusion of
the salt from ground but need not have been same as that for the ocean water (higher than
for cell interior and for obvious reasons). Indeed, the water in the underground reservoirs in
arid regions such as Sahara is salty, which is the reason for why agriculture is absent in these
regions. Note also that the cells of marine invertebrates are osmoconformers able to cope
with the changing salinity of the environment so that the Cambrian revolutionaries could
have survived the change in the salt concentration of environment.

3. What applies to Earth should apply also to other similar planets and Mars [E6] is very similar
to Earth. The radius is .533 times that for Earth so that after quantum leap doubling the
radius and thus Schumann frequency scale (7.8 Hz would be the lowest Schumann frequency)
would be essentially same as for Earth now. Mass is.131 times that for Earth so that surface
gravity would be.532 of that for Earth now and would be reduced to.131 meaning quite big
dinosaurs! have learned that Mars probably contains large water reservoirs in it’s interior and
that there is an un-identified source of methane gas usually assigned with the presence of life.
Could it be that Mother Mars is pregnant and just waiting for the great quantum leap when



3.6. Some Applications 161

it starts to expand and gives rise to a birth of multicellular life forms. Or expressing freely
how Bible describes the moment of birth: in the beginning there was only darkness and water
and then God saidLet the light come!

To sum up, TGD would provide only the long sought mechanism of expansion and a possible
connection with the biological evolution. It would be indeed fascinating if Planck constant changing
quantum phase transitions in planetary scale would have profoundly affected the biosphere.

3.6.5 Allais Effect As Evidence For Large Values Of Gravitational Planck
Constant?

Allais effect [E1, E28] is a fascinating gravitational anomaly associated with solar eclipses. It was
discovered originally by M. Allais, a Nobelist in the field of economy, and has been reproduced in
several experiments but not as a rule. The experimental arrangement uses so called paraconical
pendulum, which differs from the Foucault pendulum in that the oscillation plane of the pendulum
can rotate in certain limits so that the motion occurs effectively at the surface of sphere.

Experimental findings

Consider first a brief summary of the findings of Allais and others [E28].

a) In the ideal situation (that is in the absence of any other forces than gravitation of
Earth) paraconical pendulum should behave like a Foucault pendulum. The oscillation plane of
the paraconical pendulum however begins to rotate.

b) Allais concludes from his experimental studies that the orbital plane approach always
asymptotically to a limiting plane and the effect is only particularly spectacular during the eclipse.
During solar eclipse the limiting plane contains the line connecting Earth, Moon, and Sun. Allais
explains this in terms of what he calls the anisotropy of space.

c) Some experiments carried out during eclipse have reproduced the findings of Allais, some
experiments not. In the experiment carried out by Jeverdan and collaborators in Romania it was
found that the period of oscillation of the pendulum decreases by ∆f/f ' 5×10−4 [E1, E26] which
happens to correspond to the constant v0 = 2−11 appearing in the formula of the gravitational
Planck constant. It must be however emphasized that the overall magnitude of ∆f/f varies by
five orders of magnitude. Even the sign of ∆f/f varies from experiment to experiment.

d) There is also quite recent finding by Popescu and Olenici, which they interpret as a
quantization of the plane of oscillation of paraconical oscillator during solar eclipse [E31].

TGD based models for Allais effect

I have already earlier proposed an explanation of the effect in terms of classical Z0 force [K14].
If the Z0 charge to mass ratio of pendulum varies and if Earth and Moon are Z0 conductors,
the resulting model is quite flexible and one might hope it could explain the high variation of the
experimental results.

The rapid variation of the effect during the eclipse is however a problem for this approach
and suggests that gravitational screening or some more general interference effect might be present.
Gravitational screening alone cannot however explain Allais effect.

A model based on the idea that gravitational interaction is mediated by topological light
rays (MEs) and that gravitons correspond to a gigantic value of the gravitational Planck constant
however explains the Allais effect as an interference effect made possible by macroscopic quantum
coherence in astrophysical length scales. Equivalence Principle fixes the model to a high degree and
one ends up with an explicit formula for the anomalous gravitational acceleration and the general
order of magnitude and the large variation of the frequency change as being due to the variation of
the distance ratio rS,P /rM,P (S,M , and P refer to Sun, Moon, and pendulum respectively). One
can say that the pendulum acts as an interferometer.
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3.6.6 Applications To Elementary Particle Physics, Nuclear Physics,
And Condensed Matter Physics

The hierarchy of Planck constants could have profound implications for even elementary particle
physics since the strong constraints on the existence of new light particles coming from the decay
widths of intermediate gauge bosons can be circumvented because direct decays to dark matter
are not possible. On the other hand, if light scaled versions of elementary particles exist they must
be dark since otherwise their existence would be visible in these decay widths. The constraints on
the existence of dark nuclei and dark condensed matter are much milder. Cold fusion and some
other anomalies of nuclear and condensed matter physics - in particular the anomalies of water-
might have elegant explanation in terms of dark nuclei.

Leptohadron hypothesis

TGD suggests strongly the existence of lepto-hadron [K104]. Lepto-hadrons are bound states of
color excited leptons and the anomalous production of e+e− pairs in heavy ion collisions finds a
nice explanation as resulting from the decays of lepto-hadrons with basic condensate level k = 127
and having typical mass scale of one MeV . The recent indications on the existence of a new
fermion with quantum numbers of muon neutrino and the anomaly observed in the decay of
orto-positronium give further support for the lepto-hadron hypothesis. There is also evidence for
anomalous production of low energy photons and e+e− pairs in hadronic collisions.

The identification of lepto-hadrons as a particular instance in the predicted hierarchy of dark
matters interacting directly only via graviton exchange allows to circumvent the lethal counter
arguments against the lepto-hadron hypothesis (Z0 decay width and production of colored lepton
jets in e+e− annihilation) even without assumption about the loss of asymptotic freedom.

PCAC hypothesis and its sigma model realization lead to a model containing only the
coupling of the lepto-pion to the axial vector current as a free parameter. The prediction for e+e−

production cross section is of correct order of magnitude only provided one assumes that lepto-
pions (or electro-pions) decay to lepto-nucleon pair e+

exe
−
ex first and that lepto-nucleons, having

quantum numbers of electron and having mass only slightly larger than electron mass, decay to
lepton and photon. The peculiar production characteristics are correctly predicted. There is some
evidence that the resonances decay to a final state containing n > 2 particle and the experimental
demonstration that lepto-nucleon pairs are indeed in question, would be a breakthrough for TGD.

During 18 years after the first published version of the model also evidence for colored µ has
emerged [C49]. Towards the end of 2008 CDF anomaly [C15] gave a strong support for the colored
excitation of τ . The lifetime of the light long lived state identified as a charged τ -pion comes out
correctly and the identification of the reported 3 new particles as p-adically scaled up variants of
neutral τ -pion predicts their masses correctly. The observed muon jets can be understood in terms
of the special reaction kinematics for the decays of neutral τ -pion to 3 τ -pions with mass scale
smaller by a factor 1/2 and therefore almost at rest. A spectrum of new particles is predicted.
The discussion of CDF anomaly [K104] led to a modification and generalization of the original
model for lepto-pion production and the predicted production cross section is consistent with the
experimental estimate.

Cold fusion, plasma electrolysis, and burning salt water

The article of Kanarev and Mizuno [D16] reports findings supporting the occurrence of cold fusion
in NaOH and KOH hydrolysis. The situation is different from standard cold fusion where heavy
water D2O is used instead of H2O.

In nuclear string model nucleon are connected by color bonds representing the color magnetic
body of nucleus and having length considerably longer than nuclear size. One can consider also dark
nuclei for which the scale of nucleus is of atomic size [L3], [L3]. In this framework can understand
the cold fusion reactions reported by Mizuno as nuclear reactions in which part of what I call dark
proton string having negatively charged color bonds (essentially a zoomed up variant of ordinary
nucleus with large Planck constant) suffers a phase transition to ordinary matter and experiences
ordinary strong interactions with the nuclei at the catode. In the simplest model the final state
would contain only ordinary nuclear matter. The generation of plasma in plasma electrolysis can
be seen as a process analogous to the positive feedback loop in ordinary nuclear reactions.
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Rather encouragingly, the model allows to understand also deuterium cold fusion and leads
to a solution of several other anomalies.

1. The so called lithium problem of cosmology (the observed abundance of lithium is by a factor
2.5 lower than predicted by standard cosmology [E16] ) can be resolved if lithium nuclei
transform partially to dark lithium nuclei.

2. The so called H1.5O anomaly of water [D17, D14, D19, D10] can be understood if 1/4 of
protons of water forms dark lithium nuclei or heavier dark nuclei formed as sequences of these
just as ordinary nuclei are constructed as sequences of 4He and lighter nuclei in nuclear string
model. The results force to consider the possibility that nuclear isotopes unstable as ordinary
matter can be stable dark matter.

3. The mysterious behavior burning salt water [D1] can be also understood in the same frame-
work.

4. The model explains the nuclear transmutations observed in Kanarev’s plasma electrolysis.
This kind of transmutations have been reported also in living matter long time ago [C13, C66].
Intriguingly, several biologically important ions belong to the reaction products in the case
of NaOH electrolysis. This raises the question whether cold nuclear reactions occur in living
matter and are responsible for generation of biologically most important ions.

3.6.7 Applications To Biology And Neuroscience

The notion of field or magnetic body regarded as carrier of dark matter with large Planck constant
and quantum controller of ordinary matter is the basic idea in the TGD inspired model of living
matter.

Do molecular symmetries in living matter relate to non-standard values of Planck
constant?

Water is exceptional element and the possibility that Ga as symmetry of singular factor space of
CD in water and living matter is intriguing.

1. There is evidence for an icosahedral clustering in [D21] [D18]. Synaptic contacts contain
clathrin molecules which are truncated icosahedrons and form lattice structures and are spec-
ulated to be involved with quantum computation like activities possibly performed by micro-
tubules. Many viruses have the shape of icosahedron. One can ask whether these structures
could be formed around templates formed by dark matter corresponding to 120-fold covering
of CP2 points by CD points and having ~(CP2) = 5~0 perhaps corresponding color confined
light dark quarks. Of course, a similar covering of CD points by CP2 could be involved.

2. It should be noticed that single nucleotide in DNA double strands corresponds to a twist of
2π/10 per single DNA triplet so that 10 DNA strands corresponding to length L(151) = 10
nm (cell membrane thickness) correspond to 3× 2π twist. This could be perhaps interpreted
as evidence for group C10 perhaps making possible quantum computation at the level of DNA.

3. What makes realization of Ga as a symmetry of singular factor space of CD is that the
biomolecules most relevant for the functioning of brain (DNA nucleotides, amino-acids acting
as neurotransmitters, molecules having hallucinogenic effects) contain aromatic 5- and 6-
cycles.

These observations led to an identification of the formula for Planck constant (two alterna-
tives were allowed by the condition that Planck constant is algebraic homomorphism) which was
not consistent with the model for dark gravitons. If one accepts the proposed formula of Planck
constant, the dark space-time sheets with large Planck constant correspond to factor spaces of
both ĈD\M2 and of CP2\S2

I . This identification is of course possible and it remains to be seen
whether it leads to any problems. For gravitational space-time sheets only coverings of both CD
and CP2 make sense and the covering group Ga has very large order and does not correspond to
geometric symmetries analogous to those of molecules.
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High Tc super-conductivity in living matter

The model for high Tc super-conductivity realized as quantum critical phenomenon predicts the
basic scales of cell membrane [K21] from energy minimization and p-adic length scale hypothesis.
This leads to the vision that cell membrane and possibly also its scaled up dark fractal variants
define Josephson junctions generating Josephson radiation communicating information about the
nearby environment to the magnetic body.

Any model of high Tc superconductivity should explain various strange features of high Tc
superconductors. One should understand the high value of Tc, the ambivalent character of high
Tc super conductors suggesting both BCS type Cooper pairs and exotic Cooper pairs with non-
vanishing spin, the existence of pseudogap temperature Tc1 > Tc and scaling law for resistance
for Tc ≤ T < Tc1 , the role of fluctuating charged stripes which are anti-ferromagnetic defects of a
Mott insulator, the existence of a critical doping, etc... [D13, D5].

There are reasons to believe that high Tc super-conductors correspond to quantum criticality
in which at least two (cusp catastrophe as in van der Waals model), or possibly three or even more
phases, are competing. A possible analogy is provided by the triple critical point for water vapor,
liquid phase and ice coexist. Instead of long range thermal fluctuations long range quantum
fluctuations manifesting themselves as fluctuating stripes are present [D13].

The TGD based model for high Tc super-conductivity [K21] relies on the notions of quantum
criticality, general ideas of catastrophe theory, dynamical Planck constant, and many-sheeted space-
time. The 4-dimensional spin glass character of space-time dynamics deriving from the vacuum
degeneracy of the Kähler action defining the basic variational principle would realize space-time
correlates for quantum fluctuations.

1. Two kinds of super-conductivities and ordinary non-super-conducting phase would be com-
peting at quantum criticality at Tc and above it only one super-conducting phase and ordinary
conducting phase located at stripes representing ferromagnetic defects making possible for-
mation of S = 1 Cooper pairs.

2. The first super-conductivity would be based on exotic Cooper pairs of large ~ dark electrons
with ~ = 211~0 and able to have spin S = 1, angular momentum L = 2, and total angular
momentum J = 2. Second type of super-conductivity would be based on BCS type Cooper
pairs having vanishing spin and bound by phonon interaction. Also they have large ~ so that
gap energy and critical temperature are scaled up in the same proportion. The exotic Cooper
pairs are possible below the pseudo gap temperature Tc1 > Tc but are unstable against decay
to BCS type Cooper pairs which above Tc are unstable against a further decay to conduction
electrons flowing along stripes. This would reduce the exotic super-conductivity to finite
conductivity obeying the observed scaling law for resistance.

3. The mere assumption that electrons of exotic Cooper pairs feed their electric flux to larger
space-time sheet via two elementary particle sized wormhole contacts rather than only one
wormhole contacts implies that the throats of wormhole contacts defining analogs of Higgs field
must carry quantum numbers of quark and anti-quark. This inspires the idea that cylindrical
space-time sheets, the radius of which turns out to be about about 5 nm, representing zoomed
up dark electrons of Cooper pair with Planck constant ~ = 211~0 are colored and bound by
a scaled up variant of color force to form a color confined state. Formation of Cooper pairs
would have nothing to do with direct interactions between electrons. Thus high Tc super-
conductivity could be seen as a first indication for the presence of scaled up variant of QCD
in mesoscopic length scales.

This picture leads to a concrete model for high Tc superconductors as quantum critical
superconductors [K21]. p-Adic length scale hypothesis stating that preferred p-adic primes p ' 2k,
k integer, with primes (in particular Mersenne primes) preferred, makes the model quantitative.

1. An unexpected prediction is that coherence length ξ is actually ~eff/~0 = 211 times longer
than the coherence length 5-10 Angstroms deduced theoretically from gap energy using con-
ventional theory and varies in the range 1− 5 µm, the cell nucleus length scale. Hence type
I super-conductor would be in question with stripes as defects of anti-ferromagnetic Mott
insulator serving as duals for the magnetic defects of type I super-conductor in nearly critical
magnetic field.
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2. At quantitative level the model reproduces correctly the four poorly understood photon ab-
sorption lines and allows to understand the critical doping ratio from basic principles.

3. The current carrying structures have structure locally similar to that of axon including the
double layered structure of cell membrane and also the size scales are predicted to be same.
One of the characteristic absorption lines has energy of.05 eV which corresponds to the Joseph-
son energy for neuronal membrane for activation potential V = 50 mV. Hence the idea that
axons are high Tc superconductors is highly suggestive. Dark matter hierarchy coming in
powers ~/~0 = 2k11 suggests hierarchy of Josephson junctions needed in TGD based model
of EEG [K38].

Magnetic body as a sensory perceiver and intentional agent

The hypothesis that dark magnetic body serves as an intentional agent using biological body as a
motor instrument and sensory receptor is consistent with Libet’s findings about strange time delays
of consciousness. Magnetic body would carry cyclotron Bose-Einstein condensates of various ions.
Magnetic body must be able to perform motor control and receive sensory input from biological
body.

Cell membrane would be a natural sensor providing information about cell interior and
exterior to the magnetic body and dark photons at appropriate frequency range would naturally
communicate this information. The strange quantitative co-incidences with the physics of cell
membrane and high Tc super-conductivity support the idea that Josephson radiation generated by
Josephson currents of dark electrons through cell membrane is responsible for this communication
[K38].

Also fractally scaled up versions of cell membrane at higher levels of dark matter hierarchy
(in particular those corresponding to powers n = 2k11) are possible and the model for EEG indeed
relies on this hypothesis. The thickness for the fractal counterpart of cell membrane thickness
would be 244 fold and of order of depth of ionosphere! Although this looks weird it is completely
consistent with the notion of magnetic body as an intentional agent.

Motor control would be most naturally performed via genome: this is achieved if flux sheets
traverse through DNA strands. Flux quantization for large values of Planck constant requires
rather large widths for the flux sheets. If flux sheet contains sequences of genomes like the page
of book contains lines of text, a coherent gene expression becomes possible at level of organs and
even populations and one can speak about super- and hyper-genomes. Introns might relate to
the collective gene expression possibly realized electromagnetically rather than only chemically
[K21, K22].

Dark cyclotron radiation with photon energy above thermal energy could be used for co-
ordination purposes at least. The predicted hierarchy of copies of standard model physics leads
to ask whether also dark copies of electro-weak gauge bosons and gluons could be important in
living matter. As already mentioned, dark W bosons could make possible charge entanglement
and non-local quantum bio-control by inducing voltage differences and thus ionic currents in living
matter.

The identification of plasmoids as rotating magnetic flux structures carrying dark ions and
electrons as primitive life forms is natural in this framework. There exists experimental support
for this identification [I12] but the main objection is the high temperature involved: this objection
could be circumvented if large ~ phase is involved. A model for the pre-biotic evolution relying
also on this idea is discussed in [?].

At the level of biology there are now several concrete applications leading to a rich spectrum
of predictions. Magnetic flux quanta would carry charged particles with large Planck constant.

1. The shortening of the flux tubes connecting biomolecules in a phase transition reducing Planck
constant could be a basic mechanism of bio-catalysis and explain the mysterious ability of
biomolecules to find each other. Similar process in time direction could explain basic aspects
of symbolic memories as scaled down representations of actual events.

2. The strange behavior of cell membrane suggests that a dominating portion of important bi-
ological ions are actually dark ions at magnetic flux tubes so that ionic pumps and channels
are needed only for visible ions. This leads to a model of nerve pulse explaining its unex-
pected thermodynamical properties with basic properties of Josephson currents making it
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un-necessary to use pumps to bring ions back after the pulse. The model predicts automat-
ically EEG as Josephson radiation and explains the synchrony of both kHz radiation and of
EEG.

3. The DC currents of Becker could be accompanied by Josephson currents running along flux
tubes making possible dissipation free energy transfer and quantum control over long distances
and meridians of chinese medicine could correspond to these flux tubes.

4. The model of DNA as topological quantum computer assumes that nucleotides and lipids
are connected by ordinary or “wormhole” magnetic flux tubes acting as strands of braid and
carrying dark matter with large Planck constant. The model leads to a new vision about
TGD in which the assignment of nucleotides to quarks allows to understood basic regularities
of DNA not understood from biochemistry.

5. Each physical system corresponds to an onion-like hierarchy of field bodies characterized
by p-adic primes and value of Planck constant. The highest value of Planck constant in
this hierarchy provides kind of intelligence quotient characterizing the evolutionary level of
the system since the time scale of planned action and memory correspond to the temporal
distance between tips of corresponding causal diamond (CD). Also the spatial size of the
system correlates with the Planck constant. This suggests that great evolutionary leaps
correspond to the increase of Planck constant for the highest level of hierarchy of personal
magnetic bodies. For instance, neurons would have much more evolved magnetic bodies than
ordinary cells.

6. At the level of DNA this vision leads to an idea about hierarchy of genomes. Magnetic flux
sheets traversing DNA strands provide a natural mechanism for magnetic body to control
the behavior of biological body by controlling gene expression. The quantization of magnetic
flux states that magnetic flux is proportional to ~ and thus means that the larger the value
of ~ is the larger the width of the flux sheet is. For larger values of ~ single genome is not
enough to satisfy this condition. This leads to the idea that the genomes of organs, organism,
and even population, can organize like lines of text at the magnetic flux sheets and form in
this manner a hierarchy of genomes responsible for a coherent gene expression at level of cell,
organ, organism and population and perhaps even entire biosphere. This would also provide
a mechanism by which collective consciousness would use its biological body - biosphere.

DNA as topological quantum computer

I ended up with the recent model of TQC in bottom-up manner and this representation is followed
also in the text. The model which looks the most plausible one relies on two specific ideas.

1. Sharing of labor means conjugate DNA would do TQC and DNA would “print” the outcome
of TQC in terms of mRNA yielding amino-acids in the case of exons. RNA could result also
in the case of introns but not always. The experience about computers and the general vision
provided by TGD suggests that introns could express the outcome of TQC also electromagnet-
ically in terms of standardized field patterns as Gariaev’s findings suggest [I5]. Also speech
would be a form of gene expression. The quantum states braid (in zero energy ontology)
would entangle with characteristic gene expressions. This argument turned out to be based
on a slightly wrong belief about DNA: later I learned that both strand and its conjugate are
transcribed but in different directions. The symmetry breaking in the case of transcription
is only local which is also visible in DNA replication as symmetry breaking between leading
and lagging strand. Thus the idea about entire leading strand devoted to printing and second
strand to TQC must be weakened appropriately.

2. The manipulation of braid strands transversal to DNA must take place at 2-D surface. Here
dancing metaphor for topological quantum computation [C26] generalizes. The ends of the
space-like braid are like dancers whose feet are connected by thin threads to a wall so that
the dancing pattern entangles the threads. Dancing pattern defines both the time-like braid,
the running of classical TQC program and its representation as a dynamical pattern. The
space-like braid defined by the entangled threads represents memory storage so that TQC
program is automatically written to memory as the braiding of the threads during the TQC.
The inner membrane of the nuclear envelope and cell membrane with entire endoplasmic
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reticulum included are good candidates for dancing halls. The 2-surfaces containing the ends
of the hydrophobic ends of lipids could be the parquets and lipids the dancers. This picture
seems to make sense.

One ends up to the model also in top-down manner.

1. Darwinian selection for which standard theory of self-organization [B5] provides a model,
should apply also to TQC programs. TQC programs should correspond to asymptotic self-
organization patterns selected by dissipation in the presence of metabolic energy feed. The
spatial and temporal pattern of the metabolic energy feed characterizes the TQC program -
or equivalently - sub-program call.

2. Since braiding characterizes the TQC program, the self-organization pattern should corre-
spond to a hydrodynamical flow or a pattern of magnetic field inducing the braiding. Braid
strands must correspond to magnetic flux tubes of the magnetic body of DNA. If each nu-
cleotide is transversal magnetic dipole it gives rise to transversal flux tubes, which can also
connect to the genome of another cell.

3. The output of TQC sub-program is probability distribution for the outcomes of state function
reduction so that the sub-program must be repeated very many times. It is represented as
four-dimensional patterns for various rates (chemical rates, nerve pulse patterns, EEG power
distributions, ...) having also identification as temporal densities of zero energy states in var-
ious scales. By the fractality of TGD Universe there is a hierarchy of TQC’s corresponding to
p-adic and dark matter hierarchies. Programs (space-time sheets defining coherence regions)
call programs in shorter scale. If the self-organizing system has a periodic behavior each
TQC module defines a large number of almost copies of itself asymptotically. Generalized
EEG could naturally define this periodic pattern and each period of EEG would correspond
to an initiation and halting of TQC. This brings in mind the periodically occurring sol-gel
phase transition inside cell near the cell membrane.

4. Fluid flow must induce the braiding which requires that the ends of braid strands must be
anchored to the fluid flow. Recalling that lipid mono-layers of the cell membrane are liquid
crystals and lipids of interior mono-layer have hydrophilic ends pointing towards cell interior,
it is easy to guess that DNA nucleotides are connected to lipids by magnetic flux tubes and
hydrophilic lipid ends are stuck to the flow.

5. The topology of the braid traversing cell membrane cannot affected by the hydrodynamical
flow. Hence braid strands must be split during TQC. This also induces the desired magnetic
isolation from the environment. Halting of TQC reconnects them and make possible the
communication of the outcome of TQC.

6. There are several problems related to the details of the realization. How nucleotides A, T,
C, G are coded to strand color and what this color corresponds to? The prediction that
wormhole contacts carrying quark and anti-quark at their ends appear in all length scales in
TGD Universe resolves the problem. How to split the braid strands in a controlled manner?
High Tc super conductivity provides a partial understanding of the situation: braid strand
can be split only if the supra current flowing through it vanishes. From the proportionality
of Josephson current to the quantity sin(

∫
2eV dt) it follows that a suitable voltage pulse V

induces DC supra-current and its negative cancels it. The conformation of the lipid controls
whether it it can follow the flow or not. How magnetic flux tubes can be cut without breaking
the conservation of the magnetic flux? The notion of wormhole magnetic field saves the
situation now: after the splitting the flux returns back along the second space-time sheet of
wormhole magnetic field.

To sum up, it seems that essentially all new physics involved with TGD based view about
quantum biology enter to the model in crucial manner.

Quantum model of nerve pulse and EEG

In this article a unified model of nerve pulse and EEG is discussed.

1. In TGD Universe the function of EEG and its variants is to make possible communications
from the cell membrane to the magnetic body and the control of the biological body by the
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magnetic body via magnetic flux sheets traversing DNA by inducing gene expression. This
leads to the notions of super- and hyper-genome predicting coherent gene expression at level
of organs and population.

2. The assignment the predicted ranged classical weak and color gauge fields to dark matter
hierarchy was a crucial step in the evolution of the model, and led among other things to a
model of high Tc superconductivity predicting the basic scales of cell, and also to a general-
ization of EXG to a hierarchy of ZXGs, WXGs, and GXGs corresponding to Z0, W bosons
and gluons.

3. Dark matter hierarchy and the associated hierarchy of Planck constants plays a key role in
the model. For instance, in the case of EEG Planck constant must be so large that the
energies of dark EEG photons are above thermal energy at physiological temperatures. The
assumption that a considerable fraction of the ionic currents through the cell membrane are
dark currents flowing along the magnetic flux tubes explains the strange findings about ionic
currents through cell membrane. Concerning the model of nerve pulse generation, the newest
input comes from the model of DNA as a topological quantum computer and experimental
findings challenging Hodgkin-Huxley model as even approximate description of the situation.

4. The identification of the cell interior as gel phase containing most of water as structured
water around cytoskeleton - rather than water containing bio-molecules as solutes as assumed
in Hodkin-Huxley model - allows to understand many of the anomalous behaviors associated
with the cell membrane and also the different densities of ions in the interior and exterior
of cell at qualitative level. The proposal of Pollack that basic biological functions involve
phase transitions of gel phase generalizes in TGD framework to a proposal that these phase
transitions are induced by quantum phase transitions changing the value of Planck constant.
In particular, gel-sol phase transition for the peripheral cytoskeleton induced by the primary
wave would accompany nerve pulse propagation. This view about nerve pulse is not consistent
with Hodkin-Huxley model.

The model leads to the following picture about nerve pulse and EEG.

1. The system would consist of two superconductors- microtubule space-time sheet and the
space-time sheet in cell exterior- connected by Josephson junctions represented by magnetic
flux tubes defining also braiding in the model of TQC. The phase difference between two
super-conductors would obey Sine-Gordon equation allowing both standing and propagating
solitonic solutions. A sequence of rotating gravitational penduli coupled to each other would
be the mechanical analog for the system. Soliton sequences having as a mechanical analog
penduli rotating with constant velocity but with a constant phase difference between them
would generate moving kHz synchronous oscillation. Periodic boundary conditions at the
ends of the axon rather than chemistry determine the propagation velocities of kHz waves
and kHz synchrony is an automatic consequence since the times taken by the pulses to travel
along the axon are multiples of same time unit. Also moving oscillations in EEG range can
be considered and would require larger value of Planck constant in accordance with vision
about evolution as gradual increase of Planck constant.

2. During nerve pulse one pendulum would be kicked so that it would start to oscillate instead
of rotating and this oscillation pattern would move with the velocity of kHz soliton sequence.
The velocity of kHz wave and nerve pulse is fixed by periodic boundary conditions at the
ends of the axon implying that the time spent by the nerve pulse in traveling along axon is
always a multiple of the same unit: this implies kHz synchrony. The model predicts the value
of Planck constant for the magnetic flux tubes associated with Josephson junctions and the
predicted force caused by the ionic Josephson currents is of correct order of magnitude for
reasonable values of the densities of ions. The model predicts kHz em radiation as Josephson
radiation generated by moving soliton sequences. EEG would also correspond to Josephson
radiation: it could be generated either by moving or standing soliton sequences (latter are
naturally assignable to neuronal cell bodies for which ~ should be correspondingly larger):
synchrony is predicted also now.
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3.7 Appendix

3.7.1 About Inclusions Of Hyper-Finite Factors Of Type Ii1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[A67]. It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [A67] for inclusions withM : N ≤ 4 (with A
(1)
1 excluded) there exists a countable

infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [A67].
For any amenable group G the inclusion is also unique apart from outer automorphism [A50].

Thus it seems that not only Jones inclusions but also more general inclusions are unique
apart from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines
a sub-factor of type II1 factor [A67]. The construction of Jones leads to a standard inclusion
sequence N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having
visualization as an addition of braid strand in braid picture. This hierarchy exists for all factors of
type II. At the limitM∞ = ∪iMi the braid sequence extends from −∞ to∞. Inclusion hierarchy
can be understood as a hierarchy of Connes tensor powersM⊗NM....⊗NM. Also the ordinary
tensor powers of hyper-finite factors of type II1 (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For
a finite index an infinite inclusion hierarchy of factors results with the same value of index. σ
is said to be basic if it can be extended to *-endomorphisms from M1 to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [A67].

1. Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist
for all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [A67]. They are defined for an
algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r
appears in the relations for the generators of the algebra given by eiejei = λei, |i−j| = 1. N ⊂M
is identified as the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by pro-
jectors can be continued not only to −∞ but that also the dropping of arbitrary number of strands
is possible [A67]. It would seem that ADE property of the principal graph meaning single root
length codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′ ∩P = P ′ ∩P = C.
For r ≥ 4 one has dim(Q′ ∩ P ) = 2. The operators commuting with Q contain besides identify
operator of Q also the identify operator of P . Q would contain a single finite-dimensional matrix
factor less than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The
difference between genuine symmetries of quantum TGD and symmetries which can be mimicked by
TGD could relate to the irreducibility for r < 4 and raise these inclusions in a unique position. This
difference could partially justify the hypothesis that only the groups Ga ×Gb ⊂ SU(2)× SU(2) ⊂
SL(2, C)× SU(3) define orbifold coverings of H± = CD × CP2 → H±/Ga ×Gb.

2. Wasserman’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2)
for these inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2)
and is given by (1⊗M)G ⊂ (M2(C)×M)G. According to [A67] Jones inclusions are irreducible
also for r = 4. The definition of Wasserman inclusion for r = 4 seems however to imply that
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the identity matrices of both MG and (M(2, C)⊗M)G commute with MG so that the inclusion
should be reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the
elements of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G
acting as automorphisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N =MG ⊂M with G acting non-trivially inM/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to
the orbifold S2/G. The coverings H± → H±/Ga×Gb should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator set
of affine algebra in the McKay construction. The physical interpretation of the fact that almost

all ADE type extended diagrams (D
(1)
n must have n ≥ 4) are allowed for r = 4 inclusions whereas

D2n+1 and E6 are not allowed for r < 4, remains open.

3.7.2 Generalization From Su(2) To Arbitrary Compact Group

The inclusions with indexM : N < 4 have one-dimensional relative commutant N ′∪M. The most
obvious conjecture thatM : N ≥ 4 corresponds to a non-trivial relative commutant is wrong. The
index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [A55] studied the representations of Hecke algebras Hn(q) of type An
obtained from the defining relations of symmetric group by the replacement e2

i = (q−1)ei+q. Hn is
isomorphic to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible
representations of Hn(q) reduce trivially to Young’s representations of symmetric groups. For
primitive roots of unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to
inclusions for which index corresponds to a quantum dimension of any irreducible representation
of SU(k), k ≥ 2. For SU(2) also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking
double commutant of both H∞ and the resulting algebra. The relative commutant corresponds
to Hm(q). By reducing by the minimal projection to relative commutant one obtains an inclusion
with a trivial relative commutant. These inclusions are analogous to a discrete states superposed
in continuum. Thus the results of Jones generalize from the fundamental representation of SU(2)
to all representations of all groups SU(k), and in fact to those of general compact groups as it
turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (3.7.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing
the representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying
the condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the embedding space in such a
way that only cyclic group Zn appears in the covering of M4 → M4/Ga or CP2 → CP2/Gb
factor. Be as it may, it seems that quantum representations of any compact Lie group can be
realized using the generalization of the embedding space. In the case of SU(2) the interpretation
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of higher-dimensional quantum representations in terms of Connes tensor products of 2-dimensional
fundamental representations is highly suggestive.

The groups SO(3, 1)× SU(3) and SL(2, C)× U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory implies
them. Also the general pattern for inclusions selects these groups, and one can say that the
condition that all possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
statistics cannot “emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the
action on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of
freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial
action at the embedding space level so that Z3 statistics would be in question.



Chapter 4

Does M8 −H duality reduce
classical TGD to octonionic
algebraic geometry?: Part I

4.1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is
an exact part of quantum physics in TGD and during years I have ended up with several proposals
for the general solution of classical field equations (classical TGD is an exact part of quantum
TGD).

4.1.1 Various approaches to classical TGD

World of classical worlds

The first approach is based on the geometry of the “world of classical worlds” (WCW) [K52, K31,
K85].

1. The study of classical field equations led rather early to the realization that preferred extremals
for the twistor lift of Kähler action with Minkowskian signature of induced metric define a
slicing of space-time surfaces defined by 2-D string world sheets and partonic two-surfaces
locally orthogonal to them. The interpretation is in terms of position dependent light-like
momentum vector and polarization vector defining the local decompositions M2(x) × E2(x)
of tangent space integrating to a foliation by partonic 2-surfaces and string world sheets. I
christened this structure Hamilton-Jacobi structure. Its Euclidian counterpart is complex
structure in Euclidian regions of space-time surface.

2. The formulation of quantum TGD in terms of spinor fields in WCW [K113] leads to the con-
clusion that WCW must have Kähler geometry [K52, K31] and has it only if it has maximal
group of isometries identified as symplectic transformations of δM4

± × CP2, where δM4
± de-

notes light cone boundary two which upper/lower boundary of causal diamond (CD) belongs.
Symplectic Lie algebra extends naturally to supersymplectic algebra (SSA).

3. Space-time surfaces would be preferred extremals of twistor lift of Kähler action [K87] and
the conditions realizing strong form of holography (SH) would state that sub-algebra of SSA
isomorphic with it and its commutator with SSA give rise to vanishing Noether charges and
these charges annihilate physical states or create zero norm states from them. One should
solve these conditions.

4. The dynamics involves also fermions. Induced spinor fields are located inside space-time sur-
face but for some yet not completely understood reason only the information about spinor
at 2-D string world sheets is needed in the construction of scattering amplitudes. This dy-
namics would be 2-dimensional. The construction of twistor amplitudes even suggests that

172
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it is 1-dimensional in the sense that 1-D light-like curves at light-like partonic orbits defin-
ing boundaries of Minkowskian and Euclidian regions determines the scattering amplitudes.
String world sheets are however needed only as correlates for entanglement between fermions
at different partonic orbits.

The 2-D character of fermionic dynamics conforms with the strong form of holography (SH)
but how the string world sheets and partonic 2-surfaces are selected from Hamilton-Jacobi
slicing? Electromagnetic neutrality could select string worlds sheets but one can actually
always find a gauge in which the induced classical electroweak field at these surfaces is purely
electromagnetic.

Twistor lift of TGD

Second approach to preferred extremals is based on TGD version [K100, L30, K13, K87] of twistor
Grassmann approach [B21, B43, B26].

1. The twistor lift of TGD leads to a proposal that space-time surfaces can be represented as
sections in their 6-D twistor spaces identified as twistor bundles in the product T (H) =
T (M4)× T (CP2) of 6-D twistor spaces of M4 and CP2. Twistor structure would be induced
from T (H). Kähler action can be lifted to the level of twistor spaces only for M4 × CP2

since only for these spaces twistor space allows Kähler structure [A57]. Twistors were origi-
nally introduced by Penrose with the motivation that one could apply algebraic geometry in
Minkowskian signature. The bundle property is extremely powerful and should be consistent
with the algebraic geometrization at the level of M8

c . The challenge is to formulate the twistor
lift at the level of M8.

2. The twistor lift of Kähler action contains also volume term. Field equations have two kinds
of solutions. For the solutions of first kind the dynamics of volume term and Käction are
coupled and the interpretation is in terms of interaction regions. Solutions of second kind
are minimal surfaces and extremals of both Kähler action and volume term, whose dynamics
decouple completely and all coupling constants disappear from the dynamics. These extremals
are natural candidates for external particles. For these solutions at least the field equations
reduce to the existence of Hamilton-Jacobi structure. The completely universal dynamics of
these regions suggests interpretation in terms of maximal quantum criticality characterized
by the extension of the usual conformal invariance to its quaternionic analog.

3. A connection with zero energy ontology (ZEO) emerges. Causal diamond (CD, intersection
of future and past directed light-cones of M4 with points replaced by CP2) would naturally
determine the interaction region to which external particles enter through its 2 future and
past boundaries. But where does ZEO emerge?

M8 −H duality

The third approach is based on number theoretic vision [K95, K96, K94, K111].

1. M8−H duality [K96, K111, K10] means that one can see space-times as 4-surfaces in eitherM8

or H = M4 × CP2. One could speak “number theoretical compactification” having however
nothing to do with stringy version of compactification, which is dynamical. M8 −H duality
suggests that space-time surfaces in H = M4 ×CP2 are images of space-time surfaces in M8

or actually of M8 projections of complexified space-time surfaces in M8
c identified as space of

complexified octonions. These space-time surfaces could contain the integrated distributions
of string world sheets and partonic 2-surfaces mentioned in the previous item. Space-time
surfaces must have associative tangent or normal space for M8 −H correspondence to exist.

2. The fascinating possibility mentioned already earlier is that in M8 these surfaces could
correspond to zero loci for real or imaginary parts of real analytic octonionic polynomials
P (o) = RE(P ) + IM(P )I4, I4 an octonionic imaginary unit orthogonal to quaternionic ones.
The condition IM(P ) = 0 (RE(P ) = 0) would give associative (co-associative) space-time
surface. In the simplest case these functions would be polynomials so that one would have
algebraic geometry for algebraically 4-D complex surfaces in 8-D complex space.
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Remark: The naive guess that space-time surfaces reduce to quaternionic curves in quater-
nionic plane fails due to the non-commutativity of quaternions meaning that one has P (o) =
P (q1, q2, q1, q2) rather than P (o) = P (q1, q2).

Remark: Why not rational functions expressible as ratios R = P1/P2 of octonionic polyno-
mials? It has become clear that one can develop physical arguments in favor of this option.
The zero loci for IM(Pi) would represent space-time varieties. Zero loci for RE(P1/P2) = 0
and RE(P1/P2) = ∞ would represent their interaction presumably realized as wormhole
contacts connecting these varieties. In the sequel most considerations are for polynomials:
the replacement of polynomials with rational functions does not introduce big differences
and its discussed in the section “Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view” of [L48].

3. The objection against this proposal is obvious. M8 − H correspondence cannot hold true
since the dynamics defined by octonionic polynomials in M8 contains no coupling constants
whereas the dynamics of twistor lift of Kähler action depends on coupling constants in the
generic space-time region. However, for space-time surfaces representing external particles
entering inside CD at its boundaries this is however not the case! They could satisfy M8−H
correspondence!

This suggests that inside CDs the space-time surfaces are not associative/co-associative in
M8 so that M8 − H correspondence cannot map them to H and the twistor lifted Kähler
action and SH take care of the dynamics. External particles are associative and quantum
critical and M8 −H correspondence makes sense. The quantum criticality and associativity
at the boundaries of CD poses extremely powerful conditions and allows to satisfy infinite
number of vanishing conditions for SSA charges.

It has later turned out [L64] that it might be possible to take the associativity conditions
to extreme in the sense that they would hold everywhere apart from a set of discrete points
and space-time surface would be minimal surfaces at all points except this finite set of points.
There would be transfer of conserved quantities assignable to the volume term and the 4-D
Kähler action (coming as dimensionally reduced 6-D Kähler action for the twistor lift of TGD)
only at these points and elementary fermions would be naturally assignable to these points.

4. This picture is consistent with the the explicit formulation of the associativity conditions
Re(P ) = 0 and IM(P ) = 0 for varieties. The calculations shows that associativity can be
realized either by posing a condition making them 3-dimensional except, when the situation
is critical in the sense that the 4-D variety is analogous to a double root of polynomial:
now however the polynomial corresponds to prime polynomial decomposing to product of
polynomials in the extension of rationals such that the product contains higher powers of
the factors. One has ramification at the level of polynomial primes so that the criticality
condition does not bring anything new but need not make the situation associative. At most
3 conditions need to be applied to guarantee associativity and they might leave the space-time
surface 4-D.

5. The coordinates of M4 as octonionic roots x+ iy of the 4 real polynomials need not be real.
Space-time surface must have M4

c projection, which reduces to M4. There are two options.

(a) The original proposal was that the projection from M8
c to real M4 (for which M1 co-

ordinate is real and E3 coordinates are imaginary with respect to i!) defines the real
space-time surface mappable by M8 −H duality to CP2. One can howeerver critize the
allowance of a nonvanishing imaginary part of space-time surface in M4

c .

(b) A more stringent condition is that the roots of the 4 vanishing polynomials as coordinates
of M4

c belong automatically to M4 so that m0 would be real root and mk, k = 1, ..., 3
imaginary with respect to i → −i. M8

c coordinates would be invariant (“real”) under
combined conjugation i→ −i, Ik → −Ik. In the following I will speak about this property
as Minkowskian reality.
This could allow to identify CDs in very elegant way: outside CD these 4 conditions
would not hold true. This option looks more attractive than the first one. Why these
conditions can be true just inside CD, should be understood.

6. This octonionic view as also lower-dimensional quaternionic counterpart. In this case one
considers 2-D commutative/co-commutative surfaces tentatively identifiable as string world
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sheets and partonic 2-surfaces. Why not all 2-surfaces appearing in the Hamilton-Jacobi
slicing are not selected? The above mechanism would work also now. The commutativity
conditions reduce in the generic case give 1-D curve as a solution. The interpretation would be
as orbit of point like particle at 3-D partonic orbit appearing in the construction of twistorial
amplitudes. In critical situation one would obtains string world sheet serving as a correlate
for entanglement between point like particles at its ends: one would have quantum critical
bound state.

I have considered also other attempts to define what quaternion structure could mean.

1. One could also consider the possibility that the tangent spaces of space-time surfaces in H are
associative or co-associative [K111]. This is not necessary although it seems that this might
be the case for the known extremals. If this holds true, one can construct further preferred
extremals by functional composition by generalization of M8 −H correspondence to H −H
correspondence.

2. I have considered also the possibility of quaternion analyticity in the sense of generalization
of Cauchy-Riemann equations, which tell that left- or right quaternionic differentiation makes
sense [L39]. It however seems that this approach is not promising. The conditions are quite
too restrictive and bring nothing essentially new. Octonion/quaternion analyticity in the
above mentioned sense does not require the analogs of Cauchy-Riemann conditions.

4.1.2 Could one identify space-time surfaces as zero loci for octonionic
polynomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic poly-
nomial has several extremely nice features.

1. Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line
so that the situation is effectively 1-dimensional! Once the degree of polynomial is known,
the value of polynomial at finite number of points are needed to determine it and cogni-
tive representation could give this information! This would strengthen the view strong form
of holography (SH) - this conforms with the fact that states in conformal field theory are
determined by 1-D data.

2. One can add, sum, multiply, and functionally compose these polynomials provided they cor-
respond to the same quaternionic moduli labelled by CP2 points and share same time-line
containing the origin of quaternionic and octonionic coordinates and real octonions (or ac-
tually their complexification by commuting imaginary unit). Classical space-time surfaces -
classical worlds - would form an associative and commutative algebra. This algebra induces
an analog of group algebra since these operations can be lifted to the level of functions defined
in this algebra. These functions form a basic building brick of WCW spinor fields defining
quantum states.

3. One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at boundaries
of CDs. This leads to the same picture as the view about preferred extremals reducing to
minimal surfaces near boundaries of CD [L28]. Also zero zero energy ontology (ZEO) could
be forced by the failure of number field property for quaternions at light-cone boundaries. It
indeed turns out that light-cone boundary emerges quite generally as singular zero locus of
polynomials P (o) containing no linear part: this is essentially due to the non-commutativity
of the octonionic units. Also the emergence of CDs can be understood. At this surface the
region with RE(P ) = 0 can transform to IM(P ) = 0 region. In Euclidian signature this
singularity corresponds to single point. A natural conjecture is that also the light-like orbits
of partonic 2-surfaces correspond to this kind of singularities for non-trivial Hamilton-Jacobi
structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cogni-
tion with cognitive representations identified as generalized rational points common to reals
rationals and various p-adic number fields defining the adele for given extension of rationals.
Hamilton-Jacobi structure would result automatically from the decomposition of quaternions
to real and imaginary parts which would be now complex numbers.
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5. Also a connection with infinite primes is suggestive [K96]. The light-like partonic orbits,
partonic 2-surfaces at their ends, and points at the corners of string world sheets might be
interpreted in terms of singularities of varying rank and the analog of catastrophe theory
emerges.

The great challenge is to prove rigorously that these approaches - or at least some of them
- are indeed equivalent. Also it remains to be proven that the zero loci of real/imaginary parts of
octonionic polynomials with real coefficients are associative or co-associative. I shall restrict the
considerations of this article mostly to M8 −H duality. The strategy is simple: try to remember
all previous objections against M8 −H duality and invent new ones since this is the best way to
make real progress.

4.1.3 Topics to be discussed

Key notions and ideas of algebraic geometry

Before going of octonionic algebraic geometry, I will discuss basic notions of algebraic geometry
such as algebraic variety (see http://tinyurl.com/hl6sjmz), - surface (see http://tinyurl.

com/y8d5wsmj), and - curve (see http://tinyurl.com/nt6tkey), rational point of variety central
for TGD view about cognitive representation, elliptic curves (see http://tinyurl.com/lovksny)
and - surfaces (see http://tinyurl.com/yc33a6dg), and rational points (see http://tinyurl.

com/ybbnnysu) and potentially rational varieties (see http://tinyurl.com/yablk4xt). Also the
notion of Zariski topology (see http://tinyurl.com/h5pv4vk) and Kodaira dimension (see http:
//tinyurl.com/yadoj2ut) are discussed briefly. I am not a mathematician. What hopefully saves
me from horrible blunders is physical intuition developed during 4 decades of TGD.

Much of algebraic geometry is counting numbers of say rational points or of varieties satis-
fying some conditions. One can also count dimensions of moduli spaces. Hence the basic notions
and methods of enumerative geometry are discussed. There is also a discussion of Gromow-Witten
invariants and Riemann-Roch theorem having Atyiah-Singer index theorem as a generalization.
These notions will be applied in the second part of the article [L48].

M8 −H duality

M8−H duality [K10, K96, K111] would reduce classical TGD to the algebraic geometry and would
immediately provide deep insights to cognitive representation identified as sets of rational points
of these surfaces. Space-time surfaces in M8 would be algebraic varieties identified as zero loci
for imaginary part IM(P ) or real part RE(P ) of octonionic polynomial of complexified octonionic
variable o decomposing as o = q1

c + q2
cI4 and projected to a Minkowskian sub-space M8 of o.

Single real valued polynomial of real variable with algebraic coefficients would determine space-
time surface! As proposed already earlier, spacetime surfaces in M8 would form commutative and
associative algebra with addition, product and functional composition.

As already noticed, the associativity conditions do not allow 4-D solutions except for criti-
cality so that M8 −H correspondence can hold true only in these space-time regions and one has
these nice features at the level of M8. In critical regions M8−H correspondence is true and these
features have H counterparts

The basic problem is to understand the map mediating M8 −H duality mapping the point
(m, e) of M8 = M4

0 ×E4 to a point (m, s) of M4
0 ×CP2, where M4

0 point is obtained as a projection
to a suitably chosen M4

0 ⊂ M8 and CP2 point parameterizes the tangent space as quaternionic
sub-space containing preferred M2

0 (x) ⊂M4(x). This map involves slightly non-local information
and could allow to understand why the preferred extremals at the level of H are determined by
partial differential equations rather than algebraic equations. Also the generalization to the level
of twistor lift is briefly touched.

Challenges of the octonionic algebraic geometry

The construction and interpretation of the octonionic geometry involves several challenges.

http://tinyurl.com/hl6sjmz
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/y8d5wsmj
http://tinyurl.com/nt6tkey
http://tinyurl.com/lovksny
http://tinyurl.com/yc33a6dg
http://tinyurl.com/ybbnnysu
http://tinyurl.com/ybbnnysu
http://tinyurl.com/yablk4xt
http://tinyurl.com/h5pv4vk
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yadoj2ut
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1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
determine associative (co-associative) surfaces as the zero loci of their real part RE(P ) (imag-
inary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary to the
first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region turns
out to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

This suggests a generalization of Cauchy-Riemann conditions for complex analytic functions
to quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic poly-
nomials with real coefficients define maps for which the 2-D spaces corresponding to van-
ishing of real/imaginary parts of the polynomial are complex/co-complex or equivalently
commutative/co-commutative. Commutativity is expressed by conditions bilinear in par-
tial derivatives. Octonionic polynomials with real coefficients define maps for which 4-
D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/

ybuyla2k) by adding imaginary unit repeatedly to octonionic algebra are power associative so
that polynomials with real coefficients define an associative and commutative algebra. Hence
octonion analyticity and a M8 −H correspondence could generalize (maybe even TGD!).

2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring
that one of the coordinatesRE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i+IM(Y )iI4
of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki , k = 1, 2, of O
vanishes that is critical as function of quaternionic components zk1 or zk2 associated with q1

and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the generic case this
gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can have criticality. 4-dimensionality can be achieved by posing conditions on the co-
efficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root. The criticality of Xi conforms with the general vision
about quantum criticality of TGD Universe and provides polynomials with universal dynamics
of criticality. A generalization of Thom’s catastrophe theory [A47] emerges. Criticality should
be equivalent to the universal dynamics determined by the twistor lift of Kähler action in H
in regions, where Kähler action and volume term decouple and dynamics does not depend on
coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces
can be mapped by M8−H duality to preferred critical extremals for the twistor lift of Kähler
action obeying universal dynamics with no dependence on coupling constants and due to the
decoupling of Kähler action and volume term: these represent external particles. M8 − H
duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-
D boundary surfaces. These regions correspond to interaction regions in which Kähler action
and volume term couple and coupling constants make themselves visible in the dynamics.
M8 −H duality determines boundary conditions.

3. This picture generalizes also to the level of complex/co-complex surfaces associated with
fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be
enough to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing of
space-time surfaces? I have proposed commutativity or co-commutatitivity of string worlds
sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent
space as a sub-space of quaternionic space is commutative/co-commutative at each point).
Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case commu-

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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tative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic
2-surfaces.

The easiest way to kill M8 − H duality in the form it is represented here is to prove that
4-D zero loci for imaginary/real parts of octonionic polynomials with real coefficients can never be
associative/co-associative being always 3-D. I hope that some professional mathematician would
bother to check this.

In the sequel I will use some shorthand notations for key principles and key notions. Quan-
tum Field Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coor-
dinate Invariance (GCI); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form
of Holography (SH); World of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy
Ontology (ZEO); Causal Diamond (CD); Number Theoretical Universality (NTU) are the most
often occurring acronyms.

4.2 Some basic notions, ideas, results, and conjectures of
algebraic geometry

In this section I will summarize very briefly the basic notions of algebraic geometry needed in the
sequel.

4.2.1 Algebraic varieties, curves and surfaces

The basic notion of algebraic geometry is algebraic variety.

1. One considers affine space An with n coordinates x1, ..., xn having values in a number field K
usually assumed to be algebraically closed (note that affine space has no preferred origin like
linear space). Algebraic variety is defined as a solution of one or more algebraic equations
stating the vanishing of polynomials of n variables: P i(x1, ..., xn) = 0, i = 1, ..., r ≤ n. One
can restrict the coefficients of polynomials to p-adic number field or or its extension to an
extension of rationals. One talks about polynomials on k ⊂ K.

2. The basic condition is that the variety is not a union of disjoint varieties. This for instance
happens, when the polynomial P (x1, .., xn) defining co-dimension 1 manifold is product of
polynomials P =

∏
r Pr. Algebraic variety need not be a manifold meaning that it can have

singular points. For instance, for co-dimension 1 variety the Jacobian matrix ∂P/∂xi of the
polynomial can vanish at singularity.

3. One can define projective varieties (see http://tinyurl.com/ybsqvy3r) in projective space
Pn having coordinatization in terms of n+1 homogenous coordinates (x1, ..., xn+1) in K with
points differing by an overall scaling identified. Projective variety is defined as zero locus of
homogenous polynomials of n + 1 coordinates so that solutions remain solutions under the
overall scaling of all coordinates. By identifying the points related by scaling one obtains a
surface in Pn. Grassmannian of linear space V n (not affine space!) is a projective spaces
defined as space of k-planes of V n. These spaces are encountered in twistor Grassmannian
approach to scattering amplitudes.

For polynomials of single variable one obtains just the roots of Pn(x) = 0 in an algebraic
extension assignable to the polynomial. For several variables one can in principle proceed step
by step by solving variable x1 as algebraic function of others from P1(x1, ..., xn) = 0 , proceed to
solve x2 from P2(x1(x2, ...), x2, ...) = 0 as as algebraic function of the remaining variables, and so
one. The algebraic functions involved get increasingly complex but in some exceptional situations
the solution has parametric representation in terms of rational rather than algebraic functions of
parameters tk. For co-dimension dc > 1 case the intersection of surfaces P i = 0 need not be
complete and the tangent spaces of the hyper-surfaces P i = 0 need not intersect transversally in
the generic case. Therefore dc > 1 case is not gained so much attention as dc = 1 case.

A more advanced treatment relies on ring theory by assigning to polynomials a ring as the
ring of polynomials in the space involved divided by the ring of polynomials vanishing at zero loci
of polynomials P i.

http://tinyurl.com/ybsqvy3r
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1. The notion of ideal is central and determined as a subring invariant under the multiplication
by elements of ring. Prime ideal generalizes the notion of prime and one can say that the
notion of integer generalizes to that of ideal. One can also define the notion of fractional ideal.

2. Zariski topology (see http://tinyurl.com/h5pv4vk) replacing the topology based on real
norm is second highly advanced notion. The closed sets in this topology are algebraic varieties
of various dimensions. Since the complement of any algebraic variety is open set this topology
and open also in the ordinary real topology, this topology is considerable rougher than the
ordinary than the ordinary topology.

Some remarks from the point of view of TGD are in order.

1. In the scenario inspired by M8 −H duality one has co-dimension 4 surfaces in 8-D complex
space. Octonionicity of polynomials however implies huge symmetries since the polynomial is
determined by single real polynomial of real variable, whose values at finite number of points
determined the polynomial.

2. In TGD the extension of rationals can be assumed to contain also powers for some root of e
since in p-adic context this gives rise to a finite-dimensional extensions due to the fact that
ep is ordinary p-adic number. Also a restriction to a finite field are possible and restriction of
rational coefficients to their modulo p counterparts reduces the polynomial to polynomial in
finite field. This reduction is used as a technical tool. In the case of Diophantine equations
(see http://tinyurl.com/nt6tkey and http://tinyurl.com/y8hm4zce) the coefficients are
restricted to be integers.

3. In adelic TGD [L52] [L51] the number fields involved are reals and extensions of p-adic num-
bers. The coefficient field for the coefficients of polynomials would be naturally extension of
rationals or extension of p-adics induced by it. The coefficients of polynomials serve as co-
ordinates of adelic WCW. p-Adic numbers are not algebraically closed and one must assume
an extension of p-adic numbers from that for the coefficients one to allow maximal number
of roots.

This suggests an evolutionary process [L54] extending the number field for the coefficients
of polynomials. Arbitrary root of polynomial for given extension can be realized only if the
original extension is extended further. But this allows polynomial coefficients in this new
extension: WCW is now larger. Now one has however roots in even larger extension so that
the unavoidable outcome is number theoretic evolution as increase of complexity.

4. What is so remarkable is that octonionic polynomials with rational coefficients could be
determined by their values at finite set of points for a polynomial of real argument once the
order of polynomial is fixed. Real coordinate corresponds to preferred time axis naturally.
A cognitive representation consisting of finite number of rational points could fix the entire
space-time surface! This would extend ordinary holography to its discrete variant!

5. Algebraic variety is rather simple object as compared to the solutions of partial differential
equations encountered in physics - say those for minimal surfaces. Now one must fix boundary
values or initial values at n−1-dimensional surface to fix the solution. For integrable theories
the situation can change. In TGD SH suggests that the classical solutions are determined
by data at 2-surfaces, which together with conformal invariance could reduce the data to
one-dimensional data specified by a polynomial. M8 −H correspondence allows to consider
this option seriously.

6. M8 −H duality suggests that space-time surfaces are co-dimension dc = 4 algebraic curves
in M8. Could space-time surfaces define closed sets for the analog of Zariski topology?
Could string world sheets and partonic 2-surfaces do the same inside space-time surfaces? An
interesting question is whether this generalizes also to the level of embedding space H and
could perhaps define a topology rougher than real topology in better accord with the notion
of finite measurement resolution.

4.2.2 About algebraic curves and surfaces

The realization M8−H correspondence to be considered allows to understand space-time surfaces
as 4-D complex algebraic surfaces X4

c in the space o of complexified octonions projected to real

http://tinyurl.com/h5pv4vk
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sub-space of Oc with Minkowskian signature. Due to the non-commutativity of quaternions, the
reduction of space-time surfaces to curves in quaternionic plane is not possible. Despite this it is
instructive to start from the algebraic geometry of curves and surfaces.

Degree and genus of the algebraic curve

Algebraic curve is defined as zero locus of a polynomial P (x1, x2, ..., xn) with xn in some - preferably
algebraically closed - number field K and coefficients in some number field k ⊂ K. In adelic physics
K corresponds to real or complex numbers and k to the extension of rationals defining adeles. In
p-adic sectors k corresponds to tje extension of p-adic numbers induced by k. In general roots
belong to an extension of k.

Degree, genus, and Euler characteristic are the basic characterizers of algebraic curve.

1. The degree d of algebraic curve corresponds to the highest power for the variables appearing
in the polynomial. One can also define multi-degree in an obvious manner. A useful geometric
interpretation for the degree is that line intersects curve (also complex) of degree d in at most
d points as is clear from the fact that the equation of curve reduces the equation for curve to
an equation for the roots of d:th order polynomial of single variable.

2. Also the genus g of the curve (see http://tinyurl.com/ybm3wfue) is important character-
istic. One can distinguish between topological genus, geometric genus and arithmetic genus.
For curves these notions are equivalent. The connection between genus and degree d of non-
singular algebraic curve is very useful:

g =
(d− 1)(d− 2)

2
. (4.2.1)

Spherical topology for complex curves corresponds to n = 1 and n = 2.

A more general formula reads as:

g =
(d− 1)(d− 2)

2
+
ns
2

. (4.2.2)

Here ns is the number of holes of the curve behaving like holes and increasing the genus.

3. Euler characteristic (for Euler characteristic see http://tinyurl.com/pp52zd4) is a homo-
logical invariant making sense in arbitrary dimension and also for manifolds. Homological
definition based on simplicial homology relies on counting of simplexes of various dimension.
The definition in terms of dimensions of homology groups Hn is given by

χ = b0 − b1 + b2...+ (−1)nbn , (4.2.3)

where bk is the dimension of k:th homology group (see http://tinyurl.com/j48ojys).

The following gives the engineering rules for obtaining Euler characteristic of the surface
obtained from simpler building blocks. Note that algebraic variety property is not essential here.

1. Euler characteristic is homotopy invariant so that it does not change one adds homologically
trivial space such as En as a Cartesian factor.

2. χ is additive under disjoint union. Inclusion-exclusion principle states that if M and N
intersect, one has χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

3. Euler characteristic for the connected sum A#B of n-dimensional manifolds obtained by
drilling balls Bn from summands, giving opposite orientation to the boundaries of the hole,
and connecting with cylinder D×Sn−1 is given by χ(A)+χ(B)−χ(Sn−1). One has χ(S2) = 2
and χ(D2) = 1.

4. The Euler characteristic for product M ×N is χ(M)× χ(N).

5. The Euler characteristic for N -fold covering space Mn is N × χ(M) with a correction term
coming from the singularities of the covering (ramified covering space).

http://tinyurl.com/ybm3wfue
http://tinyurl.com/pp52zd4
http://tinyurl.com/j48ojys
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6. For a fibration M → B with fiber S, which differs from fiber bundle in that the fibers are
only homeomorphic, one has χ(M) = χ(B)× χ(S).

Euler characteristic and the genus of 2-surface (or complex) curve are related by the equation

χ = 2(1− g) . (4.2.4)

having values 2, 0,−2, ..... If the 2-surface has ns holes (punctures), one has

χ = 2(1− g)− ns . (4.2.5)

Punctures must be distinguished from singularities at which some sheets of covering meet at single
point.

A formal generalization of the definition of genus for varieties in terms of Euler characteristic
makes sense.

g = −χ
2

+ 1− ns
2

. (4.2.6)

Disk has genus 1/2 and drilling of n holes increases genus by n/2. Pair of holes gives same
contribution to g and the cylinder connecting the holes. Note that for complex curves the definition
of puncture is obvious. For real curves the puncture would mean missing point of the curve.

The latter definitions of genus can be identified in terms of Euler characteristic also for
higher-dimensional varieties. For curves these notions are equivalent if there are no singularities.
For algebraic curves g is same for the real and complex variants of the curve in RP1 and CP1

respectively.

Elliptic curves and elliptic surfaces

Elliptic curves (see http://tinyurl.com/lovksny) are cubic curves with no singularities (cusps
or self-intersections) having representation of form y2 − x3 − ax − b = 0. These singularities can
occur only at special values of parameters ((a = 0, b = 0). Since the degree equals to d = 3, elliptic
curve has genus g = 1.

Elliptic curves allow a group of Abelian symmetries generated by a finite number of gener-
ators. The emergence of abelian group structure can be intuitively understood as follows.

1. Given line intersects the curve of degree 3 in at most 3 points. Let P and Q be two of these
points. Then there can be also a third intersection point R and by the Z2 symmetry changing
the sign of y also the reflection of R - identify it as −R - belongs to the curve. Define the
sum of P +Q to be −R.

The actual proof is slightly more complicated since the number of intersection points for the
line with curve can be also 2 or 1. By writing explicit expressions for the coordinates xR and
yR, one can also find that they are indeed rational if the points P and Q are rational. If the
elliptic curve as single rational point it has infinite number of them.

2. The generators with finite order give rise to torsion. The rank of generators of infinite order
is called rank and conjectured to be arbitrarily large (see http://tinyurl.com/lovksny) .
Therefore elliptic curve is an Abelian group and one talks about Abelian variety. If elliptic
curve contains a rational point it contains entire lattice of rational points obtained as shifts
of this point.

Remark: Complex elliptic curves are 2-surfaces in complex projective plane CP2 and there-
fore highly interesting from TGD point of view. g = 1 partonic 2-surfaces would in TGD framework
correspond to second generation fermions [K28]. Abelian varieties define a generalization of elliptic
curves to higher dimensions and simplest space-time surfaces allowing also large cognitive repre-
sentations could correspond to such.

Elliptic surfaces (see http://tinyurl.com/yc33a6dg) are fibrations with an algebraic curve
as base space and elliptic curve as fiber (fibration is more general notion than fiber space since the
fibers are only homeomorphic). The singular fibers failing to be elliptic curves have been classified
by Kodaira.

http://tinyurl.com/lovksny
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4.2.3 The notion of rational point and its generalization

The notion of algebraic integer (see http://tinyurl.com/y8z389a7) makes sense for any number
field as a root of a monic polynomial (polynomial with integer coefficients with coefficient of highest
power equal to unity). The field of fractions for given number field consists of ratios of algebraic
integers. The same is true for the notion of prime. The more precise definition forces to replace
integers and primes with ideals.

Rational varieties are expressible as maps defined by rational functions with rational coeffi-
cients in some extension of Q and contain infinite number of rational points. If the variety is not
rational, one can ask whether it could allow a dense set of rational points with rational number
replaced with the ratio of algebraic integers for some extension of Q. This leads to the idea of
potentially rational point, and one can classify algebraic varieties according to whether they are
potentially rational or not. The variety is potentially rational if it allows a parameteric representa-
tion using rational functions. Otherwise the parametric representation involves algebraic functions
such as roots of rational functions.

The interpretation in terms of cognition would be that large enough extension makes the
situation “cognitively easy” since cognitive representations involving fermions at the rational points
and defining discretizations of the algebraic variety could be arbitrary large. The simpler the surface
is cognitively, the large the number of rational points or potentially rational points is.

Complexity of algebraic varieties is measured by Kodaira dimension dK (see http://tinyurl.
com/yadoj2ut). The spectrum for this dimension varies in the range (−∞, 0, 1, 2, ...d), where d is
the algebraic dimension of the variety. Maximal value equals to the ordinary topological dimension
d and corresponds to maximal complexity: in this case the set of rational points is finite. Minimal
Kodaira dimension is dK = −∞: in this case the set of rational points is infinite. Rational surfaces
are maximally simple and this corresponds to the existence of parametric representations using
only rational functions.

Rational points for algebraic curves

The sets of rational points for algebraic curves are rather well understood. Mordelli conjecture
proved by Falting as a theorem (see http://tinyurl.com/y9oq37ce) states that a curve over Q
with genus g = (d− 1)(d− 2)/2 > 1 (degree d > 3) has only finitely many rational points.

1. Sphere CP1 in CP2 has rational points as a dense set. Quite generally rational surfaces, which
by definition allow parametric representation using polynomials with rational coefficients (en-
countered in context of Du Val singularities characterized by the extended Dynkin diagrams
for finite subgroups of SU(2)) allow dense set of rational points [A61, A69]).

g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have
complex conics (quadratic surface) in CP2 with no rational points. Note however that this
depends on the choice of the coordinates: if origin belongs to the surface, there is at least one
rational point

2. Elliptic curve y2 − x3 − ax− b in CP2 (see http://tinyurl.com/lovksny) has genus g = 1
and has a union of lattices of rational points and of finite cyclic groups of them since it has
origin as a rational point. This lattice of points are generated by translations. Note that
elliptic curve has no singularities that is self intersections or cusps (for a = 0, b = 0 origin is
a singularity).

g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last
theorem and CP2 as example. xd + yd = zd is projectively invariant statement and therefore
defines a curve with genus g = (d − 1)(d − 2)/2 in CP2 (one has g = 0, 0, 2, 3, 6, 10, ...). For
d > 2, in particular d = 3, there are no rational points.

3. g ≥ 2 curves do not allow a dense set of rational points nor even potentially dense set of
rational points.

Remark: In TGD framework algebraic varieties could be zero loci of octonionic polyno-
mials and have algebraic dimension 4 so that the classification for algebraic curves does not help.
Octonion analyticity must bring in symmetries which simplify the situation.
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Enriques-Kodaira classification

The tables of (see http://tinyurl.com/ydelr4np) give an overall view about the Enriques-
Kodaira classification of algebraic curves, surfaces, and varieties in terms of Kodaira dimension
(see http://tinyurl.com/yadoj2ut).

1. For instance, general curves (g ≥ 2) have dK = 1, elliptic curves (g = 1) have dK = 0 and
projective line (g = 0) has dK = −∞. CP1 ⊂ CP2 is a rational curve so that rational points
are dense. Elliptic curves allow infinite number or rational points forming an Abelian group
if they containing single rational point and are therefore cognitively easy.

2. Algebraic varieties (with real dimension dR = 4 in complex case) with dK = 2 are surfaces
of general type, elliptic surfaces (see http://tinyurl.com/yc33a6dg) have dK = 1, surfaces
with attribute abelian, hyper-elliptic, K3, and Enriques, have dK = 0.

Remark: All real 2-surfaces are hyper-elliptic for g ≤ 2, in other words allow Z2 as global
conformal symmetry. Genus-generation correspondence [K28] for fermions allows to assign
to the 3 lowest generations of fermions hyper-elliptic partonic 2-surfaces with genus g =
0, 1, 2. These surfaces would have dK = 0 and be rather simple as real surfaces in Kodaira
classification. Could one regard them as M4 projection of complex hyper-elliptic surfaces of
real dimension dR = 4? dK = −∞ holds true for rational surfaces and ruled surfaces, which
allow straight line through any point are maximally simple. In complex case the line would
be CP1.

3. The Wikipedia article gives also a table about the classification of algebraic 3-folds. Real
algebraic 3-surfaces might well occur in TGD framework. The twistor space for space-time
surface might allow realization as complex 3-fold and since it has S2 has fiber, it would
naturally correspond to an uni-ruled surface with dK = −∞. The table shows that one
can build higher dimensional algebraic varieties with dK < d from lower-dimensional ones as
fiber-space like structures, which based or fiber having dK < d. 3-D Abelian varieties and
Calabi-Yau 3-folds are complex manifolds with dK = 0, which cannot be engineered in this
manner.

4. Space-time surfaces would be surfaces of algebraic dimension 4. Wikipedia tables do not give
direct information about this case but one can make guesses on basis of the three tables.
Octonionic polynomials are analytic continuations of real polynomials of real variable, which
must mean a huge simplification, which also favor cognitive representability. The best that
one might have infinite sets of rational points. The examples about extremals of Kähler action
does not however favor this wish.

Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states that, for any variety
X of general type over a number field k, the set of k-rational points of X fails to be Zariski dense
(see http://tinyurl.com/jm9fh74) in X. This means that , the k-rational points are contained
in a finite union of lower-dimensional sub-varieties of X. In dimension 1, this is exactly Faltings
theorem, since a curve is of general type if and only if it has g ≥ 2. The conjecture of Vojta (see
http://tinyurl.com/y9sttuu4) states that varieties of general type cannot be potentially dense.
As will be found, these conjectures might be highly relevant for TGD.

4.3 About enumerative algebraic geometry

Algebraic geometry is something very different from Riemann geometry, Kähler geometry, or sub-
manifold geometry based on local notions. Sub-manifolds are replaced with sub-varieties defined as
zero loci for polynomials with coefficients in the field of rationals or extension of rationals. Partial
differential equations are replaced with algebraic ones. One can generalize algebraic geometry to
any number field.

String theorists have worked with algebraic geometry with motivation coming from various
moduli spaces emerging in string theory. The moduli spaces for closed and open strings possibly in
presence of branes are involved. Also Calabi-Yau compacticication leads to algebraic geometry, and
topological string theories of type A and B involve also moduli spaces and enumerative algebraic
geometry.

In TGD the motivation for enumerative algebraic geometry comes from several sources.

http://tinyurl.com/ydelr4np
http://tinyurl.com/yadoj2ut
http://tinyurl.com/yc33a6dg
http://tinyurl.com/y887yn5b
http://tinyurl.com/jm9fh74
http://tinyurl.com/y9sttuu4
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1. Twistor lift of TGD lifts space-time surfaces to their 6-D twistor spaces representable as
surfaces in the product of 6-D twistor spaces of M4 and CP2 and possessing Kähler structure -
this makes these spaces completely unique and strongly suggests the role of algebraic geometry,
in particular in the generalization of twistor Grassmannian approach [L48].

2. There are three threads in number theoretic vision: p-adic numbers and adelics, classical
number fields, and infinite primes. Adelic physics [L52] as physics of sensory experience
and cognition unifies real physics and various p-adic physics in the adele characterized by an
extension of rationals inducing those of p-adic number fields. This leads to algebraic geometry
and counting of points with embedding space coordinates in the extension of rationals and
defining a discrete cognitive representation. The core of the scattering amplitude would be
defined by this cognitive representation identifiable in terms of points appearing as arguments
of n-point function in QFT picture [L46].

3. M8−M4×CP2 duality is the analog of the rather adhoc spontaneous compactification in string
models but would be non-dynamical and thus allow to avoid landscape catastrophe. Classical
physics would reduce to octonionic algebraic geometry at the level of complexified octonions
with several special features due to non-commutativity and non-associativity: space-time
could be seen as 4-surface in the complexification of of octonions. The commuting imaginary
unit would make possible the realization of algebraic extensions of rationals.

The moduli space for the varieties is discrete if the coefficients of the polynomials are in the
extension of rationals. If one poses additional conditions such as associativity of 4-surfaces,
the moduli space is further reduced by the resulting criticality conditions realizing quan-
tum criticality at the fundamental level raising hopes about extremely simple formulation of
scattering amplitudes at the level of M8 [L48].

Also complex and co-complex sub-manifolds of associative space-time surface are important
and would realize strong form of holography (SH). For non-associative regions of space-time
surface it might not be possible to define complex and co-complex surfaces in unique manner
since the basic M2 ⊂ M4 local flag structure is missing. String world sheets and partonic
2-surfaces and their moduli spaces are indeed in key role and the topology of partonic surfaces
plays a key role in understanding of family replication phenomenon in TGD [L46].

In this framework one cannot avoid enumerative algebraic geometry.

1. One might want to know the number of points of sub-variety belonging to the number field
defining the coefficients of the polynomials. This problem is very relevant in M8 formulation of
TGD, where these points are carriers of sparticles. In TGD based vision about cognition [L52]
they define cognitive representations as points of space-time surface, whose M8 coordinates
can be thought of as belonging to both real number field and to extensions of various p-adic
number fields induced by the extension of rationals. If these cognitive representations define
the vertices of analogs of twistor Grassmann diagrams in which sparticle lines meet, one would
have number theoretically universal adelic formulation of scattering amplitudes and a deep
connection between fundamental physics and cognition.

2. Second kind of problem involves a set algebraic surfaces represented as zero loci for polyno-
mials - lines and circles in the simplest situations. One must find the number of algebraic
surfaces intersecting or touching the surfaces in this set. Here the notion of incidence is cen-
tral. Point can be incident on line or two lines (being their intersection), line on plane, etc..
This leads to the notion of Grassmannians and flag-manifolds.

Moduli spaces parameterizing sub-varieties of given kind - lines, circles, algebraic curves
of given degree, are central for the more advanced formulation of algebraic geometry. These
moduli spaces emerge also in the formulation of TGD. The moduli space of conformal equivalence
classes of partonic 2-surfaces is one example involved with the explanation of family replication
phenomenon [K28]. One can assign moduli spaces also to octonion and quaternion structures in
M8 (or equivalently with the complexification of E8). One can identify CP2 as a moduli space of
quaternionic sub-spaces of octonions containing preferred complex sub-space.

One cannot avoid these moduli spaces in the formulation of the scattering amplitudes and
this leads to M8 − H duality. The hard core of the calculation should however reduce to the
understanding of the algebraic geometry of 4-surfaces in octonionic space. Clearly, M8 picture
seems to provide the simplest formulation of the number theoretic vision.
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4.3.1 Some examples about enumerative algebraic geometry

Some examples give an idea about what enumerative algebraic geometry (see http://tinyurl.

com/y7yzt67b) is.

1. Consider 4 lines in 3-D space. What is the number of lines intersecting these 4 lines [A82]
(see http://tinyurl.com/ycrbr5aj). One could deduce the number of lines and lines by
writing the explicit equations for the lines with each line characterized by 2+3=5 parameters
specifying direction t vector and arbitarily chosen point x0 on the line. 2+3=5 parameters
characterize each sought-for line.

For intersection points xi of sought for line with i:th one has xi = x0 + kit0, i = 1, ..., 4
for the sought for line with direction t0. At the intersection points at the 4 lines one has
xi = x0i + Kiti with fixed directions ti. Combining the two equations for each line one has
4 × 3 = 12 equations and 3+4+2 parameters for the sought for line plus 4 parameters Ki

for the four lines. This gives 13 unknown parameters corresponding to x0, ki,Ki. One would
have one parameter set of solutions: something goes wrong.

One has however projective invariance: one can shift x0 along the line by x0 → x0 − at,
ki → ki + a and using this freedom assume for instance k1 = 0. This reduces the number
of parameters to 12 and one has finite number of solutions in the generic case. Actually the
number is 2 in the generic case but can be infinite in some special cases. The challenge is
to deduce the number of the solutions by geometric arguments.Below Schubert’s argument
proving that the number of solutions is 2 will be discussed.

The idea of enumerative geometry is to do this using general geometric arguments allowing
to deform the problem topologically to a simpler one in which case the number of solutions
is obvious which in the most abstract formulation become topological.

2. Apollonius can be seen as founder of enumerative algebraic geometry. Apollonian circles
(see http://tinyurl.com/ycvxe688) represent second example. One has 3 circles in plane.
What is the number of circles tangential to all these 3 circles. Wikipedia link represents the
geometric solution of the problem. The number of circles is 8 in the generic case but there
are exceptional cases.

3. In Steiner’s conic problem (see http://tinyurl.com/yahshsjo) one have 5 conical sections
(circles, cones, ellipsoids, hyperbole) in plane. How many different conics tangential to the
conics there exist? This problem is rather difficult and the thumb rules of enumerative
geometry (dimension counting, Bezout’s rule, Schubert calculus) fail. This is a problem in
projective geometry where one is forced to introduce moduli space for conics tangential to
given conic. This space is algebraic sub-variety of all conics in plane which is 5-D projective
space. One must be able to deduce the number of points in the intersection of these sub-
varieties so that the original problem in 2-D plane is replaced with a problem in moduli
space.

4.3.2 About methods of algebraic enumerative geometry

A brief summary about methods of algebraic geometry is in order to give some idea about what is
involved (see http://tinyurl.com/y7yzt67b).

1. Dimension counting is the simplest method. If two geometric objects of n-D space have
dimensions k and l, there intersection is n− k − l-dimensional for n− k − l ≥ 0 or empty in
the generic case. For k + l = n one obtains discrete set of intersection points.

2. Bezout’s theorem is a more advanced method. Consider for instance, curves in plane defined
by the curves polynomials x = Pm(y) and x = Pn(y) of degrees k = m and k = n. The
number N of intersection points in the generic case is bounded above by N = m× n (in this
case all roots are real). One can understand this by noticing that one has m roots yk or given
x giving rise to a m-branched graph of function y = f(x). The number of intersections for
the graphs of the two polynomials is at most m× n. If one has curve in plane represented by
polynomial equation Pm,n(x, y) = 0, one can also estimate immediately the minimal multi-
degree (m,n) for this polynomials.

http://tinyurl.com/y7yzt67b
http://tinyurl.com/y7yzt67b
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/ycvxe688
http://tinyurl.com/yahshsjo
http://tinyurl.com/y7yzt67b
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3. Schubert calculus http://tinyurl.com/y766ddw2) is a more advanced but not completely
rigorous method of enumerative geometry [A82] (see http://tinyurl.com/ycrbr5aj).

Schubert’s vision was that the number of intersection points is stable against deformations in
the generic case. This is not quite true always but in exceptional cases one can say that two
separate solutions degenerate to single one, just like roots of polynomial can do for suitable
values of coefficients.

For instance, Schubert’s solution to the already mentioned problem of finding a line intersect-
ing 4 lines in generic position relies on this assumption. The idea is to deform the situation
so that one has two intersecting pairs of lines. One solution to the problem is a line going
through the intersection points for line pairs. Second solution is obtained as intersection of
the planes. It can happen that planes are parallel in which case this does not work.

Schubert calculus it applies to linear sub-varieties but can be generalized also to non-linear
varieties. The notion of incidence allowing a general formulation for intersection and tangen-
tiality (touching) is central. This leads to the notions of flag, flag manifold, and Schubert
variety as sub-variety of Grassmannian.

Flag is a hierarchy of incident subspaces A0 ⊂ A1 ⊂ A2... ⊂ An with the property that
the dimension di ≤ n of Ai satisfies di ≥ i. As a special case this notion leads to the
notion of Grassmannian G(k, n) consisting of k-planes in n-dimensional space: in this case A0

corresponds to k-planes and A2 to space An. More general flag manifolds are moduli spaces
and sub-varieties of Grassmannian providing a solution to some conditions. Flag varieties as
sub-varieties of Grassmannians are Schubert varieties (see http://tinyurl.com/y7ehcrzg).
They are also examples of singular varieties. More general Grassmannians are obtained as
coset spaces of G/P , where G is algebraic group and P is parabolic sub-group of G.

Remark: CP2 corresponds to the space of complex lines in C3. CP2 can be also understood
as the space of quaternionic planes in octonionic 8-space containing fixed 2-plane so that also
now one has flag. String world sheets inside space-time surfaces define curved flags with 2-D
and 4-D tangent spaces defining an integrable distribution of local flags.

4. Cohomology combined with Poincare duality allows a rigorous formulation of Schubert calcu-
lus. Schubert’s idea about possibility to deform the generic position corresponds to homotopy
invariance, when the degeneracies of the solutions are taken into account. Homology and
cohomology become basic tools and the so called cup product for cohomology together with
Poincare duality and Künneth formula for the cohomology of Cartesian product in terms of
cohomologies of factors allows to deduce intersection numbers algebraically. Schubert cells
define a basis for the homology of Grassmannian containing only even-dimensional generators.

Grassmannians play a key role in twistor Grassmannian approach as auxiliary manifolds. In
particular, the singularities of the integrand of the scattering amplitude defined as a multiple
residue integral over G(k, n) define a hierarchy of Schubert cells. The so called positive
Grassmannian [B22] defines a subset of singularities appearing in the scattering amplitudes of
N = 4 SUSY. This hierarchy and its CP2 counterpart are expected also in TGD framework.

Remark: Schubert’s vision might be relevant for the notion of conscious intelligence. Could
problem solving involve the transformation of a problem to a simple critical problem, which
is easy but for which some solutions can become degenerate? The transformation of general
position for 4 lines to a pair of intersecting lines would be example of this. One can wonder
whether quantum criticality could help problem solving by finding critical cases.

5. Moduli spaces of curves and varieties provide the most refined methods. Flag manifolds
define basic examples of moduli spaces. Quantum cohomology represents even more refined
conceptualization: the varieties (branes in M-theory terminology) are said to be connected
or intersect if each of them has a common point with the same pseudo-holomorphic variety
(“string world sheet”). Pseudo-holomorphy - which could have minimal surface property as
counterpart - implies that the connecting 2-surface is not arbitrary.

Quantum intersection for the “string world sheet” and “brane” is possible also when it is
not stable classically (the co-dimension of brane is smaller than 2). Even in the case that it
possible classically quantum intersection makes possible kind of “telepathic” quantum contact
mediated by the “string world sheet” naturally involved with the description of quantum
entanglement in TGD framework.

http://tinyurl.com/y766ddw2
http://tinyurl.com/ycrbr5aj
http://tinyurl.com/y7ehcrzg
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4.3.3 Gromow-Witten invariants

Gromow-Witten invariants repreent example of so called quantum invariants natural in string
models and M-theory. They provide new invariants in algebraic and symplectic geometry.

Formal definition

Consider first the definition of Gromow-Witten (G-W) invariants (see http://tinyurl.com/

y9b5vbcw). G-W invariants are rational number valued topological invariants useful in algebraic
and symplectic geometry. These quantum invariants give information about these geometries not
provided by classical invariants. Despite being rational numbers in the general case G-W invariants
in some sense give the number of string world sheets connecting given branes.

1. One considers collection of n surfaces (“branes”) with even dimensions in some symplectic
manifold X of dimension D = 2k (say Kähler manifold) and pseudo-holomorphic curves
(“string world sheets”) X2, which have the property that they connect these n surfaces in the
sense that they intersect the “branes” in the marked points xi, i = 1, .., n.

“Connect” does not reduce to intersection in topologically stable sense since connecting is
possible also for branes with dimension smaller than D − 2. One allows all surfaces that
X2 that intersects the n surfaces at marked points if they are pseudo-holomorphic even if
the basic dimension rule is not satisfied. In 4-dimensional case this does not seem to have
implications since partonic 2-surfaces satisfy automatically the dimension rule. The n branes
intersect or touch in quantum sense: there is no concrete intersection but intersection with
the mediation of “string world sheet”.

2. Pseudo-holomorphy means that the Jacobian df of the embedding map f : X2 → X commutes
with the symplectic structures j resp. J of X2 resp. X: i.e. one has df(jT ) = Jdf(T ) for
any tangent vector T at given point of X2. For X2 = X = C this gives Cauchy-Riemann
conditions.

In the symplectic case X2 is characterized topologically by its genus g and homology class A
as surface of X. In algebraic geometry context the degree d of the polynomial defining X2

replaces A. In TGD X2 corresponds to string world sheet having also boundary. X2 has also
n marked points x1, ..., xn corresponding to intersections with the n surfaces.

3. G-W invariant GWX,A
g,n gives the number of pseudo-holomorphic 2-surfaces X2 connecting n

given surfaces in X - each at single marked point. In TGD these surfaces would be partonic
2-surfaces and marked points would be carriers of sparticles.

The explicit definition of G-W invariant is rather hard to understand by a layman like me. I
however try to express the basic idea on basis of Wikipedia definition (see http://tinyurl.com/

y9b5vbcw). I apologize for my primitive understanding of higher algebraic geometry. The article of
Vakil [L35] (see http://tinyurl.com/ybobccub) discusses the notion of G-W invariant in detail.

1. The situation is conformally invariant meaning that one considers only the conformal equiv-
alence classes for the marked pseudo-holomorphic curves X2 parameterized by the points of
so called Deligne-Mumford moduli space Mg,n of curves of genus g with n marked points (see
http://tinyurl.com/yaq8n6dp): note that these curves are just abstract objects without
no embedding as surface to X assumed. Mg,n has complex dimension

d0 = 3(g − 1) + n .

n corresponds complex dimensions assignable to the marked points and 3(g − 1) correspond
to the complex moduli in absence of marked points. This space appears in TGD framework
in the construction of elementary particle vacuum functionals [K28].

2. Since these curves must be represented as surfaces in X one must introduces the moduli space
Mg,n(X,A) of their maps f to X with given homology equivalence class. The elements in
this space are of form (C, x1, .., xn, f) where C is one particular representative of A.

3. The complex dimension d of Mg,n(X,A) can be calculated. One has

d = d0 + cX1 (A) + (g − 1)k .

http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/y9b5vbcw
http://tinyurl.com/ybobccub
http://tinyurl.com/yaq8n6dp
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Here cX1 (A) is the first Chern class defining element of second cohomology of X evaluated for
A. For Calabi-Yau manifolds one has c1 = 0. The contribution (g − 1)k to the dimension
vanishing for torus topology should have some simple explanation.

4. One defines so called evaluation map ev from Mg,n(X,A) → Y , Y = Mg,n × Xn in terms
of stabilization st(C, x1, ..., xn) ∈ Mg,n(X,A) of C (I understand that stabilization means
that the automophism group of the stabilized surface defined by f is finite [A80] (see http:

//tinyurl.com/y8r44uhl). I am not quite sure what the finiteness of the automorphism
group means. One might however think that conformal transformations must be in question.
One has

ev(C, x1, .., xn, f) = (st(C, x1, .., xn), f(x1), ...f(xn)) .

Evaluation map assigns to the concrete realization of string world sheet with marked points
the abstract curve st(C, x1, .., xn) and points (f(xi), ..., f(xn)) ∈ Xn possibly interpretable
as positions f(xi) of n particles. One could say that one has many particle system with
particles represented by surfaces of Xi of X connected by X2 - string world sheet - mediating
interaction between Xi via the intersection points.

5. Evaluation map takes the fundamental class of Mg,n(X,A) in Hd(Mg,n(X,A)) to an element
of homology group Hd(Y ). This homology equivalence class defines G-W invariant, which is
rational valued in the general case.

6. One can make this more concrete by considering homology equivalence class β in Mg,n and
homology equivalence classes αi, i = 1, ..., n represented by the surfacesXi. The co-dimensions
of these n+1 homology equivalence classes must sum up to d. The homologies ofMg,n and Y =
Mg,n×Xn induce homology of Y by Künneth formula (see http://tinyurl.com/yd9ttlfr)
implying that Y has class of Hd(Y ) given by the product β · α1... · αn.

One can identify the value of GWX,A
g,n for a given class β · α1... · αn as the coefficients in its

expansion as sum of all elements in Hd(Y ). This coefficient is the value of its intersection
product of GWX,A

g,n with the product β ·α1... ·αn and gives element of H0(Q), which is rational
number.

7. There are two non-classical features. Classically intersection must be topologically stable.
This would require αi to have codimension 2 but all even co-dimensions are allowed. That
the value for the number of connecting string world sheets is rational number does not con-
form with the classical geometric intuition. The Wikipedia explanation is that the orbifold
singularities for the space Mg,n(X,A) of stable maps are responsible for rational number.

Application to string theory

Topological string theories give a physical realization of this picture. Here the review article
Instantons, Topological Strings, and Enumerative Geometry of Szabo [A80] (see http://tinyurl.

com/y8r44uhl) is very helpful.

1. In M-theory framework and for topological string models of type A and B the physical inter-
pretation for the varieties associated with αi would be as branes of various dimensions needed
to satisfy Dirichlet boundary conditions for strings.

2. In topological string theories one considers sigma model with target space X, which can
be rather general. The symplectic or complex structure of X is however essential. X is
forced to be 3-D (in complex sense) Calabi-Yau manifold by consistency of quantum theory.
Interestingly, the super twistor space CP (3|4) is super Calabi-Yau manifold although CP3

is not and must therefore have trivial first Chern class c1 appearing in the formula for the
dimension d above. I must admit that I do not understand why this is the case.

Closed topological strings have no marked points and one has n = 0. Open topological strings
world sheets meet n branes at points xi, where they satisfy Dirichlet boundary conditions.
Branes an be identified as even-dimensional Lagrangian sub-manifolds with vanishing induced
symplectic form.

http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
http://tinyurl.com/yd9ttlfr
http://tinyurl.com/y8r44uhl
http://tinyurl.com/y8r44uhl
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3. For topological closed string theories of type A one considers holomorphically imbedded curves
in X characterized by genus g and homology class A: one speaks of world sheet instantons.
A =

∑
niSi is sum over the generating classes Si with integer coefficients. For given g and

A one has analog of product of non-interacting systems at temperatures 1/ti assignable to
the homology classes Si with energies identifiable as ni. One can assign Boltzmann weight
labelled by (g,A) as Qβ =

∏
iQ

ni
i , Qi = exp(−ti).

One can construct partition function for the entire system as sum over Boltzmann weights with
degeneracy factors telling the number of world sheet instantons with given (g,A). One can
calculate free energy as sum

∑
Ng,βQ

β over contributions labelled by (g,A). The coefficients
Ng,β count the rational valued degeneracies of the world sheet instantons of given type and

reduce to G-W invariants GWX,A
g,0 .

Remark: If one allows powers of a root e−1/n, t = n, in the extension of rationals or replace
e−t with pn, partition functions make sense also in the p-adic context.

4. For topological open string theories of type A one has also branes. Homology equivalence
classes are relative to the brane configuration. The coefficients Ng,β are given by GWX,A

g,n for
a given configuration of branes: the above described general formulas correspond to these.

5. For topological string theories of type B, string world sheets reduce to single point and thus
correspond to constant solutions to the field equations of sigma model. Quantum intersection
reduces to ordinary intersection and one has x1 = x2... = xn. G-W invariants involve only
classical cohomology and give for n = 2 the number of common points for two surfaces in
X with dimension d1 and d2 = n − d. The duality between topological string theories of
type A and B related to the mirror symmetry supports the idea that one could generalize the
calculation of these invariants in theories B to theories A. It is not clear whether this option
as any analog in TGD.

The so called Witten conjecture (see http://tinyurl.com/yccahv3q) proved by Kontsevich
states that the partition function in one formulation of stringy quantum gravity and having as
coefficients of free energy G-W invariants of the target space is same as the partition function in
second formulation and expressible in terms of so called tau function associated with KdV hierarchy.
This leads to non-trivial identities. Witten conjecture actually follows from the invariance of
partition function with respect to half Virasoro algebra and Virasoro conjecture (see http://

tinyurl.com/y7xcc9hm) stating just this generalizes Witten’s conjecture.

4.3.4 Riemann-Roch theorem

Riemann-Roch theorem (RR) is also part of enumerative geometry albeit more abstract. Instead
of counting of numbers of points, one counts dimensions of various function spaces associated with
Riemann surfaces. RR provides information about the dimensions for the spaces of meromorphic
functions and 1-forms with prescribed zeros and poles.

Basic notions

Riemann surface is the basic notion. Riemann surface is orientable is characterized by its genus g
and number of holes/punctures in it. Riemann surface can also possess marked points, which seem
to be equivalent with punctures. The moduli space of these complex curves is parameterized by a
moduli space Mg,n of curves of genus g with n marked points (see http://tinyurl.com/yaq8n6dp)
(see http://tinyurl.com/yaq8n6dp).

Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) generalizes the notion of dif-
ferential form so that it has has well-defined degrees with respect to complex coordinates and their
conjugates: one can write in general complex manifold this kind of form as

ω = ωi1i2..in,j1j2...jndz
i1 ∧ dzi2 ...dzindzj1 ∧ dzj2 ...dzjn .

The ordinary exterior derivative d is replaced with its holomorphic counterpart ∂ and its conjugate.
One can construct the counterparts of cohomology groups (Hodge theory) Hp,q = Hq,p. Betti
numbers as numbers hi,j defining the dimensions of the cohomology groups forms of degrees i and

http://tinyurl.com/yccahv3q
http://tinyurl.com/y7xcc9hm
http://tinyurl.com/y7xcc9hm
http://tinyurl.com/yaq8n6dp
http://tinyurl.com/yaq8n6dp
http://tinyurl.com/y7cvs5sx
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j with respect to dzi and dzj . One can define the holomorphic Euler’s characteristic as χC =
h0,0−h01 = 1− g whereas orinary Euler characteristic is χR = h0,0− (h01 +h10) +h1,1 = 2(1− g).

One considers meromorphic functions having poles and zeros as the only singularities (points
at which the map does not preserve angles): rational functions provide the basic example. Riemann
zeta provides example of meromorphic function not reducing to rational function. Holomorphic
functions have only zeros and entire functions have neither zeros nor poles. If analytic functions
on Riemann surfaces can be interpreted as maps of compact Riemann surface to itself rather than
to complex plane, meromorphy reduces to holomorphy since the point ∞ belongs to the Riemann
surface.

The elements of free group of divisors are defined as formal sums of integers associated with
the points P of Riemann surface. Divisors D =

∑
P n(P ), where (P ) is integer, are analogous

to integer valued “wave functions” on Riemann surface. The number of points with n(P ) 6= 0 is
countable. The degree of divisor is obtained as the ordinary sum deg(D) of the integers defining
the divisor.

Although divisors can be seen as purely formal objects, they are in practice associated to
both meromorphic functions and 1-forms. The divisor of a meromorphic function is known as prin-
cipal divisor. Meromorphic functions and 1-forms differing by a multiplication with meromorphic
function are regarded as linearly equivalent - in other words, one can add to a given divisor a
divisor of a meromorphic function without changing its equivalence class. It can be shown that all
divisors associated with meromorphic 1-forms linearly equivalent and one can talk about canonical
divisor. Note that deg(D) is linear invariant since the degree of globally meromorphic function is
zero.

The motivation for the divisors is following. Consider the space of meromorphic functions
h with the property that the degrees of poles associated with the poles of these functions are not
higher than given integers n(P ). In other words, one has 〈h(P )〉+D(P ) ≥ 0 for all points P (〈h〉
is the divisor of h). For D(P ) > 0 the pole has degree not higher than D(P ). For non-positive
D(P ) the function has zero of order D(P ) at least.

Formulation of RR theorem

With these prerequisites it is possibly to formulate RR (for Wikipedia article see http://tinyurl.
com/mdmbcx6). The Wikipedia article is somewhat confusing and a more precise description of
RR can be found in the article “Riemann-Roch theorem” by Vera Talovikova [A86] (see http:

//tinyurl.com/ktww7ks).
Let l(D) be the dimension of the space of meromorphic functions with principal divisor D

or 1-forms linearly equivalent with canonical divisor K. Then the equality

l(D)− l(K −D) = deg(D)− g + 1 (4.3.1)

is true for both meromorphic functions and canonical divisors. For D = K one obtains using
l(0) = 1

l(K) = deg(K)− g + 2 (4.3.2)

giving the dimension of the space of canonical divisors. l(K) > 0 in general is not in conflict with
the fact that canonical divisors are linearly equivalent. deg(K) = 2g−2 in the above formula gives
l(K) = g.

l(K) = 0 for g = 0 case looks strange: one should actually make notational distinction
between dimensions of spaces of meromorphic functions and one-forms (this is done in the article
of Talivakova). The explanation is that l(K) here is not the dimension of the space of canonical
1-forms but that of the holomorphic functions with the divisor of K. The canonical form K for
the sphere has second order pole at ∞ so that one cannot have meromorphic forms holomorphic
outside P .

Riemann’s inequality

l(D) ≥ deg(D)− g + 1 (4.3.3)

http://tinyurl.com/mdmbcx6
http://tinyurl.com/mdmbcx6
http://tinyurl.com/ktww7ks
http://tinyurl.com/ktww7ks


4.3. About enumerative algebraic geometry 191

follows from l(K −D) ≥ 0, which can be seen as a correction term to the formula

l(D) = deg(D)− g + 1 . (4.3.4)

In what sense this is true, becomes clear from what follows.

The dimension of the space meromorphic functions corresponding to given divisor

The simplest divisor associated with meromorphic function involves only one point. Multiplying
a function, which is non-vanishing and finite at P by (z − z(P ))−n gives a pole of order n (zero
has negative order in this sense). One is interested on the dimension l(nP ) of the space nP of
meromorphic functions and RR allows to deduce information about l(nP ). One is interested on
the behavior of l(nP ) as function of genus g of Riemann surface (more general situation would
allow also punctures). For n = 0 one has entire function without poles and zeros. Only constant
function is possible: l(0) = 1.

First some general observations. K has degree deg(K) = 2g − 2, which gives l(K) = g. For
n = deg(D) > deg(K) = 2g − 2 the correction term vanishes since deg(K −D) becomes negative,
and one has l(D) = deg(D) − g + 1. This gives l(n = 2g − 1) = g. Therefore n ∈ {2g − 1, 2g, ...}
corresponds to l(nP ) ∈ {g, g+ 1, ...}. n < 2g− 2 corresponds to l(nP ) = 1. What about the range
n ∈ {2, ..., 2g − 2}? Note that 2g − 2 is the negative of the Euler character of Riemann surface.

1. g = 0 case. K on sphere. dz canonical 1-form on Riemann sphere covered by two complex
coordinate patches. z → w = 1/z relates the coordinates. There is second order pole at
infinity (dw = −dz/z2). One has therefore deg(K) = −2 for sphere in accordance with the
general formula deg(K) = 2g − 2. The formula l(nP ) = deg(D) + 1 holds for all n and there
is no correction term now. One as l(nP ) = n+ 1 .

2. g = 1 case.

One has deg(K) = 2g− 2 = 0 for torus reflecting the fact that the canonical form ω = dz has
no poles or zeros (torus is obtained by identifying the cells of a periodic lattice in complex
plane). Correction term vanishes since it would have negative degree for all n and one has
l(nP ) ∈ {1, 1, 2, 3, ...}.

3. g = 2 case.

For n = deg(D) ≥ 2× 2− 1 = 3 gives l(D) = n− 1 giving for n ≥ 3 l(nP ) ∈ {2, 3, ...}. What
about n = g = 2? For generic points one has l(2) = 1. There are 6 points at which one
has l(D) = 2 so that there is additional meromorphic function having pole of order 2 at this
kind of point. These points are fixed points under Z2 defining hyper-ellipticity. Note that
g ≤ 2 Riemann surfaces are always hyper-elliptic in the sense that it allows Z2 as conformal
symmetry (see http://tinyurl.com/y9sdu4o3).

One has therefore l(nP ) ∈ {1, 1, 1, 2, ..} for a generic point and l(nP ) ∈ {1, 1, 2, 2......} for
6 points fixed under Z2. An interesting question is whether this phenomenon could have
physical interpretation in TGD framework.

4. g > 2 case.

For g > 2 . l(nP ) in the range {2, 2g − 2} can depend on point and even on the conformal
moduli. There are more special points in which correction term differs from that in the generic
case. g = 3 illustrates the situation. n ∈ {1, 1, 1, 1, 1, 2, ...} is obtained for a generic point.
At special points and for n < 3 there are also other options for l(nP ). Also the dependence
of l(nP ) on moduli emerges for g ≥ 3. The natural guess layman is that these points are
fixed points of conformal symmetries. Also now hyper-elliptic surfaces allowing projective Z2

covering are special. In the general case hyper-ellipticity is not possible.

In TGD framework Weierstrass points(see http://tinyurl.com/y9wehsml) are of special
interest physically.

1. My layman guess is that special points known as Weierstrass points (see http://tinyurl.

com/y9wehsml) correspond to singularities for projective coverings for which conformal sym-
metries permute the sheets of the covering. Several points coincide for the covering since a
sub-group of conformal symmetries would act trivially on the Weierstrass point.

http://tinyurl.com/y9sdu4o3
http://tinyurl.com/y9wehsml
http://tinyurl.com/y9wehsml
http://tinyurl.com/y9wehsml
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Note that for g > 2 Z2 covering is not possible except for hyper-elliptic surfaces, and one
can wonder whether this relates to the experimental absence fo g > 2 fermion families [K28].
Second interesting point is that elementary particles indeed correspond to double sheeted
structures from the condition that monopole fluxes flow along closed flux tubes (there are no
free magnetic monopoles).

2. There is an obvious analogy with the coverings associated with the cognitive representation
defined by the points of space-time surface with coordinates in an extension of rationals
[L52, L46] [L51]. Fixed points for a sub-group of Galois group generate singularities at which
sheets touch each other. These singular points are physically the most interesting and could
carry sparticles. The action of discrete conformal groups restricted to cognitive representation
could be represented as the action of Galois group on points of cognitive representation.
Cognitive representation would indeed represent!

Remarkably, if the tangent spaces are not parallel for the touching sheets, these points are
mapped to several points in H in M8−H correspondence. If this picture is correct, the hyper-
elliptic symmetry Z2 of genera g ≤ 2 could give rise to this kind of exceptional singularities
for g ≥ 2.

What is worrying that there are two views about twistorial amplitudes. One view relying
on the notion of octonionic super-space M8 [L46] is analogous to that of SUSYs: sparticles
can be seen as completely local composites of fermions. Second view relies on embedding
space M4 × CP2 [K87] and on the identification sparticles as non-local many-fermion states
at partonic 2-surfaces. These two views could be actually equivalent by M8 −H duality.

3. When these singular points are present at partonic 2-surfaces at boundaries of CD and at
vertices, the topology of partonic 2-surface is in well-defined sense between g and g + 1
external particles: one has criticality. The polynomials representing external particles indeed
satisfy criticality conditions guaranteeing associativity or co-associativity (quantum criticality
of TGD Universe is the basic postulate of quantum TGD). At partonic orbits the touching
pieces of partonic 2-surface could separate (g) or fuse (g + 1). Could this topological mixing
give rise to CKM mixing of fermions [K28, K60, K70]?

RR for algebraic varieties and bundles

RR can be generalized to algebraic varieties (see http://tinyurl.com/y9asz4qg). In complex
case the real dimension is four so that this generalization is interesting from TGD point of view
and will be considered later. The generalization involves rather advanced mathematics such as the
notion of sheaf (see http://tinyurl.com/nudhxo6). Zeros and poles appearing in the divisor are
for complex surfaces replaced with 2-D varieties so that the generalization is far from trivial.

The following is brief summary based on Wikipedia article.

1. Genus g is replaced with algebraic genus and deg(D) plus correction term is replaced with the
intersection number (see http://tinyurl.com/y7dcffb6) for D and D−K, where K is the
canonical divisor associated with 2-forms, which is also unique apart from linear equivalence
Points of divisor are replaced with 2-varieties.

2. The generalization to complex surfaces (with real dimension equal to 4) reads as

χ(D) = χ(0) +
1

2
D · (D −K) . (4.3.5)

χ(D) is holomorphic Euler characteristic associated with the divisor. χ(0) is defined as
χ(0) = h0,0 − h0,1 + h0,2, where hi,j are Betti numbers for holomorphic forms. ’·’ denotes
intersection product in cohomology made possibly by Poincare duality. K is canonical two-
form which is a section of determinant bundle having unique divisor (their is linear equivalence
due to the possibility to multiply with meromorphic function.

One has χ(0) = 1 + pa, where pa is arithmetic genus. Noether’s formula gives

χ(0) =
c21 + c2

12
=
K ·K + e

12
. (4.3.6)

http://tinyurl.com/y9asz4qg
http://tinyurl.com/nudhxo6
http://tinyurl.com/y7dcffb6
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c21 is Chern number and e = c2 is topological Euler characteristic.

Clearly the information given by χ(D) is about Dolbeault homology. For comparison note
that RR for curves states l(D)− l(K −D) = χ(D) = χ(0) + deg(D).

RR can be also generalized so that it applies to vector bundles. Ordinary RR can be
interpreted as applying to a bundle for which the fiber is point. This requires the notion of the
inverse bundle defined as a bundle with the property that its direct sum (Whitney sum) with the
bundle itself is trivial bundle. One ends up with various characteristic classes, which represent
homologically non-trivial forms in the base spaces characterizing the bundle. For instance, the
generalizations of RR give information about the dimensions of the spaces of sections of the vector
bundle.

Atyiah-Singer index theorem (see http://tinyurl.com/k6daqco) deals with so called ellip-
tic operators in compact manifolds and represents a generalization important in recent theoretical
physics, in particular gauge theories and string models. The theorem relates analytical index - typ-
ically characterizing the dimension for the spectrum of solutions of elliptic operator to a topological
index. Elliptic operator is assigned with small perturbations for a given solution of field equations.
Perturbations of a given solution of say Yang-Mills equations is a representative example.

4.4 Does M 8 − H duality allow to use the machinery of al-
gebraic geometry?

The machinery of algebraic geometry is extremely powerful. In particular, the number theoretical
universality of algebraic geometry implies that same equations make sense for all number fields:
this is just what adelic physics [L52] [L51] demands. Therefore it would be extremely nice if one
could somehow use this machinery also in TGD framework as it is used in string models. How this
could be achieved? There are several guide lines.

1. Twistor lift of TGD [K100, L30, K13, K87] is now a rather well-established idea although a
lot of work remains to be done with the details. Twistors were originally introduced in order
to be able to use this machinery and involves complexification of Minkowski space M4 to M4

c

as an auxiliary tool. Complexification in sufficiently general sense seems to be a necessary
auxiliary tool but it cannot be a trick (like Wick rotation) but something fundamental and
here complexification at the level of M8 is suggestive. In the sequel I will used M4 for M4

c

and M8 for M8
c unless it is necessary to emphasize that M8

c is in question. The essential point
is that the Euclidian metric is complexified and it reduces to a real metric in various sub-
spaces defining besides Euclidian space also Minkowski spaces with varying signature when
the complex coordinates are real or imaginary.

2. If M8 −H duality holds true, one can solve field equations in M8 = M4 × E8 by assuming
that either the tangent space or normal space of the space-time surface X4 is associative
(quaternionic) at each point and contains preferred M2 in its tangent space. M2 could
depend on x but M2(x):s should integrate to a 2-surface. This allows to map space-time
surface M8 to a surface in M4 × CP2 since tangent spaces are parameterized by points of
CP2 and CP2 takes the role of moduli space. The image of tangent space as point of CP2 is
same irrespective of whether one has quaternions or complexified quaternions (Hc).

It came a surprise that associativity/co-associativity is possible only if the space-time surface is
critical in the sense that some gradients of 8 complex components of the octonionic polynomial
P vanish without posing them as additional conditions reducing thus the dimension of the
space-time surface. This occurs when the coefficients of P satisfy additional conditions. One
obtains associative/co-associative space-time regions and regions without either property and
they correspond nicely to two solution types for the twistor lift of Kähler action.

3. Contrary to the original expectations, M4 ⊂ M8
c must be identified as co-associative (co-

quaternionic) subspace so that E4 is the associative/quaternionic sub-space. This allows to
have light-cone boundary as the counterpart of point-like singularity in ordinary algebraic
geometry and also allows to understand the emergence of CDs and ZEO.

http://tinyurl.com/k6daqco
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Remark: A useful convention to be used in the sequel. RE(o) and IM(o) denote the real
and imaginary parts of the octionion in the decomposition o = RE(o) + IM(o)I4 and Re(o) and
Im(o) its real number valued and purely imaginary parts in the usual decomposition.

The problems related to the signature of M4 have been a longstanding head-ache of M8

duality.

1. The intuitive vision has been that the problems can be solved by replacing M8 with its
complexification M8

c identifiable as complexified octonions o. This requires introduction of
imaginary unit i commuting with the octonionic units Ek ↔ (1, I1, ..., I7). The real octonionic
components are thus replaced with ordinary complex numbers zi = xi + iyi.

2. Importantly, complex conjugation o → o changes only the sign of Ii but not! that of i
so that the octonionic inner product (o1, o2) = o1o2 = ok1o

l
2δk,l becomes complex valued.

Norm is equal to OO =
∑
i z

2
i . Both norm and inner product are in general complex valued

and real valued only in sub-spaces in which octonionic coordinates are real or imaginary.
Sub-spaces have all possible signatures of metric. These sub-spaces are not closed under
multiplication and this has been an obstacle in the earlier attempts based on the notion of
octonion analyticity. This argument applies also to quaternions and one obtains signatures
(1, 1, 1, 1), (1, 1, 1,−1), (1, 1,−1,−1), and (1,−1,−1,−1). Why just the usual Minkowskian
signature (1,−1,−1,−1) is physical, should be understood.

The convention consistent with that used in TGD corresponds to a negative length squared
for space-like vectors and positive for time-like vectors. This gives m = (o0, io1, ..., io7) with
real ok. The projection M8

c → M8 defines the projection of X4
c ⊂ M8

c to X4 ⊂ M8 serving
as the pre-image of X4 ⊂M8 in M8 −H correspondence.

3. o is not field anymore as is clear from the fact that 1/o = o/oo is formally infinite in
Minkowskian sub-spaces, when octonion defines a light-like vector. o (and Hc) remains how-
ever a ring so that sum and products are well-defined but division can lead to problems unless
one stays inside 7+7-dimensional light-cone with Re(oo) > 0 (Re(qq) > 0).

Although the number field structure is lost, one can still define polynomials needed to define
algebraic varieties by requiring their simultaneous vanishing and rational functions make
sense inside the light-cone. Also rational functions can be defined but poles are replaced
with light-cones in Minkowskian section. Algebraic geometry would thus be forced by the
complexification of octonions. This looks to me highly non-trivial! The extension of zeros and
poles to light-cones making propagation possible could be a good reason for why Minkowskian
signature is physical. Interestingly, the allowed octonionic momenta are light-like quaternions
[K87].

4. An interesting question is whether ZEO and the emergence of CDs relates to the failure of
field property. It seems now clear that CDs must be assigned even with elementary particles.
I have asked whether they could form an analog for the covering of manifold by coordinate
patches (in TGD inspired theory of consciousness CDs would be correlates for perceptive
fields for conscious entities assignable to CDs [L54]). These observations encourage to ask
whether the tips of CD should correspond to a pair formed by two poles/two zeros or by pole
and zero assignable to positive and negative energy states.

It turns out that the space-time surfaces in the interior of CD would naturally correspond to
non-associative surfaces and only their 3-D boundaries would have associative 4-D tangent
spaces allowing mapping to H by M8-duality, which is enough by holography.

5. The relationship between light-like 3-surface bounding Minkowskian and Euclidian space-
time regions and light-like boundaries of CDs is interesting. Could also the partonic orbits
be understood a singularities of octonionic polynomials with IM(P ) = RE(P ) = 0?

4.4.1 What does one really mean with M8 −H duality?

The original proposal was that M8 duality should map the associative tangent/normal planes of
associative/co-associative space-time surface containing preferred M2, call it M2

0 , to CP2: the map
read as (m, e) ∈M4×E4 → (m, s) ∈M4×CP2. Eventually it became clear that the choice of M2

can depend on position with M2(x) forming an integrable distribution to CP2: this would define
what I have called Hamilton-Jacobi structures [K10]. String like objects have minimal surface as
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M4 projection for almost any general coordinate invariant action, and internal consistency requires
that M2(x) integrate to a minimal surface. The details are however not understood well enough.

1. M4 coordinate would correspond simply to projection to a fixed M4
0 in the decomposition

M8 = M4
0 × E4

0 . One can however challenge this interpretation. How M4
0 is chosen? Is it

possible to choose it uniquely? Could also M4 coordinates represent moduli analogous to
CP2 coordinates? What about ZEO?

There is an elegant general manner to formulate the choice of M4
0 at the level of M8. The

complexified quaternionic sub-spaces of M8
c (M8) are parameterized by moduli space defining

the quaternionic moduli. The moduli space in question is CP2. The choice of M4
0 corresponds

to fixing of the quaternionic moduli by fixing a point of CP2.

Warning: Note that one should be very careful in distinguishing between quaternionic as
sub-spaces of M8 and as the tangent space M8 of given point of M8.

2. One can ask whether there could be a connection with ZEO, where CDs play a key role.
Indeed, the complexified Minkowski inner product means that the complexified octonions
(quaternions) inside M8

c (M4
c ) have inverse only inside 7-D (4-D) complexified light-cone and

this would motivate the restriction of space-time surfaces inside future or past light-cone or
both but not yet force CD.

If one allows rational functions and even meromorphic functions of octonionic or quaternionic
variable, one could consider the possibility of restricting the space-time surface defined as
their zeros to a maximally sized region containing no poles.

3. Consider complexified quaternions Hc. Poles (qq)−n, n ≥ 1 would correspond M4 light-cone
boundaries since qq = 0 at them. Also zeros qq = 0, for n ≥ 1 correspond to light-like
boundaries. Could one have two poles with with time-like distance defining CD or a pair of
pole and zero?

There is also a possible connection with the notion of infinite primes [K94]. The notion of
infinite prime leads to the proposal that rationals defined as ratios of infinite integers but
having unit real norm (and also p-adic norms) could correspond pairs of positive and negative
energy states with identical total quantum numbers and located at opposite boundaries of
CD. Infinite rationals can be mapped to rational functions. Could positive energy states
correspond to the numerators with zeros at second boundary of CD and negative energy
states to denominators with zeros at opposite boundary of CD?

Is the choice of the pair (M2
0 ,M

4
0 ) consistent with the properties of known extremals

in H

It should be made clear that the notion of associativity/co-associativity (quaternionicity/co-quaternionicity)
of the tangent/normal space need not make sense at the level of H. I shall however study this
working hypothesis in the sequel.

The choice of the pair (M2
0 ,M

4
0 ) means choosing preferred co-commutative (commutative)

sub-space M2
0 of M8 defining a subspace of fixed co-quaternionic (quaternionic) sub-space M4

0 ⊂
M8.

Remark: M4 should indeed be the co-associative/co-quaternionic subspace of M8 if the
argument about emergence of CDs is accepted and if M8 −H correspondence maps associative to
associative and co-associative to co-associative.

M4
0 in turn contains preferred M2

0 defining co-commutative (hyper-complex) structure. Both
M2

0 and M4
0 are needed in order to label the choice by CP2 point (that is as a point of Grassman-

nian).

Is the projection to a fixed factor M4
0 ⊂ M4

0 × E4 as a choice of co-quaternionic moduli
consistent with what we know about the extremals of twistor lift of Kähler action in H? How
could one fix M4

0 from the data about the extremal in H? One can make similar equations about
the choice of M2

0 as a fixed co-complex moduli characterized by a unit quaternion. Note that this
choice is expected to relate closely to the twistor structure and Kähler structure.

It is best to check the proposal for the known extremals in H [K10]. Consider first CP2

type extremals for which M4 projection is a piece of light-like geodesic.
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1. The CP2 projection for the image of X4 ⊂ M8 differs from single point only if the tangent
space isomorphic to M4 and parameterized by CP2 point varies. Consider CP2 type extremals
for the twistor lift of Kähler action [?]n H having light-like geodesic as M4 projection as an
example. The light-like geodesic defines a light-like vector in the tangent space of CP2 type
extremal. This light-like vector together with its dual spans fixed M2, which however does
not belong to the tangent space so that associative surface would not be in question.

What about co-associativity or associativity (the latter is favored by above argument)? This
property should hold true for the pre-image of CP2 type extremal in M8 but I am not able
to say anything about this. It is questionable to require this property at the level H but one
can of course look what it would give.

What about associativity for CP2 tangent space? The normal space of CP2 type extremal is
3-D (!) since the only the light-like tangent vector of the geodesic and 2 vectors orthogonal
to it are orthogonal to CP2 tangent vectors. For Euclidian signature this would mean that
tangent space is 5-D and cannot be associative but now the tangent space is 4-D. Can one
still say that tangent space is associative. The co-associativity of the tangent space makes
sense trivially. Can one conclude that CP2 is co-associative.

The associativity for CP2 tangent space might make sense since the tangent space is 4-D. The
light-like vector k definesM2

0 . The associativity conditions involving two tangent space vectors
of CP2 and the light-like vector k contracted with the corresponding octonion components.
The contributions from the components of k to the associator should cancel each other. Since
one can change the relative sign of the components of k, this mechanism does not seem to
work for all components. Hence associativity cannot hold true. Neither does M2

0 belong to
the normal space since k and its dual are not orthogonal.

Could one conclude that CP2 type extremal is co-associative in accordance with the origi-
nal belief thanks to the light-like projection to M4? This does not conform with what the
singularity considerations for the octonionic polynomials would suggest. Or is it simply not
correct to try to apply associativity at the level of H. Or does M8 −H correspondence map
associative tangent spaces to co-associative ones?

2. The normal space M4 of CP2 type extremal have all orientations characterized by its CP2

projection. The normal space must contain the M2
0 determined by the tangent of the light-like

geodesic and this is indeed the case. Note that CP2 type extremals cannot have entire CP2

as CP2 projection: they necessarily have hole at either end, which would be naturally be at
the boundary of CD.

CP2 type extremals seem to be consistent with M8−H correspondence. It however seems that
one cannot fix the choice of M4

0 uniquely in terms of the properties of the extremal. There
is a moduli space for M4

0 :s defined by CP2 and obviously codes for moduli for quaternion
structures in octonionic space. The distributions of M2(x) (minimal surfaces) would code for
quaternion structures (decomposition of octonionic coordinates to quaternionic coordinates
in turn decomposing to pairs of complex coordinates).

Consider next the associativity condition for cosmic strings in X2 × Y 2 ⊂M4 × CP2. Now
CP2 projection is 2-D complex surfaces and M4 projection is minimal surface. Situation is clearly
associative. How unique the choice of M4

0 is now?

1. Now M2(x) depends on position but M2(x):s define an integrable distribution defining string
orbit X2 as a minimal surface. M4

0 must contain all surfaces M2(x), which would fix M4
0 to

a high degree for complex enough cosmic strings.

2. Each point of X2 corresponds to the same partonic surface Y 2 ⊂ CP2 labelling the tangent
spaces for its pre-image in M8. All the tangent surfaces M2(x) × E2(y) for X2 × Y 2 ⊂ M8

share only M2(x) ⊂ M4
0 . M4

0 must contain all tangent spaces M2(x) and the inverse image
of Y 2 ⊂ CP2 must belong to the orthogonal complement E4 of M4

0 . This is completely
analogous with the condition X2 = X2 × Y 2 ⊂M4 × CP2.

Consider a decomposition M8 = M4
0 × E4, M4

0 = M2
0 × E2

0 . If the inverse image of Y 2 at
point x belongs to E4, the M4

0 projection belongs to M4
0 also in M8. If this does not pose

any condition on the tangent spaces assignable to the points of Y 2 defining points of CP2,
there are no problems. What could happen that the tangent spaces assignable to Y 2 could
force the projection of the inverse image of Y 2 to intersect M4

0 .
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One should also understand massless extremals (MEs). How to choose M4
0 in this case?

1. MEs are given as zeros of arbitrary functions of CP2 coordinates and 2 M4 coordinates u
and v representing local light-like direction and polarization direction orthogonal to it. In
the simplest situation these directions are constant and define M4

0 = M2
0 ×E2

0 decomposition
everywhere so that M4

0 is uniquely defined. Same applies also when the directions are not
constant. In the general case light-like direction would define the local tangent plane of string
world sheet and local polarization plane. Since the dimension of M4 projection is 4 there
seems to be no problems involved.

2. Tangent plane of X4 is parameterized by CP2 coordinates depending on 2 coordinates u and v.
The surface X4 ⊂M8 must be graph for a map M4

0 → E4 so that a 2-parameter deformation
of M4

0 as tangent plane is in question. The distribution of tangent planes of X4 ⊂M8 is 2-D
as is also the CP2 projection in H.

To sum up, the original vision about the associativity properties of the known extremals
at level of H survives. On the other hand, CDs emerge if M4 corresponds to the co-associative
part of O. Does this mean that M8 − H correspondence maps associative to co-associative by
multiplying the quaternionic tangent space in M8 by I4 to get that in H and vice versa or that
the notions of associative and co-associative do not make sense at the level of H? This does not
affect the correspondence since the same CP2 point parametrizes both associative tangent space
and its complement.

Space-time surfaces as co-dimension 4 algebraic varieties defined by the vanishing of
real or imaginary part of octonionic polynomial?

If the theory intended to be a theory of everything, the solution ansatz for the field equations
defining space-time surfaces should be ambitious enough: nothing less than a general solution of
field equations should be in question.

1. One cannot exclude the possibility that all analytic functions of complexified octonionic vari-
able with real Taylor or even Laurent coefficients. These would would a commutative and
associative algebra. Space-time surfaces would be identified as their zero loci. This option is
however number theoretically attractive and can also leads to problems with adelic physics.
Since Taylor series at rational point need not anymore give a rational value.

2. Polynomials of complexified octonion variable o with real coefficients define the simplest option
but also rational functions formed as ratios of this kind of polynomials must be considered.
Polynomials form a non-associative ring allowing sum, product, and functional decomposition
as basic operations. If the coefficients on of polynomials are complex numbers on = an + ibn,
an, bn real, where i refers to the commutative imaginary unit complexifying the octonions,
the ring is associative. It is essential to allow only powers on (or (o−o0))n with o0 = a0 + ib0,
a0, b0 real numbers). Physically this means that a preferred time axis is fixed. This time axis
could connect the tips of CD in ZEO.

One can write

P (o) =
∑
k pko

k ≡ RE(P )(q1, q2, q1, q2) + IM(P )(q1, q2, q1, q2)× I4 , pk real ,

(4.4.1)

where the notations

o = q1 + q2I4 , qi = z1
i + z2

i I2 , qi = z1
i − z2

i I2 , zji = xji + iyji
(4.4.2)

Note that the conjugation does not change the sign of i. Due to the non-commutativity of
octonions P i as functions of quaternions are in general not analytic in the sense that they
would be polynomials of qi with real coefficients! They are however analytic functions of zi.
The real and imaginary parts of xji correspond to Minkowskian and Euclidian signatures.
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In adelic physics coefficients on of the octonionic polynomials define WCW coordinates and
should be rational numbers or rationals in the extension of rationals defining the adele. The
polynomials form an associative algebra since associativity holds for powers on multiplied by
real number. Thus complex analyticity crucial in algebraic geometry would be a key element
of adelic physics.

3. If the preferred extremals correspond to the associative algebra formed by these polynomials,
one could construct a completely general solution of the field equations as zero loci of their
real or imaginary parts and build up of new solutions using algebra operation sum, product,
and functional decomposition. One could identify space-time regions as associative or co-
associative algebraic varieties in terms of these polynomials and they would form an algebra.

The motivation for this dream comes from 2-D electrostatics, where conducting surfaces
correspond to curves at which the real part u or imaginary part v of analytic function w = f(z) =
u+ iv vanishes. In electrostatics curves form families with curves orthogonal to each other locally
and the map w = u+ iv → v − iu defines a duality in which curves of constant potential and the
curves defining their normal vectors are mapped to each other.

1. The generalization to the recent situation would be vanishing of the imaginary part IM(P ) or
real part RE(P ) of the octonionic polynomial, where real and imaginary parts are defined via
o = q1

c + q2
cI4. One can consider also the possibility that imaginary or real part has constant

value c are restricted to be rational so that one can regard the constant value set also as zero
set for a polynomial with constant shift. Note that the rationals could be also complexified
by addition of i. One would have

RE(P )(zki ) or IM(P )(zki ) = c , c = c0 rational .

(4.4.3)

c0 must be real. These two options should correspond to the situations in which tangent
space or normal space is associative (associativity/co-associativity). Complexified space-time
surfaces X4

c corresponding to different constant values c of imaginary or real part (with respect
to i) would define foliations of M8

c by locally orthogonal 4-dimensional surfaces in M8
c such

that normal space for surface X4
c would be tangent space for its co-surface.

CDs and ZEO emerges naturally if the IM(o) corresponds to co-quaternionic part of octonion.

2. It must be noticed that one has moduli space for the quaternionic structures even when
M4

0 is fixed. The simplest choices of complexified quaternionic space Hc = M4
c,0 containing

preferred complex plane M2
c,0 and its orthogonal complement are parameterized by CP2.

More complex choices are characterized by the choice of distribution of M2(x) integrable to
(presumably minimal) 2-surface in M4. Also the choice of the origin matters as found and
one has preferred coordinates. Also the 8-D Lorentz boosts give rise to further quaternionic
moduli. The physically interesting question concerns the interpretation of space-time surfaces
with different moduli. For instance, under which conditions they can interact?

The proposal has several extremely nice features.

1. Single real valued polynomial of real coordinate extended to octonionic polynomial and fixed
by real coefficients in extension of rationals would determine space-time surfaces.

2. The notion of analyticity needed in concrete equations is just the ordinary complex analyticity
forced by the octonionic complexification: there is no need for the application to have left-
or right quaternion analyticity since quaternionic derivatives are not needed. Algebraically
one has the most obvious guess for the counterpart of real analyticity for polynomials gen-
eralized to octonionic framework and there is no need for the quaternionic generalization of
Cauchy-Riemann equations [A88, A66] [A88, A66] (http://tinyurl.com/yb8l34b5) plagued
by the problems with the definition of differentiation in non-commutative and non-associative
context. There would be no problems with non-associativity and non-commutativity thanks
to commutativity of complex coordinates with octonionic units.

http://tinyurl.com/yb8l34b5
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3. The vanishing of the real or imaginary part gives rise to 4 conditions for 8 complex coordinates
zk1 and zk2 allowing to solve zk2 as algebraic functions zk2 = fk(zl1) or vice versa. The conditions
would reduce to algebraic geometry in complex co-dimension dc = 4 and all methods and
concepts of algebraic geometry can be used! Algebraic geometry would become part of TGD
as it is part of M-theory too.

4.4.2 Is the associativity of tangent-/normal spaces really achieved?

The non-trivial challenge is to prove that the tangent/normal spaces are indeed associative for the
two options. The surfaces X4

c are indeed associative/co-associative if one considers the internal
geometry since points are in M4

c or its orthogonal complement.
One should however prove that X4

c are also associative as sub-manifolds of O and therefore
have quaternionic tangent space or normal space at each point parameterized by a point of CP2

in the case that tangent space containing position dependent M2
c , which integrate to what might

be called a 2-D complexified string world sheet inside M4
c .

1. The first thing to notice that associativity and quaternionicity need not be identical concepts.
Any surface with complex dimension d < 4 in O is associative and any surface with dimension
d > 4 co-associative. Quaternionic and co-quaternionic surfaces are 4-D by definition. One
can of course ask whether one should consider a generalization of brane hierarchy of M-theory
also in TGD context and allow associativity in its most general sense. In fact, the study
of singularity of o2 shows that 6 and 5-dimensional surfaces are allowed for which the only
interpretation would be as co-associative spaces. This exceptional situation is due to the
additional symmetries increasing the dimension of the zero locus.

2. One has clearly quaternionicity at the level of o obtained by putting Y = 0 and at the level of
the tangent space for the resulting surface. The tangent space should be quaternionic. The
Jacobian of the map defined by P is such that it takes fixed quaternionic subspace Hc →M4

0,c

of O to a quaternionic tangent space of X4. The Jacobian applied to the vectors of Hc gives
the octonionic tangent vectors and they should span a quaternionic sub-space.

3. The notion of quaternionic surface is rigorous. M8 − H correspondence could be actually
interpreted in terms of the construction of quaternionic surface in M8. One has 4-D integrable
distribution of quaternionic planes in O with given quaternion structure labelled by points of
CP2 and has representation at the level of H as space-time surface and should be preferred
extremals. These quaternion planes should integrate to a slicing by 4-surfaces and their duals.
One obtains this slicing by fixing the values 4 of the suitably defined octonionic coordinates
P i, i = 1, .., 8, to a real constants depending on the surface of the slicing. This gives a
space-time surfaces for which tangent space-spaces or normal spaces are quaternionic.

The first guess for these coordinates P i be as real or imaginary parts of real polynomials
P (o). But how to prove and understand this?

Could the following argument be more than wishful thinking?

1. In complex case an analytic function w(z) = u + iv of z = x + iy mediates a map between
complex planes Z and W . One can interpret the imaginary unit appearing in w locally as a
tangent vector along u = constant coordinate line.

2. One can interpret also octonionic polynomials with real coefficients as mediating a map from
octonionic plane O to second octonionic plane, call if W . The decomposition P = P 1) +P 2)I4
would have interpretation in terms of coordinates of W with coordinate lines representing
quaternions and co-quaternions.

3. This would suggests that the quaternionic coordinate lines inW can be identified as coordinate
curves in O - that space-time surfaces - which are quaternionic/co-quaternionic surfaces for
P 1 = constant/P 2 = constant lines. One would have a representation of the same thing
in two spaces, and if sameness includes also quaternionicity/co-quaternionicity as attributes,
then also associativity and co-associativity should hold true.

The most reasonable approach is based on generality. Associativity/quaternionicity means
a slicing of octonion space by orthogonal quaternionic and co-quaternionic 4-D surfaces defined by
constant value surfaces of octonionic polynomial with real coefficients. This slicing should make
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sense also for quaternions: one should have a slicing by complex and co-complex (commutative/co-
commutative) surfaces and in TGD string world sheets and partonic 2-surfaces assignable to
Hamilton-Jacobi structure would define this kind of slicing. In the case of complex numbers
one has a slicing in terms of constant value curves for real and imaginary parts of analytic function
and Cauchy-Riemann equations should define the property and co-property. The first guess that
the tangent space of the curve is real or imaginary is wrong.

Could associativity and commutativity conditions be seen as a generalization of Cauchy-
Rieman conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial
maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “Whatever it is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are
trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of division algebras by assuming only algebra property by
using Cayley-Dickson construction (see http://tinyurl.com/ybuyla2k) by adding repeatedly a
non-commuting imaginary unit to the structure already obtained and thus doubling the dimension
of the algebra each time. Polynomials with real coefficients should still define an associative and
commutative algebra if the proposal is to make sense. All these algebras are indeed power asso-
ciative: one has xmxn = xm+n. For instance, sedenions define 16-D algebra. Could this hierarchy
corresponds to a hierarchy of analyticities satisfying generalized Cauchy-Riemann conditions?

Complex curves in real plane cannot have real tangent space

Going from octonions to quaternions to complex numbers, could constant value curves of real and
imaginary parts of ordinary analytic function in complex plane make sense? The curves u = 0
and v = 0 of functions f(z) = u + iv, z = x + iy define a slicing of plane by orthogonal curves
completely analogous to its octonionic and quaternionic variants. Can one say that the tangent
vectors for these curves are real/imaginary? For u = 0 these curves have tangent ∂xu+ i∂yu, which
is not real unless one has f(z) = k(x+ iy), k real.

Reality condition is clearly too strong. In fact, it is the well-ordering of the points of the
1-dimensional curve, which is the property in question and lost for complex numbers and regained
at u = 0 and v = 0 curves. The reasonable interpretation is in terms of hierarchy of conditions
multilinear in the gradients of coordinates proposed above and linear Cauchy-Riemann conditions is
the only option in the case of complex plane. What is special in this curves that the tangent vectors
define flows which by Cauchy-Riemann conditions are divergenceless and irrotational locally.

Pessimistic would conclude that since the conjecture fails except for linear polynomials in
complex case, it fails also in the case of quaternions and octonions. For quaternionic polynomial q2

the conditions are however satisfied and it turns out that the resulting conditions make sense also in
the general case. Optimistic would argue that reality condition is not analogous to commutativity
and associativity so that this example tells nothing. Less enthusiastic optimist might admit that the
reality condition is a natural generalization to complex case but that the conjecture might be true
only for a restricted set of polynomials - in complex case of for f(z) = kz, k real. In quaternionic
and octonionic case but hopefully for a larger set of polynomials with real coefficients, maybe even
all polynomials with real coefficients.

Associativity and commmutativity conditions as a generalization of Cauchy-Rieman
conditions?

Quaternionicity in the octonionic case, complexity in quaternionic case, and what-ever-it-is in
complex case should be seen as a 3-levelled hierarchy of geometric conditions satisfied by polynomial

http://tinyurl.com/ybuyla2k
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maps with real coefficients for polynomials in case of octonions and quaternions. Of course, also
Taylor and even Laurent series might be considered. The “whatever-it-is” cannot be nothing but
Cauchy-Riemann conditions defining complex analyticity for complex maps.

The hierarchy looks obvious. In the case of Cauchy-Riemann conditions one has commutative
and associative structure and Cauchy-Riemann conditions are linear in the partial derivatives. In
the case of commutative sub-manifolds of quaternionic space the conditions are quadratic in the
partial derivatives. In the case of associative sub-manifolds of octonionic space the conditions are
trilinear in partial derivatives. One would have nothing but a generalization of Cauchy-Riemann
equations to multilinear equations in dimensions D = 2k, k = 1, 2, 3: k-linearity with k = 1, 2, 3!

One can continue the hierarchy of number fields by assuming only algebra property by adding
additional imaginary units as done in Cayley-Hamilton construction (see http://tinyurl.com/

ybuyla2k) by adding repeatedly a non-commuting imaginary unit to the algebra already obtained
and thus doubling the dimension of the algebra each time. Polynomials with real coefficients should
still define an associative and commutative algebra if the proposal is to make sense. All these
algebras are indeed power associative: one has xmxn = xm+n. For instance, sedenions define 16-D
algebra. Could this hierarchy corresponds to a hierarchy of analyticities satisfying generalized
Cauchy-Riemann conditions? Could this hierarchy corresponds to a hierarchy of analyticities
satisfying generalized Cauchy-Riemann conditions?

One would have also a nice physical interpretation: in the case of quaternions one would
have “quaternionic conformal invariance” as conformal invariances inside string world sheets and
partonic 2-surfaces in a nice agreement with basic vision about TGD. At the level of octonions
would have “quaternionic conformal invariance” inside space-time surfaces and their duals. What
selects the preferred commutative or co-commutative surfaces is of course an interesting problem. Is
a gauge choice in question? Are these surfaces selected by some special property such as singular
character? Or does one have wave function in the set of these surfaces for a given space-time
surface?

Could quaternionic polynomials define complex and co-complex surfaces in Hc?

What about complex and co-complex (commutative/co-commutative) surfaces in the space of
quaternions? One would have a slicing of the quaternionic space by pairs of complex and co-
complex surfaces and would have natural identification as quaternion/Hamilton-Jacobi structure
and relate to the decomposition of space-time to string world sheets and partonic 2-surfaces. Now
the condition of associativity would be replaced with commutativity.

1. In the quaternionic case the tangent vectors of the 2-D complex sub-variety would be com-
muting. Can this be the case for the zero loci real polynomials P (q) with IM(P ) = 0 or
RE(P ) = 0? In this case the commutativity condition is that the tangent vectors have imag-
inary parts (as quaternions) proportional to each other but can have different real parts.
The vanishing of cross product is the condition now and involves only two vectors whereas
associativity condition involves 3 vectors and is more difficult.

2. The tangent vectors of a commutative 2-surface commute: [t1, t2] = 0. The commutator
reduces to the vanishing of the cross product for the imaginary parts:

Im(t1)× Im(t2) = 0 .

(4.4.4)

3. Expressing zi1 as a function of zk2 and using (zi1, z
k
2 ) as coordinates in quaternionic space, the

tangent vectors in quaternionic spaces can be written in terms of partial derivatives ∂z
1)
1 /∂z

k)
2

as

tik = (
∂z

i)
1

∂z
k)
2

, δik) , (4.4.5)

Here the first part corresponds to RE(ti) as quaternion and second part to IM(ti) as quater-
nion.

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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The condition that the vectors are parallel implies

∂z
1)
1

∂z
k)
2

= 0 . (4.4.6)

At the commutative 2-surface X2 z
1)
1 is constant and z

2)
1 is a function of z

1)
2 and z

2)
2 . One

would have a graph of a function z
2)
1 = f2(z

k)
2 ) at X2 but not elsewhere. One could regard

z
1)
1 as an extremum of a function z

1)
1 = f1(z

k)
2 ).

How to interpret this result?

1. In the generic case this condition eliminates 1 dimension so that 2-D surface would reduce to
a 1-D curve.

2. If one poses constraints on the coefficients of P (q) analogous to the conditions forcing the
potential function for say cusp catastrophe to have degenerate extrema at the boundaries of
the catastrophe one can get 2-D solution. For these values of parameters the conditions would
be equivalent with RE(P ) = 0 or IM(P ) = 0 conditions.

The vanishing of the gradient of z1
1 would indeed correspond in the case of cups catastrophe

to the condition for the co-incidence of two roots of the behavior variable x as extremum of
potential function V (x, a, b) fixing the control variable a as function of b.

This would pose constraints on the coefficients of P not all polynomials would be allowed.
This kind of conditions would realize the idea of quantum criticality of TGD at the level of
quaternion polynomials. This option is attractive if realizable also at the level of octonion
polynomials. This turns out to be the case.

3. One would thus have two kinds of commutative/co-commutative surfaces. The generic 1-
D surfaces and 2-D ones which are commutative/commutative and critical and assignable to
string world sheets and partonic 2-surfaces. 1-D surfaces would correspond to fermion lines at
the orbits of partonic 2-surfaces appearing in the twistor amplitudes in the interaction regions
defined by CDS. 2-D surfaces would correspond to the orbits of fermionic strings connecting
point-like fermions at their ends and serving as correlates for bound state entanglement for
external fermions arriving into CD. This picture would allow also to understand why just
some string world sheets and partonic 2-surfaces are selected.

The simplest manner to kill the proposal is to look for P = q2 and RE(P (q2)) = 0 surface.
In this case this condition is indeed satisfied. One has

RE(P ) = X1) +X2)I1 ,

X1) = (z
1)
1 )2 − (z

2)
1 )2 + (z

1)
2 )2 − (z

2)
2 )2 , X2) = 2z

1)
1 z

2)
1 I1 ,

IM(P ) = Y 1) + Y 2)I1 ,

Y 1) = (z
1)
2 + z

1)
2 )z

1)
1 , Y 2) = (z

2)
2 + z

2)
2 )z

2)
1

(4.4.7)

X2) = 0 gives z
1)
1 z

2)
1 = 0 so that one has either z

1)
1 = 0 or z

2)
1 = 0. X1) = 0 gives for z

1)
1 = 0

z
2)
1 = ±

√
(z

1)
2 )2 + (z

2)
2 )2.

The partial derivative ∂z
1)
1 /∂z

k)
2 is from implicit function theorem - following from the

vanishing of the differential d(RE(P )) along the surface - proportional ∂X1)/∂z
k)
2 , but vanishes as

required.

Clearly, the quaternionic variant of the proposal survives in the simplest case its simplest
test. 2-D character of the surface would be due to the criticality of q2 making it possible to satisfy
the conditions without the reduction of dimension.



4.4. Does M8 −H duality allow to use the machinery of algebraic geometry? 203

Explicit form of associativity/quaternionicity conditions

Consider now the explicit conditions for associativity in the octonionic case.

1. One should calculate the octonionic tangent (normal) vectors ti for X = 0 in associative
(Y = 0 in co-associative case) and show that there associators Ass(ti, tj , tk) vanish for all
possible or all possible combinations i, j, k. In other words, one that one has

Ass(ti, tj , tk) = 0 , i, j, k ∈ {1, .., 4} , Ass(a, b, c) ≡ (ab)c− a(bc) .

(4.4.8)

One can cast the condition to simpler from by expressing ti as octonionic vectors tikE
k:

Ass(Ea, Eb, Eb) =≡ fabcdEd , a, b, c, d ∈ {1, .., 7} ,

fabcd = εabeε cde − εaedεbce = 2εabeε cde .

(4.4.9)

The permutation symbols for a given triplet i, j, k are structures constants for quaternionic
inner product and completely antisymmetric (see http://tinyurl.com/p42tqsq).. εijk = 1
is true for the seven triplets 123, 145, 176, 246, 257, 347, 365 defining quaternionic sub-spaces
with 1-D intersections. The anti-associativity condition (EiEj)Ek = −(EiEj)Ek holds true
so that one has obtains the simpler expression for f ijks having values ±2.

Using this representation Ass(ti, tj , tk) reduces to 7 conditions for each triplet:

tirt
j
st
k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} .

(4.4.10)

2. If the vanishing condition X = 0 or Y = 0 is crucial for associativity then every polynomial
is its own case to be studied separately and a general principle behind associativity should be
identified: the proposal is as a non-linear generalization of Cauchy-Riemann conditions. As
the following little calculation shows, the vanishing condition indeed appears as one calculates

partial derivatives ∂z
k)
1 /∂z

l)
2 in the expression for the tangent vectors of the surface deduced

from the vanishing gradient of X or Y .

3. I have proposed the octonionic polynomial ansatz already earlier but failed to prove that it
gives associative tangent or normal spaces. Besides the intuitive geometric argument I failed

to notice that the complex 8-D tangent vectors in coordinates z
k)
1 or z

k)
2 for complexified

space-time surface and coordinates (z
k)
1 , z

k)
2 ) for o have components

∂oi

∂z1
k
↔ (δik,

∂z
i)
2

∂z
k)
1

)

or

( ∂o
i

∂z2
k

)↔ (
∂z
i)
1

∂z
k)
2

, δik) .

(4.4.11)

These vectors correspond to complexified octonions Oi given by

δikE
k +

∂z
i)
2

∂z
k)
1

EkE4 , (4.4.12)

where the unit octonions are given by (E0, E1, E2, E3) = (1, I1, I2, I3) and (E5, E5, E7, E8) =
(1, I1, I2, I3)E4. The vanishing of the associators stating that one has

http://tinyurl.com/p42tqsq
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4. One can calculate the partial derivatives
∂zki
∂zkj

explicitly without solving the equations or the

complex valued quaternionic components of RE(P ) ≡ X = 0 or IM(P ) ≡ Y = 0 (note that
X and Y have for complex components labelled by Xi and Y i respectively.

Y i(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , associativity ,

or

Xi(z
k)
1 , z

l)
2 ) = c ∈ R , i = 1, ..., 4 , co-associativity .

(4.4.13)

explicitly and check whether associativity holds true. The derivatives can be deduced from
the constancy of Y or X.

5. For instance, if one has z
k)
2 as function of z

k)
1 , one obtains in the associative case

RE(Y )ik + IM(Y )ik
∂z
r)
2

∂z
k)
1

= 0

RE(Y )ik ≡ ∂Y i

∂z
k)
1

, IM(Y )ik ≡ ∂Y i

∂z
k)
2

.

(4.4.14)

In co-associative case one must consider normal vectors expressible in terms of Y i so that X
is replaced with Y in these equations.

This allows to solve the partial derivatives needed in associator conditions

∂z
i)
2

∂z
k)
1

=
[
Im(Y )−1

]i
r
Re(Y )rk . (4.4.15)

6. The vanishing conditions for the associators are however multilinear and one can multiply each
factor by the matrix IM(P ) without affecting the condition so that IM(P )−1 disappears and
one obtains the conditions for vectors

T irT
j
s T

k
t f

rstu = 0 , i, j, k ∈ {1, .., 4} , r, s, t, u ∈ {1, .., 7} ,

T i = IM(Y )ikE
k −RE(Y )ikE

kE4 .

(4.4.16)

This form of conditions is computationally much more convenient.

How to solve these equations?

1. The antisymmetry of frstu with respect to the first two indices r, s leads one to ask whether
one could have

T irT
j
s T

k
t = 0 (4.4.17)

for the 7 quaternionic triplets. This is guaranteed if one has either RE(Y )ik = ∂Y i/∂zk1 = 0
(coquaternionic part of T i) or IM(Y )ik = ∂Y i/∂zk2 = 0 (co-quaternionic part of T i) for one
member in each triplet.

The study of the structure constants listed above shows that indices 1,2,3 are contained in
all 7 triplets. Same holds for the indices appearing in any quaternionic triplet. Hence it is
enough to require that three gradients RE(Y )ik = 0 or IM(Y )ik = 0 k ∈ {1, 2, 3} vanish.
This condition is obviously too strong since already single vanishing condition reduces the
dimension of space-time variety to 3 in the generic case and it becomes trivially associative.
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Octonionic automorphism group G2 gives additional basis with their own quaternion triplets
and the general condition would be that 3 partial derivatives vanish for a triplet obtained
from the basic triplet {1, 2, 3} by G2 transformation. It is not quite clear to me whether the
G2 transformation can depend on position on space-time surface.

2. As noticed, the vanishing of all triplets is an un-necessarily strong condition. Already the
vanishing of single gradient RE(Y )ik or IM(Y )ik reduces the dimension of the surface from
4 to 3 in the generic case. If one accepts that the dimension of associative surface is lower
than 4 then single criticality condition is enough to obtain 3-D surface.

In the generic case associativity holds true only at the 4-D tangent spaces of 3-surfaces at the
ends of CD (at light-like partonic orbits it holds true trivially in 4-D) and that the twistor
lift of Kähler action determines the space-time surfaces in their interior.

In this case one can map only the boundaries of space-time surface by M8 −H duality to H.
The criticality at these 3-surfaces dictates the boundary conditions and provides a solution
to infinite number of conditions stating the vanishing of SSA Noether charges at space-like
boundaries. These space-time regions would correspond to the regions of space-time surfaces
inside CDs identifiable as interaction regions, where Kähler action and volume term couple
and dynamics depends on coupling constants.

The mappability of M8 dynamics to H dynamics in all space-time regions does not look feasi-
ble: the dynamics of octonionic polynomials involves no coupling constants whereas twistor lift
of Kähler action involves couplings parameters. The dynamics would be non-associative in the
geometric sense in the interior of CDs. Notice that also conformal field theories involve slight
breaking of associativity and that octonions break associativity only slightly (a(bc) = −(ab)c
for octonionic imaginary units). I have discussed the breaking of associativity from TGD
viewpoint in [K53] .

3. Twistor lift of Kähler action allows also space-time regions, which are minimal surfaces [L28]
and for which the coupling between Kähler action and volume term vanishes. Preferred
extremal property reduces to the existence of Hamilton-Jacobi structure as image of the
quaternionic structure at the level of M8. The dynamics is universal as also critical dynamics
and independent of coupling constants so that M8 −H duality makes sense for it. External
particles arriving into CD via its boundaries would correspond to critical 4-surfaces: I have
discussed their interpretation from the perspective of physics and biology in [L29].

4. One should be able to produce associativity without the reduction of dimension. One can
indeed hope of obtaining 4-D associative surfaces by posing conditions on the coefficients of
the polynomial P by requiring that one RE(Y )ik or IM(Y )ik, i = i1 -call it just X1 - should
vanish so that Y i would be critical as function of zk1 or zk2 .

At X1 = 0 would have degenerate zero at the 4-surface. The decomposition of X1 to a
product of monomial factors with root in extension of rationals would have one or more
factors appearing at least twice. The associative 4-surfaces would be ramified. Also the
physically interesting p-adic primes are conjectured to be ramified in the sense that their
decomposition to primes of extension of rationals contains powers of primes of extension. The
ramification of the monomial factors is nothing but ramification for polynomials primes in
field of rationals in terms of polynomial primes in its extension.

This could lead to vanishing of say one triplet while keeping D = 4. This need not however
give rise to associativity in which case also second RE(Y )ii or IM(Y )ik, i = i2, call it X2,
should vanish. The maximal number of Xi would be nmax = 3. The natural condition
consistent with quantum criticality of TGD Universe would be that the variety is associative
but maximally quantum critical and has therefore dimension D = 3 or D = 4. Stronger
condition allows only D = 4.

These n ≤ 3 additional conditions make the space-time surface analogous to a catastrophe
with n ≤ 3 behavior variables in Thom’s classification of 7 elementary catastrophes with
less than 11 control variables [A47]. Thom’s theory does not apply now since it has only
one potential function V (x) (now n ≤ 3 corresponding to the critical coordinates Y i!) as
a function of behaviour variables and control variables). Also the number of non-vanishing
coefficients in the polynomial having values in an extension of rationals and acting as control
variables is unlimited. In quaternionic case the number of potential functions is indeed 1 but
the number of control variables unlimited.
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5. One should be able to understand the D = 3 associative objects - say light-like 3-surfaces or
3-surfaces at the boundaries of CD - as 3-surfaces along which 4-D associative (co-associative)
and non-associative (non-co-associative) surfaces are glued together.

Consider a product P of polynomials allowing 3-D surfaces as necessarily associative zero loci
to which a small interaction polynomial vanishing at the boundaries of CD (proportional to
on, n > 1) is added. Could P allow 4-D surface as a zero locus of real or imaginary part and
containing the light-like 3-surfaces thanks to the presence of additional parameters coming
from the interaction polynomial. Can one say that this small interaction polynomial would
generate 4-D space-time in some sense? 4-D associative space-time regions would naturally
emerge from the increasing algebraic complexity both via the increase of the degree of the
polynomial and the increase of the dimension of the extension of rationals making it easier to
satisfy the criticality conditions!

There are two regions to be considered: the interior and exterior of CD. Could associativity/co-
associativity be possible outside CD but not inside CD so that one would indeed have free
external particles entering to the non-associative interaction region. Why associativity condi-
tions would be more difficult to satisfy inside CD? Certainly the space-likeness of M4 points
with respect to the preferred origin of M8 in this region should be crucial since Minkowski
norm appears in the expressions of RE(P ) and IM(P ).

Do the calculations for the associative case generalize to the co-associative case?

1. Suppose that one has possibly associative surface having RE(P ) = 0. One would have
IM(P ) = 0 for dual space-time surface defining locally normal space of RE(P ) = 0 sur-
face. This would transform the co-associativity conditions to associativity conditions and the
preceding arguments should go through essentially as such.

Associative and co-associative surfaces would meet at singularity RE(P ) = IM(P ) = 0, which
need not be point in Minkowskian signature (see P = o2 example in the Appendix) and can
be even 4-D! This raises the possibility that the associative and co-associative surfaces defined
by RE(P ) = 0 and IM(P ) = 0 meet along 3-D light-like orbits partonic surfaces or 3-D ends
of space-time surfaces at the ends of CD.

2. If D = 3 for associative surfaces are allowed besides D = 4 as boundaries of 4-surfaces, one
can ask why not allow D = 5 for co-associative surfaces. It seems that they do not have
a reasonable interpretation as a surface at which co-associative and non-co-associative 4-D
space-time regions would meet. Or could they in some sense be geometric “co-boundaries”
of 4-surfaces like branes in M-theory serve as co-boundaries of strings? Could this mean that
4-D space-time-surface is boundary of 5-D co-associative surface defining a TGD variant of
brane with strings world sheets replaced with 4-D space-time surfaces?

What came as a surprise that P = o2 allows 5-D and 6-D surfaces as zero loci of RE(P ) or
IM(P ) as shown in Appendix. The vanishing of the entire o2 gives 4-D interior or exterior of
CD forced also by associativity/co-associativity and thus maximal quantum criticality. This
is very probably due to the special properties of o2 as polynomial: in the generic case the zero
loci should be 4-D.

This discussion can be repeated for complex/co-complex surfaces inside space-time surfaces
associated with fermionic dynamics.

1. Associativity condition does not force string world sheets and partonic 2-surfaces but they
could naturally correspond to commutative or co-commutative varieties inside associative/co-
associative varieties.

In the generic case commutativity/co-commutativity allows only 1-D curves - naturally light-
like fermionic world lines at the boundaries of partonic orbits and representing interacting
point-like fermions inside CDs and used in the construction of twistor amplitudes [L30, K87].
There is coupling between Kähler part and volume parts of modified Dirac action inside CDs
so that coupling constants are visible in the spinor dynamics and in dynamics of string world
sheet.

2. At criticality one obtains 2-D commutative/co-commutative surfaces necessarily associated
with external particles quantum critical in 4-D sense and allowing quaternionic structure.
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String world sheets would serve as correlates for bound state entanglement between fermions
at their ends. Criticality condition would select string world sheets and partonic 2-surfacs from
the slicing of space-time surface provided by quaternionic structure (having Hamilton-Jacobi
structure as H-counterpart).

If associativity holds true and fixed M2
c is contained in the tangent space of space-time

surface, one can map the M4 projection of the space-time surface to a surface in M4×CP2 so that
the quaternionic tangent space at given point is mapped to CP2 point. One obtains 4-D surface
in H = M4 × CP2.

1. The condition that fixed M2
c belongs to the tangent space of X4

c is true in the sense that

the coordinates z
k)
2 do not depend on z

1)
1 and z

2)
1 defining the coordinates of M2

c . It is not
clear whether this condition can be satisfied in the general case: octonionic polynomials are
expected to imply this dependence un-avoidably.

The more general condition allows M2
c to depend on position but assumes that M2

c :s associ-
ated with different points integrate to a family 2-D surfaces defining a family of complexified
string world sheets. In the similar manner the orthogonal complements E2

c of M2
c would inte-

grate to a family of partonic 2-surfaces. At each point these two tangent spaces and their real
projections would define a decomposition analogous to that define by light-like momentum
vector and polarization vector orthogonal to it. This decomposition would define decomposi-
tion of quaternionic sub-spaces to complexified complex subspace and its co-complex normal
space. The decomposition would correspond to Hamilton-Jacobi structure proposed to be
central aspect of extremals [K10].

2. What is nice that this decomposition of M4
c (M4) would (and of course should!) follow

automatically from the octonionic decomposition. This decomposition is lower-dimensional
analog to that of the complexified octonionic space induced by level sets of real octonionic
polymials but at lower level and extremely natural due to the inclusion hierarchy of classical
number fields. Also M2

c could have similar decomposition orthogonal complex curves by the
value sets of polynomials. The hierarchy of grids means the realization of the coordinate grid
consisting of quaternionic, complex, and real curves for complexified coordinates ok and their
quaternionic and complex variants and is accompanied by corresponding real grids obtained
by projecting to M4 and mapping to CP2.

Thus these decompositions would be obtained from the octonionic polynomial decomposing it
to real quaternionic and imaginary quaternionic parts first to get a grid of space-time surfaces
as constant value sets of either real or imaginary part, doing the same for the non-constant
quaternionic part of the octonionic polynomial to get similar grid of complexified 2-surfaces,
and repeating this for the complexified complex octonionic part.

Unfortunately, I do not have computer power to check the associativity directly by symbolic
calculation. I hope that the reader could perform the numerical calculations in non-trivial cases
to this!

General view about solutions to RE(P ) = 0 and IM(P ) = 0 conditions

The first challenge is to understand at general level the nature of RE(P ) = 0 and IM(P ) =
0 conditions. Appendix shows explicitly for P (o) = o2 that Minkowski signature gives rise to
unexpected phenomena. In the following these phenomena are shown to be completely general but
not quite what one obtains for P (o) = o2 having double root at origin.

1. Consider first the octonionic polynomials P (o) satisfying P (0) = 0 restricted to the light-like
boundary δM8

+ assignable to 8-D CD, where the octonionic norm of o vanishes.

(a) P (o) reduces along each light-ray of δM8
+ to the same real valued polynomial P (t) of a

real variable t apart from a multiplicative unit E = (1 + in)/2 satisfying E2 = E. Here
n is purely octonion-imaginary unit vector defining the direction of the light-ray.
IM(P ) = 0 corresponds to quaterniocity. If the E4 (M8 = M4 × E4) projection is
vanishing, there is no additional condition. 4-D light-cones M4

± are obtained as solutions
of IM(P ) = 0. Note that M4

± can correspond to any quaternionic subspace.
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If the light-like ray has a non-vanishing projection to E4, one must have P (t) = 0. The
solutions form a collection of 6-spheres labelled by the roots tn of P (t) = 0. 6-spheres
are not associative.

(b) RE(PE) = 0 corresponding to co-quaternionicity leads to P (t) = 0 always and gives a
collection of 6-spheres.

2. Suppose now that P (t) is shifted to P1(t) = P (t) − c, c a real number. Also now M4
± is

obtained as solutions to IM(P ) = 0. For RE(P ) = 0 one obtains two conditions P (t) = 0
and P (t− c) = 0. The common roots define a subset of 6-spheres which for special values of
c is not empty.

The above discussion was limited to δM8
+ and light-likeness of its points played a central

role. What about the interior of 8-D CD?

1. The natural expectation is that in the interior of CD one obtains a 4-D variety X4. For
IM(P ) = 0 the outcome would be union of X4 with M4

+ and the set of 6-spheres for IM(P ) =
0. 4-D variety would intersect M4

+ in a discrete set of points and the 6-spheres along 2-D
varieties X2. The higher the degree of P , the larger the number of 6-spheres and these
2-varieties.

2. For RE(P ) = 0 X4 would intersect the union of 6-spheres along 2-D varieties. What comes in
mind that these 2-varieties correspond in H to partonic 2-surfaces defining light-like 3-surfaces
at which the induced metric is degenerate.

3. One can consider also the situation in the complement of 8-D CD which corresponds to the
complement of 4-D CD. One expects that RE(P ) = 0 condition is replaced with IM(P ) = 0
condition in the complement and RE(P ) = IM(P ) = 0 holds true at the boundary of 4-D
CD.

6-spheres and 4-D empty light-cones are special solutions of the conditions and clearly
analogs of branes. Should one make the (reluctant-to-me) conclusion that they might be rele-
vant for TGD at the level of M8.

1. Could M4
+ (or CDs as 4-D objects) and 6-spheres integrate the space-time varieties inside

different 4-D CDs to single connected structure with space-time varieties glued to the 6-
spheres along 2-surfaces X2 perhaps identifiable as pre-images of partonic 2-surfaces and
maybe string world sheets? Could the interactions between space-time varieties X4

i assignable
with different CDs be describable by regarding 6-spheres as bridges between X4

i having only
a discrete set of common points. Could one say that X2

i interact via the 6-sphere somehow.
Note however that 6-spheres are not dynamical.

2. One can also have Poincare transforms of 8-D CDs. Could the description of their interactions
involve 4-D intersections of corresponding 6-spheres?

3. 6-spheres in IM(P ) = 0 case do not have image under M8 −H correspondence. This does
not seem to be possible for RE(P ) = 0 either: it is not possible to map the 2-D normal space
to a unique CP2 point since there is 2-D continuum of quaternionic sub-spaces containing it.

4.4.3 M8 −H duality: objections and challenges

In the following I try to recall all objections against the reduction of classical physics to octonionic
algebraic geometry and against the notion of M8 −H duality and also invent some new counter
arguments and challenges.

Can on really assume distribution of M2(x)?

Hamilton-Jacobi structure means that M2(x) depends on position and M2(x) should define an
integrable distribution integrating to a 2-D surface. For cosmic string extremals this surface would
be minimal surface so that the term “string world sheet” is appropriate. There are objections.

1. It seems that the coefficients of octonionic polynomials cannot contain information about
string world sheet, and the only possible choice seems to be that string world sheets and par-
tonic 2-surfaces parallel to it assigned with integrable distribution of orthogonal complements
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E2(x) should be coded by quaternionic moduli. It should be possible to define quaternionic
coordinates qi decomposing to pairs of complex coordinates to each choice of M2(x)×E2(x)
decomposition of given M4

0 . Octonionic coordinates would be given by o = q1 + q2I4 where
qi are associated with the same quaternionic moduli. The choice of Hamilton-Jacobi struc-
ture would not be ad hoc procedure anymore but part of the definition of solutions of field
equations at the level of M8.

2. It would be very nice if the quaternionic structure could be induced from a fixed structure
defined for M8

c once the choice of curvilinear M4 coordinates is made. Since Hamiltoni-Jacobi
structure [K10] involves a choice of generalized Kähler form for M4 and since quaternionic
structure means that there is full S2 of Kähler structures determined by quaternionic imag-
inary units (ordinary Kähler form for sub-space E8 ⊂ M8

c ) the natural proposal is that
Hamilton-Jacobi structures is determined by a particular local choice of the Kähler form for
M4 involving fixing of quaternionic imaginary unit fixing M2(x) ⊂ M4

0 identifiable as point
of S2. This might relate closely also to the fixing of twistor structure, which indeed involves
also self-dual Kähler form and a similar choice.

3. One can argue that it is not completely clear whether massless extremals (MEs) [K10] allow
a general Hamilton-Jacobi structure. It is certainly true that if the light-like direction and
orthogonal polarization direction are constant, MEs exist. It is clear that if the form of
field equations is preserved and thus reduces to contractions of various tensors with second
fundamental form one obtains only contractions of light-like vector with itself or polarization
vector and these contractions vanish. For spatially varying directions one could argue that
light-like direction codes for a direction of light-like momentum and that problems with local
conservation laws expressed by field equations might emerge.

Can one assign to the tangent plane of X4 ⊂M8 a unique CP2 point when M2 depends
on position

One should show that the choice s(x) ∈ CP2 for a given distribution of M2(x) ⊂M4(x) is unique
in order to realize the M8 −H correspondence as a map M8 → H. It would be even better if one
had an analytic formula for s(x) using tangent space-data for X4 ⊂ H.

1. If M2(x) = M2
0 holds true but the tangent space M4(x) depends on position, the assignment

of CP2 point s(x) to the tangent space of X4 ⊂M8 is trivial. When M4(x) is not constant,
the situation is not so easy.

2. The space M2(x) ⊂ M4(x) satisfies also the constraint M2(x) ⊂ M4
0 since quaternionic

moduli are fixed. To avoid confusion notice that M4(x) denotes tangent space of X4 and is
different from M4

0 fixing the quaternionic moduli.

3. M2(x) determines the local complex subspace and its completion to quaternionic tangent
space M4(x) determines a point s(x) of CP2. The idea is that M2

0 defines a standard reference
and that one should be able to map M2(x) to M2

0 by G2 automorphism mapping also the s(x)
to a unique point s0(x) ∈ CP2 defining the CP2 point assignable to the point of X4 ⊂M8.

4. One can assign to the point x quaternionic unit vector n(x) determiningM2(x) as the direction
of the preferred imaginary unit. The G2 transformation must rotate n(x) to n0 defining M2

0

and acts on s. G2 transformation is not unique since u1gu2 has the same effect for ui ⊂ U(2)
leaving invariant the point of CP2 for initial and final situation. Hence the equivalence
classes of transformations should correspond to a point of 6-dimensional double coset space
U(2)\G2/U(2). Intuitively it seems obvious that the s0(x) is unique but proof is required.

What about the inverse of M8 −H duality?

M8 − H duality should have inverse in the critical regions of X4 ⊂ M8, where associativity
conditions are satisfied. How could one construct the inverse of M8 −H duality in these regions?
One should map space-time points (m, s) ∈ M4 × CP2 to points (m, e) = (m, f(m, s)) ∈ M8.
M4

0 ⊃ M2
0 parameterized by CP2 point can be chosen arbitrarily and one can require that it

corresponds to some space-time point (m0, s0) ∈ H. CP2 point s(x) characterizes the quaternionic
tangent space containing M2(x) and can choose M2

0 to be M2(x0) for conveniently chosen x0.
Coordinates x can be used also for X4 ⊂M8.
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One obtains set of points (m, e) = (m(x), f(m(x), s(x)) ∈ M8 and a distribution of 4-D
spaces of labelled by s(x). This requires that the 4-D tangent space spanned by the gradients
of m(x) and f(m(x), s(x)) and characterized by s1 ⊂ CP2 for given M2(x) by using the above
procedure mapping the situation to that for M2

0 is same as the tangent space determined by s(x):
s(x) = s1(x). Also the associativity conditions should hold true. One should have a formula for s1

as function of tangent vectors of space-time surface in M8. The ansatz based on algebraic geometry
in M8

c should be equivalent with this ansatz. The problem is that the ansatz leads to algebraic
functions which cannot be found explicitly. It might be that in practice the correspondence is easy
only in the direction M8 → H.

What one can say about twistor lift of M8 −H duality?

One can argue that the twistor spaces CP1 associated with M4 and E4 are in no way visible in the
dynamics of octonion polynomials and in M8 − H duality. Hence one could argue that they are
not needed for any reasonable purpose. I cannot decide whether this is indeed the case. There I
will consider the existence of twistor lift of the M8 and also the twistor lift M8−H duality in the
space-time regions, where the tangent spaces satisfy the conditions for the existence of the duality
as a map (m, e) ∈ M8 → (m, s) ∈ M4 × CP2 must be considered. This involves some non-trivial
delicacies.

1. The twistor bundles of M4
c and E4

c would be simply M4
c × CP1 and E4

c × CP1. CP1 = S2

parameterizes direction vectors in 3-D Euclidian space having interpretation as unit quater-
nions so that this interpretation might make sense. The definition of twistor structure means
a selection of a preferred quaternion unit and its representation as Kähler form so that these
twistor bundles would have thus Kähler structure. Twistor lift replaces complex quaternionic
surfaces with their twistor spaces with induced twistor structure.

2. In M8 the radii of the spheres CP1 associated with M4 and E4 would be most naturally
identical whereas in M4 × CP2 they can be different since CP2 is moduli space. Is the
value of the CP2 radius visible at all in the classical dynamics in the critical associative/co-
associative space-time regions, where one has minimal surfaces. Criticality would suggest that
besides coupling constants also parameters with dimension of length should disappear from
the field equations. At least for the known extremals such as massless extremals, CP2 type
extremals, and cosmic strings CP2 radius plays no role in the equations. CP2 radius comes
however into play only in interaction regions defined by CDs since M8−H duality works only
at the 3-D ends of space-time surface and at the partonic orbits. Therefore the different radii
for the CP1 associated with CP2 and E4 cause no obvious problems.

Consider now the idea about twistor space as real part of octonionic twistor space regarded
as quaternion-complex space.

1. One can regard CP1 = S2 as the space of unit quaternions and it is natural to replace it with
the 6-sphere S6 of octonionic imaginary units at the level of complexified octonions. The
sphere of complexified (by i) unit octonions is non-compact space since the norm is complex
valued and this generalization looks neither attractive nor necessary since the projection to
real numbers would eliminate the complex part.

The equations determining the twistor bundle of space-time surface can be indeed formulated
as vanishing of the quaternionic imaginary part of S6 coordinates, and one obtains a reduction
to quaternionic sphere S2 at space-time level.

If S2 is identified as sub-manifold S2 ⊂ S6, it can be chosen in very many ways (this is
of course not necessary). The choices are parameterized by SO(7)/SO(3) × SO(4) having
dimension D = 12. This choice has no physical content visible at the level of H. Note that
the Kähler structure determining Hamilton-Jaboci structure is fixed by the choice of preferred
direction (M2(x)). If all these moduli are allowed, it seems that one has something resembling
multiverse, the description at the level of M8 is deeper one and one must ask whether the
space-time surfaces with different twistorial, octonionic, and quaternionic moduli can interact.

2. The resulting octonionic analog of twistor space should be mapped by M8−H corresponds to
twistor space of space-time surface T (M4)× T (CP2). The radii of twistor spheres of T (M4)
and T (CP2) are different and this should be also understood. It would seem that the radius
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of T (M4) at H = M4×CP2 side should correspond to that of T (M4) at M8 side and thus to
that of S6 as its geodesic sphere: Planck length is the natural proposal inspired by the physical
interpretation of the twistor lift. The radius of T (CP2) twistor sphere should correspond to
that of CP2 and is about 212 Planck lengths.

Therefore the scale of CP2 would emerge as a scale of moduli space and does not seem
to be present at the level of M8 as a separate scale. M8 level would correspond to what
might be called Planckian realm analogous to that associated with strings before dynamical
compactification which is now replaced with number theoretic compactification. The key
question is what determines the ratio of the radii of CP2 scale to Planck for which favored
value is 212 [K13]. Could quantum criticality determine this ratio?

4.5 Appendix: o2 as a simple test case

Octonionic polynomial o2 serves as a simple testing case. o2 is not irreducible so that its properties
might not be generic and it might be better to study polynomial of form P (o) = o+ po2 instead.

Before continuing, some conventions are needed.

1. The convention is that in M8 = M1 × E7 E7 corresponds to purely imaginary complexified
octonions in both octonionic sense and in the sense that they are proportional to i. M1 corre-
sponds to octonions real in both senses. This corresponds to the signature (1,−1,−1,−1, ...)
for M8 metric obtained as restriction of complexified metric. For M4 = M1 × E3 analogous
conventions hold true.

2. Conjugation o = o0 + okIk → o ≡ o0 − Ikok does not change the sign of i. Quaternions
can be decomposed to real and imaginary parts and some notation is needed. The notation
q = Re(q) + Im(q) seems to be the least clumsy one: here Im(q) is 3-vector.

The explicit expression in terms of quaternionic decomposition o = q1 + q2I4 reads as

P (o) = o2 = q2
1 − q2q2 + (q1q2 + q2q1)I4 . (4.5.1)

o corresponds to complexified octonion and there are two options concerning the interpretation of
M4 and E4. M4 could correspond to quaternionic or co-quaternionic sub-space. I have assumed
the first interpretation hitherto but actually the identification is not obvious. This two cases are
different and must be treated both.

With these notations quaternionic inner product reads as

q1q2 = Re(q1q2) + Im(q1q2) ,
Re(q1q2) = Re(q1)Re(q2)− Im(q1) · Im(q2) ,
Im(q1q2) = Re(q1)Im(q2) +Re(q2)Im(q1) + Im(q1)× Im(q2) .

(4.5.2)

Here a · b denotes the inner product of 3-vectors and a× b their cross product.

Note that one has real and imaginary parts of octonions as two quaternions and real and
imaginary parts of quaternions. To avoid confusion, I will use RE and IM to denote the decom-
position of octonions to quaterions and Re and Im for the decomposition of quaternions to real
and imaginary parts.

One can express the RE(o2) as

RE(o2) ≡ X ≡ q2
1 − q2q2 ,

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ,
Im(X) = Im(q2

1) = 2Re(q1)Im(q1) .

(4.5.3)

For IM(o2) one has
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IM(o2) ≡ Y = q1q2 + q2q1

Re(Y ) = 2Re(q1)Re(q2) ,
Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) .

(4.5.4)

The essential point is that only RE(o2) contains the complexified Euclidian norm q2q2 which
becomes Minkowskian of Euclidian norm depending on whether one identifies M4 as associative
or co-associative surface in o8

c .

4.5.1 Option I: M4 is quaternionic

Consider first the condition RE(o2) = 0. The condition decomposes to two conditions stating the
vanishing of quaternionic real and imaginary parts:

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NE4(q2) = 0 ,

Im(X) = Im(q2
1) = 2Re(q1)Im(q1) = 0 .

(4.5.5)

Im(X) = 0 is satisfied for Re(q1) = 0 or Im(q1) = 0 so that one has two options. This gives
1-D line in time direction of 3-D hyperplane as a solution for M4 factor.

Re(X) = 0 states NM4(q1) = NE4(q2). q2 coordinate itself is free. NE4(q2) is negative so
that q1 must be space-like with respect to the NM4 so that only the solution Re(q1) = 0 is possible.
Therefore one has Re(q1) = 0 and NM4(q1) = NE4(q2).

One can assign to each E4 point a section of hyperboloid with t = 0 hyper-plane giving a
sphere and the surface is 6-dimensional sphere bundle like variety! This is completely unexpected
result and presumably is due to the additional accidental symmetries due to the octonionicity.
Also the fact that o2 is not irreducible polynomial is a probably reason since for o the surface is
4-D. The addition of linear term is expected to remove the degeneracy.

Consider next the case IM(o2) = 0. The conditions read now as

Re(Y ) = 2Re(q1)Re(q2) = 0 ,

Im(Y ) = Re(q1)Im(q2)−Re(q2)Im(q1) + Im(q1)× Im(q2) = 0 .
(4.5.6)

Since cross product is orthogonal to the factors Im(Y ) = 0 condition requires that Im(q1) and
Im(q2) are parallel vectors: Im(q1) = λIm(q2) and one has the condition Re(q1) = λRe(q2)
implying q1 = Λq2. Therefore to each point of E4 is associated a line of M4. The surface is
5-dimensional.

It is interesting to look what the situation is if both conditions are true so that one would
have a singularity. In this case Re(q1) = 0 and Re(q1) = λRe(q2) imply λ = 0 so that q1 = 0 is
obtained and the solution reduces to 4-D E4, which would be co-associative.

4.5.2 Option II: M4 is co-quaternionic

This case is obtained by the inspection of the previous calculation by looking what changes the
identification of M4 as co-quaternionic factor means. Now q1 is Euclidian and q2 Minkowskian
coordinate and q2q2 gives Minkowskian rather than Euclidian norm.

Consider first RE(o2) = 0 case.

Re(X) = Re(q1)2 − Im(q1) · Im(q2)− (Re(q2)2 + Im(q2) · Im(q2)) ≡ NM4(q1)−NM4(q2) = 0 ,

Im(X) = Im(q2
1) = 2Re(q1)Im(q1) = 0 .

(4.5.7)
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NM4(q1)−NM4(q2) = 0 condition holds true now besides the condition Re(q1) = 0 or Im(q1) = 0
so that one has also now two options.

1. For Re(q1) = 0 NM4(q1) is non-positive and this must be the case for NM4(q2)) so that the
exterior of the light-cone is selected. In this case the points of M4 with fixed NM4 give rise
to a 2-D intersection with Re(q1) = 0 hyper-plane that is sphere so that one has 6-D surface,
kind of sphere bundle.

2. For Im(q1) = 0 Minkowski norm is positive and so must be corresponding norm in E4 so that
in E4 surface has future ligt-cone as projection. This surface is 4-D. The emergence of future
light-cone might provide justification for the emergence of CDs and zero energy ontology.

For IM(o2) the discussion is same as in quaternionic case since norm does not appear in
the equations.

At singularity both RE(o2) and IM(o2) = 0 vanish. The condition q1 = Λq2 reduces to
Λ = 0 so that q1 = 0 is only allowed. This leaves only light-cone boundary under consideration.

The appearance of surfaces with dimension higher than 4 raises the question whether some-
thing is wrong. One could of course argue that associativity allows also lower than 4-D surfaces
as associative surfaces and higher than 4-D surfaces as co-associative surfaces. At H-level one can
say that one has 4-D surfaces. A good guess is that this behavior disappears when the linear term
is absent and origin ceases to be a singularity.



Chapter 5

Does M8 −H duality reduce
classical TGD to octonionic
algebraic geometry?: Part II

5.1 Introduction

There are good reasons to hope that TGD is integrable theory in some sense. Classical physics is
an exact part of quantum physics in TGD and during years I have ended up with several proposals
for the general solution of classical field equations (classical TGD is an exact part of quantum
TGD).

5.1.1 Could one identify space-time surfaces as zero loci for octonionic
polynomials with real coefficients?

The identification of space-time surfaces as zero loci of real or imaginary part of octonionic poly-
nomial has several extremely nice features.

1. Octonionic polynomial is an algebraic continuation of a real valued polynomial on real line
so that the situation is effectively 1-dimensional! Once the degree of polynomial is known,
the value of polynomial at finite number of points are needed to determine it and cogni-
tive representation could give this information! This would strengthen the view strong form
of holography (SH) - this conforms with the fact that states in conformal field theory are
determined by 1-D data.

Remark: Why not rational functions expressible as ratios R = P1/P2 of octonionic polyno-
mials? It has become clear that one can develop physical arguments in favor of this option.
The zero loci for IM(Pi) would represent space-time varieties. Zero loci for RE(P1/P2) = 0
and RE(P1/P2) = ∞ would represent their interaction presumably realized as wormhole
contacts connecting these varieties. In the sequel most considerations are for polynomials:
the replacement of polynomials with rational functions does not introduce big differences
and its discussed in the section “Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view”.

2. One can add, sum, multiply, and functionally compose these polynomials provided they cor-
respond to the same quaternionic moduli labelled by CP2 points and share same time-line
containing the origin of quaternionic and octonionic coordinates and real octonions (or ac-
tually their complexification by commuting imaginary unit). Classical space-time surfaces -
classical worlds - would form an associative and commutative algebra. This algebra induces
an analog of group algebra since these operations can be lifted to the level of functions defined
in this algebra. These functions form a basic building brick of WCW spinor fields defining
quantum states.

3. One can interpret the products of polynomials as correlates for free many-particle states
with interactions described by added interaction polynomial, which can vanish at boundaries

214
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of CDs. This leads to the same picture as the view about preferred extremals reducing to
minimal surfaces near boundaries of CD [L28]. Also zero zero energy ontology (ZEO) could
be forced by the failure of number field property for quaternions at light-cone boundaries. It
indeed turns out that light-cone boundary emerges quite generally as singular zero locus of
polynomials P (o) containing no linear part: this is essentially due to the non-commutativity
of the octonionic units. Also the emergence of CDs can be understood. At this surface the
region with RE(P ) = 0 can transform to IM(P ) = 0 region. In Euclidian signature this
singularity corresponds to single point. A natural conjecture is that also the light-like orbits
of partonic 2-surfaces correspond to this kind of singularities for non-trivial Hamilton-Jacobi
structures.

4. The reduction to algebraic geometry would mean enormous boost to the vision about cogni-
tion with cognitive representations identified as generalized rational points common to reals
rationals and various p-adic number fields defining the adele for given extension of rationals.
Hamilton-Jacobi structure would result automatically from the decomposition of quaternions
to real and imaginary parts which would be now complex numbers.

5. Also a connection with infinite primes is suggestive [K96]. The light-like partonic orbits,
partonic 2-surfaces at their ends, and points at the corners of string world sheets might be
interpreted in terms of singularities of varying rank and the analog of catastrophe theory
emerges.

The great challenge is to prove rigorously that these approaches - or at least some of them
- are indeed equivalent. Also it remains to be proven that the zero loci of real/imaginary parts of
octonionic polynomials with real coefficients are associative or co-associative. I shall restrict the
considerations of this article mostly to M8 −H duality. The strategy is simple: try to remember
all previous objections against M8 −H duality and invent new ones since this is the best way to
make real progress.

5.1.2 Topics to be discussed

Challenges of the octonionic algebraic geometry

TGD leads to several proposals for the exact solution of field equations defining space-time surfaces
as preferred extremals of twistor lift of Kähler action. So called M8 − H duality is one of these
approaches. The beauty of M8−H duality is that it could reduce classical TGD to octonionic alge-
braic geometry and would immediately provide deep insights to cognitive representation identified
as sets of rational points of these surfaces. The construction and interpretation of the octonionic
geometry involves several challenges.

1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients
determine associative (co-associative) surfaces as the zero loci of their real part RE(P ) (imag-
inary parts IM(P )). RE(P ) and IM(P ) are defined in quaternionic sense. Contrary to the
first naive working hypothesis, the identification M4 ⊂ O as as a co-associative region turns
out to be the correct choice making light-cone boundary a counterpart of point-like singularity
essential for the emergence of causal diamonds (CDs).

This suggests a generalization of Cauchy-Riemann conditions for complex analytic functions
to quaternions and octonions. Cauchy Riemann conditions are linear. Quaternionic poly-
nomials with real coefficients define maps for which the 2-D spaces corresponding to van-
ishing of real/imaginary parts of the polynomial are complex/co-complex or equivalently
commutative/co-commutative. Commutativity is expressed by conditions bilinear in par-
tial derivatives. Octonionic polynomials with real coefficients define maps for which 4-
D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently
associative/co-associative. The conditions are now 3-linear.

In fact, all algebras obtained by Cayley-Dickson construction (see http://tinyurl.com/

ybuyla2k) by adding imaginary unit repeatedly to octonionic algebra are power associative so
that polynomials with real coefficients define an associative and commutative algebra. Hence
octonion analyticity and a M8 −H correspondence could generalize (maybe even TGD!).

http://tinyurl.com/ybuyla2k
http://tinyurl.com/ybuyla2k
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2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring
that one of the coordinatesRE(Y )i or IM(Y )i in the decomposition Y i = RE(Y )i+IM(Y )iI4
of the gradient of RE(P ) = Y = 0 with respect to the complex coordinates zki , k = 1, 2, of O
vanishes that is critical as function of quaternionic components zk1 or zk2 associated with q1

and q2 in the decomposition o = q1 + q2I4, call this component Xi. In the generic case this
gives 3-D surface.

In this generic case M8−H duality can map only the 3-surfaces at the boundaries of CD and
light-like partonic orbits to H, and only determines the boundary conditions of the dynamics
in H determined by the twistor lift of Kähler action. M8 −H duality would allow to solve
the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly.

One can also have criticality. 4-dimensionality can be achieved by posing conditions on the
coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the
dimension: Xi would have possibly degenerate zero at space-time variety. This can allow 4-D
associativity with at most 3 critical components Xi. Space-time surface would be analogous
to a polynomial with a multiple root.

Various components of octonion polynomial P of degree n are polynomials of same degree.
Could criticality reduces to the degeneracy of roots for some component polynomials? Could
P as a polynomial of real variable have degenerate roots?

The criticality of Xi conforms with the general vision about quantum criticality of TGD
Universe and provides polynomials with universal dynamics of criticality. A generalization of
Thom’s catastrophe theory [A47] emerges. Criticality should be equivalent to the universal
dynamics determined by the twistor lift of Kähler action in H in regions, where Kähler action
and volume term decouple and dynamics does not depend on coupling constants.

One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces
can be mapped by M8−H duality to preferred critical extremals for the twistor lift of Kähler
action obeying universal dynamics with no dependence on coupling constants and due to the
decoupling of Kähler action and volume term: these represent external particles. M8 − H
duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-
D boundary surfaces. These regions correspond to interaction regions in which Kähler action
and volume term couple and coupling constants make themselves visible in the dynamics.
M8 −H duality determines boundary conditions.

3. This picture generalizes also to the level of complex/co-complex surfaces associated with
fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be
enough to represent fermions? Why fermionic strings serve as correlates of entanglement for
bound states? What selects string world sheets and partonic 2-surfaces from the slicing of
space-time surfaces? I have proposed commutativity or co-commutatitivity of string worlds
sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent
space as a sub-space of quaternionic space is commutative/co-commutative at each point).
Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-
commutative? The answer to these questions is criticality again: in the generic case commu-
tative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic
2-surfaces.

4. The super variant of the octonionic geometry relying on octonionic triality makes sense and the
geometry of the space-time variety correlates with fermion and antifermion numbers assigned
with it. This new view about super-geometry involving also automatic SUSY breaking at the
level of space-time geometry.

Description of interactions

Also a sketchy proposal for the description of interactions is discussed.

1. IM(P1P2) = 0 is satisfied for IM(P1) = 0 and IM(P2) = 0 since IM(o1o2) is linear in
IM(oi) and one obtains union of space-time varieties. RE(P1P2) = 0 cannot be satisfied in
this way since RE(o1o2) is not linear in RE(oi) so that the two varieties interact and this
interaction could give rise to a wormhole contact connecting the two space-time varieties.
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2. The surprise that RE(P ) = 0 and IM(P ) = 0 conditions have as singular solutions light-cone
interior and its complement and 6-spheres S6(tn) with radii tn given by the roots of the real
P (t), whose octonionic extension defines the space-time variety X4. The intersections X2 =
X4 ∩ S6(tn) are tentatively identified as partonic 2-varieties defining topological interaction
vertices. S6 and therefore also X2 are doubly critical, S6 is also singular surface.

The idea about the reduction of zero energy states to discrete cognitive representations sug-
gests that interaction vertices at partonic varieties X2 are associated with the discrete set of
intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces belonging to
extension of rationals.

3. CDs and therefore also ZEO emerge naturally. For CDs with different origins the products
of polynomials fail to commute and associate unless the CDs have tips along real (time) axis.
The first option is that all CDs under observation satisfy this condition. Second option allows
general CDs.

The proposal is that the product
∏
Pi of polynomials associated with CDs with tips along

real axis the condition IM(
∏
Pi) = 0 reduces to IM(Pi) = 0 and criticality conditions

guaranteeing associativity and provides a description of the external particles. Inside these
CDs RE(

∏
Pi) = 0 does not reduce to RE(

∏
Pi) = 0, which automatically gives rise to

geometric interactions. For general CDs the situation is more complex.

4. The possibility of super-octonionic geometry raises the hope that the twistorial construction
of scattering amplitudes in N = 4 SUSY generalizes to TGD in rather straightforward way
to a purely geometric construction. Functional integral over WCW would reduce to sum-
mations over polynomials with coefficients in extension of rationals and criticality conditions
on the coefficients could make the summation well-defined by bringing in finite measurement
resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of twistor formalism involving polygons. Super-octonions as counterparts of
super gauge potentials are well-defined if octonionic 8-momenta are quaternionic. Indeed,
Grassmannians have quaternionic counterparts but not octonionic ones. There are good
hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the appropriate extension of rationals.

Twistor Grassmannian construction of scattering amplitudes at the level of M8 looks feasible.
The amplitudes decompose to M4 and CP2 parts with similar structure with E4 spin (elec-
troweak isospin) replacing ordinary spin. The residue integrals over Grassmannians emerging
from the conservation of M4 and E4 4-momenta would have same form and guarantee Yangian
supersymmetry in both sectors. The counterpart for the product of delta functions associ-
ated with the “negative helicities” (weak isospins with negative sign) would be expressible as
a delta function in the complement of SU(3) Cartan algebra U(1)×U(1) by using exponential
map.

About the analogs of Gromow-Witten invariants and branes in TGD

Gromov-Witten (G-W) invariants belong to the realm of quantum enumerative geometry briefly
discussed in [L47]. They count numbers of points in the intersection of varieties (“branes”) with
quantum intersection identified as the existence of “string world sheet(s)” intersecting the branes.
Also octonionic geometry gives rise to brane like objects. G-W invariants are rational numbers but
it is proposed that they could be integers in TGD framework.

Riemann-Roch theorem (RR) and its generalization Atyiah-Singer index theorem (AS) relate
dimensions of various kinds of moduli spaces to topological invariants. The possible generalizations
of RR and AS to octonionic framework and the implications of M8 − H duality for the possible
generalizations are discussed. The adelic hierarchy of extensions of rationals and criticality condi-
tions make the moduli spaces discrete so that one expects kind of particle in box type quantization
selecting discrete points of moduli spaces about the dimension.

The discussion of RR as also the notion of infinite primes and infinite rationals as counter-
parts of zero energy states suggests that rational functions R = P1/P2 could be more appropriate
than mere polynomials. The construction of space-time varieties would not be modified in essential
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way: one would have zero loci of IM(Pi) identifiable as space-time sheets and zero- and ∞-loci of
RE(P1/P2) naturally identifiable as wormhole contacts connecting the space-time sheets.

In the sequel I will use some shorthand notations for key principles and key notions. Quan-
tum Field Theory (QFT); Relativity Principle (RP); Equivalence Principle (EP); General Coor-
dinate Invariance (GCI); Strong Form of GCI (SGCI); Quantum Criticality (QC); Strong Form
of Holography (SH); World of Classical Worlds (WCW); Preferred Extremal (PE); Zero Energy
Ontology (ZEO); Causal Diamond (CD); Number Theoretical Universality (NTU) are the most
often occurring acronyms.

5.2 Some challenges of octonionic algebraic geometry

Space-time surfaces in H = M4 × CP2 identified as preferred extremals of twistor lift of Kähler
action leads to rather detailed view about space-time surfaces as counterparts of particles. Does
this picture follow from X4 ⊂ M8 picture and does this description bring in something genuinely
new?

5.2.1 Could free many-particle states as zero loci for real or imaginary
parts for products of octonionic polynomials

In algebraic geometry zeros for the products of polynomials give rise to disjoint varieties, which
are disjoint unions of surfaces assignable to the individual surfaces and possibly having lower-
dimensional intersections. For instance, for complex curves these intersections consist of points.
For complex surfaces they are complex curves.

In the case of octonionic polynomial P = RE(P ) + IM(P )I4 (Re and Im are defined in
quaternionic sense) one considers zeros of quaternionic polynomial RE(P ) or IM(P ).

1. Product polynomial P = P1P2 decomposes to

P = RE(P1)RE(P2)− IM(P1)IM(P2) + (RE(P1)IM(P1) + IM(P1)RE(P2)I4 .

One can require vanishing of RE(P ) or IM(P ).

(a) IM(P ) vanishes for

(RE(P1) = 0, RE(P2) = 0)

or

I(m(P1) = 0, IM(P2) = 0) .

(b) RE(P ) vanishes for

(RE(P1) = 0, IM(P2) = 0)

or

IM(P1) = 0, RE(P2) = 0) .

One could reduce the condition RE(P ) = 0 to IM(P ) = 0 by replacing P = P1 + P2I4 with
P2−P1I4. If this condition is satisfied for the factors, it is satisfied also for the product. The
set of surfaces is a commutative and associative algebra for the condition IM(P ) = 0. Note
that the quaternionic moduli must be same for the members of product. If one has quantum
superposition of quaternionic moduli, the many-particle state involves a superposition of
products with same moduli.

As found, the condition IM(P ) = 0 can transform to RE(P ) = 0 at singularities having
RE(P ) = 0, IM(P ) = 0.
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2. The commutativity of the product means that the products are analogous to many-boson
states. Pn would define an algebraic analog of Bose-Einstein condensate. Does this surface
correspond to a state consisting of n identical particles or is this artefact of representation?
As a limiting case of product of different polynomials it might have interpretation as genuine
n-boson states.

3. The product of two polynomials defines a union of disjoint surfaces having discrete intersection
in Euclidian signature. In Minkowskian signature the vanishing of qq (conjugation does not
affect the sign of i and changes only the sign of Ik!) can give rise to 3-D light-cone. The
non-commutativity of quaternions indeed can give rise to combinations of type qq in RE(P )
and IM(P ).

What about interactions?

1. Could one introduce interaction by simply adding a polynomial Pint to the product? This
polynomial should be small outside interaction region. CD would would define naturally
interaction regions and the interaction terms should vanish at the boundaries of CD. This
might be possible in Minkowskian signature, where f(q2) multiplying the interaction term
might vanish at the boundary of CD: in Euclidian sector qq = 0 would imply q = 0 but in
Minkowskian sector it would give light-cone as solution. One should arrange IM(Pint) to be
proportional to qq vanishing at the boundary of CD. Minkowskian signature could be crucial
for the possibility to “turning interactions on”.

2. If the imaginary part of the interaction term is proportional f1(q2)f2((q−T )2) (T is real and
corresponds to the temporal distance between the tips of CD) with fi(0) = 0, one could obtain
asymptotic states reducing to disjoint unions of zero loci of P i at the boundaries of CD. If the
order of of the perturbation terms is higher than the total order of polynomials P i, one would
obtain new roots and particle emission. Non-perturbative situation would correspond to a
dramatic modification of the space-time surface as a zero locus of IM(P ). This picture would
be M8 counterpart for the reduction of preferred extremals to minimal surfaces analogous to
geodesic lines near the boundaries of CD: preferred extremals reduce to extremals of both
Kähler action and volume term in these regions [L28].

The singularities of scattering amplitudes at algebraic varieties of Grassmann manifolds are
central in the twistor Grassmann program [B21, B43, B26]. Since twistor lift of TGD seems to be
the correct manner to formulate classical TGD in H, one can wonder about the connection between
space-time surfaces in M8

c and scattering amplitudes. Witten’s formulation of twistor amplitudes
in terms of algebraic curves in CP3 suggests a formulation of scattering amplitudes in terms of the
4-D algebraic varieties in M8

c as of course, also TGD itself [L30, K87]! Could the huge multi-local
Yangian symmetries of twistor Grassmann amplitudes reduce to octonion analyticity.

5.2.2 Two alternative interpretations for the restriction to M4 subspace
of M8

c

One must complexify M8 so that one has complexified octonions M8
c . This means the addition of

imaginary unit i commuting with octonionic imaginary units. The vanishing of real or imaginary
part of octonionic polynomial in quaternionic sense (o = q1 + Jq2) defines the space-time surface.
Octonionic polynomial itself is obtained from a real polynomial by algebraic continuation so that in
information theoretic sense space-time is 1-D. The roots of this real polynomial fix the polynomial
and therefore also space-time surface uniquely. 1-D line degenerates to a discrete set of points of
an extension in information theoretic sense. In p-adic case one can allow p-adic pseudo constants
and this gives a model for imagination.

The octonionic roots x+ iy of the real polynomial need not however be real. There are two
options.

1. The original proposal in [L46, L48] was that the projection from M8
c to real M4 (for which

M1 coordinate is real and E3 coordinates are imaginary with respect to i!) defines the real
space-time surface mappable by M8 −H duality to CP2.

2. An alternative option is that only the roots of the 4 vanishing polynomials as coordinates
of M4

c belong to M4 so that m0 would be real root and mk, k = 1, ..., 3 imaginary with
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respect to i → −i. M8
c coordinates would be invariant (“real”) under combined conjugation

i → −i, Ik → −Ik. In the following I will speak about this property as Minkowskian reality.
This could make sense.

What is remarkable that this could allow to identify CDs in very elegant manner: outside CD
these 4 conditions would not hold true. This option looks more attractive than the first one.
Why these conditions can be true just inside CD, should be understood.

Consider now this in detail.

1. One can think of starting from one of the 4 vanishing conditions for the components of
octonionic polynomial guaranteeing associativity. Assuming real roots and continuing one by
one through all 4 conditions to obtain 4-D Minkowskian real regions. The time coordinate
of M4 coordinates is real and others purely imaginary with respect to i→ −i. If this region
does not connect 3-D surface at the boundaries of real CD, one must make a new trial.

Cusp catastrophe determined as the zero locus of third order polynomial provides an example.
There are regions with single real root, regions with two real roots (complex roots become
real and identical) defining V-shaped boundary of cusp and regions with 3 real roots (the
interior of the cusp).

2. The restriction of the octonionic polynomial to time axis m0 identifiable as octonionic real
axes is a real polynomial with algebraic coefficients. In this case the root and its conjugate
with respect to i would define the same surface. One could say that the Galois group of the
real polynomial characterizes the space-time surface although at points other than those at
real axis (time axis) the Galois group can be different.

One could consider the local Galois group of the fourth quaternionic valued polynomial, say
the part of quaternionic polynomial corresponding to real unit 1 when other components are
required to vanish and give rise to coordinates in M8 ⊂ M8

c - Minkowskian reality. The
extension and its Galois group would depend on the point of space-time surface.

An interesting question is how strong conditions Minkowskian reality poses on the extension.
Minkowskian reality seems to imply that E3 roots are purely real so that for an octonionic
polynomial obtained as a continuation of a real polynomial one expects that both root and
complex conjugate should be allow and that Galois group should contain Z2 reflection i→ −i.
Space-time surface would be at least 2-sheeted. Also the model for elementary particles forces
this conclusion on physical grounds. Real as opposite to imagined would mean Minkowskian
reality in mathematical sense. In the case of polynomials this description would make sense
in p-adic case by allowing the coefficients of the polynomial be pseudo constants.

3. What data one could use to fix the space-time surface? Can one start directly from the
real polynomial and regard its coefficients as WCW coordinates? This would be easy and
elegant. Space-time surface could be determined as Minkowskian real roots of the octonionic
polynomial. The condition that the space-time surface has ends at boundaries of given CD
and the roots are not Minkowskian real outside it would pose conditions on the polynomial.
If the coefficients of the polynomial are p-adic pseudo constants, this condition might be easy
to satisfy.

The situation depends also on the coordinates used. For linear coordinates such as Minkowski
coordinates Minkowskian reality looks natural. One can however consider also angle like coordi-
nates representable only in terms of complex phases p-adically and coming as roots of unity and
requiring complex extension: at H-side they are very natural. For instance, for CP2 all coordinates
would be naturally represented in this manner. For future light-cone one would have hyperbolic
angle and 2 ordinary angles plus light-cone proper time which would be real and positive coordinate.

This picture conforms with the proposed picture. The point is that the time coordinate mk

can be real in the sense that they are linear combinations of complex roots, say powers for the
roots of unity. E4

c ⊂ M8
c could be complex and contain also complex roots since M8 −H duality

does not depend on whether tangent space is complex or not. Therefore would could have complex
extensions.
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5.2.3 Questions related to ZEO and CDs

Octonionic polynomials provide a promising approach to the understanding of ZEO and CDs.
Light-like boundary of CD as also light-cone emerge naturally as zeros of octonionic polynomials.
This does not yet give CDs and ZEO: one should have intersection of future and past directed
light-cones. The intuitive picture is that one has a hierarchy of CDs and that also the space-time
surfaces inside different CDs an interact.

Some general observations about CDs

It is good to list some basic features of CDS, which appear as both 4-D and 8-D variants.

1. There are both 4-D and 8-D CDs defined as intersections of future and past directed light-
cones with tips at say origin 0 at real point T at quaternionic or octonionic time axis. CDs
can be contained inside each other. CDs form a fractal hierarchy with CDs within CDs: one
can add smaller CDs with given CD in all possible ways and repeat the process for the sub-
CDs. One can also allow overlapping CDs and one can ask whether CDs define the analog of
covering of O so that one would have something analogous to a manifold.

2. The boundaries of two CDs (both 4-D and 8-D) can intersect along light-like ray. For 4-D
CD the image of this ray in H is light-like ray in M4 at boundary of CD. For 8-D CD the
image is in general curved line and the question is whether the light-like curves representing
fermion orbits at the orbits of partonic 2-surfaces could be images of these lines.

3. The 3-surfaces at the boundaries of the two 4-D CDs are expected to have a discrete inter-
section since 4 + 4 conditions must be satisfied (say RE(P ki )) = 0 for i = 1, 2, k = 1, 4.
Along line octonionic coordinate reduces effectively to real coordinate since one has E2 = E
for E = (1 + in)/2, n octonionic unit. The origins of CDs are shifted by a light-like vector
kE so that the light-like coordinates differ by a shift: t2 = t1− k. Therefore one has common
zero for real polynomials RE(P k1 (t)) and RE(P k2 (t− k)).

Are these intersection points somehow special physically? Could they correspond to the ends
of fermionic lines? Could it happen that the intersection is 1-D in some special cases? The
example of o2 suggest that this might be the case. Does 1-D intersection of 3-surfaces at
boundaries of 8-D CDs make possible interaction between space-time surfaces assignable to
separate CDs as suggested by the proposed TGD based twistorial construction of scattering
amplitudes?

4. Both tips of CD define naturally an origin of quaternionic coordinates for D = 4 and the origin
of octonionic coordinates for D = 8. Real analyticity requires that the octonionic polynomials
have real coefficients. This forces the origin of octonionic coordinates to be along the real
line (time axis) connecting the tips of CD. Only the translations in this specified direction
are symmetries preserving the commutativity and associativity of the polynomial algebra.

5. One expects that also Lorentz boosts of 4-D CDs are relevant. Lorentz boosts leave second
boundary of CD invariant and Lorentz transforms the other one. Same applies to 8-D CDs.
Lorentz boosts define non-equivalent octonionic and quaternionic structures and it seems that
one assume moduli spaces of them.

One can of course ask whether the still somewhat ad hoc notion of CD general enough.
Should one generalize it to the analog of the polygonal diagram with light-like geodesic lines as
its edges appearing in the twistor Grassmannian approach to scattering diagrams? Octonionic
approach gives naturally the light-like boundaries assignable to CDs but leaves open the question
whether more complex structures with light-like boundaries are possible. How do the space-time
surfaces associated with different quaternionic structures of M8 and with different positions of tips
of CD interact?

The emergence of causal diamonds (CDs)

CDs are a key notion of zero energy ontology (ZEO). They should emerge from the number-
theoretic dynamics somehow. How? In the following this question is approached from two different
directions.
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1. One can ask whether the emergence of CDs could be understood in terms of singularities
of octonion polynomials located at the light-like boundaries of CDs. In Minkowskian case
the complex norm qqi is present in P . Could this allow to blow up the singular point to a
3-D boundary of light-cone and allow to understand the emergence of causal diamonds (CDs)
crucial in ZEO. This question will be considered below.

2. These arguments were developed before the realization that the Minkowskian reality condition
discussed in the previous section is natural for the space-time surfaces as roots of the 4
polynomials defining real or imaginary part of octonionic polynomial in quaternionic sense
and giving M4 point as a solution. Minkowskian reality can hold only in some regions of M4

and an attractive conjecture is that it fails outside CD. CD would be a prediction of number
theoretical dynamics and have counterpart also at the level of H.

Consider now the second approach in more detail. The study of the special properties for
zero loci of general polynomial P (o) at light-rays of O indeed demonstrated that both 8-D land
4-D light-cones and their complements emerge naturally, and that the M4 projections of these
light-cones and even of their boundaries are 4-D future - or past directed light-cones. What one
should understand is how CDs as their intersections, and therefore ZEO, emerge.

1. One manner to obtain CDs naturally is that the polynomials are sums P (t) =
∑
k Pk(o)

of products of form Pk(o) = P1,k(o)P2,k(o − T ), where T is real octonion defining the time
coordinate. Single product of this kind gives two disjoint 4-varieties inside future and past
directed light-cones M4

+(0) and M4
−(T ) for either RE(P ) = 0 (or IM(P ) = 0) condition. The

complements of these cones correspond to IM(P ) = 0 (or RE(P ) = 0) condition.

2. If one has nontrivial sum over the products, one obtains a connected 4-variety due the in-
teraction terms. One has also as special solutions M4

± and the 6-spheres associated with the
zeros P (t) or equivalently P1(t1) ≡ P (t), t1 = T − t vanishing at the upper tip of CD. The
causal diamond M4

+(0) ∩M4
−(T ) belongs to the intersection.

Remark: Also the union M4
−(0)∪M4

+(T ) past and future directed light-cones belongs to the
intersection but the latter is not considered in the proposed physical interpretation.

3. The time values defined by the roots tn of P (t) define a sequence of 6-spheres intersecting 4-D
CD along 3-balls at times tn. These time slices of CD must be physically somehow special.
Space-time variety intersects 6-spheres along 2-varieties X2

n at times tn. The varieties X2
n are

perhaps identifiable as 2-D interaction vertices, pre-images of corresponding vertices in H at
which the light-like orbits of partonic 2-surfaces arriving from the opposite boundaries of CD
meet.

The expectation is that in H one as generalized Feynman diagram with interaction vertices at
times tn. The higher the evolutionary level in algebraic sense is, the higher the degree of the
polynomial P (t), the number of tn, and more complex the algebraic numbers tn. P (t) would
be coded by the values of interaction times tn. If their number is measurable, it would provide
important information about the extension of rationals defining the evolutionary level. One
can also hope of measuring tn with some accuracy! Octonionic dynamics would solve the
roots of a polynomial! This would give a direct connection with adelic physics [L52] [L53].

Remark: Could corresponding construction for higher algebras obtained by Cayley-Dickson
construction solve the “roots” of polynomials with larger number of variables? Or could
Cartesian product of octonionic spaces perhaps needed to describe interactions of CDs with
arbitrary positions of tips lead to this?

4. Above I have considered only the interiors of light-cones. Also their complements are possible.
The natural possibility is that varieties with RE(P ) = 0 and IM(P ) = 0 are glued at the
boundary of CD, where RE(P ) = IM(P ) = 0 is satisfied. The complement should contain the
external (free) particles, and the natural expectation is that in this region the associativity/co-
associativity conditions can be satisfied.

5. The 4-varieties representing external particles would be glued at boundaries of CD to the
interacting non-associative solution in the complement of CD. The interaction terms should
be non-vanishing only inside CD so that in the exterior one would have just product P (o) =
P1,k0

(o)P2,k0
(o−T ) giving rise to a disjoint union of associative varieties representing external

particles. In the interior one could have interaction terms proportional to say t2(T − t)2
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vanishing at the boundaries of CD in accordance with the idea that the interactions are
switched one slowly. These terms would spoil the associativity.

Remark: One can also consider sums of the products
∏
k Pk(o− Tk) of n polynomials and

this gives a sequence CDs intersecting at their tips. It seems that something else is required to
make the picture physical.

5.2.4 About singularities of octonionic algebraic varieties

In Minkowskian signature the notion of singularity for octonionic polynomials involves new aspects
as the study of o2 singular at origin shows (see Appendix). The region in which RE(o2) =
0, IM(o2) = 0 holds true is 4-D rather than a discrete set of points as one would näıvely expect.

1. At singularity the local dimension of the algebraic variety is reduced. For instance, double
cone of 3-space has origin as singular point where it becomes 0-dimensional. A more general
example is local pinch in which cylinder becomes infinitely thin at some point. This kind of
pinching could occur for fibrations as the fiber contracts to a lower-dimensional space along
a sub-variety of the base space.

A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

The signature of the singularity of algebraic variety determined by the conditions P i(zj) = 0
is the reduction of the maximal rank r for the matrix formed by the partial derivatives
P ij ≡ ∂IM(P )i/∂zj (”RE” could replace ”IM”). Rank corresponds to the largest dimension

of the minor of P ij with non-vanishing determinant. Determinant vanishes when two rows of
the minor are proportional to each other meaning that two tangent vectors become linearly
dependent. When the rank is reduced by ∆r, one has r = rmax−∆r and the local dimension
is locally reduced by ∆r. One has hierarchy of singularities within singularities.

The conditions that all independent minors of the P ij have reduced rank gives additional
constraints and define a sub-variety of the algebraic variety. Note that the dimension of
the singularity corresponds to ds = ∆r in the sense that the dimension of tangent space at
singularity is effectively ds.

2. In the recent case there are 4 polynomials and 4 complex variables so that IM(P )ij is 4× 4-
matrix. Its rank r can have values in r = 1, 2, 3, 2, 4. One can use Thom’s catastrophe
theory as a guideline. Catastrophe decomposes to pieces of various dimensions characterized
by the reduction of the rank of the matrix defined by the second derivatives Vij = ∂i∂jV
of the potential function defining the catastrophe. For instance, for cusp catastrophe with
V (x, a, b) = x4 + ax2 + bx one has V-shaped region in (a, b) plane with maximal reduction
of rank to r = 0 (∂2

xV = 0) at the tip (a, b) = 0 at reduction to r = 1 at the sides of V ,
where two roots of ∂xV = 4x3 + 2ax+ b = 0 co-incide requiring that the discriminant of this
equation vanishes.

3. In the recent case IM(P ) takes the role of complex quaternion valued potential function and

the 4 coordinates z
k)
1 that of behavior variable x for cusp and z

k)
2 that of control parameters

(a, b). The reduction of the rank of n × n matrix by ∆r means that there are r linearly
independent rows in the matrix. These give ∆r additional conditions besides IM(P ) = 0 so
that the sub-variety along which the singularity takes places as dimension r. One can say
that the r-dimensional tangent spaces integrate to the singular variety of dimension r.

The analogy with branes would be realized as a hierarchical structure of singularities of the
spacetime surfaces. This hierarchy of singularities would realize space-time correlates for
quantum criticality, which is basic principle of quantum TGD. For instance, the reduction
by 3-units would correspond to strings - say at the ends of CD and along the partonic orbits
(fermion lines), and maximal reduction might correspond to discrete points - say the ends
of fermion lines at partonic 2-surfaces. Also isolated intersection points can be regarded as
singularities and are stably present but it does not make sense to add fermions to these points
so that cognitive representations are not possible.
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4. Note that also the associativity - and commutativity conditions already discuss involved the
gradients of IM(P )i and RE(P )i, which would suggests that these regions can be interpreted
as singularities for which the dimension is not lowered by on unit since the vanishing conditions
hold true identically by criticality.

There are two cases to be considered. The usual Euclidian case in which pinch reducing the
dimension and the Minkowskian case in which metric dimension is reduced locally.

Consider first the Euclidian case.

1. In Euclidian case it is difficult to tell whether all values of ∆r are possible since octonion
analyticity poses strong conditions on the singularities. The pinch could correspond to the
singularity of the covering associated with the space-time surface defined by Galois group for
the covering associated with heff/h = n identifiable as the dimension of the extension [L43].
Therefore there would be very close connection between the extensions of rationals defining
the Galois group and the extension of polynomial ring of 8 complex variables zki , i = 1, 2,
k = 1, .., 4 by algebraic functions. At the pinch, which would be algebraic point, the Galois
group would have subgroup leaving the coordinates of the point invariant and some sheets of
the covering defining roots would co-incide.

2. A very simple analogy for this kind of singularity is the singularity of P (x, y) = y2 − x = 0
at origin: now the sheets y = ±

√
x co-incide at origin. The algebraic functions y ∓

√
x

defining the factorization of P (x, y) co-incide at origin. Quite generally, two or more factors
in the factorization of polynomial using algebraic functions co-incide at the singularity. This
is completely analogous to the degeneracy or roots of polynomials of single variable.

3. Quaternion structure predicts the slicing of M4 by string world sheets inducing that of space-
time surfaces. One must ask whether singular space-time sheets emerge already for the slicing
of M4 by string world sheets. String world sheets could be considered as candidates for ∆r = 2
singularities of this kind. The physical intuition strongly suggests that there indeed physically
preferred string world sheets and identification as ∆r = 2 singularities of Euclidian type is
attractive. Partonic 2-surfaces are also candidates in this respect. Could some sheets of the
heff/h = n covering co-incide at string world sheets?

Consider next the Minkowskian case. At the level of H the rank of the induced metric is
reduced. This reduction need not be same as that for the matrix P ij and it is of course not obvious
that the partonic orbit allows description as a singularity of algebraic variety.

1. Could the matrix P ij take a role analogous to the dual of induced metric and one might

hope that the change of the sign for P ij for a fixed polynomial at singular surface could be
analogous to the change of the sign of

√
g4 so that the idea about algebraization of this

singularity at level of M8 might make sense. The information about metric could come from
the fact that IM(P ) depends on complex valued quaternion norm reducing to Minkowskian
metric in Minkowskian sub-space.

2. The condition for the reduction of rank from its maximal value of r = 4 to r = 3 occurs if one
has det(P ) = 0, which defines co-dimension 1 surface as a sub-variety of space-time surface.
The interpretation as co-incidence of two roots should make sense if IM(P ) = 0. Root pairs
would now correspond now to the points at different sides of the singular 3-surface.

Minkowskian singularity cannot be identified as the 3-D space-like boundary of many-sheeted
space-time surface located at the boundary of CD (induced metric is space-like).

Could this sub-variety be identified as partonic orbit, the common boundary of the Eu-
clidian and Minkowskian regions? This would require that associative region transforms to
co-associative one here. IM(P ) = 0 condition can transform to RE(P ) = 0 condition if one
has P = 0 at this surface. Minkowskian variant of point singularity (P ij vanishes) would
explode it to a light-like partonic orbit.

What does this imply about the rank of singularity? The condition IM(P ) = RE(P ) = 0 does
not reduce the rank if P is linear polynomial and one could consider a hierarchy of reductions
of rank. Since qq vanishes in Minkowskian sub-space at light-cone boundary rather than at
point q = 0 only, there are reasons to expect that it appears in P and reduces the rank by
∆r = 4 (see Appendix for the discussion of o2 case). The rank of the induced 4-metric is
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however reduced only by ∆r = 1 at partonic orbit. If the complexified complex norm zz,
z = z1 + z2I2 can take the role of qq, one has ∆r = 2.

3. The reduction of rank to r = 2 would give rise to 2-surfaces, which are at the boundaries
of 3-D singularities. If partonic orbits correspond to ∆r = 1 singularities one could identify
them as partonic 2-surfaces at the ends partonic orbits.

Could the singularity at partonic 2-surface correspond to the reduction of the rank of the
induced metric by 2 units? This is impossible in strict sense since there is only one light-like
direction in signature (1,−1,−1,−1). Partonic 2-surface singularity would however corre-
spond to a corner for both Euclidian and Minkowskian regions at which the metrically 2-D
but topologically 3-D partonic orbit meets the the space-like 3-surface along the light-like
boundary of CD. Also the radial direction for space-like 3-surface could become light-like at
partonic 2-surface if the CP2 coordinates have vanishing gradient with respect to the light-like
radial coordinate rM at the partonic 2-surface. In this sense the rank could be reduced by 2
units. The situation is analogous to that for fold singularity y2 − x = 0.

String world sheets cannot be subsets of r = 3 singularities, which suggests different interpre-
tation for partonic 2-surfaces and string world sheets.

What could this different interpretation be?

1. Perhaps the most convincing interpretation of string world sheets/partonic 2-surfaces has been
already discussed (this interpretation would generalize to associative space-time surfaces).
They could be commutative/co-commutative (here permutation might be allowed!) sub-
manifolds of associative regions of the space-time surface allowing quaternionic tangent spaces
so that the notions of commutative and co-commutative make sense. The criticality conditions
are satisfied without the reduction of dimension from d = 2 to d = 1. In non-associative
regions string world sheets would reduce to 1-D curves. This would happen at the boundaries
of partonic orbits and 3-surfaces at the ends of space-time surface and only the ends of strings
at partonic orbits carrying fermion number would be needed to determine twistorial scattering
amplitudes [L30, K87].

2. I have also considered an interpretation in terms of singularities of space-time surfaces repre-
sented as a sections of their own twistor bundle. Self-intersections of the space-time surface
would correspond to 2-D surfaces in this case [L43] and perhaps identifiable as string world
sheets. The interpretation mentioned above would be in terms of Euclidian singularities. If
this is true, the question is only about whether these two interpretations are consistent with
each other.

If I were forced to draw conclusion on basis of these notices, it would be that only r = 4
Minkowskian singularities could be interesting and at them RE(P ) = 0 regions could be trans-
formed to IM(P ) = 0 regions. Furthermore, the reduction of rank for the induced metric cannot
be equal to the reduction of the rank for P ij .

5.2.5 The decomposition of space-time surface to Euclidian and Minkowskian
regions in octonionic description

The unavoidable outcome of H picture is the decomposition of space-time surface to regions with
Minkowskian or Euclidian signature of the induced metric. These regions are bounded by 3-D
regions at which the signature of the induced metric is (0,−1,−1,−1) due to the vanishing of
the determinant of the induced metric. The boundary is naturally the light-like orbit of partonic
2-surface although one can consider also the possibility that these regions have boundaries inter-
secting along light-like curves defining boundaries of string world sheets. A more detailed view
inspired by the study of extremals is following.

1. Let us assume that the above picture about decomposition of space-time surfaces in H to
two kinds regions takes place. The regions where the dynamicis universal minimal surface
dynamics have associative pre-image in M8. The regions where Kähler action and volume
term couple the associative pre-image in M8 exists only at the 3-D boundary regions and
M8 dynamics determines the boundary conditions for H dynamics, which by hologaphy is
enough.
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2. In the space-time regions having associative pre-image in M8 one has a fibration of X4 with
with partonic surface as a local base and string world sheet as local fiber. In the interior
of space-time region there are no singularities but at the boundary 2-D string world sheets
becomes metrically 1-D as 1-D string boundary reduces metrically to 0-D structure analogous
to a point. This reduction of dimension would be metric, but not topological.

The singularity for plane curve P (x, y) = y2 − x3 = 0 at origin illustrates the difference
between Minkowskian and Euclidian singularity. One has (∂xP, ∂yP ) = (−3x2, 2y) vanishing
at origin so that ∆r = 1 singularity is in question and the dimension of singular manifold is
indeed r = 0. From y = ±x3/2, x ≥ 0. The induced metric gxx = 1 + (dy/dx)2 = 1 + (9/4)x,
x ≥ 0 is however non-singular at origin.

3. If the Euclidian region with pre-image corresponds to a deformation of wormhole contact,
the identification as image of a co-associative space-time region in M8 is natural so that
normal space is associative and contains also the preferred M2(x). In Minkowskian regions
the identification as image of associative space-time region in M8 is natural.

What can one say about the relationship of the M8 counterparts of neighboring Minkowskian
and Euclidian regions?

1. Do these regions intersect along light-like 3-surfaces, 1-D light-like curve (orbit of fermion)
or is the intersection disrete set of points possibly assignable to the partonic 2-surface at the
boundaries of CD? The M4 projections of the inverse image of the light-like partonic orbit
should co-incide but E4 projections need not do so. They could be however mappable to the
same partonic two surface in M8 −H correspondence or the images could have at least have
light-like curve as common.

2. Is seems impossible for the space-time surfaces determined as zeros of octonionic polynomials
to have boundaries. Rather, it seems that the boundary must be between Minkowskian and
Euclidian regions of the space-time surface determined by the same octonionic polynomial. At
the boundary also associate region would transform to co-associative region suggesting that
IM(P ) = RE(P ) = 0 holds allowing to change the condition from IM(P ) = 0 to RE(P ) = 0.

Consider now in more detail whether this view can be realized.

1. In H = M4 ×CP2 the boundary between the Minkowskian and Euclidian space-time regions
- light-like partonic 3-surface - is a singularity possible only in Minkowskian signature. Space-
time surface X4 at the boundary is effectively 3-D since one has

√
g4 = 0 meaning that

tangent space is effectively 3-D. The 3-D boundary itself is metrically 2-D and this gives rise
to the extended conformal invariance defining crucial distinction between TGD and super
string models.

2. The singularities of P (o) for o identified as linear coordinate of M8
c were already considered.

The singularities correspond to the boundaries of light-cone and the emergence of CDs can be
understood. Could also the light-like orbits of partonic 2-surfaces be understood in the same
manner? Does the pre-image of this singularity in M8 emerge as a singularity of an algebraic
variety determined by the vanishing of IM(P ) for the octonionic polynomial?

What is common is that the rank of the induced metric by one unit also now. Now one has
however also det(g4) = 0. The singularities correspond to curved light-like 3-surfaces inside
space-time surfaces rather than light-like surfaces in M8: induced metric matters rather than
M4 metric.

3. Could also these regions correspond to singularities of octonionic polynomials at which P (o) =
0 is satisfied and associative region transforms to a co-associative region? For M2(x) = M2

0

this is impossible. Partonic 2-surfaces are planes E2 now. One should have closed partonic
2-surfaces.

Could the allowance of quaternionic structures with slicing of X4 by string world sheets and
partonic 2-surfaces help? If one has slicing of string world sheets by dual light-like curves
corresponding to light-like coordinates u and v, this slicing gives also rise to a slicing of light-
like 3-surfaces and dual light-like coordinate. The pair (u, v) in fact defines the analog of z
and z in hypercomplex case. Could the singularity of P (o) using the quaternionic coordinates
defined by (u, v) and coordinates of partonic 2-surface allow to identify light-like partonic
orbits with det(g4) = 0 as a generalization of light-cone boundaries in M4?
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The decomposition M4
0 = M2

x ×E2(x) associated with quaternionic structure is independent
of E4. In the other hand, tangent space of space-time surface at point decomposes M2(x)×
E2
T (x), where E2

T (x) is in general different from E2(x). Is this enough to obtain partonic
2-surfaces as singularities with RE(P ) = IM(P ) = 0?

The question whether the boundaries between Minkowskian and Euclidian can correspond
to singular regions at which P (o) vanishes and the surface RE(P ) = 0 transforms to IM(P ) = 0
surface remains open. What remains poorly understood is the role of the induced metric. My hope
is that with a further work the picture could be made more detailed.

5.2.6 About rational points of space-time surface

What one can say about rational points of space-time surface?

1. An important special case corresponds to a generalization of so called rational surfaces for
which a parametric representation in terms of 4 complex coordinates tk exists such that ok1
are rational functions of tk. The singularities for 2-complex dimensional surfaces in C3 or
equivalently CP3 are classified by Du Val [A61, A69] (see http://tinyurl.com/ydz93hle).

2. In [L43] [L38] I considered possible singularities of the twistor bundle. These would correspond
typically 2-D self-intersections of the embedding of space-time surfaces as 4-D base space of 6-
D twistor bundle with sphere as a fiber. They could relate to string world sheets and partonic
2-surfaces and - as already found - are different from singularities at the level of M8

c . The
singularities of string world sheets and partonic 2-surfaces as hyper-complex and co-complex
surfaces consist of points and could relate to the singularities at octonionic level.

As already mentioned, Bombieri-Lang conjecture (see http://tinyurl.com/y887yn5b) states
that, for any variety X of general type over a number field k, the set of k-rational points of X is
not Zariski dense (see http://tinyurl.com/jm9fh74) in X. Even more, the k-rational points are
contained in a finite union of lower-dimensional sub-varieties of X.

This conjecture is highly interesting from TGD point of view if one believes in M8 − H
duality. Space-time surfaces X4 ⊂ M8

c can be seen as M8 = M4 × E4 projections of zero loci for
real or imaginary parts of octonionic polynomials in o. In complex sense they reduce to M4 × E4

projections of algebraic co-dimension 4 surfaces in C8. If Bombieri-Lang conjectures makes sense
in this context, it would state that for a space-time surface X4 ⊂M8 of general type the rational
points are contained in a finite union of lower-dimensional sub-varieties. Also the conjecture
of Vojta (see http://tinyurl.com/y9sttuu4) stating that varieties of general type cannot be
potentially dense is known to be true for curves and support this general vision.

Could the finite union of sub-varieties correspond to string world sheets, partonic 2-surfaces,
and their light-like orbits define singularities? But why just singular sub-varieties would be cog-
nitively simple and have small Kodaira dimension dK allowing large number of rational points?
In the case of partonic orbits one might understand this as a reduction of metric dimension. The
orbit is effectively 2-dimensional partonic surface metrically and for the genera g = 0, 1 rational
points are dense. For string world sheets with handle number smaller than 2 the situation is same.

The proposed realizations of associativity and commutativity provide additional support for
this picture. Criticality guaranteeing associativity/commutativity would select preferred space-
time surfaces as also string world sheets and partonic 2-surfaces.

Concluding, the general wisdom of algebraic geometry conforms with SH and with the vision
about the localization of cognitive representations at 2-surfaces. There are of many possible options
for detailed interpretation and certainly the above sketch cannot be correct at the level of details.

5.2.7 About heff/h = n as the number of sheets of Galois covering

The following considerations were motivated by the observation of a very stupid mistake that I have
made repeatedly in some articles about TGD. Planck constant heff/h = n corresponds naturally
to the number of sheets of the covering space defined by the space-time surface.

I have however claimed that one has n = ord(G), where ord(G) is the order of the Galois
group G associated with the extension of rationals assignable to the sector of “world of classical

http://tinyurl.com/ydz93hle
http://tinyurl.com/y887yn5b
http://tinyurl.com/jm9fh74
http://tinyurl.com/y9sttuu4
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worlds” (WCW) and the dynamics of the space-time surface (what this means will be considered
below).

This claim of course cannot be true since the generic point of extension G has some subgroup
H leaving it invariant and one has n = ord(G)/ord(H) dividing ord(G). Equality holds true only
for Abelian extensions with cyclic G. For singular points isotropy group is H1 supH so that
ord(H1)/ord(H) sheets of the covering touch each other. I do not know how I have ended up to
a conclusion, which is so obviously wrong, and how I have managed for so long to not notice my
blunder.

This observation forced me to consider more precisely what the idea about Galois group
acting as a number theoretic symmetry group really means at space-time level and it turned out
that M8 −H correspondence [L46] (see http://tinyurl.com/yd43o2n2) gives a precise meaning
for this idea.

Consider first the action of Galois group (see http://tinyurl.com/y8grabt2 and http:

//tinyurl.com/ydze5psx).

1. The action of Galois group leaves invariant the number theoretic norm characterizing the
extension. The generic orbit of Galois group can be regarded as a discrete coset space G/H,
H ⊂ G. The action of Galois group is transitive for irreducible polynomials so that any two
points at the orbit are G-related. For the singular points the isotropy group is larger than
for generic points and the orbit is G/H1, H1 supH so that the number of points of the orbit
divides n. Since rationals remain invariant under G, the orbit of any rational point contains
only single point. The orbit of a point in the complement of rationals under G is analogous
to an orbit of a point of sphere under discrete subgroup of SO(3).

n = ord(G)/ord(H) divides the order ord(G) of Galois group G. The largest possible Galois
group for n-D algebraic extension is permutation group Sn. A theorem of Frobenius states
that this can be achieved for n = p, p prime if there is only single pair of complex roots
(see http://tinyurl.com/y8grabt2). Prime-dimensional extensions with heff/h = p would
have maximal number theoretical symmetries and could be very special physically: p-adic
physics again!

2. The action of G on a point of space-time surface with embedding space coordinates in n-D
extension of rationals gives rise to an orbit containing n points except when the isotropy group
leaving the point is larger than for a generic point. One therefore obtains singular covering
with the sheets of the covering touching each other at singular points. Rational points are
maximally singular points at which all sheets of the covering touch each other.

3. At QFT limit of TGD the n dynamically identical sheets of covering are effectively replaced
with single one and this effectively replaces h with heff = n × h in the exponent of action
(Planck constant is still the familiar h at the fundamental level). n is naturally the dimension
of the extension and thus satisfies n ≤ ord(G). n = ord(G) is satisfied only if G is cyclic
group.

The challenge is to define what space-time surface as Galois covering does really mean!

1. The surface considered can be partonic 2-surface, string world sheet, space-like 3-surface at
the boundary of CD, light-like orbit of partonic 2-surface, or space-time surface. What one
actually has is only the data given by these discrete points having embedding space coordinates
in a given extension of rationals. One considers an extension of rationals determined by
irreducible polynomial P but in p-adic context also roots of P determine finite-D extensions
since ep is ordinary p-adic number.

2. Somehow this data should give rise to possibly unique continuous surface. At the level of
H = M4 × CP2 this is impossible unless the dynamics satisfies besides the action principle
also a huge number of additional conditions reducing the initial value data ans/or boundary
data to a condition that the surface contains a discrete set of algebraic points.

This condition is horribly strong, much more stringent than holography and even strong
holography (SH) implied by the general coordinate invariance (GCI) in TGD framework.
However, preferred extremal property at level of M4 × CP2 following basically from GCI in
TGD context might be equivalent with the reduction of boundary data to discrete data if
M8−H correspondence [L46] (see http://tinyurl.com/yd43o2n2) is accepted. These data

http://tinyurl.com/yd43o2n2
http://tinyurl.com/y8grabt2
http://tinyurl.com/ydze5psx
http://tinyurl.com/ydze5psx
http://tinyurl.com/y8grabt2
http://tinyurl.com/yd43o2n2
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would be analogous to discrete data characterizing computer program so that an analog of
computationalism would emerge [L40] (see http://tinyurl.com/y75246rk).

One can argue that somehow the action of discrete Galois group must have a lift to a
continuous flow.

1. The linear superposition of the extension in the field of rationals does not extend uniquely to
a linear superposition in the field reals since the expression of real number as sum of units
of extension with real coefficients is highly non-unique. Therefore the näıve extension of the
extension of Galois group to all points of space-time surface fails.

2. The old idea already due to Riemann is that Galois group is represented as the first homotopy
group of the space. The space with homotopy group π1 has coverings for which points remain
invariant under subgroup H of the homotopy group. For the universal covering the number of
sheets equals to the order of π1. For the other coverings there is subgroup H ⊂ π1 leaving the
points invariant. For instance, for homotopy group π1(S1) = Z the subgroup is nZ and one
has Z/nZ = Zp as the group of n-sheeted covering. For physical reasons its seems reasonable
to restrict to finite-D Galois extensions and thus to finite homotopy groups.

π1 − G correspondence would allow to lift the action of Galois group to a flow determined
only up to homotopy so that this condition is far from being sufficient.

3. A stronger condition would be that π1 and therefore also G can be realized as a discrete
subgroup of the isometry group of H = M4 × CP2 or of M8 (M8 −H correspondence) and
can be lifted to continuous flow. Also this condition looks too weak to realize the required
miracle. This lift is however strongly suggested by Langlands correspondence [K55, K56] (see
http://tinyurl.com/y9x5vkeo).

The physically natural condition is that the preferred extremal property fixes the surface or
at least space-time surface from a very small amount of data. The discrete set of algebraic points
in given extension should serve as an analog of boundary data or initial value data.

1. M8−H correspondence [L46] (see http://tinyurl.com/yd43o2n2) could indeed realize this
idea. At the level of M8 space-time surfaces would be algebraic varieties whereas at the level
of H they would be preferred extremals of an action principle which is sum of Kähler action
and minimal surface term.

They would thus satisfy partial differential equations implied by the variational principle
and infinite number of gauge conditions stating that classical Noether charges vanish for a
subgroup of symplectic group of δM4

± × CP2. For twistor lift the condition that the induced
twistor structure for the 6-D surface represented as a surface in the 12-D Cartesian product
of twistor spaces of M4 and CP2 reduces to twistor space of the space-time surface and is
thus S2 bundle over 4-D space-time surface.

The direct map M8 → H is possible in the associative space-time regions of X4 ⊂ M8 with
quaternionic tangent or normal space. These regions correspond to external particles arriving
into causal diamond (CD). As surfaces in H they are minimal surfaces and also extremals
of Kähler action and do not depend at all on coupling parameters (universality of quantum
criticality realized as associativity). In non-associative regions identified as interaction regions
inside CDs the dynamics depends on coupling parameters and the direct map M8 → CP2 is
not possible but preferred extremal property would fix the image in the interior of CD from
the boundary data at the boundaries of CD.

2. At the level of M8 the situation is very simple since space-time surfaces would correspond to
zero loci for RE(P ) or IM(P ) (RE and IM are defined in quaternionic sense) of an octonionic
polynomial P obtained from a real polynomial with coefficients having values in the field of
rationals or in an extension of rationals. The extension of rationals would correspond to the
extension defined by the roots of the polynomial P .

If the coefficients are not rational but belong to an extension of rationals with Galois group
G0, the Galois group of the extension defined by the polynomial has G0 as normal subgroup
and one can argue that the relative Galois group Grel = G/G0 takes the role of Galois group.

It seems that M8−H correspondence could allow to realize the lift of discrete data to obtain
continuous space-time surfaces. The data fixing the real polynomial P and therefore also its
octonionic variant are indeed discrete and correspond essentially to the roots of P .

http://tinyurl.com/y75246rk
http://tinyurl.com/y9x5vkeo
http://tinyurl.com/yd43o2n2
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3. One of the elegant features of this picture is that the at the level of M8 there are highly
unique linear coordinates of M8 consistent with the octonionic structure so that the notion
of a M8 point belonging to extension of rationals does not lead to conflict with GCI. Linear
coordinate changes of M8 coordinates not respecting the property of being a number in
extension of rationals would define moduli space so that GCI would be achieved.

Does this option imply the lift of G to π1 or to even a discrete subgroup of isometries is
not clear. Galois group should have a representation as a discrete subgroup of isometry group
in order to realize the latter condition and Langlands correspondence supports this as already
noticed. Note that only a rather restricted set of Galois groups can be lifted to subgroups of
SU(2) appearing in McKay correspondence and hierarchy of inclusions of hyper-finite factors of
type II1 labelled by these subgroups forming so called ADE hierarchy in 1-1 correspondence with
ADE type Lie groups [K112, K43] (see http://tinyurl.com/ybavqvvr). One must notice that
there are additional complexities due to the possibility of quaternionic structure which bring in
the Galois group SO(3) of quaternions.

Remark: After writing this article a considerable progress in understanding of heff/h = n
as number of sheets of Galois covering emerged. By M8-duality space-time surface can be seen
as zero locus for real or imaginary part (regarding octonions as sums of quaternionic real and
imaginary parts) allows a nice understanding of space-time surface as an heff/h = n-fold Galois
covering. M8 is complexified by adding an imaginary unit i commuting with octonionic imaginary
units. Also space-time surface is complexified to 8-D surface in complexified M8. One can say that
ordinary space-time surface is the “real part” of this complexified space-time surface just like x is
the real part of a complex number x + iy. Space-time surface can be also seen as a root of n:th
order polynomial with n complex branches and the projections of complex roots to “real part” of
M8 define space-time surface as an n-fold covering space in which Galois group acts.

5.2.8 Connection with infinite primes

The idea about space-time surfaces as zero loci of polynomials emerged for the first time as I tried
to understand the physical interpretation of infinite primes [K94], which were motivated by TGD
inspired theory of consciousness. Infinite primes form an infinite hierarchy. At the lowest level the
basic entity is the product X =

∏
p p of all finite primes. The physical interpretation could be as

an analog of fermionic sea with fermion states labelled by finite primes p.

1. The simplest infinite primes are of form P = X ± 1 as is easy to see. One can construct more
complex infinite primes as infinite integers of form nX/r +mr. Here r is square free integer,
n is integer having no common factors with r, and m can have only factors possessed also by
r.

The interpretation is that r defines fermionic state obtained by kicking from Dirac sea the
fermions labelled by the prime factors of r. The integers n and m define bosonic excitations in
which k:th power of p corresponds to k bosons in state labelled by p. One can also construct
more complex infinite primes as polynomials of X and having no rational factors. In fact, X
becomes coordinate variable in the correspondence with polynomials.

2. This process can be repeated at the next level. Now one introduces product Y =
∏
P P of

all primes at the previous level and repeats the same construction. These infinite correspond
to polynomials of Y with coefficients given by rational functions of X. Primality means
irreducibility in the field of rational functions so that solving Y in terms of X would give
algebraic function.

3. At the lowest level are ordinary primes. At the next level the infinite primes are indeed infinite
in real sense but have p-adic norms equal to unity. They can be mapped to polynomials
P (x1) with rational coefficients and the simplest polynomials are monomials with rational
root. Higher polynomials are irreducible polynomials with algebraic roots. At the third level
of hierarchy one has polynomials P (x2|x1) of two variables. They are polynomials of x1 with
coefficients with are rational functions of x1. This hierarchy can be continued.

One can define also infinite integers as products of infinite primes at various levels of hierarchy
and even infinite rationals.

http://tinyurl.com/ybavqvvr


5.3. Super variant of octonionic algebraic geometry and space-time surfaces as
correlates for fermionic states 231

4. This hierarchy can be interpreted in terms of a repeated quantization of an arithmetic super-
symmetric quantum field theory with elementary particles labelled by primes at given level
of hierarchy. Physical picture suggests that the hierarchy of second quantizations is realized
also in Nature and corresponds to the hierarchy of space-time sheets.

5. One could consider a mapping P (xn|xn−1|..|x1) by a diagonal projection xi = x to polynomials
of single variable x. One could replace x with complexified octonic coordinate oc. Could this
correspondence give rise to octonionic polynomials and could the connection with second
quantization give classical space-time correlates of real quantum states assignable to infinite
primes and integers? Even quantum states defining counterparts of infinite rationals could
be considered. One could require that the real norm of these infinite rationals equals to one.
They would define infinite number of real units with arbitrarily complex number theoretical
anatomy. The extension of real numbers by these units would mean huge extension of the
notion of real number and one could say that each real point corresponds to platonic defined
by these units closed under multiplication.

In ZEO zero energy states formed by pairs of positive and negative energy could correspond
to these states physically. The condition that the ratio is unit would have also a physical
interpretation in terms of particle content.

6. As already noticed, the notions of analyticity, quaternionicity, and octonionicity could be
seen as a manifestation of polynomials in algebras defined by adding repeatedly a new non-
commuting imaginary unit to already existing algebra. The dimension of the algebra is
doubled in each step so that dimension comes as a power of 2. The algebra of polynomials
with real coefficients is commutative and associative. This encourages the crazy idea that
the spaces are indeed realized and the generalization of M8 − H duality holds true at each
level. At level k the counterpart for CP2 (for k = 3) would be as moduli space for sub-spaces
of dimension 2k−1 for which tangent space reduces to the algebra at level k − 1. For k = 2
CP1 is the moduli space and could correspond to twistor sphere. Essentially Grassmannian
Gl(2k, 2k−1) would be in question. This brings in mind twistor Grassmann approach involving
hierarchy of Grassmannians too, which however allows all dimensions. What is interesting
that the spinor bundle for space of even dimension d has fiber with dimension 2d/2.

The number of arguments for the hierarchy of polynomials assignable to the hierarchy of
infinite primes increases by one at each step. Hence these two hierarchies are different.

The vanishing of the octonionic polynomials indeed allow a decomposition to products of
prime polynomials with roots which in general are algebraic numbers and an exciting possibility
is that the prime polynomials have interpretation as counterparts of elementary particles in very
general sense.

Infinite primes can be mapped to polynomials and the most natural counterpart for the
infinite rational would be as a complexified octonionic rational function P1(t)/P2(t− T ), where T
is real octonion, with coefficients in extension of rationals. This would naturally give the geom-
etry CD. The assignment of opposite boundaries of CD to P1(t) and P2(t − T ) is suggestive and
identification of zero loci of IM(P1) and IM(P2) as incoming and outgoing particles would be
natural. The zero and ∞ loci for RE(P1/P2) would define interaction between these space-time
varieties and should give rise to wormhole contacts connecting them. Note that the linearity of
IM(o1o2) in IM(oi) and non-linearity of RE(o1o2) in RE(oi) would be a key element behind this
identification. This idea will be discussed in more detail in the section “Gromov-Witten invariants,
Riemann-Roch theorem, and Atyiah-Singer index theorem from TGD point of view”.

5.3 Super variant of octonionic algebraic geometry and space-
time surfaces as correlates for fermionic states

Could the octonionic level provide an elegant description of fermions in terms of super variant of
octonionic algebraic geometry? Could one even construct scattering amplitudes at the level of M8

using the variant of the twistor approach discussed in [L30, K87]?
The idea about super-geometry is of course very different from the idea that fermionic

statistics is realized in terms of the spinor structure of “world of classical worlds” (WCW) but
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M8−H duality could however map these ideas and also number theoretic and geometric vision to
each other. The angel of geometry and the devil of algebra could be dual to each other.

In the following I start from the notion of emergence generalized to the vision that entire
physics emerges from the notion of number. This naturally leads to an identification of super-
variants of various number fields, in particular of complexified octonions. After that super variants
of RE(P ) = 0 and IM(P ) = 0 conditions are discussed, and the surprising finding is that the
conditions might allow only single fermion states localized at strings. This would allow only single
particle in the super-multiplet and would mean breaking of SUSY. This picture would be consistent
with the earlier H picture about construction of scattering amplitudes [L30, K87]. Finally the
problems related to the detailed physical interpretation are discussed.

5.3.1 About emergence

The notion of emergence is fashionable in the recent day physics, in particular, he belief is that 3-
space emerges in some manner. In the sequel I consider briefly the standard view about emergence
idea from TGD point of view, then suggest that the emergence in the deepest sense requires
emergence of physics from the notion of number and that complexified octonions [L46] [L47, L48,
L35, L45] are the most plausible candidate in this respect. After that I will show that number
theory generalizes to super-number theory: super-number fields make sense and one can define the
notion of super-prime. Every new step of progress creates worry about consistency with the earlier
work, now the work done during last months with physics as octonionic algebraic geometry and
also this aspect is discussed.

1. The notion of holography is behind the emergence of 3-space and implies that the notion of
2-space is taken as input. This could be justified by conformal invariance.

2. The key idea is that 3-space emerges somehow from entanglement. There is something that
must entangle and this something must be labelled by points of space: one must introduce a
discretised space. Then one must do some handwaving to make it 3-D - perhaps by arguing
that holography based on 2-D holograms is unique by conformal invariance. The next hand-
wave would replace this as a 3-D continuous space at infrared limit.

3. How to get space-time and how to get general coordinate invariance? How to get the symme-
tries of standard model and special relativity? Somehow all this must be smuggled into the
theory when the audience is cheated to direct its attention elsewhere. This Münchausen trick
requires a professional magician!

4. One attempt could take as starting point what I call strong form of holography (SH) in which
2-D data determine 4-D physics. Just like 2-D real analytic function determines analytic func-
tion of two complex variables in spacetime of 2 complex dimensions by analytic continuation
(this hints strongly to quaternions). This is possible if conformal invariance is generalized to
that for light-like 3-surfaces such as light-cone boundary. But the emergence magician should
do the same without these.

In TGD one could make this even simpler. Octonionic polynomials and rational functions
are obtained from real polynomials of real variable by octonion-analytic continuation. And
since polynomials and rational functions P1/P2 are in question their values at finite number
of discrete points determined them if the orders of P1 and P2 are known!

If one accepts adelic hierarchy based on extensions of rationals the coefficients of polynomials
are in extensions of rationals and the situation simplifies further. The criticality conditions
guaranteeing associativity for external particles is one more simplification: everything b be-
comes discrete. The physics at fundamental level could be incredibly simple: discrete number
of points determines space-time surfaces as zero loci for RE(P ) or IM(P ) (octonions are
decomposed to two quaternions gives RE(o) and IM(o)).

How this is mapped to physics leading to standard model emerging from the formulation
in M × CP2 This map exists - I call it M8 − H duality - and takes space-time varieties in
Minkowskian sector of complexified octonions to a space-time surface in M4×CP2 coding for
standard model quantum numbers and classical fields.

How to get all this without bringing in octonionic embedding space: this is the challenge for
the emergence-magician! I am afraid this this trick is impossible. I will however propose a deeper
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for what emergence is. It would not be emergence of space-time and all physics from entanglement
but from the notion of number, which is at the base of all mathematics. This view led to a discovery
of the notion of super-number field, a completely new mathematical concept, which should show
how deep the idea is.

5.3.2 Does physics emerge from the notion of number field?

Concerning emergence one can start from a totally different point of view. Even if one gets rid
of space as something fundamental from Hilbert sapce and entanglement, one has not reached
the most fundamental level. Structures like Hilbert space, manifold, etc. are not fundamental
mathematical structures: they require the notion of number field. Number field is the fundamental
notion.

Could entire physics emerge from the notion of number field alone: space-time, fermions,
standard model interactions, gravitation? There are good hopes about this in TGD framework
if one accepts M8 −H duality and physics as octonionic algebraic geometry! One could however
argue that fermions do not follow from the notion of number field alone. The real surprise was that
formalizing this more precisely led to a realization that the very notion of number field generalizes
to what one could call super-number field!

Emergence of physics from complexified octonionic algebraic geometry

Consider first the situation for number fields postponing the addition of attribute “super” later.

1. Number field endowed with basic arithmetic operations +, −, ·, / is the basic notion for anyone
wanting to make theoretical physics. There is a rich repertoire of number fields. Finite fields,
rationals and their extensions, real numbers, complex numbers, quaternions, and octonions.
There also p-adic numbers and their extensions induced by extensions of rationals and fusing
into adele forming basic structure of adelic physics. Even the complex, quaternionic, and
octonionic rationals and their extensions make sense. p-Adic variants of say octonions must
be however restricted to have coefficients belonging to an extension of rationals unless one
is willing to give up field property (the p-adic analog of norm squared can vanish in higher
p-adic dimensions so that inverse need not exist).

There are also function fields consisting of functions with local arithmetic operations. Analytic
functions of complex variable provides the basic example. If function vanishes at some point
its inverse element diverges at the same point. Function fields are derived objects rather than
fundamental.

2. Octonions are the largest classical number field and are therefore the natural choice if one
wants to reduce physics to the notion of number. Since one wants also algebraic extensions
of rationals, it is natural to introduce the notion of complexified octonion by introducing an
additional imaginary unit - call it i, commuting with the 7 octonionic imaginary units Ik.
One obtains complexified octonions.

That this is not a global number field anymore turns out to be a blessing physically. Com-
plexified octonion zkE

k has zk = zk + iyk. The complex valued norm of octonion is given
by z2

0 + ...z2
7 (there is no conjugation involved. The norm vanishes at the complex surface

z2
0 + ...z2

7 = 0 defining a 7-D surface in 7-D Oc (the dimension is defined in complex sense).
At this surface - complexified light-cone boundary - number field theory property fails but is
preserved elsewhere since one can construct the inverse of octonion.

At the real section M8 (8-D Minkowski space with one real (imaginary) coordinate and 7
imaginary (real) coordinates the vanishing takes place also. This surface corresponds to
the 7-D light-cone boundary of 8-D Minkowskian light-cone. This suggests that light-like
propagation is basically due to the complexification of octonions implying local failure of
the number field property. Same happens also in other real sections with 0 < n < 8 real
coordinates and 0 < m = 8 − n < 8 imaginary coordinates and one obtains variant of light-
cone with different signatures. Euclidian signature corresponding to m = 0 or m = 8 is
an exception: light-cone boundary reduces to single point in this case and one has genuine
number field - no propagation is possible in Euclidian signature.
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Similar argument applies in the case of complexified quaternions Qc and complexified complex
numbers z1 + z2I ∈ Cc, where I is octonionic imaginary unit. For Qc one obtains ordinary
3-D light-cone boundary in real section and 1-D light-cone boundary in the case of Cc. It
seems that physics demands complexification! The restriction to real sector follows from the
requirement that norm squared reduces to a real number. All real sectors are possible and I
have already considered the question whether this should be taken as a prediction of TGD
and whether it is testable.

Super-octonionic algebraic geometry

There is also a natural generalization of octonionic TGD to super-octonionic TGD based on oc-
tonionic triality. SO(1, 7) allows besides 8-D vector representations also spinor representations 8c
and 8c. This suggests that super variant of number field of octonions might make sense. One
would have o = o8 + oc,8 + 0c,8.

1. Should one combine o8, oc,8 and oc,8 to a coordinate triplet (o8, oc,8, oc,8) as done in super-
symmetric theories to construct super-fields? The introduction of super-fields as primary
dynamical variables is a good idea now since the very idea is to reduce physics to algebraic
geometry at the level of M8. Polynomials of super-octonions defining space-time varieties as
zero loci for their real or imaginary part in quaternionic sense could however take the role of
super fields. Space-time surface would correspond to zero loci for RE(P ) or IM(P ).

2. The idea about super-octonions should be consistent with the idea that we live in a complex-
ified number field. How to define the notion of super-octonion? The tensor product 8 ⊗ 8c
contains 8c and 8 ⊗ 8c contains 8c and one can use Glebsch-Gordan coefficients to contract
o and θc and o and θc,n. The tensor product of 8c and 8c defined using structure constants
defining octonion product gives 8. Therefore one must have

os = o+ Ψc × θc + Ψc × θc , (5.3.1)

where the products are octonion products. Super parts of super-coordinates would not be just
Grassmann numbers but octonionic products of Grassmann numbers with octonionic spinors
in 8c and 8c. This would bring in the octonionic analogs of spinor fields into the octonionic
geometry.

This seems to be consistent with super field theories since octonionic polynomials and even
rational functions would give the analogs of super-fields. What TGD would provide would be
an algebraic geometrization of super-fields.

3. What is the meaning of the conditions RE(P ) = 0 and IM(P ) = 0 for super-octonions? Does
this condition hold true for all dG = 216 super components of P (os) or is it enough to pose
the condition only for the octonionic part of P (o)? In the latter case Ψc and Ψc would be
free and this does not seem sensical and does not conform with octonionic super-symmetry.
Therefore the first option will be studied in the sequel.

If super-octonions for a super variant of number field so that also inverse of super-octonion
is well-defined, then even rational functions of complexified super-octonions makes sense and poles
have interpretation in terms of 8-D light-fronts (partonic orbits at level of H). The notion must
make sense also for other classical number fields, finite fields, rationals and their extensions, and
p-adic numbers and their extensions. Does this structure form a generalization of number field to
a super counter part of number field? The easiest manner to kill the idea is to check what happens
in the case of reals.

1. The super-real would be of form s = x + yθ, θ2 = 0. Sum and product are obviously well-
defined. The inverse is also well-defined and given by 1/s = (x − yθ))/x2. Note that for
complex number x + iy the inverse would be z/zz = (x − yi)/(x2 + y2). The formula for
super-inverse follows from the same formula as the inverse of complex number by defining
conjugate of super-real s as s = x− yθ and the norm squared of s as |s|2 = ss = x2.

One can identify super-integers as N = m + nθ. One can also identify super-real units as
number of unit norm. Any number 1n = 1+nθ has unit norm and the norms form an Abelian
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group under multiplication: 1m1n = 1m+n. Similar non-uniqueness of units occurs also for
algebraic extensions of rationals.

2. Could one have super variant of number theory? Can one identify super-primes? Super-norm
satisfies the usual defining property |xy| = |x||y|. Super-prime is defined only apart from the
multiplicative factor 1m giving not contribution to the norm. This is not a problem but a
more rigorous formulation leads to the replacement of primes with prime ideals labelled by
primes already in the ordinary number theory.

If the norm of super-prime is ordinary prime it cannot decompose to a product of super-
primes. Not all super-primes having given ordinary prime as norm are however independent.
If super-primes p + nθ and p + mθ differ by a multiplication with unit 1r = 1 + rθ, one
has n −m = pr. Hence there are only p super-primes with norm p and they can be taken
ps = p+ kθ, k ∈ {0, p− 1}. A structure analogous to a cyclic group Zp emerges.

Note that also θ is somewhat analogous to prime although its norm is vanishing.

3. Just for fun, one an ask what is the super counterpart of Riemann Zeta. Riemann zeta can
be regarded as an analog of thermodynamical partition function reducing to a product for
partition functions for bosonic systems labelled by primes p. The contribution from prime p
is factor 1/(1−p−s). p−s is analogous to Boltzmann weight N(E)exp(−E/T ), where N(E) is
number of states with energy E. The degeneracy of states labelled by prime p is for ordinary
primes N(p) = 1. For super-primes the degeneracy is N(p) = p and the weight becomes
1/(1−N(p)p−s) = 1/(1−p−s+1). Super Riemann zeta is therefore zeta(s−1) having critical
line at s = 3/2 rather than at s = 1/2 and trivial zeros at real points s = −1,−3,−5, rather
than at s = −2,−4,−6, ...

There are good reasons to expect that the above arguments work also for algebraic extensions
of super-rationals and in fact for all number fields, even for super-variants of complex numbers,
quaternions and octonions. This because the conditions for invertibility reduce to that for real
numbers. One would have a generalization of number theory to super-number theory! Net search
gives no references to anything like this. Perhaps the generalization has not been noticed because
the physical motivation has been lacking. M8−H duality would imply that entire physics, including
fermion statistics, standard model interactions and gravitation reduces to the notion of number in
accordance with number theoretical view about emergence.

Is it possible to satisfy super-variants of IM(P ) = 0 and RE(P ) = 0 conditions?

Instead of super-fields one would have a super variant of octonionic algebraic geometry.

1. Super variants of the polynomials and even rational functions make sense and reduce to
a sum of octonionic polynomials Pklθ

k
1θ
l
2, where the integers k and l would be tentatively

identified as fermion numbers and θk is a shorthand for a monomial of k different thetas.
The coefficients in Pkl = Pkl,no

n would be given by Pkl,n = Pn+k+lB(n+ k + l, k + l), where
B(r, s) = r!/(r − s)!s! is binomial coefficient. The space-time surfaces associated with Pkl
would be different and they need not be simultaneously critical, which could give rise to a
breaking of supersymmetry.

One would clearly have an upper bound for k and l for given CD. Therefore these many-fermion
states must correspond to fundamental particles rather than many-fermion Fock states. One
would obtain bosons with non-vanishing fermion numbers if the proposed identification is cor-
rect. Octonionic algebraic geometry for single CD would describe only fundamental particles
or states with bounded fermion numbers. Fundamental particles would be indeed fundamental
also geometrically.

2. One can also now define space-time varieties as zero loci via the conditions RE(Ps)(os) = 0
or IM(Ps)(os) = 0. One obtains a collection of 4-surfaces as zero loci of Pkl. One would have
a correlation with between fermion content and algebraic geometry of the space-time surface
unlike in the ordinary super-space approach, where the notion of the geometry remains rather
formal and there is no natural coupling between fermionic content and classical geometry.
At the level of H this comes from quantum classical correspondence (QCC) stating that the
classical Noether charges are equal to eigenvalues of fermionic Noether charges.
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In the definition of the first variant of super-octonions I followed the standard idea about
what super-coordinates assuming that the super-part of super-octonion is just an anti-commuting
Grassmann number without any structure: I just replaced o with o+ θkE

k + θkE
k regarding θk as

anticommiting coordinates. Now θk receives octonionic coefficient: θk → okθk. θk is now analogous
to unit vector.

For the super-number field inspired formulation the situation is different since one assigns in-
dependent octonionic coordinates to anticommuting degrees of freedom. One has linear space with
partially anti-commutative basis. Oc is effectively replaced with O3

c so that one has 8+8+8=24-
dimensional Cartesian product (it is amusing that the magic dimension 24 for physical polarizations
of bosonic string models emerges).

What is the number of equations in the new picture? For N super-coordinates one has 2N

separate monomials analogous to many-fermion states. Now one has N = 8 + 8 = 16 and this
gives 216 monomials! In the general case RE = 0 or IM = 0 gives 4 equations for each of the
dG = 216 monomials: the number of equations RE = 0 or IM = 0 is 4 × 216 and exceeds the
number dO = 24 of octonion valued coordinates. In the original interpretation these equations
were regarded as independent and gave different space-time variety for each many-fermion state.

In the new framework these equations cannot be treated independently. One has 24 octo-
nionic coordinates and 216 equations. In the generic case there are no solutions. This is actually
what one hopes since otherwise one would have a state involving superposition of many-fermion
states with several fermion numbers.

The freedom to pose constraints on the coefficients of Grassmann parameters however allows
to reduce degrees of freedom. All coefficients must be however expressible as products of 3×8 = 24
components of super-octonion.

1. One can have solutions for which both 8c part and 8c parts vanish. This gives the familiar 4
equations for 8 variables and 4-surfaces.

2. Consider first options, which fail. If 8c- or 8c part vanishes one has dG = 28 and 4×dG = 4×64
equations for dO=8 + 8 = 16 variables having no solutions in the generic case. The restriction
of 8c to its 4-D quaternionic sub-space would give dO = 4 and 4dG = 4× 24 = 64 conditions
and 16 variables. The reduction to complex sub-space z1 + z2I of super-octonions would give
dO = 22 and 4× 22 = 16 conditions for 8 + 2 = 10 variables.

3. The restriction to 1-D sub-space of super-octonions would give 4 × 21 = 8 conditions and
8 + 1 = 9 variables. Could the solution be interpreted as 1-D fermionic string assignable to
the space-like boundary of space-time surface at the boundary of CD? Skeptic inside me asks
whether this could mean the analog of N = 1 SUSY, which is not consistent with H picture.

Second possibility is restriction to light-like subspace for which powers of light-like octonion
reduce effectively to powers of real coordinate. Fermions would be along light-lines in M8 and
along light-like curves in H. The powers of super-octonion have super-part, which belongs to
the 1-D super-space in question: only single fermion state is present besides scalar state.

4. There are probably other solutions to the conditions but the presence of fermions certainly
forces a localization of fermionic states to lower-dimensional varieties. This is what happens
also in H picture. During years the localization of fermion to string worlds sheets and their
boundaries has popped up again and again from various arguments. Could one hope that
super-number theory provides the eventual argument.

But how could one understand string world sheets in this framework? If they do not carry
fermions at H-level, do they appear naturally as 2-D structures in the ordinary sense?

To sum up, although many details must be checked and up-dated, super-number theory
provides and extremely attractive approach promising ultimate emergence as a reduction of physics
to the notion of number. When physical theory leads to a discovery of new mathematics, one must
take it seriously.

5.3.3 About physical interpretation

Super-octonionic algebraic geometry should be consistent with the H picture in which baryon and
lepton numbers as well as other standard model quantum numbers can be understood. There are
still many details, which are not properly understood.
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The interpretation of theta parameters

The interpretation of theta parameters is not completely straightforward.

1. The first interpretation is that θc and θc correspond to objects with opposite fermion numbers.
If this is not the case, one could perhaps define the conjugate of super-coordinate as octonionic
conjugate os = o+ θ1 + θ2. This looks ugly but cannot be excluded.

There is also the question about spinor property. Octonionic spinors are 2-spinors with
octonion valued components. Could one say that the coefficients of octonion units have been
replaced with Grassmann numbers and the entire 2-component spinor is represented as a
pair of θc and θc? The two components of spinor in massless theories indeed correspond to
massless particle and its antiparticle.

2. One should obtain particles and antiparticles naturally as also separately conserved baryon
and lepton numbers (I have also considered the identification of hadrons in terms of anyonic
bound states of leptons with fractional charges).

Quarks and leptons have different coupling to the induced Kähler form at the level of H. It
seems impossible to understand this at the level of M8, where the dynamics is purely algebraic
and contains no gauge couplings.

The difference between quarks and leptons is that they allow color partial waves with triality
t = ±1 and triality t = 0. Color partial waves correspond to wave functions in the moduli
space CP2 for M4

0 ⊃ M2
0 . Could the distinction between quarks and leptons emerge at the

level of this moduli space rather than at the fundamental octonionic level? There would be
no need for gauge couplings to distinguish between quarks and leptons at the level of M8.
All couplings would follow from the criticality conditions guaranteeing 4-D associativity for
external particles (on mass shell states would be critical).

If so, one would have only the super octonions and θc and θc would correspond to fermions
and antifermions with no differentiation to quarks or leptons. Fermion number conservation
would be coded by the Grassmann algebra. Quantum classical correspondence (QCC) however
suggests that it should be possible to distinguish between quarks and leptons already at M8

level. Is it really enough that the distinction comes at the level of moduli space for CDs?

One can imagine also other options but they have their problems. Therefore this option will
be considered in the sequel.

Questions about quantum numbers

The first questions relate to fermionic statistics.

1. Do super-octonions really realize fermionic statistics and how? The polynomials of super-
octonions can have only finite degree in θ and θc. One an say that only finite number of
fermions are possible at given space-time point. As found, the conditions IM(P ) = 0 and
RE(P ) = 0 might allow only single fermion strings as solutions perhaps assignable to partonic
2-surfaces.

Can one allow for given CD arbitrary number of this kind of points as the idea that identical
fermions can reside at different points suggests? Or is the number of fermions finite for given
CD or correspond to the highest degree monomial of θ and θc in P?

Finite fermion number of CD looks somewhat disappointing at first. The states with high
fermion numbers would be described in terms of Cartesian products just like in condensed
matter physics. Note however that space-time varieties with different octonionic time axes
must be in any case described in this manner. It seems possible to describe the interactions
using super-space delta functions stating that the interaction occur only in the intersection
points of the space-time surfaces. The delta function would have also super-part as in SUSYs.

2. As found, the theta degree effectively reduces to d = 1 for the pointlike solutions, which
by above argument are the only possible solutions besides purely bosonic solutions. Only
single fermion would be allowed at given point. I have already earlier considered the question
whether the partonic 2-surfaces can carry also many-fermion states or not [L30, K87], and
adopted the working hypothesis that fermion numbers are not larger than 1 for given wormhole
throat, possibly for purely dynamical reasons. This picture however looks too limited. The
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many fermion states might not however propagate as ordinary particles (the proposal has
been that their propagator pole corresponds to higher power of p2).

The M8 description of particle quantum numbers should be consistent with H description.

1. Can octonionic super geometry code for the quantum numbers of the particle states? It seems
that super-octonionic polynomials multiplied by octonionic multi-spinors inside single CD can
code only for the electroweak quantum numbers of fundamental particles besides their fermion
and anti-fermion numbers. What about color?

As already suggested, color corresponds to partial waves in CP2 serving as moduli space for
M4

0 ⊃ M2
0 . Also four-momentum and angular momentum are naturally assigned with the

translational degrees for the tip of CD assignable with the fundamental particle.

2. Quarks and leptons have different trialities at H level. How can one understand this at M8

level. Could the color triality of fermion be determined by the color representation assignable
to the color decomposition of octonion as 8 = 1 + 1 + 3 + 3. This decomposition occurs
for all 3 terms in the super-octonion. Could the octet in question correspond to the term
D(8⊗ 8c; 8c)

mn
k oc,mθc,nE

k and analogous θc term in super octonion. Only this kind of term
survives from the entire super-octonion polynomial at fermionic string for the solutions found.

3. There is however a problem: 8 = 1 + 1 + 3 + 3 decomposition is not consistent with the idea
that θc and θc have definite fermion numbers. Quarks appear only as 3, not 3. Why 3 from
θ term and 3 from θc term should drop out as allowed single fermion state?

There are also other questions.

1. What about twistors in this framework? M4 × CP1 as twistor space with CP1 coding for
the choice of M2

0 ⊂ M4
0 allows projection to the usual twistor space CP3. Twistor wave

functions describing spin elegantly would correspond to wave functions in the twistor space
and one expects that the notion of super-twistor is well-defined also now. The 6-D twistor
space SU(3)/U(2)×U(1) of CP2 would code besides the choice of M4

0 ⊃M2
0 also quantization

axis for color hypercharge and isospin.

2. The intersection of space-time surfaces with S6 giving analogs of partonic 2-surfaces might
make possible for two sparticle lines to fuse to form a third one at these surfaces. This would
define sparticle 3-vertex in very much the same manner as in twistor Grassmann approach to
N = 4 SUSY.

H-picture however supports the alternative option that sparticles just scatter but there is no
contact interaction defining analog of 3-vertex. If the lines can carry only single fermion, the
H picture about twistor diagrams [L30, K87] would be realized also at the level of M8! This
means breaking of SUSY since only single fermion states from the octonionic SUSY multiplet
are realized. This would provide and easy - perhaps too easy - explanation for the failure to
find SUSY at LHC.

3. What about the sphere S6 serving as the moduli space for the choices of M8
+? Should one

have wave functions in S6 or can one restrict the consideration to single M8
+? As found, one

obtains S6 also as the zero locus of Im(P ) = 0 for some radii identifiable as values tn of time
coordinates given as roots of P (t): as matter of fact, S6(tn) is a solution of both RE(P ) = 0
and IM(P ) = 0. Can one identify the intersections X4 ∩ S6 are 2-D as partonic 2-surfaces
serving as topological vertices?

5.4 Could scattering amplitudes be computed in the octo-
nionic framework?

Octonionic algebraic geometry might provide incredibly simple framework for constructing scat-
tering amplitudes since now variational principle is involved and WCW reduces to a discrete set
of points in extension of rationals.
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5.4.1 Could scattering amplitudes be computed at the level of M8?

It would be extremely nice if the scattering amplitudes could be computed at the octonionic level
by using a generalization of twistor approach in ZEO finding a nice justification at the level of M8.
Something rather similar to N = 4 twistor Grassmann approach suggests itself.

1. In ZEO picture one would consider the situation in which the passive boundary of CD and
members of state pairs at it appearing in zero energy state remain fixed during the sequence
of state function reductions inducing stepwise drift of the active boundary of CD and change
of states at it by unitary U-matrix at each step following by a localization in the moduli space
for the positions of the active boundary.

2. At the active boundary one would obtain quantum superposition of states corresponding to
different octonionic geometries for the outgoing particles. Instead of functional integral one
would have sum over discrete points of WCW. WCW coordinates would be the coefficients
of polynomial P in the extension of rationals. This would give undefined result without
additional constraints since rationals are a dense set of reals.

Criticality however serves as a constraint on the coefficients of the polynomials and is expected
to realize finite measurement resolution, and hopefully give a well defined finite result in the
summation. Criticality for the outgoing states would realize purely number theoretically the
cutoff due to finite measurement resolution and would be absolutely essential for the finiteness
and well-definedness of the theory.

5.4.2 Interaction vertices for space-time surfaces with the same CD

Consider interaction vertices for space-time surfaces associated with given CD. At the level of H
the fundamental interactions vertices are partonic 2-surfaces at which 3 light-like partonic orbits
meet. The incoming light-like sparticle lines scatter at this surface and they are not assumed to
meet at single vertex. This assumption is motivated because it allows to avoid infinities but one
must be ready to challenge it. It is essential that wormhole throats appear in pairs assignable to
wormhole contacts and also contacts form pairs by the conservation of Kähler magnetic flux.

What could be the counterpart of this picture at level of M8?

1. The simplest interaction could be associated with the common stable intersection points of
the space-time regions. By dimensional consideration these intersections are stable and form
a discrete set. This would however allow only 2-vertices involved in processes like mixing of
states. In the generic case the intersection would consist of discrete points.

2. A stronger condition would be that these points belong to the extension of rationals defining
adeles or is extension defined by the polynomial P . This would conform with the idea that
scattering amplitudes involve only data associated with the points in the extension. The
interaction points could be ramified points at which the action of a subgroup H of Galois
group G would leave sheets of the Galois covering invariant so that some number of sheets
would touch each other. I have discussed this proposal in [L43]. These points could be
seen as analogs of interaction points in QFT description in terms of n-point functions and
the sum over polynomials would give rise to the analog over integral over different n-point
configurations.

3. A possible interpretation is that if the subgroup H ⊂ G has k-elements the vertex represents
meeting of k sparticle lines and thus k-vertex would be in question. This picture is not what
the H view about twistor diagrams [K87] suggests: in these diagrams sparticle lines at the
light-like orbits of partonic 2-surfaces do not meet at single point but only scatter at partonic
2-surface, where three light-like orbits of partonic 2-surfaces meet.

4. An alternative interpretation is that k-vertex describes the decay of particle to k fractional
particles at partonic 2-surfaces and has nothing do with the usual interaction vertex.

This proposal need not describe usual particle scattering. Could the intersection of space-
time varieties defined as zero loci for RE(Pi) and IM(Pi) with the special solutions S6(tn) and
CD = M4

+ ∩M4
− define the loci of interaction? It is difficult to believe that these special solutions

could be only a beauty spot of the theory. X2 = X4 ∩ S6(tn) is 2-D and X0 = X4 ∩ CD consists
of discrete points.
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Consider now the possible role of the singular (RE(P ) = IM(P ) = 0) maximally critical
surface S6(tn) in the scattering.

1. As already found, the 6-D spheres S6 with radii tn given by the zeros of P (t) are universal
and have interpretation as t = tn snapshots of 7-D spherical light front projection to t = tn
3-balls as cross sections of 4-D CD. Could the 2-D intersection X2 = X4 ∩ S6(tn) play a
fundamental role in the description of interaction vertices?

2. Suppose that 3-vertices realize the dynamical realization of octonionic SUSY predicting large
number of sparticles. Could one understand in this framework the 3-vertex for the orbits X3

i

of partonic 2-surfaces meeting each other along their 2-D end defining partonic 2-surface and
undersand how 3 fermions lines meet at single point in this picture?

3. Assume that 3 partonic orbits X3
i , i = 1, 2, 3 meet at X2 = X4 ∩ S6(tn). That this occurs

could be part of boundary conditions, which should follow from interaction consistency. If
fermions just go through the X2

i in time direction they cannot meet at single point in the
generic case. If the sparticle lines however can move along X2 - maybe due the fact that an
intersection X2 = X4 ∩S6(tn) is in question - they intersect in the generic case and fuse to a
third fermion line. Note that this portion of fermion line would be space-like whereas outside
X2 the line would be light-like. This can be used as an objection against the idea.

The picture allowing 3-vertices would be different from H picture in which fermion lines
only scatter and only 2+2 fermion vertex assignable to topological 3-vertex is fundamental.

1. One would have 2 wormhole contacts carrying fermion and third one carrying fermion anti-
fermion pair at its opposite throats and analogous to boson. Of course, one can reproduce the
earlier picture by giving up the condition about supersymmetric fermionic 3-vertex. On the
other hand, the idea that interactions occur only at discrete points in extension of rationals
is extremely attractive.

2. The surprising outcome from the construction of solutions of super-variants of RE(P ) = 0
and IM(P ) = 0 conditions was that if the superpart of super-octonion is non-vanishing, the
variety can be only 1-D string like entity carrying one-fermion state. This does allow strings
with higher fermion number so that the 3-vertex would not be possible! This suggests that
fermionic lines appear as sub-varieties of space-time variety.

If so the original picture [K87] applying at the level of H applies also at the level of M8. SUSY
is broken dynamically allowing only single fermion states localized at strings and scattering
of these occurs by classical interactions at the partonic 2-surfaces defining the topological
vertices.

3. The only manner to have a point/line containing sparticle with higher fermion number
would be as a singularity along which several branches of super-variety degenerate to sin-
gle point/line: each variety would carry one fermion line. Unbroken octonionic SUSY would
characterize singularities of the space-time varieties, which would be unstable so that SUSY
would break. Singularities are indeed critical and thus unstable and also tend to possess
enhanced symmetries.

What could be the interpretation of X0 = X4 ∩ CD? For instance, could it be that these
points code for 4-momenta classically so that quantum classical correspondence (QCC) would be
realized also at the level of M8 although there are no Noether charges now. But what about
angular momenta? Could twistorialization realized in terms of the quaternionic structure of M4

0

help here. What is the role of the intersections of 6-D twistor bundle of X4 with 6-D twistor bundle
of M4

0 consisting of discrete points?

The interaction vertex would involve delta function telling that the interacting space-time
varieties or their regions touch at same point of M8. Delta function in theta parameter degrees of
freedom and Grassmann integral over them would be also involved and guarantee fermion number
conservation. Vertex factor should be determined by arguments used in Grassmannian twistor
approach. I have developed a proposal in [K87] but this proposal allows only fermion number ±1
at fermion lines. Now all members of the multiplet would be allowed.
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5.4.3 How could the space-time varieties associated with different CDs
interact?

The interaction of space-time surfaces inside given CD is well-defined in the octonionic algebraic
geometry. The situation is not so clear for different CDs for which the choice of the origin of octo-
nionic coordinates is in general different and polynomial bases for different CDs do not commute
nor associate.

The intuitive expectation is that 4-D/8-D CDs can be located everywhere in M4/M8. The
polynomials with different origins neither commute nor are associative. Their sum is a polynomial
whose coefficients are not real. How could one avoid losing the extremely beautiful associative and
commutative algebra of polynomials?

1. Should one assume that the physics observable by single conscious observer corresponds to
single CD defining the perceptive field of this observer [L54].

2. Or should one give up associativity and allow products (but not sums since one should give up
the assumption that the coefficients of polynomials are real) of polynomials associated with
different CDs as an analog for the formation of free many-particle states.

Consider first what happens for the single particle solutions defined as solutions of either
RE(Pi) = 0 or IM(Pi) = 0.

1. The polynomials associated with different 8-D CDs do not commute nor associate. Should one
allow their products so that one would still effectively have a Cartesian product of commutative
and associative algebras? This would realize non-commutative and non-associative physics
emerging in conformal field theories also at the level of space-time geometry.

2. If the CDs differ by a real (time) translation o2 = o1 + T one still obtains IM(P1) = 0 and
IM(P2) = 0 as solutions to IM(P1P2) = 0. This applies also to states with more particles.
The identification would be in terms of external particles. For RE(P1P2) = 0 this is not the
case. If the interior of CD corresponds to RE(P1P2) = 0, the dynamics in the interior is not
only non-trivial but also non-commutative and non-associative. Non-trivial interaction would
be obtained even without interaction terms in the polynomial vanishing at the boundaries of
CD!

Could one consider allowing only CDs with tips at the same real axis but having all sizes
scales? This hierarchy of CD would characterize a particular hierarchy of conscious observers
- selves having sub-selves (sub-CDs) [L54]. The allowance of only these CD would be analogous
to a fixing of quantization axes.

3. What happens if one allows CDs differing by arbitrary octonion translation? Consider external
particles. For P1 and P2 RE and IM are defined for different decompositions oi = RE(oi) +
niIm(oi), where ni, i = 1, 2 is a unit octonion.

What decomposition should one use for P1P2? The decomposition for P1 or P2 or some other
decomposition? One can express P2(o2) using o1 as coordinate but the coefficients multiplying
powers of o1 from right would not be real numbers anymore implying IM(P2)1 6= IM(P2)2.
IM(P2)1 = 0 makes sense but the presence of particle 1 would have affected particle 2 or vice
versa.

Could one argue that the coordinate systems satisfying the condition that some external
particles described by Pi have real coefficients and perhaps serving in the role of observers are
preferred? Or could one imagine that o12 is a kind of center of mass coordinate? In this case
the 4-varieties associated with both particles would be affected. What is clear that the choice
of the octonionic coordinate origin would affect the space-time varieties of external particles
even if they could remain associative/critical.

4. Are there preferred coordinates in which criticality is preserved? For instance, can one achiever
criticality for P2 on coordinates of o1 if P1 is critical. Could one see this as a kind of number
theoretic observer effect at the level of space-time geometry?

Remark: Pi(o) would reduce to a real polynomial at light-like rays with origin for oi irre-
spective of the octonionic coordinate used so that the spheres S6

i with origin at the origin of
oi as solutions of Pi(o) = 0 would not be lost.
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If one does not give up associativity and commutativity for polynomials, how can one de-
scribe the interactions between space-time surfaces inside different CDs at the level of M8? The
following proposal is the simplest one that one can imagine by assuming that interactions take place
at discrete points of space-time surfaces with coordinates belonging an extension of rationals.

1. The most straightforward manner would be to introduce Cartesian powers of O and CD:s
inside these powers to describe the interaction between CDs with different origin. This would
be analogous to what one does in condensed matter physics. What seems clear is that M8−H
correspondence should map all the factors of (M8)n to the same M4 × CP2 by a kind of
diagonal projection.

In topological 3-parton vertex X2 three light-like partonic orbits along X4 would meet. X2

would be the contact of X4 with S6 associated with second 8-D CD. Together with SH this
gives hopes about an elegant description of interactions in terms of connected space-time
varieties.

2. The intersection X4
i ∩ X4

j consists of discrete set of points. This would suggest that the

interaction means transfer of fermion between X4
1 and X4

2 . The intersection of X = S6
1(tm)∩

S6
2(tn) is 4-D and space-like. The intersection X4

i ∩X consists of discrete points could these
discrete points allow to construct interaction vertices.

To make this more concrete, assume that the external particles outside the interaction CD
(CDint) defining the interaction region correspond to associative (or co-associative) space-time
varieties with different CDs.

Remark: CDs are now 8-dimensional.

1. One can assign the external particles to the Cartesian factors of (M8)n giving (P1, ..., Pn)
just like one does in condensed matter physics for particles in 3-space E3. Inside CDint the
Cartesian factors would fuse to single factor and instead of Cartesian product one would have
the octonionic product P =

∏
Pi plus the condition RE(P ) = 0 (or IM(P ) = 0: one should

avoid too strong assumptions at this stage) would give to the space-time surface defining the
interaction region.

2. RE(P ) = 0 and IM(P ) = 0 conditions make sense even, when the polynomials do not have
origin at common real axis and give rise to 4 conditions for 8 polynomials of 8 complexified
octonion components P i. It is not possible to reduce the situation at the light-like boundaries
of 8-D light-cone to a vanishing of polynomial P (t) of real coordinate t anymore, and one loses
the the surfaces S6

i as special solutions and therefore also the partonic 2-surfacesX2
i = X4∩S6

i .
Should one assign all X2

i with the intersections of external particles with the two boundaries
δ± CD of CD defining the interaction region. They would intersect δ±CD at highly unique
discrete points defining the sparticle interaction vertices. By 7-dimensionality of δ±CD the
intersection points would be at the boundaries of 4-D CD and presumably at light-like partonic
orbits at which the induced metric is singular at H side at least just as required by H picture.

The most general external single-sparticle state would be defined by a product P of mutually
commuting and associating polynomials with tips of CD along common real axis and satisfying
IM(Pi) = 0 or RE(Pi) = 0. This could give both free and bound states of constituents.

3. Different orders and associations for P =
∏
Pi give rise to different interaction regions. This

requires a sum over the scattering amplitudes
∑
p T (

∏
i Pp(i)) associated with the permuta-

tions p: (1, ..., n)→ (p(1), .., p(n)) and T =
∑
p U(p)T (Pp(1)...Pp(n)) (T (AB) + T (BA) in the

simplest case) with suitable phase factors U(p). Note that one does not have a sum over the
polynomials Pp(1)...Pp(n) but over the scattering amplitudes associated with them.

4. Depending on the monomial of theta parameters in super-octonion part of Pi, one has plus or
minus signs under the exchange of Pi and Pj . One can also have braid group as a lift of the
permutation group. In this case given contribution to the scattering amplitude has a phase
factor depending on the permutation (say T = T (AB) + exp(iθ)T (BA).

One must also form the sum T =
∑
Ass U(Ass)T (Ass(P )) over all associations for a given

permutation with phase factors U(Ass). Here T = T ((AB)C)+UT (A(BC)), U phase factor,
is the simplest case. One has “association statistics” as the analog of braid statistics. Per-
mutations and associations have now a concrete geometric meaning at the level of space-time
geometry - also at the level of H.
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5. The geometric realization of permutations and associations could relate to the basic problem
encountered in the twistorial construction of the scattering amplitudes. One has essentially
sum over the cyclic permutations of the external particles but does not know how to construct
the amplitudes for general permutations, which correspond to non-planar Feynman diagrams.
The geometric realization of the permutations and associations would solve this problem in
TGD framework.

5.4.4 Twistor Grassmannians and algebraic geometry

Twistor Grassmannians provide an application of algebraic geometry involving the above described
notions [B22] (see http://tinyurl.com/yd9tf2ya). This approach allows extremely elegant ex-
pressions for planar amplitudes of N = 4 SYM theory in terms of amplitudes formulated in
Grassmannians G(k, n).

It seems that this approach generalizes to TGD in such a way that CP2 degrees of free-
dom give rise to additional factors in the amplitudes having form very similar to the M4 part of
amplitudes and involving also G(k, n) with ordinary twistor space CP3 being replaced with the
flag manifold SU(3)/U(1)×U(1): k would now correspond to the number sparticles with negative
weak isospin. Therefore the understanding of the algebraic geometry of twistor amplitudes could
be helpful also in TGD framework.

Twistor Grassmannian approach very concisely

I try to compress my non-professional understanding of twistor Grassmann approach to some key
points.

1. Twistor Grassmannian approach constructs the scattering amplitudes by fusing 3-vertices
(+,-,-) (one positive helicity) and (-,+,+) (one negative helicity) to a more complex diagrams.
All particles are on mass shell and massless but complex. If only real massless momenta are
allowed the scattering amplitudes would allow only collinear gluons. Incoming particles have
real momenta.

Remark: Remarkably, M4×CP2 twistor lift of TGD predicts also complex Noether charges,
in particular momenta, already at classical level. Quantal Noether charges should be her-
mitian operators with real eigenvalues, which suggests that total Noether charges are real.
For conformal weights this condition corresponds to conformal confinement. Also M8 − H
duality requires a complexification of octonions by adding commuting imaginary unit and
allows to circumvent problems related to the Minkowski signature since the metric tensor can
be regarded as Euclidian metric tensor defining complex value norm as bilinear mkmklm

l in
complexified M8 so that real metric is obtained only in sub-spaces with real or purely imagi-
nary coordinates. The additional imaginary unit allows also to define what complex algebraic
numbers mean.

The unique property of 3-vertex is that the twistorial formulation for the conservation of
four-momentum implies that in the vertex one has either λ1 ∝ λ2 ∝ λ3 or λ1 ∝ λ2 ∝ λ3.
These cases correspond to the 2 3-vertices distinguished notationally by the color of the vertex
taken to be white or black [B22].

Remark: One must allow octonionic super-space in M8 formulation so that octonionic SUSY
broken by CP2 geometry reducing to the quaternionicity of 8-momenta in given scattering
diagram is obtained.

2. The conservation condition for the total four-momentum is quadratic in twistor variables for
incoming particles. One can linearize this condition by introducing auxiliary Grassmannian
G(k, n) over which the tree amplitude can be expressed as a residue integral. The number
theoretical beauty of the multiple residue integral is that it can make sense also p-adically
unlike ordinary integral.

The outcome of residue integral is a sum of residues at discrete set of points. One can
construct general planar diagrams containing loops from tree diagrams with loops by BCFW
recursion. I have considered the possibility that BCFW recursion is trivial in TGD since
coupling constants should be invariant under the addition of loops: the proposed scattering
diagrammatics however assumed that scattering vertices reduce to scattering vertices for 2

http://tinyurl.com/yd9tf2ya


244
Chapter 5. Does M8 −H duality reduce classical TGD to octonionic algebraic

geometry?: Part II

fermions. The justification for renormalization group invariance would be number theoretical:
there is no guarantee that infinite sum of diagrams gives simple function defined in all number
fields with parameters in extension of rationals (say rational function).

3. The general form of the Grassmannian integrand in G(k, n) can be deduced and follows
from Yangian invariance meaning that one has conformal symmetries and their duals which
expand to full infinite-dimensional Yangian symmetry. The denominator of the integrand of
planar tree diagram is the product of determinants of k × k minors for the k × n matrix
providing representation of a point of G(k, n) unique apart from SL(k, k) transformations.
Only minors consisting of k consecutive columns are assumed in the product. The residue
integral is determined by the poles of the denominator. There are also dynamical singularities
allowing the amplitude to be non-vanishing only for some special configurations of the external
momenta.

4. On mass-shell diagrams obtained by fusing 3-vertices are highly redundant. One can describe
the general diagram by using a disk such that its boundary contains the external particles
with positive or negative helicity. The diagram has certain number nF of faces. There are
moves, which do not affect the amplitude and it is possible to reduce the number of faces to
minimal one: this gives what is called reduced diagram. Reduced diagrams with nF faces
define a unique nF − 1-dimensional sub-manifold of G(k, n) over which the residue integral
can be defined. Since the dimension of G(k, n) is finite, also nF is finite so that the number
of diagrams is finite.

5. On mass shell diagrams can be labelled by the permutations of the external lines. This gives
a connection with 1+1-dimensional QFTs and with braid group. In 1+1-D integral QFTs
however scattering matrix induces only particle exchanges.

The permutation has simple geometric description: one starts from the boundary point of
the diagram and moves always from left or right depending on the color of the point from
which one started. One arrives some other point at the boundary and the final points are
different for different starting points so that the process assigns a unique perturbation for
a given diagram. Diagrams which are obtained by moves from each other define the same
permutation. BFCW bridge which is a way to obtain new Yangian invariant corresponds to
a permutation of consecutive external particles in the diagram.

6. The poles of the denominator determine the value of the multiple residue integrals. If one
allowed all minors, one would have extremely complex structure of singularities. The allowance
only cyclically taken minors simplifies the situation dramatically. Singularities correspond to
n subgroups of more than 2 collinear k-vectors implying vanishing of some of the minors.

7. Algebraic geometry comes in rescue in the understanding of singularities. Since residue in-
tegral is in question, the choice is rather free and only the homology equivalence class of
the cell decomposition matters. The poles for a hierarchy with poles inside poles since given
singularity contains sub-singularities. This hierarchy gives rise to a what is known as cell
composition - stratification - of Grassmannian consisting of varieties with various dimensions.
These sub-varieties define representatives for the homology group of Grassmannian. Schubert
cells already mentioned define this kind of stratification.

Remark: The stratification has very strong analogy of the decomposition of catastrophe in
Thom’s catastrophe theory to pieces of various dimensions. The smaller the dimension, the
higher the criticality involved. A connection with quantum criticality of TGD is therefore
highly suggestive.

Cyclicity implies a reduction of the stratification to that for positive Grassmannians for which
the points are representable as k × n matrices with non-negative k × k determinants. This
simplifies the situation even further.

Yangian symmetries have a geometric interpretation as symmetries of the stratification: level
1 Yangian symmetries are diffeomorphisms preserving the cell decomposition.

Problems of twistor approach

Twistor approach is extremely beautiful and elegant but has some problems.



5.4. Could scattering amplitudes be computed in the octonionic framework? 245

1. The notion of twistor structure is problematic in curved space-times. In TGD framework
the twistor structures of M4 and CP2 (E4) induce twistor structure of space-time surface
and the problem disappears just like the problems related to classical conservation laws are
circumvented. Complexification of octonions allows to solve the problems related to the metric
signature in twistorialization.

2. The description of massive particles is a problem. In TGD framework M8 approach allows
to replace massive particles with particles with octonionic momenta light-like in 8-D sense
belonging to quaternionic subspace for a given diagram. The situation reduces to that for
ordinary twistors in this quaternionic sub-space but since quaternionic sub-space can vary,
additional degrees of freedom bringing in CP2 emerge and manifest themselves as transversal
8-D mass giving real mass in 4-D sense.

3. Non-planar diagrams are also a problem. In TGD framework a natural guess is that they
correspond to various permutations of free particle octonionic polynomials. Their product
defines interaction region in the interior of CD to which free particles satisfying associativity
conditions (quantum criticality) arrive. If the origins of polynomials are not along same time
axis, the polynomials do not commute nor associate. One must sum over their permutations
and for each permutation over its associations.

5.4.5 About the concrete construction of twistor amplitudes

At H-side the ground states of super-conformal representations are given by the anti-symmetrized
products of the modes of H-spinor fields labelled by four-momentum, color quantum numbers,
and electroweak (ew) quantum numbers. At partonic 2-surface one has finite number of many
fermion states. Single fermion states are assigned with H-spinor basis and the fermion states form
a representation of a finite-D Clifford algebra.

M8 picture should reproduce the physical equivalent of H picture: in particular, one should
understand four-momentum, color quantum numbers, ew quantum numbers, and B and L. M8−H
correspondence requires that the super-twistorial description of scattering amplitudes in M8 is
equivalent with that in H.

The M8 picture is roughly following.

1. The ground states of super-conformal representations expressible in terms of spinor modes of
H correspond at level of M8 wave functions in super variant of the product T (M4)×T (CP2) of
twistor spaces ofM4 and CP2. This twistor space emerges naturally inM8−H correspondence
from the quaternionicity condition for 8-momenta.

2. Bosonic M8 degrees of freedom translate to wave functions in the product T (M4)× T (CP2)
labelled by four-momentum and color. Super parts of the M4 and CP2 twistors code for spin
and ew degrees of freedom and fermion numbers. Only a finite number of spin-ew spin states
is possible for a given fundamental particle since one has finite-D Grassmann algebra.

3. Contrary to the earlier expectations [K87], the view about scattering diagrams is very similar
to that in N = 4 SUSY. The analog of 3-gluon vertex is fundamental and emerges naturally
from number theoretic vision in which scattering diagrams defines a cognitive representation
and vertices of the diagram correspond to fusion of sparticle lines.

Identification of H quantum numbers in terms of M8 quantum numbers

The first challenge is to understand how M8 −H correspondence maps M8 quantum numbers to
H quantum numbers. At the level of M8 one does not have action principle and conservation laws
must follow from the properties of wave functions in various moduli spaces assignable to 4-D and
8-D CDs that is quaternion and octonion structures. The symmetries of the moduli spaces would
dictate the properties of wave functions.

There are three types of symmetries and quantum numbers.

1. WCW quantum numbers

At level of H the quantum numbers in WCW“vibrational”degrees of freedom are associated
with the representations of super-symplectic group acting as isometries of WCW. Super-symplectic
generators correspond to Hamiltonians labelled by color and angular momentum quantum numbers
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for SU(3) × SO(3). In M4
± there are also super-symplectic conformal weights assignable to the

radial light-coordinate in δM4
±. These conformal weights could be complex and might relate closely

to the zeros of Riemann zeta [K41]. Physical states should however have integer valued conformal
weights (conformal confinement).

At the level of M8 WCW “vibrational”degrees of freedom are discrete and correspond to the
degree of the octonionic polynomial P and its coefficients in the extension of rationals considered.
WCW integration reduces to a discrete sum, which should be well-defined by the criticality con-
ditions on the coefficients of the polynomials. M8 −H correspondence guarantees that 4-varieties
in M8 are mappable to space-time surfaces in H. Therefore also quantum numbers should be
mappable to each other.

There are also spinorial degrees of freedom associated with WCW spinors with spin-like
quantum numbers assignable to fermionic oscillator operators labelled by spin, ew quantum num-
bers, fermion numbers, and by super-symplectic conformal weights.

2. Quantum numbers assignable to isometries of H.

These quantum numbers are special assignable to the ground states of the representations
of Kac-Moody algebras associated with light-like partonic orbits.

1. The isometry group of H consists of Poincare group and color group for CP2. M8 isometries
correspond to 8 − D Poincare group. Only G2 respects given octonion structure and 8-D
Lorentz transformations transform to each other different octonion structures. Quantum
numbers consist of 8-momentum and analogs of spin and ew spin. M8 −H correspondence
is non-trivial since one must map light-like quaternionic 8-momenta to 4-momenta and color
quantum numbers.

2. There are quantum numbers assignable to cm spinor degrees of freedom. They correspond
for both M8 and H to 8-D spinors and give rise to spin and ew quantum numbers. For these
quantum numbers M8 − H correspondence is trivial. At the level of H baryon and lepton
numbers are assignable to the conserved chiralities of H-spinors.

Quantum classical correspondence (QCC) is a key piece of TGD.

1. At the level of H QCC states that the eigenvalues of the fermionic Noether charges are equal
to the classical bosonic Noether charges in Cartan algebra implies that fermionic quantum
number as also ew quantum numbers and spin have correlates at the level of space-time
geometry.

2. A the level of M8 QCC is very concrete. Both bosonic and superpart of octonions have the de-
composition 1+1+3+3 under color rotations. Each monomial of theta parameters character-
izes one particular many-fermion state containing leptons/antileptons and quarks/antiquarks.
Leptons/antileptons are assignable to complexified octonionic units (1± iI1)/

√
2 defining pre-

ferred octonion plane M2 and quarks/antiquarks are assignable to triplet and antitriplet,
which also involve complexified octonion units. One obtains breaking of SUSY in the sense
that space-time varieties assignable to different theta monomials are different (one can argue
that the sum 8s + 8s can be regarded as real).

Purely leptonic and antileptonic varieties correspond to 1 and 1 and quark and antiquark
varieties to 3 and 3 and the monomial transforms as a tensor product of thetas. The monomial
has well defined quark and lepton numbers and the interpretation is that it characterizes
fundamental sparticle. At the level of H this kind of correspondence follows form QCC.

3. Also super-momentum leads to a characterization of spin and fermion numbers of the state
since delta function expressing conservation of super-momentum codes the supersymmetry
for scattering amplitudes and gives rise to vertices conserving fermion numbers. Does this
mean QCC in the sense that the super parts of super-momentum and super twistor should
be associated with space-time varieties with same fermion and spin content?

How the light-like quaternionic 8-momenta are mapped to H quantum numbers?

The key challenge is to understand how the light-like quaternionic 8-momenta are mapped
to massive M4 momenta and color quantum numbers.
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1. One has wave function in the space of CP2 quaternionic four-momenta. M4
0 momentum can

be identified as M2
0 projection and in general massive unless M2

0 and M4
0 are chosen so that

the light-like M8 momentum belongs to M2
0 . The situation is analogous to that in the partonic

description of hadron scattering.

The space of quaternionic sub-spaces M4
0 ⊃M2

0 with this property is parameterized by CP2,
and one obtains color partial waves. The inclusion of the choice of quantization axis extends
this space to T (CP2) = SU(3)/U(1)×U(1). Without quaternionicity/associativity condition
the space of momenta would correspond to M8.

The wave functions in the moduli space for the position of the tip of CD and for the choice
M2

0 ⊃M4
0 specifying M4

0 twistor structure and choice of quantization axis of spin correspond
to wave functions in the twistor space CP3 of M4

± coding for momentum and spin.

Remark: The inclusion of M4 spin quantization axis characterized by the choice of M2
0

extends M4
0 to geometric twistor space T (M4) = M4

0 ×S2 ⊃M2
0 having bundle projection to

CP3. Twistorialization means essentially the inclusion of the choice of various quantization
axis as degrees of freedom. This space is for symmetry group G the space G/H, where H
is the Cartan sub-group of G. This description might make sense also at the level of super-
symplectic and super-Kac-Moody symmetries.

2. Ordinary octonionic degrees of freedom for super-octonions in M8 must be mapped to M4 ×
CP2 cm degrees of freedom. Super octonionic parts should correspond to fermionic and spin
and electroweak degrees of freedom. The space of super-twistorial states should same as the
space of the super-symplectic grounds states describable in terms H-spinor modes.

3. One has wave function in the moduli space of CDs. The states in M8 are labelled by quater-
nionic super-momenta. Bosonic part must correspond to four-momentum and color and super-
part to spin and ew quantum numbers of CP2. This part of the moduli space wave function
is characterized by the spin and ew spin quantum numbers of the fundamental particle. Wave
functions in the super counterpart of T (M4)× T (CP2) allow to characterize these degrees of
freedom without the introduction of spinors and should correspond to the ground states of
super-conformal representations in H.

It seems that H-description is an abstract description at the level moduli spaces and M8

description for single space-time variety represents reduction to the primary level, where number
theory dictates the dynamics.

Octonionic twistors and super-twistors

How to define octonionic twistors? Or is it enough to identify quaternionic/associative twistors as
sub-spaces of octonionic twistors?

1. Ordinary twistors and super-twistors

Consider first how ordinary twistors and their super counterparts could be defined, and how
they could allow an elegant description of spin and ew quantum numbers as quantum numbers
analogous to angular momenta.

1. Ordinary twistors are defined as pairs of 2-spinors giving rise to a representation of four-
momentum. The spinors are complex spinors transforming as a doublet representation of
SL(2,C) and its conjugate.

The 2-spinors are related by incidence relation, a linear condition in which M4 coordinates
represented as 2 × 2 matrix appears linearly [K87]. The expression of four-momentum is
bilinear in the spinors and invariant under complex scalings of the 2-spinors compensating
each other so that instead of 8-D space one has actually 6-D space, which reduces to CP3 to
which the geometric twistor space M4 × S2 has a projection.

2. For light-like four-momenta p the determinant of the matrix having the two 2-spinors as rows
and representing p as a point of M4 vanishes. Wave functions in CP3 allow to describe spin in
terms of bosonic wave function. What is so beautiful is that this puts particles with different
spin in a democratic position.
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Super-twistors allow to integrate the states constructible as many-fermion states of N elemen-
tary fermions in the same representations involving several spins. The many-fermion states -
sparticles - are in 1-1-correspondence with Grassmann algebra basis.

3. The description of massless particles in terms of M4 (super-)twistors is elegant but one en-
counters problems in the case of massive particles [K100, L30, K87].

2. Octonionic twistors at the level of M8?

How to define octonionic twistors at the level of M8?

1. At the level of M8 one has light-like 8-momenta. The M4 momentum identified as M4
0 pro-

jection can there be massive. This solves the basic problem of the standard twistor approach.

2. The additional assumption is that the 8-momenta in given vertex of scattering diagram belong
to the same quaternionic sub-space M4

0 ⊂ M8 satisfying M4
0 ⊃ M2

0 . This effectively trans-
forms momentum space M4 ×E4 to M4 ×CP2. A stronger condition is that all momenta in
a given diagram belong to the same sub-space M4

0 ⊃M2
0 .

Remark: Quaternionicity implies that the 8-momentum is time-like or light-like if one re-
quires that quaternionicity for an arbitrary choice of the octonionic structure (the action of
8-D Poincare group gives rise transforms octonionic structures to each other).

3. Complex 2-spinors are replaced with complexified octonionic spinors which must be consis-
tent quaternionicity condition for 8-momenta. A good guess is that the spinors belong to a
quaternionic sub-space of octonions too. This is expected to transform them effectively to
quaternionic spinors. Without effective quaternionicity the number of 2-spinor components
would be 8 rather than 4 times larger than for ordinary 2-spinors.

Remark: One has complexified octonions (i commutes with the octonionic imaginary units
Ek).

4. Octonionic/quaternionic twistors should be pairs of octonionic/quaternionic 2-spinors deter-
mined only modulo octonionic/quaternionic scaling. If quaternionicity holds true, the number
of 2-spinor components is 4 times larger than usually. Does this mean that one has basically
quaternionic twistors plus moduli space CP2 for M4

0 ⊃ M2
0 . One should be able to express

octonionic twistors as bi-linears formed from 2 octonionic/quaternionic 2-spinors. Octonionic
option should give the octonionic counterpart OP3 of Grassmannian CP3, which does not
however exist.

Remark: Octonions allow only projective plane OP2 as the octonionic counterpart of CP2

(see http://tinyurl.com/ybwaeu2s) but do not allow higher-D projective spaces nor Grass-
mannians (see http://tinyurl.com/ybm8ubef, whereas reals, complex numbers, and quater-
nions do so. The non-existence of Grassmannians for rings obtained by Cayley-Dickson con-
struction could mean that M8 −H correspondence and TGD do not generalize beyond octo-
nions.

Does the restriction to quaternionic 8-momenta the Grassmannians to be quaternionic (sub-
spaces of octonions). This would give quaternionic counterpart HP3 of CP3. Quaternions
indeed allow projective spaces and Grassmannians and (see http://tinyurl.com/y9htjstc

and http://tinyurl.com/y87gpq8l).

Remark: One can wonder whether non-commutativity forces to distinguish between left- and
right Grassmannians (points as lines {c(q1, .., qn)|c ∈ H} or as lines as lines {(q1, .., qn)c|c ∈
H}.

5. Concerning the generalization to octonionic case, it is crucial to realize that the 2× 2-matrix
representing four-momentum as a pair 2-spinor can be regarded as an element in the sub-
space of complexified quaternions. The representation of four-momentum would be as sum
of p8 = pk1σk + I4p

k
2σk, where I4 octonionic imaginary unit orthogonal to σk representing

quaternionic units.

No! The twistorial representation of the 4-momentum is already quaternionic! Choosing
the decomposition of M8 to quaternionic sub-space and its complement suitably, one has
IM(p8) = 0 for quaternionic 8-momenta and one obtains standard representation of 4-
momentum in this sub-space! The only new element is that one has now moduli specifying

http://tinyurl.com/ybwaeu2s
http://tinyurl.com/ybm8ubef
http://tinyurl.com/y9htjstc
http://tinyurl.com/y87gpq8l
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the quaternionic sub-space. If the sub-space contains a fixed M2
0 one obtains just CP2 and

ordinary twistor codes for the choices of M2
0 . If the choice of color quantization axes matters

as it indeed does, one has twistor space SU(3)/U(1)×U(1) instead of CP2. This would sug-
gest that ordinary representation of scattering amplitudes reduces apart from the presence of
CP2 twistor to the usual representation.

One can hope for a reduction to ordinary twistors and projective spaces, moduli space CP2

for quaternion structures, and moduli space for the choices of real axis of octonion structures.
One can even consider the possibility [K87] of using standard M2

0 with the property that M8

momentum reduces to M2
0 momentum and coding the information about real M2

0 to moduli.
This could reduce the twistor space to RP (3) associated with M2

0 is considered and solve the
problems related to the signature of M4. Note however that the complexification of octonions
in any case allow to regard the metric as Euclidian albeit complexified so that these problems
should disappear.

3. Octonionic super-twistors at the level of M8?

Should one generalize the notion of super-twistor to octonionic context or can one do by
using only the moduli space and the fact that octonionic geometry codes for various components
of octonion as analog of super-field? It seems that super-twistors are needed.

1. It seems that super-twistors are needed. Octonionic super-momentum would appear in the
super variant of momentum conserving delta function resulting in the integration over trans-
lational moduli. In twistor Grassmann approach this delta function is super-twistorialized
and this leads to the amazingly simple expressions for the scattering amplitudes.

2. At the level ofM8 one should generalize ordinary momentum to super-momentum and perform
super-twistorialization. Different monomials of theta parameters emerging from super part
of momentum conserving delta function (for N = 1 one has δ(θ − θ0) = exp(iθ − θ0)/i)
correspond to different spin states of the super multiplet and anti-commutativity guarantees
correct statistics. At the level of H the finite-D Clifford algebra of 8-spinors at fixed point of
H gives states obtained as monomials or polynomials for the components of super-momentum
in M8.

3. Octonionic super-momentum satisfying quaternionicity condition can be defined as a combi-
nation of ordinary octonionic 8-momentum and super-parts transforming like 8s and 8s. One
can express the octonionic super-momentum as a bilinear of the super-spinors defining quater-
nionic super-twistor. Quaternionicity is assumed at least for the octonionic super-momenta
in the same vertex. Hence the M4 part of the super-twistorialization reduces to that in
SUSYs and one obtains standard formulas. The new elements is the super-twistorialization
of T (CP2).

Remark: Octonionic SUSY involving 8 + 8s + 8s would be an analog of N = 8 SUSY
associated with maximal supergravity (see http://tinyurl.com/nv3aajy) and inM4 degrees
of freedom twistorialization should be straightforward.

The octonionic super-momentum belongs to a quaternionic sub-space labelled by CP2 point
and corresponds to a particular sub-space M2

0 in which it is light-like (has no other octonionic
components). M2

0 is characterized by point of S2 point of twistor space M4 × S2 having
bundle projection to CP3.

4. That the twistor space T (CP2) = SU(3)/U(1)× U(1) coding for the color quantization axes
rather than only CP2 emerges must relate to the presence of electroweak quantum numbers re-
lated to the super part of octonionic momentum. Why the rotations of SU(2)×U(1) ⊂ SU(3)
have indeed interpretation also as tangent space-rotations interpreted as electroweak rotations.
The transformations having an effect on the choice of quantization axies are parameterized
by S2 relating naturally to the choice of SO(4) quantization axis in E4 and coded by the
geometric twistor space T (E4) = E4 × S2.

5. Since the super-structure is very closely related to the construction of the exterior algebra in
the tangent space, super-twistorialization of T (CP2) should be possible. Octonionic triality
could be also in a key role and octonionic structure in the tangent space of SU(3) is highly
suggestive. SU(3) triality could relate to the octonionic triality.

http://tinyurl.com/nv3aajy
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SU(3)/U(1)× U(1) is analogous with the ordinary twistor space CP3 obtained from C4 as a
projective space. Now however U(1)×U(1) instead of group of complex scalings would define
the equivalence classes. Generalization of projective space would be in question. The super-
part of twistor would be obtained as U(1) × U(1) equivalence class and gauge choice should
be possible to get manifestly 6-D representation. One can ask whether the CP2 counterparts
of higher- D Grassmannians appear at the level of generalized twistor diagrams: could the
spaces SU(n)/G, H Cartan group correspond to these spaces?

4. How the wave functions in super-counterpart of T (CP2) correspond to quantum states in
CP2 degrees of freedom?

In CP2 spinor partial waves have vanishing triality t = 0 for leptonic chirality and t = ±1
for quarks and antiquarks. One can say that the triality t 6= 1 states are possible thanks to the
anomalous hypercharge equal to fractional electromagnetic charge YA = Qem of quarks: this gives
also correlation between color quantum numbers and electroweak quantum numbers which is wrong
for spinor partial waves. The super-symplectic and super Kac-Moody algebras however bring in
vibrationals degrees of freedom and one obtains correct quantum number assignments [K60].

This mechanism should have a counterpart at the level of the super variant of the twistor
space T (CP2) = SU(3)/U(1)× U(1). The group algebra of SU(3) gives the scalar wave functions
for all irreps of SU(3) as matrix elements. Allowing only matrix elements that are left- or right
invariant under U(1) × U(1) one obtains all irreps realized in T (CP2) as scalar wave functions.
These representations have t = 0. The situation would be analogous for scalar functions in CP2.
One must however obtain also electroweak quantum numbers and t 6= 0 colored states. Here the
octonionic algebraic geometry and superpart of the T (CP2) should come in rescue. The electroweak
degrees of freedom in CP2 should correspond to the super-parts of twistors.

The SU(3) triplets assignable to the triplets 3 and 3 of space-time surfaces would make
possible also the t = ±1 states. Color would be associated with the octonionic geometry. The
simplest possibility would be that one has just tensor products of the triplets with SU(3)/U(1)×
U(1) partial waves. In the case of CP2 there is however a correlation between color partial waves
and electroweak quantum numbers and the same is expected also now between super-part of the
twistor and geometric color wave function: minimum correlation is via YA = Qem. The minimal
option is that the number theoretic color for the octonionic variety modifies the transformation
properties of T (CP2) wave function only by a phase factor due to YA = Qem as in the case of CP2.

The most elegant outcome would be that super-twistorial state basis in T (M4)timesT (CP2)
is equivalent with the state basis defined by super-symplectic and super Kac-Moody representations
in H.

About the analogs of twistor diagrams

There seems to be a strong analogy with the construction of twistor amplitudes in N = 4 SUSY
[B21, B43, B26] and one can hope of obtaining a purely geometric analog of SUSY with dynamics
of fields replaced by the dynamics of algebraic super-octonionic surfaces.

1. Number theoretical vision leads to the proposal that the scattering amplitudes involve only
data at discrete points of the space-time variety belonging to extension of rationals defining
cognitive representation. The identification of these points has been already considered in
the case of partonic orbits entering to the partonic 2-vertex and for the regions of space-
time surfaces intersecting at discrete set of points. Scattering diagrams should therefore
correspond to polygons with vertices of polygons defining cognitive representation and lines
assignable to the external fundamental particles with given quark and lepton numbers having
correlates at the level of space-time geometry. This occurs also in twistor Grassmannian
approach [B21, B43, B26].

Since polynomials determine space-time surfaces, this data is enough to determine the space-
time variety completely. Indeed, the zeros of P (t) determining the space-time variety give also
rise to a set of spheres S6(tn) and partonic 2-surfaces X2(tn) = X4 ∩S6(tn), where tn is root
of P (t). The discretization need not mean a loss of information. The scattering amplitudes
would be expressible as an analog of n-point function with points having coordinates in the
extension of rationals.
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2. (Super) octonion as“field”in X4 is dynamically analogous to (super) gauge potentials and
super-octonion to its super variant. (Super) gauge potentials are replaced with M8 (super-)
octonion coordinate and gauge interactions are geometrized. Here I encounter a problem with
terminology. Neither sparticle nor sboson sounds good. Hence I will talk about sparticles.

3. The amplitude for a given space-time variety contains no information M8-momentum. M8-
momentum emerges as a label for a wave function in the moduli space of 4-D and 8-D CDs
involving both translational and orientational degrees of freedom. For fixed time axis the
orientational degrees of freedom reduce to rotational degrees of freedom identifiable in terms of
the twistor sphere S2. The delta functions expressing conservation of 8-D quaternionic super-
momentum in M8 coming from the integration over the moduli space of 8-D translations.

As found, quaternionicity of 8-momenta implies that standard M4 twistor description of
momenta applies but one obtains CP2 twistors as additional contribution. This is of course
what one would intuitively expect.

8-D momentum conservation in turn translates to the conservation of momentum and color
quantum numbers in the manner described. The amplitudes in momentum and color degrees
of freedom reduce to kinematics as in SUSYs. It is however not clear whether one should also
perform number theoretical discretization of various moduli spaces.

In any case, it seems that all the details of the scattering amplitudes related to moduli
spaces reduce to symmetries and the core of calculations reduces to the construction of space-
time varieties as zero loci of octonionic polynomials and identification of the points of the
4-varieties in extension of rationals. Classical theory would indeed be an exact part of the
quantum theory.

4. Quaternionic 8-D light-likeness reduces the situation to the level of ordinary complex and
thus even positive (real) Grassmannians. This is crucial from the p-adic point of view. CP2

twistors characterizes the moduli related to the choice of quaternionic sub-space, where 8-
momentum reduces to ordinary 4-momentum. M4 parts of the scattering amplitudes in
twistor Grassmann approach should be essentially the same as in N = 4 SUSY apart from
the replacement of super degrees of freedom with super-octonionic ones. The challenge is to
generalize the formalism so that it applies also to CP2 twistors. The challenge would be to
generalize the formalism so that it applies also to CP2 twistors. The M4 and CP2 degrees of
freedom are expected to factorize in twistorial amplitudes. A good guess is that the scattering
amplitudes are obtained as residue integrals in the analogs of Grassmannians associated with
T (CP2). Could one have Grassmannians also now?

Consider the formula of tree amplitude for n gluons with k negative helicities conjectured
Arkani-Hamed et al in the twistor Grassmannian approach [B26]. The amplitude follows from
the twistorial representation for momentum conservation and is equal to an k×n-fold multiple
residue integral over the complex variables Cαa defining coordinates for GrassmannianGl(n, k)
and reduces to a sum over residues. The integrand is the inverse for the product of all k × k
minors of the matrix Cαa in cyclic order and the resides corresponds to zeros for one or
more minors. This part does not depend on twistor variables. The dependence on n twistor
variables comes from the product

∏k
α=1 δ(CαaW

a) of k delta functions related to momentum
conservation. W a denotes super-twistors in the 8-D representation, which is linear. One has
projective invariance and therefore a reduction to T (M4) = CP3 = SU(4)/SU(3)× U(1).

Could this formula generalize almost as such to T (CP2) and come from the conservation of E4

momentum? One has n sparticles to which super-twistors in T (CP2) are assigned. The first
guess is that the sign of helicity are replaced by the sign of electroweak isospin - essentially
E4 spin at the level of M8. For electromagnetic charge identified as the analog of helicity
one would have problems in the case of neutrinos. T (M4) = CP3 = SU(4)/SU(3) × U(1) is
replaced with T (CP2) = SU(3)/U(1) × U(1). T (CP2) does not have a representation as a
projective space but there is a close analogy since the group of complex scalings is replaced
with U(1) × U(1). The (apparent) linearity is lost but one represent the points of T (CP2)
as exponentials of su(3) Lie-algebra elements with vanishing u(1)× u(1) part. The resulting
3 complex coordinates are analogous to two complex CP2 coordinates. The basic difference
between M4 and CP2 degrees of freedom would come from the exponential representation of
twistors.
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5. By Yangian invariance one should obtain very similar formulas for the amplitudes except that
one has instead of N = 4 SUSY N = 8 octonionic SUSY analogous to N = 8 SUGRA.

Trying to understand the fundamental 3-vertex

Due to its unique twistorial properties as far as realization of four-momentum conservation is con-
sidered 3-vertex is fundamental in the construction of scattering diagrams in twistor Grassmannian
approach to N = 4 SYM [B22] (see http://tinyurl.com/yd9tf2ya). Twistor Grassmann ap-
proach suggests that 3-vertex with complexified light-like 8-momenta represents the basic building
brick representing from which more complex diagrams can be constructed using the BCFW recur-
sion formula [B22]. In TGD 3-vertex generalized to 8-D light-like quaternionic momenta should be
highly analogous to the 4-D 3-vertex and in a well-defined sense reduce to it if all momenta of the
diagram belong to the same quaternionic sub-space M4

0 . It is however not completely clear how
3-vertex emerges in TGD framework.

1. A possible identification of the 3-vertex at the level of M8 would be as a vertex at which 3
sparticle lines with light-like complexified quaternionic 8-momenta meet. This vertex would
be associated with the partonic vertex X2(tn) = X4 ∩ S6(tn). Incoming sparticle lines at the
light-like partonic orbits identified as boundaries of string world sheets (for entangled states
at least) would be light-like.

Does the fusion of two sparticle lines to third one require that either or both fusing lines
become space-like - say pieces of geodesic line inside the Euclidian space-time region- bounded
by the partonic orbit? The identification of the lines of twistor diagrams as carriers of light-
like complexified quaternionic momenta in 8-D sense does not encourage this interpretation
(also classical momenta are complex). Should one pose the fusion of the light-like lines as a
boundary condition? Or should one give up the idea that sparticle lines make sense inside
interaction region?

2. As found, one can challenge the assumption about the existence of string world sheets as
commutative regions in the non-associative interaction region. Could one have just fermion
lines as light-like curves at partonic orbits inside CD? Or cannot one have even them?

Even if the polynomial
∏
i Pi defining the interaction region is product of polynomials with

origins of octonionic coordinates not along the same real line, the 7-D light-cones of M8

associated with the particles still make sense in the sense that Pi(oi) = 0 reduces at it to
Pi(ti) = 0, ti real number, giving spheres S6(ti(n)) and partonic 2-surfaces and vertices
X2(ti(n)). The light-like curves as geodesics the boundary of 7-D light-cones mapped to
light-like curves along partonic orbits in H would not be lost inside interaction regions.

3. At the level of H this relates to a long standing interpretational problem related to the notion
of induced spinor fields. SH suggests strongly the localization of the induced spinor fields at
string world sheets and even at sparton lines in absence of entanglement. Super-conformal
symmetry however requires that induced spinor fields are 4-D and thus seems to favor de-
localization. The information theoretic interpretation is that the induced spinor fields at
string world sheets or even at sparton lines contain all information needed to construct the
scattering amplitudes. One can also say that string world sheets and sparton lines correspond
to a description in terms of an effective action.

Could the M8 view about twistorial scattering amplitudes be consistent with the
earlier H picture?

The proposed M8 picture involving super coordinates of M8 and super-twistors does not conform
with the earlier proposal for the construction of scattering amplitudes at the level of H [K87]. In
H picture the introduction of super-space does not look natural, and one can say that fundamental
fermions are the only fundamental particles [L30, K87]. The H view about super-symmetry is as
broken supersymmetry in which many fermion states at partonic 2-surfaces give rise to supermulti-
plets such that fermions are at different points. Fermion 4-vertex would be the fundamental vertex
and involve classical scattering without fusion of fermion lines. Only a redistribution of fermion
and anti-fermion lines among the orbits of partonic 2-surfaces would take place in scattering and
one would have kind of OZI rule.

http://tinyurl.com/yd9tf2ya
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Could this H view conform with the recent M8 view much closer to the SUSY picture. The
intuitive idea without a rigorous justification has been that the fermion lines at partonic 2-surfaces
correspond to singularities of many-sheeted space-time surface at which some sheets co-incide. M8

sparticle consists effectively of n fermions at the same point in M8. Could it be mapped by M8−H
duality to n fermions at distinct locations of partonic 2-surface in H?

M8 −H correspondence maps the points of M4 ⊂M4 × E4 to points of M4 ⊂M4 × CP2.
The tangent plane of space-time surface containing a preferred M2 is mapped to a point of CP2.
If the effective n-fermion state M8 is at point at which n sheets of space-time surface co-incide
and if the tangent spaces of different sheets are not identical, which is quite possible and even
plausible, the point is indeed mapped to n points of H with same M4 coordinates but different
CP2 coordinates and sparticle would be mapped to a genuine many-fermion state. But what
happens to scalar sparticle. Should one regard it as a pure gauge degree of freedom in accordance
with the chiral symmetry at the level of M8 and H?

5.5 From amplituhedron to associahedron

Lubos has a nice blog posting (see http://tinyurl.com/y7ywhxew) explaining the proposal rep-
resented in the newest article by Nima Arkani-Hamed, Yuntao Bai, Song He, Gongwang Yan [?]see
http://tinyurl.com/ya8zstll). Amplituhedron is generalized to a purely combinatorial notion
of associahedron and shown to make sense also in string theory context (particular bracketing).
The hope is that the generalization of amplituhedron to associahedron allows to compute also the
contributions of non-planar diagrams to the scattering amplitudes - at least in N = 4 SYM. Also
the proposal is made that color corresponds to something less trivial than Chan-Paton factors.

The remaining problem is that 4-D conformal invariance requires massless particles and TGD
allows to overcome this problem by using a generalization of the notion of twistor: masslessness is
realized in 8-D sense and particles massless in 8-D sense can be massive in 4-D sense.

In TGD non-associativity at the level of arguments of scattering amplitude corresponds
to that for octonions: one can assign to space-time surfaces octonionic polynomials and induce
arithmetic operations for space-time surface from those for polymials (or even rational or analytic
functions). I have already earlier [L46] demonstrated that associahedron and construction of scat-
tering amplitudes by summing over different permutations and associations of external particles
(space-time surfaces). Therefore the notion of associahedron makes sense also in TGD framework
and summation reduces to “integration” over the faces of associahedron. TGD thus provides a
concrete interpretation for the associations and permutations at the level of space-time geometry.

In TGD framework the description of color and four-momentum is unified at the level and
the notion of twistor generalizes: one has twistors in 8-D space-time instead of twistors in 4-D
space-time so Chan-Paton factors are replaced with something non-trivial.

5.5.1 Associahedrons and scattering amplitudes

The following describes briefly the basic idea between associahedrons.

Permutations and associations

One starts from a non-commutative and non-associative algebra with product (in TGD framework
this algebra is formed by octonionic polynomials with real coefficients defining space-time surfaces
as the zero loci of their real or imaginary parts in quaternionic sense. One can indeed multiply
space-time surface by multiplying corresponding polynomials! Also sum is possible. If one allows
rational functions also division becomes possible.

All permutations of the product of n elements are in principle different. This is due to non-
commutativity. All associations for a given ordering obtained by scattering bracket pairs in the
product are also different in general. In the simplest case one has either a(bc) or (ab)c and these
2 give different outcomes. These primitive associations are building bricks of general associations:
for instance, abc does not have well-defined meaning in non-associative case.

If the product contains n factors, one can proceed recursively to build all associations allowed
by it. Decompose the n factors to groups of m and n−m factors. Continue by decomposing these
two groups to two groups and repeat until you have have groups consisting of 1 or two elements.

http://tinyurl.com/y7ywhxew
http://tinyurl.com/ya8zstll
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You get a large number of associations and you can write a computer code computing recursively
the number N(n) of associations for n letters.

Two examples help to understand. For n = 3 letters one obviously has N(n = 3) = 2. For
n = 4 one has N(4) = 5: decompose first abcd to (abc)d, a(bcd) and (ab)(cd) and then the two 3
letter groups to two groups: this gives N(4) = 2 + 2 + 1 = 5associations and associahedron in 3-D
space has therefore 5 faces.

Geometric representation of association as face of associahedron

Associations of n letters can be represented geometrically as so called Stasheff polytope (see http:

//tinyurl.com/q9ga785). The idea is that each association of n letters corresponds to a face of
polytope in n− 2-dimensional space with faces represented by the associations.

Associahedron is constructed by using the condition that adjacent faces (now 2-D polygons)
intersecting along common face (now 1-D edges). The number of edges of the face codes for the
structure particular association. Neighboring faces are obtained by doing minimal change which
means replacement of some (ab)c with a(bc) appearing in the association as a building bricks or
vice versa. This means that the changes are carried out at the root level.

How does this relate to particle physics?

In scattering amplitude letters correspond to external particles. Scattering amplitude must be
invariant under permutations and associations of the external particles. In particular, this means
that one sums over all associations by assigning an amplitude to each association. Geometrically
this means that one ”integrates” over the boundary of associahedron by assigning to each face an
amplitude. This leads to the notion of associahedron generalizing that of amplituhedron.

Personally I find it difficult to believe that the mere combinatorial structure leading to asso-
ciahedron would fix the theory completely. It is however clear that it poses very strong conditions
on the structure of scattering amplitudes. Especially so if the scattering amplitudes are defined in
terms of ”volumes” of the polyhedrons involved so that the scattering amplitude has singularities
at the faces of associahedron.

An important constraint on the scattering amplitudes is the realization of the Yangian gen-
eralization of conformal symmetries of Minkowski space. The representation of the scattering
amplitudes utilizing moduli spaces (projective spaces of various dimensions) and associahedron
indeed allows Yangian symmetries as diffeomorphisms of associahedron respecting the positivity
constraint. The hope is that the generalization of amplituhedron to associahedron allows to gen-
eralize the construction of scattering amplitudes to include also the contribution of non-planar
diagrams of at N = 4 SYM in QFT framework.

5.5.2 Associations and permutations in TGD framework

Also in the number theoretical vision about quantum TGD one encounters associativity constraings
leading to the notion of associahedron. This is closely related to the generalization of twistor
approach to TGD forcing to introduce 8-D analogs of twistors [L46] (see http://tinyurl.com/

yd43o2n2).

Non-associativity is induced by octonic non-associativity

As found in [L46], non-associativity at the level of space-time geometry and at the level of scattering
amplitudes is induced from octonionic non-associativity in M8.

1. By M8−H duality (H = M4×CP2) the scattering are assignable to complexified 4-surfaces
in complexified M8. Complexified M8 is obtained by adding imaginary unit i commutating
with octonionic units Ik, k = 1, , .., 7. Real space-time surfaces are obtained as restrictions
to a Minkowskian subspace complexified M8 in which the complexified metric reduces to
real valued 8-D Minkowski metric. This allows to define notions like Kähler structure in
Minkowskian signature and the notion of Wick rotations ceases to be ad hoc concept. Without
complexification one does not obtain algebraic geometry allowing to reduces the dynamics
defined by partial differential equations for preferred extremals in H to purely algebraic

http://tinyurl.com/q9ga785
http://tinyurl.com/q9ga785
http://tinyurl.com/yd43o2n2
http://tinyurl.com/yd43o2n2
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conditions in M8. This means huge simplications but the simplicity is lost at the QFT-GRT
limit when many-sheeted space-time is replaced with slightly curved piece of M4.

2. The real 4-surface is determined by a vanishing condition for the real or imaginary part of
octonionic polynomial with RE(P ) and IM(P ) defined by the composition of octonion to two
quaternions: o = RE(o) + I4IM(o), where I4 is octonionic unit orthogonal to a quaternionic
sub-space and RE(o) and IM(o) are quaternions. The coefficients of the polynomials are
assumed to be real. The products of octonionic polynomials are also octonionic polynomials
(this holds for also for general power series with real coefficients (no dependence on Ik. The
product is not however neither commutative nor associative without additional conditions.
Permutations and their associations define different space-time surfaces. The exchange of
particles changes space-time surface. Even associations do it. Both non-commutativity and
non-associativity have a geometric meaning at the level of space-time geometry!

3. For space-time surfaces representing external particles associativity is assumed to hold true:
this in fact guarantees M8−H correspondence for them! For interaction regions associativity
does not hold true but the field equations and preferred extremal property allow to construct
the counterpart of space-time surface in H from the boundary data at the boundaries of CD
fixing the ends of space-time surface.

Associativity poses quantization conditions on the coefficients of the polynomial determining
it. The conditions are interpreted in terms of quantum criticality. In the interaction region
identified naturally as causal diamond (CD), associativity does not hold true. For instance, if
external particles as space-time surfaces correspond to vanishing of RE(Pi) for polynomials
representing particles labelled by i, the interaction region (CD) could correspond to the van-
ishing of IM(Pi) and associativity would fail. At the level of H associativity and criticality
corresponds to minimal surface property so that quantum criticality corresponds to universal
free particle dynamics having no dependence on coupling constants.

4. Scattering amplitudes must be commutative and associative with respect to their arguments
which are now external particles represented by polynomials Pi This requires that scattering
amplitude is sum over amplitudes assignable to 4-surfaces obtained by allowing all permuta-
tions and all associations of a given permutation. Associations can be described combinato-
rially by the associahedron!

Remark:. In quantum theory associative statistics allowing associations to be represented by
phase factors can be considered (this would be associative analog of Fermi statistics). Even
a generalization of braid statistics can be considered.

Yangian variants of various symmetries are a central piece also in TGD although super-
symmetries are realized in different manner and generalized to super-conformal symmetries: these
include generalization of super-conformal symmetries by replacing 2-D surfaces with light-like 3-
surfaces, supersymplectic symmetries and dynamical Kac-Moody symmetries serving as remnants
of these symmetries after supersymplectic gauge conditions characterizing preferred extremals are
applied, and Kac-Moody symmetries associated with the isometries of H . The representation
of Yangian symmetries as diffeomorphisms of the associahedron respecting positivity constraint
encourages to think that associahedron is a useful auxiliary tool also in TGD.

Is color something more than Chan-Paton factors?

Nima et al talk also about color structure of the scattering amplitudes usually regarded as trivial.
It is claimed that this is actually not the case and that there is non-trivial dynamics involved. This
is indeed the case in TGD framework. Also color quantum numbers are twistorialized in terms of
the twistor space of CP2, and one performs a twistorialization at the level of M8 and M4 × CP2.
At the level of M8 momenta and color quantum numbers correspond to associative 8-momenta.
Massless particles are now massless in 8-D sense but can be massive in 4-D sense. This solves one
of the basic difficulty of the ordinary twistor approach. A further bonus is that the choice of the
embedding space H becomes unique: only the twistor spaces of S4 (and generalized twistor space
of M4 and CP2 have Kähler structure playing a crucial role in the twistorialization of TGD. To
sum up, all roads lead to Rome. Everyone is well-come to Rome!
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5.5.3 Questions inspired by quantum associations

Associations have (or seem to have) different meaning depending on whether one is talking about
cognition or mathematics. In mathematics the associations correspond to different bracketings
of mathematical expressions involving symbols denoting mathematical objects and operations be-
tween them. The meaning of the expression - in the case that it has meaning - depends on the
bracketing of the expression. For instance, one has a(b+ c) 6= (ab) + c , that is ab+ ac 6= ab+ c).
Note that one can change the order of bracket and operation but not that of bracket and object.

For ordinary product and sum of real numbers one has associativity: a(bc) = (ab)c and a+
(b+c) = (a+b)+c. Most algebraic operations such as group product are associative. Associativity
of product holds true for reals, complex numbers, and quaternions but not for octonions and this
would be fundamental in both classical and quantum TGD.

The building of different associations means different groupings of n objects. This can be
done recursively. Divide first the objects to two groups, divide these tow groups to two groups
each, and continue until you jave division of 3 objects to two groups - that is abc divided into (ab)c
or a(bc). Numbers 3 and 2 are clearly the magic numbers.

This inspire several speculative quetions related to the twistorial construction of scattering
amplitudes as associative singlets, the general structure of quantum entanglement, quantum mea-
surement cascade as formation of association, the associative structure of many-sheeted space-time
as a kind of linguistic structure, spin glass as a strongly associative system, and even the tendency
of social structures to form associations leading from a fully democratic paradise to cliques of
cliques of ... .

1. In standard twistor approach 3-gluon amplitude is the fundamental building brick of twistor
amplitudes constructed from on-shell-amplitudes with complex momenta recursively. Also in
TGD proposal this holds true. This would naturally follow from the fact that associations
can be reduced recursively to those of 3 objects. 2- and 3-vertex would correspond to a
fundamental associations. The association defined 2-particle pairing (both associated particles
having either positive or negative helicities for twistor amplitudes) and 3-vertex would have
universal structure although the states would be in general decompose to associations.

2. Consider first the space-time picture about scattering [L46]. CD defines interaction region
for scattering amplitudes. External particles entering or leaving CD correspond to associative
space-time surfaces in the sense that the tangent space or normal space for these space-time
surfaces is associative. This gives rise to M8 −H correspondence.

These surfaces correspond to zero loci for the imaginary parts (in quaternionic sense) for
octonionic polynomial with coefficients, which are real in octonionic sense. The product of∏
i Pi) of polynomials with same octonion structure satisfying IM(Pi) = 0 has also vanishing

imaginary part and space-time surface corresponds to a disjoint union of surfaces associated
with factors so that these states can be said to be non-interacting.

Neither the choice of quaternion structure nor the choice of the direction of time axis assignable
to the octonionic real unit need be same for external particles: if it is the particles correspond
to same external particle. This requires that one treats the space of external particles (4-
surfaces) as a Cartesian product of of single particle 4-surfaces as in ordinary scattering
theory.

Space-time surfaces inside CD are non-associative in the sense that the neither normal nor
tangent space is associative: M8 −M4 × CP2 correspondence fails and space-time surfaces
inside CD must be constructed by applying boundary conditions defining preferred extremals.
Now the real part of RE(

∏
i Pi) in quaternionic sense vanishes: there is genuine interaction

even when the incoming particles correspond to the same octonion structure since one does not
have union of surfaces with vanishing RE(Pi). This follows from s rather trivial observation
holding true already for complex numbers: imaginary part of zw vanishes if it vanishes for z
and w but this does not hold true for the real part. If octonionic structures are different, the
interaction is present irrespective of whether one assumes RE(

∏
i Pi) = 0 or IM(

∏
i Pi) = 0.

RE(
∏
i Pi) = 0 is favoured since for IM(

∏
i Pi) = 0 one would obtain solutions for which

IM(Pi) = 0 would vanish for the i:th particle: the scattering dynamics would select i:th
particle as non-interacting one.
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3. The proposal is that the entire scattering amplitude defined by the zero energy state - is
associative, perhaps in the projective sense meaning that the amplitudes related to different
associations relate by a phase factor (recall that complexified octonions are considered), which
could be even octonionic. This would be achieved by summing over all possible associations.

4. Quantum classical correspondence (QCC) suggests that in ZEO the zero energy states - that is
scattering amplitudes determined by the classically non-associative dynamics inside CD - form
a representation for the non-associative product of space-time surfaces defined by the condition
RE(

∏
i Pi) = 0. Could the scattering amplitude be constructed from products of octonion

valued single particle amplitudes. This kind of condition would pose strong constraints on the
theory. Could the scattering amplitudes associated with different associations be octonionic
- may be differing by octonion-valued phase factors - and could only their sum be real in
octonionic sense (recall that complexified octonions involving imaginary unit i commuting
with the octonionic imaginary units are considered)?

One can look the situation also from the point of view of positive and negative energy states
defining zero energy states as they pairs.

1. The formation of association as subset is like formation of bound state of bound states of ...
. Could each external line of zero energy state have the structure of association? Could also
the internal entanglement associated with a given external line be characterized in terms of
association.

Could the so called monogamy theorem stating that only two-particle entanglement can be
maximal correspond to the decomposing of n = 3 association to one- and two-particle as-
sociations? If quantum entanglement is behind associations in cognitive sense, the cognitive
meaning of association could reduce to its mathematical meaning.

An interesting question relates to the notion of identical particle: are the many-particle states
of identical particles invariant under associations or do they transform by phase factor under
association. Does a generalization of braid statistics make sense?

2. In ZEO based quantum measurement theory the cascade of quantum measurements proceeds
from long to short scales and at each step decomposes a given system to two subsystems.
The cascade stops when the reduction of entanglement is impossible: this is the case if the
entanglement probabilities belong to an extension of extension of rationals characterizing the
extension in question. This cascade is nothing but a formation of an association! Since only
the state at the second boundary of CD changes, the natural interpretation is that state
function reduction mean a selection of association in 3-D sense.

3. The division of n objects to groups has also social meaning: all social groups tend to divide into
cliques spoiling the dream about full democracy. Only a group with 2 members - Romeo and
Julia or Adam and Eve - can be a full democracy in practice. Already in a group of 3 members
2 members tend to form a clique leaving the third member outside. Jules and Catherine, Jim
and Catherine, or maybe Jules and Jim! Only a paradise allows a full democracy in which
non-associativity holds true. In ZEO it would be realized only at the quantum critical external
lines of scattering diagram and quantum criticality means instability. Quantum superposition
of all associations could realize this democracy in 4-D sense.

A further perspective is provided by many-sheeted space-time providing classical correlate
for quantum dynamics.

1. Many-sheeted space-time means that physical states have a hierarchical structure - just like
associations do. Could the formation of association (AB) correspond basically to a formation
of flux tube bond between A and B to give AB and serve as space-time correlate for (ne-
gentropic) entanglement. Could ((AB)C) would correspond to (AB) and (C) “topologically
condensed” to a larger surface. If so, the hierarchical structure of many-sheeted space-time
would represent associations and also the basic structures of language.

2. Spin glass (see http://tinyurl.com/y9yyq8ga) is a system characterized by so called frus-
trations. Spin glass as a thermodynamical system has a very large number of minima of
free energy and one has fractal energy landscape with valleys inside valleys. Typically there
is a competition between different pairings (associations) of the basic building bricks of the
system.

http://tinyurl.com/y9yyq8ga
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Could spin glass be describable in terms of associations? The modelling of spin glass leads to
the introduction of ultrametric topology characterizing the natural distance function for the
free energy landscape. Interestingly, p-adic topologies are ultrametric. In TGD framework I
have considered the possibility that space-time is like 4-D spin glass: this idea was originally
inspired by the huge vacuum degeneracy of Kähler action. The twistor lift of TGD breaks
this degeneracy but 4-D spin glass idea could still be relevant.

5.6 Gromov-Witten invariants, Riemann-Roch theorem, and
Atyiah-Singer index theorem from TGD point of view

Gromov-Witten (G-W) invariants, Riemann-Roch theorem (RR), and Atyiah-Singer index theorem
(AS) are applied in advanced algebraic geometry, and it is interesting to see whether they could have
counterparts in TGD framework. The basic difference between TGD and conventional algebraic
geometry is due to the adelic hierarchy demanding that the coefficients of polynomials involved
are in given extension of rationals. Continuous moduli spaces are replaced with discrete ones
by number theoretical quantization due to the criticality guaranteeing associativity of tangent or
normal space. M8 − H duality brings in powerful consistency conditions: counting of allowed
combinations of coefficients of polynomials on M8 side and counting of dimensions on H side using
AS should give same results. M8 −H duality might be in fact analogous to the mirror symmetry
of M-theory.

5.6.1 About the analogs of Gromow-Witten invariants and branes in
TGD

Gromow-Witten invariants, whose definition was discussed in [L47], play a central role in super-
string theories and M-theory and are closely related to branes. For instance, partition functions
can be expressed in terms of these invariants giving additional invariants of symplectic and alge-
braic geometries. Hence it is interesting to look whether they could be important also in TGD
framework.

1. As such the definition of G-W invariants discussed in [L47] do not make sense in TGD frame-
work. For instance, space-time surface is not a closed symplectic manifold whereas M8 and H
are analogs of symplectic spaces. Minkowskian regions of space-time surface have Hamilton-
Jacobi structure at the level of bothM8 andH and this might replace the symplectic structure.
Space-time surfaces are not closed manifolds.

Physical intuition however suggests that the generalization exists. The fact that Minkowskian
metric and Euclidian metric for complexified octonions are obtained in various sectors for
which complex valued length squared is real suggests that signature is not a problem. Kähler
form for complexified z gives as special case analog of Kähler form for E4 and M4.

2. The quantum intersection defines a description of interactions in terms of string world sheets.
If I have understood G-W invariant correctly, one could have for D > 4-dimensional symplec-
tic spaces besides partonic 2k − 2-D surfaces also surfaces with smaller but even dimension
identifiable as branes of various dimensions. Branes would correspond to a generalization of
relative cohomology. In TGD framework one has 2k = 4 and the partonic 2-surfaces have
dimension 2 so that classical intersections consisting of discrete points are possible and stable
for string world sheets and partonic 2-surfaces. This is a unique feature of 4-D space-time.

One might think a generalization of G-W invariant allowing to see string world sheets as
connecting the spaced-like 3-surfaces at the boundaries of CDs and light-like orbits of partonic
2-surfaces. The intersection is not discrete now and marked points would naturally correspond
to the ends points of strings at partonic 2-surfaces associated with the boundaries of CD and
with the vertices of topological scattering diagrams.

3. The idea about 2-D string world sheet as interaction region could generalize in TGD to
space-time surface inside CD defining 4-D interaction region. In [L48] one indeed ends up
with amazingly similar description of interactions for n external particles entering CD and
represented as zero loci for quaternion valued “real” part RE(P ) or “imaginary” part IM(P )
for the complexified octonionic polynomial.
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Associativity forces quantum criticality posing conditions on the coefficients of the polyno-
mials. Polynomials with the origin of octonion coordinate along the same real axis commute
and associate. Since the origins are different for external particles in the general case, the
polynomials representing particles neither commute nor associate inside the interaction region
defined by CD but one can also now define zero loci for both RE(

∏
Pi) and IM(

∏
Pi) giving

Pi = 0 for some i. Now different permutations and different associations give rise to different
interaction regions and amplitude must be sum over all these.

3-vertices would correspond to conditions Pi = 0 for 3 indices i simultaneously. The strongest
condition is that 3 partonic 2-surfaces X2

i co-incide: this condition does not satisfy classical
dimension rule and should be posed as essentially 4-D boundary condition. Two partonic
2-surfaces X2

i (ti(n)) intersect at discrete set of points: could one assume that the sparticle
lines intersect and there fusion is forced by boundary condition? Or could one imagine that
partonic 2-surfaces turns back in time and second partonic 2-surface intersects it at the turning
point?

4. In 4-D context string world sheets are associated with magnetic flux tubes connecting partonic
orbits and together with strings serve as correlates for negentropic entanglement assignable to
the p-adic sectors of the adele considered, to attention in consciousness theory, and to remote
mental interactions in general and occurring routinely between magnetic body and biological
body also in ordinary biology. This raises the question whether “quantum touch” generalizes
from 2-D string world sheets to 4-D space-time surface (magnetic flux tubes) connecting
3-surfaces at the orbits and partonic orbits.

5. The above formulation applies to closed symplectic manifolds X. One can however generalize
the formulation to algebraic geometry. Now the algebraic curve X2 is characterized by genus
g and order of polynomial n defining it. This formulation looks very natural in M8 picture.

An interesting question is whether the notion of brane makes sense in TGD framework.

1. In TGD branes inside space-time variety are replaced by partonic 2-surfaces and possibly
by their light-like orbits at which the induced metric changes signature. These surfaces are
metrically 2-D. String world sheets inside space-time surfaces have discrete intersection with
the partonic 2-surfaces. The intersection of strings as space-like resp. light-like boundaries of
string world sheet with partonic orbit sheet resp. space-like 3-D ends of space-time surface at
boundaries of CD is also discrete classically.

2. An interesting question concerns the role of 6-spheres S6(tn) appearing as special solutions
to the octonionic zero locus conditions solving both RE(Pn) = 0 and IM(Pn) = 0 requiring
Pn(o) = 0. This can be true at 7-D light cone o = et, e light-like vector and t a real parameter.
The roots tn of P (t) = 0 give 6-spheres S6(tn) with radius tn as solutions to the singularity
condition. As found, one can assign to each factor Pi in the product of polynomials defining
many-particle state in interaction region its own partonic 2-surfaces X2(tn) related to the
solution of Pi(t) = 0

Could one interpret 6-spheres as brane like objects, which can be connected by 2-D “free”
string world sheets as 2-varieties in M8 and having discrete intersection with them implied
by the classical dimension condition for the intersection. Free string world sheets would be
something new and could be seen as trivially associative surfaces whereas 6-spheres would
represent trivially co-associative surfaces in M8.

The 2-D intersections of S6(tn) with space-time surfaces define partonic 2-surfaces X2 ap-
pearing at then ends of space-time and as vertices of topological diagrams. Light-like sparticle
lines along parton orbits would fuse at the partonic 2-surfaces and give rise to the analog of
3-vertex in N = 4 SUSY.

Some further TGD inspired remarks are in order.

1. Virasoro conjecture generalizing Witten conjecture involves half Virasoro algebra. Super-
Virasoro algebra algebra and its super-symplectic counterpart (SSA) play a key role in the
formulation of TGD at level of H. Also these algebras are half algebras. The analogs of
super-conformal conformal gauge conditions state that sub-algebra of SSA with conformal
weights coming as n-ples of those for entire algebra and its commutator with entire SSA give
rise to vanishing Noether charges and annihilate physical states.
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These conditions are conjecture to fix the preferred extremals and serve as boundary condi-
tions allowing the formulation of M8−H correspondence inside space-time regions (interaction
regions), where the associativity conditions fail to be true and direct M8−H correspondence
does not make sense. Non-trivial solutions to these conditions are possible only if one assumes
half super-conformal and half super-symplectic algebras. Otherwise the generators of the en-
tire SSA annihilate the physical states and all SSA Noether charges vanish. The invariance
of partition function for string world sheets in this sense could be interpreted in terms of
emergent dynamical symmetries.

2. Just for fun one can consider the conjecture that the reduction of quantum intersections to
classical intersections mediated by string world sheets implies that the numbers of string world
sheets as given by the analog of G-W invariants are integers.

5.6.2 Does Riemann-Roch theorem have applications to TGD?

Riemann-Roch theorem (RR) (see http://tinyurl.com/mdmbcx6) is a central piece of algebraic
geometry. Atyiah-Singer index theorem is one of its generalizations relating the solution spectrum
of partial differential equations and topological data. For instance, characteristic classes classifying
bundles associated with Yang-Mills theories (see http://tinyurl.com/y9xvkhyy) have applica-
tions in gauge theories and string models.

The advent of octonionic approach to the dynamics of space-time surfaces inspired byM8−H
duality [L46] [L47, L48] gives hopes that dynamics at the level of complexified octonionic M8

could reduce to algebraic equations plus criticality conditions guaranteeing associativity for space-
time surfaces representing external particles, in interaction region commutativity and associativity
would be broken. The complexification of octonionic M8 replacing norm in flat space metric with
its complexification would unify various signatures for flat space metric and allow to overcome the
problems due to Minkowskian signature. Wick rotation would not be a mere calculational trick.

For these reasons time might be ripe for applications of possibly existing generalization of
RR to TGD framework. In the following I summarize my admittedly unprofessional understanding
of RR discussing the generalization of RR for complex algebraic surfaces having real dimension 4:
this is obviously interesting from TGD point of view.

I will also consider the possible interpretation of RR in TGD framework. One interesting
idea is possible identification of light-like 3-surfaces and curves (string boundaries) as generalized
poles and zeros with topological (but not metric) dimension one unit higher than in Euclidian
signature.

Could a generalization of Riemann-Roch theorem be useful in TGD framework?

The generalization of RR for algebraic varieties, in particular for complex surfaces (real dimension
equal to 4) exists. In M8 picture the complexified metric Minkowskian signature need not cause
any problems since the situation can be reduced to Euclidian sector. Clearly, this picture would
provide a realization of Wick rotation as more than a trick to calculate scattering amplitudes.

Consider first the motivations for the desire of having analog of Riemann-Roch theorem
(RR) at the level of space-time surfaces in M8.

1. It would be very nice if partonic 2-surfaces would have interpretation as analogs of zeros
or poles of a meromorphic function. RR applies to the divisors characterizing meromorphic
functions and 2-forms, and one could hope of obtaining information about the dimensions of
these function spaces giving rise to octonionic space-time varieties. Note however that the
reduction to real polynomials or even rational functions might be already enough to give the
needed information. Rational functions are required by the simplest generalization whereas
the earlier approach assumed only polynomials. This generalization does not however change
the construction of space-time varieties as zero loci of polynomials in an essential manner as
will be found.

2. One would like to count the degeneracies for the intersections of 2-surfaces of space-time sur-
face and here RR might help since its generalization to complex surfaces involves intersection
form as was found in the brief summary of RR for complex surfaces with real dimension 4
(see Eq. 4.3.5).

http://tinyurl.com/mdmbcx6
http://tinyurl.com/y9xvkhyy
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In particular, one would like to know about the intersections of partonic 2-surfaces and string
world sheets defining the points at which fermions reside. The intersection form reduces the
problem via Poincare duality to 2-cohomology of space-time surfaces. More generally, it is
known that the intersection form for 2-surfaces tells a lot about the topology of 4-D manifolds
(see http://tinyurl.com/y8tmqtef). This conforms with SH. Gromow-Witten invariants
[L35] (see http://tinyurl.com/ybobccub) are more advanced rational valued invariants but
might reduce to integer valued in variants in TGD framework [L48].

There are also other challenges to which RR might relate.

1. One would like to know whether the intersection points for string world sheets and partonic
2-surfaces can belong in an extension of rationals used for adele. If the points belong to
cognitive representations and subgroup of Galois group acts trivially then the number of
points is reduces as the points at its orbit fuse together. The sheets of the Galois covering
would intersect at point. The images of the fused points in H could be disjoint points since
tangent spaces need not be parallel.

2. One would also like to have idea about what makes partonic 2-surfaces and string world sheets
so special. In 2-D space-time one would have points instead of 2-surfaces. The obvious idea
is that at the level of M8 these 2-surfaces are in some sense analogous to poles and zeros of
meromorphic functions. At the level of H the non-local character of M8−H would imply that
preferred extremals are solutions of an action principle giving partial differential equations.

What could be the analogs of zeros and poles of meromorphic function?

The basic challenge is to define what notions like pole, zero, meromorphic function, and divisor
could mean in TGD context. The most natural approach based on a simple observation that
rational functions need not define map of space-time surface to itself. Even though rational function
can have pole inside CD, the point∞ need not belong to the space-time variety defined the rational
functions. Hence one can try the modification of the original hypothesis by replacing the octonionic
polynomials with rational functions. One cannot exclude the possibility that although the interior
of CD contains only finite points, the external particles outside CD could extend to infinity.

1. For octonionic analytic polynomials the notion of zero is well-defined. The notion of pole
is well-defined only if one allows rational functions R = P1(o)/P2(o) so that poles would
correspond to zeros for the denominator of rational function. 0 and ∞ are both unaffected
by multiplication and ∞ also by addition so that they are algebraically special. There are
several variants of this picture. The most general option is that for a given variety zeros of
both Pi are allowed.

2. The zeros of IM(P1) = 0 and IM(P2) = 0 would give solutions as unions of surfaces associated
with Pi. This is because IM(o1o2) = IM(o1)RE(o2) + IM(o2)RE(o1). There is no need to
emphasize how important this property of IM for product is. One might say that one has
two surfaces which behave like free non-interacting particles.

3. These surfaces should however interact somehow. The intuitive expectation is that the two
solutions are glued by wormhole contacts connecting partonic 2-surfaces corresponding to
IM(P1) = 0 and IM(P2) = 0 = ∞. For RE(Pi) = 0 and RE(Pi) = ∞ the solutions do not
reduce to separate solutions RE(P1) = 0 and RE(P2) = 0. The reason is that the real part
of o1o2 satisfies Re(o1o2) = Re(o1)Re(o2) − Im(o1)Im(o2). There is a genuine interaction,
which should generate the wormhole contact. Only at points for which P1 = 0 and P2 = 0
holds true, RE(P1) = 0 and RE(P2) = 0 are satisfied simultaneously. This happens in the
discrete intersection of partonic 2-surfaces.

4. Elementary particles correspond even for heff = h to two-sheeted structures with partonic
surfaces defining wormhole throats. The model for elementary particles requires that parti-
cles are minimally 2-sheeted structures since otherwise the conservation of monopole Kähler
magnetic flux cannot be satisfied: the flux is transferred between space-time sheets through
wormhole contacts with Euclidian signature of induced metric and one obtains closed flux
loop. Euclidian wormhole contact would connect the two Minkowskian sheets. Could the
Minkowskian sheets corresponds to zeros IM(Pi) for P1 and P2 and could wormhole contacts
emerge as zeros of RE(P1/P2)?

http://tinyurl.com/y8tmqtef
http://tinyurl.com/ybobccub
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One can however wonder whether this picture could allow more detailed specification. The
simplest possibility would be following. The basic condition is that CD emerges automatically
from this picture.

1. The simplest possibility is that one has P1(o) and P2(T − o) with the origin of octions at the
“lower” tip of CD. One would have P1(0) = 0 and P2(0) = 0. P1(o) would give rise to the
“lower” boundary of CD and P2(T − o) to the “upper” boundary of CD.

ZEO combined with the ideas inspired by infinite rationals as counterparts of space-time sur-
faces connecting 3-surfaces at opposite boundaries of CD [K94] would suggest that the opposite
boundaries of CD could correspond zeros and poles respectively and the ratio P1(o)/P2(T −o)
and to zeros of P1 resp. P2 assignable to different boundaries of CD. Both light-like parton
orbits and string world sheets would interpolate between the two boundaries of CD at which
partonic 2-surface would correspond to zeros and poles.

The notion divisor would be a straightforward generalization of this notion in the case of
complex plane. What would matter would be the rational function P1(t)/P2(T − t) extended
from the real (time) axis of octonions to the entire space of complexified octonions. Positive
degree of divisor would multiply P1(t) with (t− t1)m inducing a new zero at or increasing the
order of existing zero at t1. Negative orders n would multiply the denominator by (t− t1)n.

2. One can also consider the possibility that both boundaries of CD emerge for both P1 and P2

and without assigning either boundary of CD with Pi. In this case Pi would be sum over
terms Pik = Piak(o)Pibk(T−o) of this kind of products satisfying Piak(0) = 0 and Pibk(0) = 0.

One can imagine also an alternative approach in which 0 and∞ correspond to opposite tips
of CD and have geometric meaning. Now zeros and poles would correspond to 2-surfaces, which
need not be partonic. Note that in the case of Riemann surfaces ∞ can represent any point. This
approach does not however look attractive.

Could one generalize RR to octonionic algebraic varieties?

RR is associated with complex structure, which in TGD framework seems to make sense inde-
pendent of signature thanks to complexification of octonions. Divisors are the key notion and
characterize what might be called local winding numbers. De-Rham cohomology is replaced with
much richer Dolbeault cohomology (see http://tinyurl.com/y7cvs5sx) since the notion of con-
tinuity is replaced with that of meromorphy. Symplectic approach about which G-W invariants
for symplectic manifolds provide an example define a different approach and now one has ordinary
cohomology.

An interesting question is whether M8 −H-duality corresponds to the mirror symmetry of
string models (see http://tinyurl.com/yc2m2e5m) relating complex structures and symplectic
structures. If this were the case, M8 would correspond to complex structure and H to symplectic
structure.

RR for curves gives information about dimensions for the spaces of meromorphic functions
having poles with order not higher than specified by divisor. This kind of interpretation would
be very attractive now since the poles and zeros represented as partonic 2-surfaces would have
direct physical interpretation in terms of external particles and interaction vertices. RR for curves
involves poles with orders not higher than specified by the divisor and gives a formula for the
dimension of the space of meromorphic functions fora given divisor. As a special case give the
dimension l(nD) for a given divisor.

Could something similar be true in TGD framework?

1. Arithmetic genus makes sense for polynomials P (t) since t can be naturally complexified giving
a complex curve with well-defined arithmetic genus. What could correspond to the intersection
form for 2-surfaces representing D and K −D? The most straightforward possibility is that
partonic 2-surfaces correspond to poles and zeros.

Divisor −D would correspond to the inverse of P2/P1 representing it. D −K would also a
well-defined meaning provided the canonical divisor associated with holomorphic 2-form has
well-defined meaning in the Dolbeault cohomology of the space-time surface with complex
structure. RR would give direct information about the space of space-time varieties defined
by RE(P ) = 0 or IM(P ) = 0 condition.

http://tinyurl.com/y7cvs5sx
http://tinyurl.com/yc2m2e5m
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One could hope of obtaining information about intersection form for string world sheets and
partonic 2-surfaces. Whether the divisor D −K has anything to do string world sheets, is of
course far from clear.

2. Complexification means that field property fails in the sense that complexified Euclidian
norm vanishes and the inverse of complexified octonion/quaternion/complex number is infinite
formally. For Euclidian sector with real coordinates this does not happen but does take
place when some coordinates are real and some imaginary so that signature is effectively
Minkowskian signature.

At 7-D light-cone of M8 the condition P (o) = 0 reduces to a condition for real polynomial
P (t) = 0 giving roots tn. Partonic 2-varieties are intersections of 4-D space-time varieties
with 6-spheres with radii tn. There are good reasons to expect that the 3-D light-like orbits
of partonic 3-surfaces are intersections of space-time variety with 7-D light-cone boundary
and their H counterparts are obtained as images under M8 −H duality.

For light-like complefixied octonionic points the inverse of octonion does not exist since the
complexified norm vanishes. Could the light-like 3-surfaces as partonic orbits correspond to
images under M8 − H duality for zeros and/or poles as 3-D light-like surfaces? Could also
the light-like boundaries of strings correspond to this kind of generalized poles or zeros? This
could give a dynamical realization for the notions of zero and pole and increase the topological
dimension of pole and zero for both 2-varieties and 4-varieties by one unit. The metric di-
mension would be unaffected and this implies huge extension of conformal symmetries central
in TGD since the light-like coordinate appears as additional parameter in the infinitesimal
generators of symmetries.

Could one formulate the counterpart of RR at the level of H? The interpretation of M8−H
duality as analog of mirror symmetry (see http://tinyurl.com/yc2m2e5m) suggests this. In this
case the first guess for the identification of the counterpart of canonical divisor could be as Kähler
form of CP2. This description would provide symplectic dual for the description based on divisors
at the level of M8. G-W invariants and their possible generalization are natural candidates in this
respect.

5.6.3 Could the TGD variant of Atyiah-Singer index theorem be useful
in TGD?

Atyiah-Singer index theorem (AS) is one of the generalizations of RR and has shown its power in
gauge field theories and string models as a method to deduce the dimensions of various moduli
spaces for the solutions of field equations. A natural question is whether AS could be useful in TGD
and whether the predictions of AS at H side could be consistent with M8 −H duality suggesting
very simple counting for the numbers of solutions at M8 side as coefficient combinations of poly-
nomials in given extension of rationals satisfying criticality conditions. One can also ask whether
the hierarchy of degrees n for octonion polynomials could correspond to the fractal hierarchy of
generalized conformal sub-algebras with conformal weights coming as n-multiples for those for the
entire algebras.

Atyiah-Singer index theorem (AS) and other generalizations of RR involve extremely ab-
stract concepts. The best manner to get some idea about AS is to learn the motivations for it.
The article http://tinyurl.com/yc49lljp gives a very nice general view about the motivations
of Atyiah-Singer index theorem and also avoids killing the reader with details.

Solving problems of algebraic geometry is very demanding. The spectrum of solutions can be
discrete (say number of points of space-time surface having linear M8 coordinates in an extension of
rationals) or continuous such as the space of roots for n:th order polynomials with real coefficients.

An even more difficult challenge is solving of partial differential equations in some space,
call it X, of say Yang-Mills gauge field coupled to matter fields. In this case the set of solutions is
typically continuous moduli space.

One can however pose easier questions. What is the number of solutions in counting prob-
lem? What is the dimension of the moduli space of solutions? Atiyiah-Singer index theorem relates
this number - analytic index - to topological index expressible in terms of topological invariants
assignable to complexified tangent bundle of X and to the bundle structure - call it field bundle -
accompanying the fields for which field equations are formulated.

http://tinyurl.com/yc2m2e5m
http://tinyurl.com/yc49lljp
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AS very briefly

Consider first the assumptions of AS.

1. The idea is to study perturbations of a given solution and linearize the equations in some
manifold X often assumed to be compact. This leads to a linear partial differential equations
defined by linear operator P . One can deduce the dimension of the solution space of P . This
number defines the dimension of the tangent space of solution space of full partial differential
equations, call it moduli space.

2. The idea is to assign to the partial differential operator P its symbol σ(P ) obtained by
replacing derivatives with what might be called momentum components. The reversal of this
operaion is familiar from elementary wave mechanics: pi → id/dxi. This operation can be
formulated in terms of co-tangent bundle. The resulting object is purely algebraic. If this
matrix is reversible for all momentum values and points of X, one says that the operator is
elliptic.

Note that for field equations in Minkowski space M4 the invertibility constraint is not sat-
isfied and this produces problems. For instance, for massive M4 d’Alembertian for scalar
field the symbol is four-momentum squared, which vanishes, when on-mass shell condition
is satisfied. Wick rotation is somewhat questionable manner to escape this problem. One
replaces Minkowski space with its Euclidian counterpart or by 4-sphere. If all goes well the
dimension of the solution space does not depend on the signature of the metric.

3. In the general case one studies linear equation of form DP = f , where f is homogenuity term
representing external perturbation. f can also vanish. Quite generally, one can write the
dimension of the solution space as

Indanal(P ) = dim(ker(P ))− dim(coker(P )) . (5.6.1)

ker(P ) denotes the solution space for DP = 0 without taking into account the possible
restrictions coming from the fact that f can involve part f0 satisfying Df0 = 0 (for instance, f0

corresponds to resonance frequency of oscillator system) nor boundary conditions guaranteing
hermiticity. Indeed, the hermitian conjugate D† of D is not automatically identical with D.
D† is defined in terms of the inner product for small perturbations as

〈D†P ∗1 |DP2〉 = 〈P1|DP2〉 . (5.6.2)

The inner product involves integration over X and partial integrations transfer the action
of partial derivatives from P2 to P ∗1 . This however gives boundary terms given by surface
integral and hermiticity requires that they vanish. This poses additional conditions on P and
contributes to dim(coker(P )).

The challenge is to calculate Indanal(P ) and here AS is of enormous help. AS relates
analytical index Indanal(P ) for P to topological index Indtop(σ(P )) for its symbol σ(P ).

1. Indtop(σ(P )) involves only data associated with the topology X and with the bundles as-
sociated with field variables. In the case of Yang-Mills fields coupled to matter the bundle
is the bundle associated with the matter fields with a connection determined by Yang-Mills
gauge potentials. So called Todd class Td(X) brings in information about the topology of
complexified tangent bundle.

2. Indtop(σ(P )) is not at all easy to define but is rather easily calculable as integrals of various
invariants assignable to the bundle structure involved. Say instanton density for YM fields and
various topological invariants expressing the topological invariants associated with the metric
of the space. What is so nice and so non-trivial is that the dimension of the moduli space for
non-linear partial differential equations is determined by topological invariants. Much of the
dynamics reduces to topology.
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The expression for Indtop(σ(P )) involves besides σP topological data related to the field
bundle and to the complexified tangent bundle. The expression Indtop as a function of the symbol
σ(P ) is given by

Indtop(σ(P )) = (−1)n〈ch(σ(P )) · Td(TC(X), [X])〉 . (5.6.3)

The expression involves various topological data.

1. Dimension of X.

2. The quantity 〈x.y〉 involving cup product x.y of cohomology classes, which contains a con-
tribution in the highest homology group Hn(X) of X corresponding to the dimension of X
and is contracted with this fundamental class [X]. 〈x.y〉 denotes matrix trace for the oper-
ator ch(σ(P )) formed as polynomial of σ(P ). [X] denotes so called fundamental class fr X
belonging to Hn and defines the orientation of X.

3. Chern character chE(t) (see http://tinyurl.com/ybavu66h). I must admit that I ended up
to a garden of branching paths while trying to understand the definition of chE is. In any
case, chE(t) characterizes complex vector bundle E expressible in terms of Chern classes (see
http://tinyurl.com/y8jlaznc) of E. E is the bundle assignable to field variables, say Yang
Mills fields and various matter fields.

Both direct sums and tensor products of fiber spaces of bundles are possible and the nice
feature of Chern class is that it is additive under tensor product and multiplicative under
direct sum. The fiber space of the entire bundle is now direct sum of the tangent space of
X and field space, which suggests that Ind(top) is actually the analog of Chern character for
the entire bundle.

t = σP has interpretation as an argument appearing in the definition of Chern class general-
ized to Chern character. t = σ(P ) would naturally correspond to a matrix valued argument of
the polynomial defining Chern class as cohomology element. ch(σ(P )) is a polynomial of the
linear operator defined by symbol σ(P ). chE for given complex vector bundle is a polynomial,
whose coefficients are relatively easily calculable as topological invariants assignable to bundle
E. E must be the field bundle now.

4. Todd class Td(TC(X)) for the complexified tangent bundle (see http://tinyurl.com/yckv4w84)
appears also in the expression. Note that also now the complexification occurs. The cup prod-
uct gives element in Hn(X), which is contracted with fundamental class [X] and integrated
over X.

AS and TGD

The dynamics of TGD involves two levels: the level of complexified M8 (or equivalently E8) and
the level of H related to M8 −H correspondence.

1. At the level of M8 one has algebraic equations rather than partial differential equations and
the situation is extremely simple as compared to the situation for a general action principle.
At the level ofH one has action principle and partial differential equations plus infinite number
of gauge conditions selecting preferred extremals and making dynamics for partial differential
equations dual to the dynamics determined by purely number theoretic conditions.

The space-time varieties representing external particles outside CDs inM8 satisfy associativity
conditions for tangent space or normal space and reducing to criticality conditions for the
real coefficients of the polynomials defining the space-time variety. In the interior of CDs
associativity conditions are not satisfied but the boundary conditions fix the values of the
coefficients to be those determined by criticality conditions guaranteing associativity outside
the CD.

In the interiors space-time surfaces of CDs M8-duality does not apply but associativity of
tangent spaces or normal spaces at the boundary of CD fixes boundary values and minimal
surface dynamics and strong form of holography (SH) fixes the space-time surfaces in the
interior of CD.

http://tinyurl.com/ybavu66h
http://tinyurl.com/y8jlaznc
http://tinyurl.com/yckv4w84
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2. For the H-images of space-time varieties in H under M8−H duality the dynamics is universal
coupling constant independent critical dynamics of minimal surfaces reducing to holomorphy
in appropriate sense. For minimal surfaces the 4-D Kähler current density vanishes so that
the solutions are 4-D analogs of geodesic lines outside CD. Inside CD interactions are coupled
on and this current is non-vanishing. Infinite number of gauge conditions for various half
conformal algebras in generalized sense code at H side for the number theoretical critical
conditions at M8 side. The sub-algebra with conformal weights coming as n-ples of the
entire algebra and its commutator with entire algebra gives rise to vanishing classical Noether
charges. An attractive assumption is that the value of n at H side corresponds to the order
n of the polynomials at M8 side.

3. The coefficients of polynomials P (o) determining space-time varieties are real numbers (also
complexified reals can be considered without losing associativity) restricted to be numbers in
extension of rationals. This makes it possible to speak about p-adic variants of the space-time
surfaces at the level of M8 at least.

Could Atyiah-Singer theorem have relevance for TGD?

1. For real polynomials it is easy to calculate the dimension of the moduli space by counting the
number of independent real (in octonionic sense) coefficients of the polynomials of real variable
(one cannot exclude that the coefficients are in complex extension of rationals). Criticality
conditions reduce this number and the condition that coefficients are in extension of rationals
reduces it further. One has quite nice overall view about the number of solutions and one
can see them as subset of continuous moduli space. If M8 −H duality really works then this
gives also the number of preferred extremals at H side.

2. This picture is not quite complete. It assumes fixing of 8-D CD in M8 as well as fixing of
the decomposition M2 ⊂ M4 ⊂ M4 × E4. This brings in moduli space for different choices
of octonion structures (8-D Lorentz group is involved). Also moduli spaces for partonic 2-
surfaces are involved. Number theoretical universality seems to require that also these moduli
spaces have only points with coordinates in extension of rationals involved.

3. In principle one can try to formulate the counterpart of AS at H side for the linearization of
minimal surface equations, which are nothing but the counterpart of massless field equations
in a fixed background metric. Note that additional conditions come from the requirement
that the term from Kähler action reduces to minimal surface term.

Discrete sets of solutions for the extensions of rationals should correspond to each other at
the two sides. One can also ask whether the dimensions for the effective continuous moduli
spaces labelled by n characterizing the sub-algebras of various conformal algebras isomorphic
to the entire algebra and those for the polynomials of order n satisfying criticality conditions.
One would have a number theoretic analog for a particle in box leading to the quantization
of momenta.

All this is of course very speculative and motivated only by the general physical vision. If
the speculations were true, they would mean huge amount of new mathematics.

5.7 Intersection form for 4-manifolds, knots and 2-knots,
smooth exotics, and TGD

Gary Ehlenberger sent a highly interesting commentary related to smooth structures in R4 dis-
cussed in the article of Gompf [A79] (https://cutt.ly/eMracmf) and more generally to exotics
smoothness discussed from the point of view of mathematical physics in the book of Asselman-
Maluga and Brans [A83] (https://cutt.ly/DMu0dYr). I am grateful for these links for Gary.

5.7.1 Basic ideas

The role of intersection forms in TGD

The intersection form of 4-manifold (https://cutt.ly/jMriNdI) characterizing partially its 2-
homology is a central notion in the study of the smooth structures. I am not a topologist but have
two good reasons to get interested on intersection forms.

https://cutt.ly/eMracmf
https://cutt.ly/DMu0dYr
https://cutt.ly/jMriNdI
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1. In the TGD framework [L121], the intersection form describes the intersections of string world
sheets and partonic 2-surfaces and therefore is of direct physical interest [K54, L48].

2. Knots have an important role in TGD. The 1-homology of the knot complement characterizes
the knot. Time evolution defines a knot cobordism as a 2-surface consisting of knotted string
world sheets and partonic 2-surfaces. A natural guess is that the 2-homology for the 4-D
complement of this cobordism characterizes the knot cobordism. Also 2-knots are possible in
4-D space-time and a natural guess is that knot cobordism defines a 2-knot.

The intersection form for the complement for cobordism as a way to classify these two-
knots is therefore highly interesting in the TGD framework. One can also ask what the
counterpart for the opening of a 1-knot by repeatedly modifying the knot diagram could mean
in the case of 2-knots and what its physical meaning could be in the TGD Universe. Could
this opening or more general knot-cobordism of 2-knot take place in zero energy ontology
(ZEO) [L80, L120, L127] as a sequence of discrete quantum jumps leading from the initial
2-knot to the final one.

Why exotic smooth structures are not possible in TGD?

The existence of exotic 4-manifolds [A79, A83, A52] could be an anomaly in the TGD framework.
In the articles [A79, A52] the term anomaly is indeed used. Could these anomalies cancel in the
TGD framework?

The first naive guess was that the exotic smooth structures are not possible in TGD but it
turned out that this is not trivially true. The reason is that the smooth structure of the space-time
surface is not induced from that of H unlike topology. One could induce smooth structure by
assuming it given for the space-time surface so that exotics would be possible. This would however
bring an ad hoc element to TGD. This raises the question of how it is induced.

1. This led to the idea of a holography of smoothness, which means that the smooth structure
at the boundary of the manifold determines the smooth structure in the interior. Suppose
that the holography of smoothness holds true. In ZEO, space-time surfaces indeed have 3-
D ends with a unique smooth structure at the light-like boundaries of the causal diamond
CD = cd× CP2 ⊂ H = M4 × CP2, where cd is defined in terms of the intersection of future
and past directed light-cones of M4. One could say that the absence of exotics implies that
D = 4 is the maximal dimension of space-time.

2. The differentiable structure for X4 ⊂ M8, obtained by the smooth holography, could be
induced to X4 ⊂ H by M8 − H-duality. Second possibility is based on the map of mass
shell hyperboloids to light-cone proper time a = constant hyperboloids of H belonging to the
space-time surfaces and to a holography applied to these.

3. There is however an objection against holography of smoothness (https://cutt.ly/3MewYOt).
In the last section of the article, I develop a counter argument against the objection. It states
that the exotic smooth structures reduce to the ordinary one in a complement of a set con-
sisting of arbitrarily small balls so that local defects are the condensed matter analogy for an
exotic smooth structure.

5.7.2 Intersection form in the case of 4-surfaces

Intersection form (https://cutt.ly/jMriNdI) for homologically trivial 2-surfaces of the space-
time surface and 2-homology for the complement of these surfaces can be physically important in
tGD framework.

Intersection forms in 2-D case

It is good to explain the notion of intersection form by starting from 1-homology. The intersection
form for 1-homology is encountered for a cylinder with ends fixed. In this case, one has relative ho-
mology and homologically trivial curves are curves connecting the ends of string and characterized
by a winding number.

In the case of torus obtained by identifying the ends of cylinder, one obtains two winding
numbers (m,n) corresponding to to homologically non-trivial circles at torus. The intersection

https://cutt.ly/3MewYOt
https://cutt.ly/jMriNdI
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number for curves (m,n) and (p, q) at torus is N = mq − np and for curves at cylinder one as
(m,n) = (1, n) giving N = n− q.

The antisymmetric intersection form is defined as 2× 2 matrix defining intersections for the
basis of the homology with (m,n) = (1, 0) and (n,m) = (0, 1) and is given by (0, 1;−1, 0).

Intersection for 4-surfaces in TGD context

In TGD, the intersection form for a 4-surface identified as space-time surface could have a rather
concrete physical interpretation and the stringy part of TGD physics would actually realize it
concretely.

1. M8−H duality requires that the 4-surface in M8 has quaternionic/associative normal space:
this distribution of normal spaces is integrable and integrates to the 4-surface in M8.

The normal must also contain a commutative (complex) sub-space at each point. Only this
allows us to parametrize normal spaces by points of CP2 and map them to space-time surfaces
in H = M4 × CP2. The integral distribution of these commutative sub-spaces defines a 2-
D surface. Physically, these surfaces would correspond to string world sheets and partonic
2-surfaces.

2. String world sheets and partonic 2-surfaces, regarded as objects in relative homology (modulo
ends of the space-time surfaces at the boundaries of causal diamond (CD)), can intersect as
2-D objects inside the space-time surface and the intersection form characterizes them.

There is an analogy with the cylinder: time-like direction corresponds to the cylinder axis
and a homologically non-trivial 2-surface of CP2 corresponds to the circle at the cylinder.

3. If the second homology of the space-time surface is trivial, the naive expectation is that the
intersections of string world sheets are not stable under large enough deformations of the
string world sheets. Same applies to intersecting plane curves. At the cylinder, the situation
is different since the relative first homology is non-trivial and spanned by two generators: the
circle and a line connecting the ends of the cylinder.

The intersection form is however non-trivial as in the case of the cylinder for 2-surfaces having
2-D homologically non-trivial CP2 projection. They would represent M4 deformations of 2-D
homologically trivial surfaces of CP2 just like a helical orbit along a cylinder surface. A 2-D
generalization of CP2 type extremal would have a light-like curve or light-like geodesic as M4

projection and could define light-partonic orbit.

4. The intersection of string world sheet and partonic 2-surface can be stable however. Partonic
2-surface is a boundary of a wormhole contact connecting two space-time sheets.

Consider a string arriving along space-time sheet A, going through the wormhole contact, and
continuing along sheet B. The string has an intersection point with both wormhole throats.
This intersection is stable against deformations. The orbit of this string intersects the light-
like orbit of the partonic 2-surface along the light-like curve.

One has a non-trivial intersection form with the number of intersections with partonic 2-
surfaces equal to 1. In analogy with cylinder, also the intersections of 2-surfaces with 2-D
homologically trivial CP2 projection are unavoidable and reflect the non-trivial intersection
form of CP2.

5.7.3 About ordinary knots

Ordinary knots and 3-topologies are related and the natural expectation is that also 2-knots and
4-topologies are related.

About knot invariants

Consider first knot invariants (https://cutt.ly/DMrgs14)at the general level.

1. One important knot invariant of ordinary knots is the 1-homology of the complement and the
associated first homotopy group whose abelianization gives the homology group.

https://cutt.ly/DMrgs14
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2. The complement of the knot can be given a metric of a hyperbolic 3-manifold, which corre-
sponds to a unit cell for a tessellation of the mass shell. M8 − H duality suggests that the
intersection X3 of 4-surface of M8 with mass shell H3

m ⊂M4 ⊂M8 is a hyperbolic manifold
and identical with the hyperbolic manifold associated with the complement of a knot of H3

a

realized as light-cone proper time a = constant hyperboloid of M4 ⊂ H and closed knotted
and linked strings as ends of string world sheets at H3

a .

The evolution of the strings defined by the string world sheets would define a 1-knot cobordism.
The 2-homology of the knot complement should characterize the topological evolution of the
1-homology of the knot.

Opening of knots and links by knot cobordisms

The procedure leading to the trivialization of knot or link can be used to define knot invariants
and the procedure itself characterizes knot.

1. Ordinary knot is described by a knot diagram obtained as a projection of the knot to the
plane. It contains intersections of lines and the intersection contains information telling which
line is above and which line is below.

2. The opening of the knot or link to give a trivial knot or link, which is used in the construction
of knot invariants, is a sequence of violent operations. In the basic step strings portions go
through each other and therefore suffer a reconnection. This operation can therefore change
the 1-homology of the 3-D knot complement.

Knot or link can be modified by forcing two intersecting strands of the plane projection to
go through each other. Locally the basic operation for two links is the same as for the pieces
of knot. The transformation of the knot or link to a trivial knot or link corresponds to some
sequence of these operations and can be used to define a knot invariants. This operation is
not unique since there are moves which do not affect the knot.

The basic opening operation can be also seen as a time evolution, knot cobordism, in which
the first portion, call it A, remains unchanged and the second portion, call it B, draws a 2-D
surface in E3. A intersects the 2-D orbit at a single point.

3. The 2-homology for the string world sheets and partonic 2-surfaces as 2-surfaces in space-time
serves as an invariant of knot cobordism and represents the topological dynamics of ordinary
1-knots of 3-surface and links formed by strings or flux tubes in 3-surface as cobordism defining
the time evolution of a knot to another knot.

In particular, the intersection form for the 2-homology of the complement of the cobordism
defines an invariant of cobordism. This intersection form must be distinguished from the
intersection form for the second homology of the space-time surface rather than the 2-knot
complement.

4. One can also consider more general sequences of basic operations transforming two knots or
links to each other as knot-/link cobordisms, which involve self intersections of the knots.
Does this mean that the intersection form characterizes the knot cobordism. Could a string
diagram involving reconnections describe the cobordism process.

Stringy description of knot cobordisms

M8 −H duality [L99, L100, L130, L129] requires string word sheets and partonic 2-surfaces. This
implies that TGD physics represents the 2-homology of both space-time surfaces and the homology
of the complement of the knotted links defined by them.

Although the ”non-homological” intersections of string world sheets can be eliminated by a
suitable deformation of the string world sheet, they should have a physical meaning. This comes
from the observation that they affect nontrivially the 1-homology of the knot complement as 3-D
time=constant slice.

The first thing that I am able to imagine is that strings reconnect. This is nothing but
the trouser vertex for strings so that intersection form would define topological string dynamics in
some sense. These reconnections play a key role in TGD, also in TGD inspired quantum biology.

The dynamics of partonic 2-surfaces and string world sheets could relate to knot cobordisms,
possibly leading to the opening of ordinary knot,
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5.7.4 What about 2-knots and their cobordisms?

2-D closed surfaces in 4-D space give rise to 2-knots. What is the physical meaning of 2-knots of
string world sheets? What could 2-knots for orbits of linear molecules or associated magnetic flux
tubes mean physically and from the point of view of quantum information theory? One can try to
understand 2-knots by generalizing the ideas related to the ordinary knots.

1. Intuitively it seems that the cobordism of a 1-knot defines a 2-knot. It is not clear to me
whether all 2-knots for space-time surfaces connecting the boundaries of CD can be regarded
as this kind of cobordisms of 1-knots.

2. The 2-homology of the complement of 2-knot should define a 2-knot invariant. In particular,
the intersection form should define a 2-knot invariant.

3. The opening of 1-knot by repeating the above described basic operation is central in the
construction of knot invariants and the sequence of the operations can be said to be knot
invariant modulo moves leaving the knot unaffected.

The opening or a more general cobordism of a 2-knot could be seen as a time evolution with
respect to a time parameter t5 parametrizing the isotopy of space-time surface. The local
cobordism can keep the first portion of 2-knot, call it A, unchanged and deform another
portion, call it B, so that a 3-D orbit at the space-time surface is obtained. For each value of
t5, the portions A and B of 2-knot have in the generic case only points as intersections.

This would suggest that an intersection point of A and B is generated in the operation and
moves during the t5 time evolution along A along 1-D curve during the process. This process
would be the basic operation used repeatedly to open 2-knot or to transform it to another
2-knot.

4. In quantum TGD, a sequence of quantum jumps, quantum cobordism, would have the same
effect as t5 time evolution. This brings in mind DNA transcription and replication as a process
proceeding along a DNA strand parallel to the monopole flux tube as a sequence of SFRs
involving direct contact between DNA strand and enzymes catalyzing the process and also of
corresponding flux tubes. An interesting possibility is that these quantum cobordisms appear
routinely in biochemistry of the fundamental linear bio-molecules such as DNA, RNA, tRNA,
and amino-acids [K46, K6, K107, K1, K117, L24] [L67].

The quantum cobordism of 2-knot is possible only in ZEO, where the quantum state as a
time= constant snapshot is replaced with a superposition of space-time surfaces.

5.7.5 Could the existence of exotic smooth structures pose problems for
TGD?

The article of Gabor Etesi [A52] (https://cutt.ly/2Md7JWP) gives a good idea about the physical
significance of the existence of exotic smooth structures and how they destroy the cosmic censorship
hypothesis (CCH of GRT stating that spacetimes of GRT are globally hyperbolic so that there are
no time-like loops.

Smooth anomaly

No compact smoothable topological 4-manifold is known, which would allow only a single smooth
structure. Even worse, the number of exotics is infinite in every known case! In the case of non-
compact smoothable manifolds, which are physically of special interest, there is no obstruction
against smoothness and they typically carry an uncountable family of exotic smooth structures.

One can argue that this is a catastrophe for classical general relativity since smoothness is
an essential prerequisite for tensory analysis and partial differential equations. This also destroys
hopes that the path integral formulation of quantum gravitation, involving path integral over all
possible space-time geometries, could make sense. The term anomaly is certainly well-deserved.

Note however that for 3-geometries appearing as basic objects in Wheeler’s superspace
approach, the situation is different since for D < 3 there is only a single smooth structure. If
one has holography, meaning that 3-geometry dictates 4-geometry, it might be possible to avoid
the catastrophe.

https://cutt.ly/2Md7JWP
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The failure of the CCH is the basic message of Etesi’s article. Any exotic R4 fails to
be globally hyperbolic and Etesi shows that it is possible to construct exact vacuum solutions
representing curved space-times which violate the CCH. In other words, GRT is plagued by causal
anomalies.

Etesi constructs a vacuum solution of Einstein’s equations with a vanishing cosmological
constant which is non-flat and could be interpreted as a pure gravitational radiation. This also
represents one particular aspect of the energy problem of GRT: solutions with gravitational radi-
ation should not be vacua.

1. Etesi takes any exotic R4 which has the topology of S3×R and has an exotic smooth structure,
which is not a Cartesian product. Etesi maps maps R4 to CP2, which is obtained from C2

by gluing CP1 to it as a maximal ball B3
r for which the radial Eguchi-Hanson coordinate

approaches infinity: r →∞. The exotic smooth structure is induced by this map. The image
of the exotic atlas defines atlas. The metric is that of CP2 but SU(3) does not act as smooth
isometries anymore.

2. After this Etesi performs Wick rotation to Minkowskian signature and obtains a vacuum
solution of Einstein’s equations for any exotic smooth structure of R4.

In TGD, the question of exotic smoothness is encountered both at the level of embedding
space and associated fixed spaces and at the level of space-time surfaces and their 6-D twistor
space analogies. Could TGD solve the smooth anomaly?

Can embedding space and related spaces have exotic smooth structure?

One can first worry about the exotic smooth structures possibly associated with the M4, CP2,
H = M4 × CP2, causal diamond CD= cd × CP2, where cd is the intersection of the future and
past directed light-cones of M4, and with M8. One can also worry about the twistor spaces CP3

resp. SU(3)/U(1)× U(1) associated with M4 resp. CP2.
The key assumption of TGD is that all these structures have maximal isometry groups

so that they relate very closely to Lie groups, whose unique smooth structures are expected to
determine their smooth structures.

1. The first sigh of relief is that all Lie groups have the standard smooth structure. In particular,
exotic R4 does not allow translations and Lorentz transformations as isometries. I dare
to conclude that also the symmetric spaces like CP2 and hyperbolic spaces such as Hn =
SO(1, n)/SO(n) are non-exotic since they provide a representation of a Lie group as isometries
and the smoothness of the Lie group is inherited. This would mean that the charts for the
coset space G/H would be obtained from the charts for G by an identification of the points
of charts related by action of subgroup H.

Note that the mass shellH3, as any 3-surface, has a unique smooth structure by its dimension.

2. Second sigh of relief is that twistor spaces CP3 and SU(3)/U(1) × U(1) have by their
isometries and their coset space structure a standard smooth structure.

In accordance with the vision that the dynamics of fields is geometrized to that of surfaces,
the space-time surface is replaced by the analog of twistor space represented by a 6-surface
with a structure of S2 bundle with space-time surface X4 as a base-space in the 12-D product
of twistor spaces of M4 and CP2 and by its dimension D = 6 can have only the standard
smooth structure unless it somehow decomposes to (S3×R)×R2. Holography of smoothness
would prevent this since it has boundaries because X4 as base space has boundaries at the
boundaries of CD.

If exotic smoothness is allowed at the space-time level in the proposed sense ordinary smooth
structure could be possible at the level of twistor space in the complement of a Cartesian
product of the fiber space S2 with a discrete set of points associated with partonic 2-surfaces.

3. cd is an intersection of future and past directed light-cones of M4. Future/past directed
light-cone could be seen as a subset of M4 and implies standard smooth structure is possible.
Coordinate atlas of M4 is restricted to cd and one can use Minkowski coordinates also inside
the cd. cd could be also seen as a pile of light-cone boundaries S2×R+ and by its dimension
S2 ×R allows only one smooth structure.
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4. M8 is a subspace of complexified octonions and has the structure of 8-D translation group,
which implies standard smooth structure.

The conclusion is that continuous symmetries of the geometry dictate standard smoothness
at the level of embedding space and related structures.

Could TGD eliminate the smoothness anomaly or provide a physical interpretation
for it?

The question of exotic smoothness is encountered both at the level of embedding space and asso-
ciated fixed spaces and at the level of space-time surfaces and their 6-D twistor space analogies.

What does the induction of a differentiable structure really mean? Here my naive
expectations turn out to be wrong. If a sub-manifold S ⊂ H can be regarded as an embedding
of smooth manifold N to S ⊂ H, the embedding N → S ⊂ H induces a smooth structure in S
(https://cutt.ly/tMtvG79). The problem is that the smooth structure would not be induced
from H but from N and for a given 4-D manifold embedded to H one could also have exotic
smooth structures. This induction of smooth structure is of course physically adhoc.

It is not possible to induce the smooth structure from H to sub-manifold. The atlas defining
the smooth structure in H cannot define the charts for a sub-manifold (surface). For standard R4

one has only one atlas.

1. Could holography of smoothness make sense in the general case?

The first trial to get rid of exotics [A83] was based on the holography of smoothness and did
not involve TGD. Could a smooth structure at the boundary of a 4-manifold could dictate that of
the manifold uniquely. Could one speak of holography for smoothness? Manifolds with boundaries
would have the standard smooth structure.

1. The obvious objection is that the coordinate atlas for 3-D boundary cannot determine 4-D
atlas in any way because the boundary cannot have information of the topology of the interior.

2. The holography for smoothness is also argued to fail (https://cutt.ly/3MewYOt). Assume a
4-manifoldW with 2 different smooth structures. Remove a ball B4 belonging to an open set U
and construct a smooth structure at its boundary S3. Assume that this smooth structure can
be continued to W . If the continuation is unique, the restrictions of the 2 smooth structures
in the complement of B4 would be equivalent but it is argued that they are not.

3. The first layman objection is that the two smooth structures of W are equivalent in the
complement W −B3 of an arbitrary small ball B3 ⊂W but not in the entire W . This would
be analogous to coordinate singularity. For instance, a single coordinate chart is enough for
a sphere in the complement of an arbitrarily small disk.

An exotic smooth structure would be like a local defect in condensed matter physics. In fact it
turned out that this intuitive idea is correct: it can be shown that the exotic smooth structures
are equivalent with standard smooth structure in a complement of a set having co-dimension
zero (https://cutt.ly/7MbGqx2). This does not save the holography of smoothness in the
general case but gives valuable hints for how exotic smoothness might be realized in TGD
framework.

2. Could holography of smoothness make sense in the TGD framework?

Could M8−H duality and holography make holography of smoothness possible in the TGD
framework?

1. In the TGD framework space-time is 4-surface rather than abstract 4-manifold. 4-D general
coordinate invariance, assuming that 3-surfaces as generalization of point-like particles are
the basic objects, suggests a fully deterministic holography. A small failure of determinism is
however possible and expected, and means that space-time surfaces analogous to Bohr orbits
become fundamental objects. Could one avoid the smooth anomaly in this framework?

The 8-D embedding space topology induces 4-D topology. My first naive intuition was that the
4-D smooth structure, which I believed to be somehow inducible from that of H = M4×CP2,
cannot be exotic so that in TGD physics the exotics could not be realized. But can one really

https://cutt.ly/tMtvG79
https://cutt.ly/3MewYOt
https://cutt.ly/7MbGqx2
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exclude the possibility that the induced smooth structure could be exotic as a 4-D smooth
structure?

2. In the TGD framework and at the level of H = M4× cP2, one can argue that the holography
implied by the general coordinate invariance somehow determines the smooth structure in the
interior of space-time surface from the coordinate atlas at the boundary. One would have a
holography of smoothness. It is however not obvious why this unique structure should be the
standard one.

3. One has also holography in M8 and this induces holography in H by M8 −H duality. The
3-surfaces X3 inducing the holography in M8 are parts of mass shells, which are hyperbolic
spaces H3 ⊂ M4 ⊂ M8. 3-surfaces X3 could be even hyperbolic 3-manifolds as unit cells of
tessellations of H3. These hyperbolic manifolds have unique smooth structures as manifolds
with dimension D < 4.

The hypothesis is that one can assign to these 3-surfaces a 4-surface by a number theoretic
dynamics requiring that the normal space is associative, that is quaternionic [L99, L100].
The additional condition is that the normal space contains commutative subspace makes it
possible to parametrize normal spaces by points of CP2. M8 −H duality would map a given
normal space to a point of CP2. M8 −H duality makes sense also for the twistor lift.

4. A more general statement would be as follows. A set of 3-surfaces as sub-manifolds of mass
shells H3

m determined by the roots of polynomial P having interpretation as mass square
values defining the 4-surface in M8 take the role of the boundaries. Mass-shells H3

m or
partonic 2-surfaces associated with them having particle interpretation could correspond to
discontinuities of derivatives and even correspond to failure of manifold property analogous to
that occurring for Feybman diagrams so that the holography of smoothness would decompose
to a piece-wise holography.

The regions of X4 ⊂M8 connecting two sub-sequent mass shells would have a unique smooth
structure induced by the hyperbolic manifolds H3 at the ends.

It is important to notice that the holography of smoothness does not force the smooth 4-D
structure to be the standard one.

3. Could the exotic smooth structures have a physical interpretation in the TGD framework?

In the TGD framework, exotic smooth structures could also have a physical interpretation.
As noticed, the failure of the standard smooth structure can be thought to occur at a point set of
dimension zero and correspond to a set of point defects in condensed matter physics. This could
have a deep physical meaning.

1. The space-time surfaces in H = M4 × CP2 are images of 4-D surfaces of M8 by M8 − H-
duality. The proposal is that they reduce to minimal surfaces analogous to soap films spanned
by frames. Regions of both Minkowskian and Euclidean signature are predicted and the
latter correspond to wormhole contacts represented by CP2 type extremals. The boundary
between the Minkowskian and Euclidean region is a light-like 3-surface representing the orbit
of partonic 2-surface identified as wormhole throat carrying fermionic lines as boundaries of
string world sheets connecting orbits of partonic 2-surfaces.

2. These fermionic lines are counterparts of the lines of ordinary Feynman graphs, and have
ends at the partonic 2-surfaces located at the light-like boundaries of CD and in the interior
of the space-time surface. The partonic surfaces, actually a pair of them as opposite throats
of wormhole contact, in the interior define topological vertices, at which light-like partonic
orbits meet along their ends.

3. These points should be somehow special. Number theoretically they should correspond points
with coordinates in an extension of rationals for a polynomial P defining 4-surface in H
and space-time surface in H by M8 − H duality. What comes first in mind is that the
throats touch each other at these points so that the distance between Minkowskian space-time
sheets vanishes. This is analogous to singularities of Fermi surface encountered in topological
condensed matter physics: the energy bands touch each other. In TGD, the partonic 2-
surfaces at the mass shells of M4 defined by the roots of P are indeed analogs of Fermi
surfaces at the level of M4 ⊂M8, having interpretation as analog of momentum space.
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Could these points correspond to the defects of the standard smooth structure in X4? Note
that the branching at the partonic 2-surface defining a topological vertex implies the local
failure of the manifold property. Note that the vertices of an ordinary Feynman diagram
imply that it is not a smooth 1-manifold.

4. Could the interpretation be that the 4-manifold obtained by removing the partonic 2-surface
has exotic smooth structure with the defect of ordinary smooth structure assignable to the
partonic 2-surface at its end. The situation would be rather similar to that for the represen-
tation of exotic R4 as a surface in CP2 with the sphere at infinity removed [A52].

5. The failure of the cosmic censorship would make possible a pair creation. As explained, the
fermionic lines can indeed turn backwards in time by going through the wormhole throat and
turn backwards in time. The above picture suggests that this turning occurs only at the
singularities at which the partonic throats touch each other. The QFT analog would be as a
local vertex for pair creation.

6. If all fermions at a given boundary of CD have the same sign of energy, fermions which have
returned back to the boundary of CD, should correspond to antifermions without a change in
the sign of energy. This would make pair creation without fermionic 4-vertices possible.

If only the total energy has a fixed sign at a given boundary of CD, the returned fermion
could have a negative energy and correspond to an annihilation operator. This view is nearer
to the QFT picture and the idea that physical states are Galois confined states of virtual
fundamental fermions with momentum components, which are algebraic integers. One can
also ask whether the reversal of the arrow of time for the fermionic lines could give rise to
gravitational quantum computation as proposed in [A83].

4. A more detailed model for the exotic smooth structure associated with a topological 3-
vertex

One can ask what happens to the 4-surface near the topological 3-particle vertex and what
is the geometric interpretation of the point defect. The first is whether the description of the
situation is possible both in M8 and H. Here one must consider momentum conservation.

1. By Uncertainty Principle and momentum conservation at the level of M8, the incoming real
momenta of the particle reaction are integers in the scale defined by CD. In the standard
QFT picture, the momenta at the vertex of physical particles are at different mass shells.

In M8 picture, the mass squared values of virtual fermions are in general algebraic and also
complex roots of a polynomial defining the 3-D mass shells H3

m of M4 ⊂ M8, determining
4-surface by associative holography.

In the standard wave mechanical picture assumed also in TGD, a given topological vertex,
describable in terms of partonic 2-surfaces, would correspond to a multi-local vertex in M8 in
accordance with the representation of a local n-vertex in M4 as convolution of n-local vertices
in momentum space realizing momentum conservation.

2. M8−H duality maps M4 momenta by inversion to positions in M4 ⊂ H. This encourages the
question whether the topological vertex could be described also in M8 as a partonic surface
at single algebraic mass shell in M8, mapped by M8 − H duality to a single a = constant
hyperboloid in M4 ⊂ H.

The virtual momenta at the level of M8 are algebraic, in general complex, integers. The
algebraic mass squared values at the mass shell of M8 would be the same for all particles of
the vertex. This kind of correspondence does not make sense if M8 − H duality applies to
the full algebraic momenta. The assumption has been that it applies to the rational parts of
the momenta.

3. The rational parts of the algebraic integer valued 4-momenta of virtual fermions are in general
not at the same mass shell. Could this make possible a description in terms of partonic 2-
surfaces at fixed mass resp. a = consant shell at the level of M8 resp. H?

The classical space-time surface in H, partonic 2-surfaces and fermion lines at them are
characterized by classical momenta by Noether’s theorem. Quantum classical correspondence,
realized in ZEO as Bohr orbitology, suggests that the classical 4-momenta assignable to these
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objects correspond to the rational parts of the momenta at M8 mass shell. Could the rational
projections of M8 momenta at H3

n correspond to different mass squared values at given H3?

4. Note that this additional symmetry for complexified momentum space and position space
descriptions would be analogous to the duality of twistor amplitudes position space and the
space of area momenta.

How to describe the topological vertex in H? The goal is to understand how exotic smooth
structure and its point defects could emerge from this picture. The physical picture applied hitherto
is as follows.

1. 3 partonic orbits meet at a vertex described by a partonic 2-surface. Assume that they are
located to single a = constant H3 ⊂M4 ⊂ H.

2. The partonic wormhole throats appear as pairs at the opposite Minkowskian space-time sheets.
There are three pairs corresponding to 3 external particle lines and one line which must be
a bosonic line describing fermion-antifermion bound state disappears: this corresponds to a
boson absorption (or emission).

The opposite throats carry opposite magnetic monopole charges. The only possibility, not
noticed before, is that the opposite wormhole throats for the partoni orbit, which ends at the
vertex, must coincide at the vertex. The minimal option is that the exotic smooth structure
is associated with this partonic orbit turning back in time. The two partonic orbits, which
bind 4-D Euclidean regions as wormhole throats, would fuse to a larger 4-D surface with an
exotic smooth structure.

Fermion-antifermion annihilation occurs at a point at which fermion and antifermion lines
meet. The first guess is that this point corresponds to the defect of the smooth structure.

3. There is an analogy with the construction of Etesi [A52]in which a homologically non-trivial
ball CP1 glued to the C2 at infinity to construct an exotic smooth structure. One dimension
disappears for the glued 3-surface at infinity.

In the partonic vertex, one has actually two homologically non-trivial 2-surfaces with opposite
homology charges as boundaries between wormhole contact and Minkowskian regions and
they fuse together in the partonic vertex. Also now, one dimension disappears as the partonic
2-surfaces become identical so that 3-D wormhole contact contracts to single 2-D partonic
2-surface.

4. The defect for the smooth structure associated with the fusion of the pair of wormhole orbits
should correspond to a point at which fermion and antifermion lines meet.

This suggests that the throats do not fuse instantaneously but gradually. The fusion would
start from a single touching point identifiable asd the fermion-antifermion vertex, serving as
a seed of a phase transition, and would proceed to the entire wormhole contact so that it
reduces to a partonic 2-surface.

One can argue that one has a problem if this surface is homologically non-trivial. Could the
process make the closed partonic 2-surface homologically trivial. A simplified example is the
fusion of two circles with opposite winding numbers ±1 on a cylinder. The outcome is two
homologically non-trivial circles of opposite orientations on top of each other. The phase
transition starting from a point would correspond to a touching of the circles.

A couple of further comments are in order.

1. The connection of the pair of wormhole throats to the associative holography is an interesting
question. The 4-D tangent planes of X4 ⊂M8 mass shell correspond to points of CP2. They
would be different at the two parallel sheets.

At the mass shell H3
m the branches would coincide. The presence of two tangent planes

could give rise to two different holographic orbits, which coincide at the initial mass shell
and gradually diverge from each other just as in the above model for the fusion of partonic
2-surfaces. The failure of the strict determinism for the associative holography at the partonic
2-surface would make in TGD the analogy of fermion-antifermion annihilation vertex possible.

2. There is also an analogy with the cusp catastrophe in which the projection of the cusp
catastrophe as a 2-surface in 3-D space with behavior variable x and two control parameters
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(a, b) has a boundary at which two real roots of a polynomial of degree 3 coincide. The
projection to the (a, b) plane gives a sharp shape, whose boundary is a V-shaped curve in which
the sides of V become parallel at the vertex. The vertex corresponds to maximal criticality.
The particle vertex would be a critical phenomenon in accordance with the interpretation as
a phase transition.

5.7.6 Is a master formula for the scattering amplitudes possible?

Marko Manninen asked whether TGD can in some sense be reduced to a single equation or principle
is very interesting. My basic answer is that one could reduce TGD to a handful of basic principles
but formula analogous to F = ma is not possible. However, at the level of classical physics,
one could perhaps say that general coordinate invariance → holography ← 4-D generalization
of holomorphy [?]educe the representations of preferred extremals as analogs of Bohr orbits for
particles as 3-surfaces to a representation analogous to that of a holomorphic function.

Can one hope something analogous to happen at the level of scattering amplitudes? Is some
kind of a master formula possible? I have considered many options, even replacing the S-matrix
with the Kähler metric in the fermionic degrees of freedom [L112]. The motivation was that the
rows of the matrix defining Kähler metric define unit vectors allowing interpretation in terms of
probability conservation. However, it seems that the concept of zero energy state alone makes the
definition unambiguous and unitarity is possible without additional assumptions.

1. In standard quantum field theory, correlation functions for quantum fields give rise to scatter-
ing amplitudes. In TGD, the fields are replaced by the spinor fields of the ”world of classical
worlds” (WCW) which can regarded as superpositions of pairs of multi-fermion states re-
stricted at the 3-D surfaces at the ends of the 4-D Bohr orbits at the boundaries of CD.

These 3-surfaces are extremely strongly but not completely correlated by holography implied
by 4-D general coordinate invariance. The modes of WCW spinor fields at the 3-D surfaces cor-
respond to irreducible unitary representations of various symmetries, which include supersym-
plectic symmetries of WCW and Kac-Moody type symmetries [K31, K85] [L121, L130, L137].
Hence the inner product is unitary.

2. Whatever the detailed form of the 3-D parts of the modes of WCW spinor fields at the
boundaries of CD is, they can be constructed from ordinary many fermion states. These
many-fermion state correspond in the number theoretic vision of TGD to Galois singlets
realizing Galois confinement [L137, L132, L135]. They are states constructed at the level of
M8 from fermion with momenta whose components are possibly complex algebraic integers
in the algebraic extension of rationals defining the 4-D region of M8 mapped to H by M8−H
duality. Complex momentum means that the corresponding state decomposes to plane waves
with a continuum of momenta. The presence of Euclidian wormhole contact makes already
the classical momenta complex.

Galois confined states have momenta, whose components are integers in the momentum scale
defined by the causal diamond (CD). Galois confinement defines a universal mechanism for the
formation of bound states. The induced spinor fields are second quantized free spinor fields
in H and their Dirac propagators are therefore fixed. This means an enormou calculational
simplification.

3. The inner products of these WCW spinor fields restricted to 3-surfaces determine the scat-
tering amplitudes. They are non-trivial since the modes of WCW spinor fields are located at
opposite boundaries of CD. These inner products define the zero energy state identifiable as
such as scattering amplitudes. This is the case also in wave mechanics and quantum TGD is
indeed wave mechanics for particles identified as 3-surfaces.

4. There is also a functional integral of these amplitudes over the WCW, i.e. over the 4-D
Bohr orbits. This defines a unitary inner product. The functional integral replaces the
path integral of field theory and is mathematically well-defined since the Kähler function,
appearing in the exponent defining vacuum functional, is a non-local function of the 3-surface
so that standard local divergences due to the point-like nature of particles disappear. Also
the standard problems due to the presence of a Hessian coming from a Gaussian determinant
is canceled by the square foot of the determinant of the Kähler metric appearing in the
integration measure [K52, K85].
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5. The restriction of the second quantized spinor fields to 4-surfaces and zero-energy ontology are
absolutely essential. Induction turns free fermion fields into interacting ones. The spinor fields
of H are free and define a trivial field theory in H. The restriction to space-time surfaces
changes the situation. Non-trivial scattering amplitudes are obtained since the fermionic
propagators restricted to the space-time surface are not anymore free propagators in H.
Therefore the restriction of WCW spinors to the boundaries of CD makes the fermions interact
in exactly the same way as it makes the induced spinor connection and the metric dynamical.

There are a lot of details involved that I don’t understand, but it would seem that a simple
”master formula” is possible. Nothing essentially new seems to be needed. There is however one
more important ”but”.

Are pair production and boson emission possible?

The question that I have pondered a lot is whether the pair production and emission of bosons
are possible in the TGD Universe. In this process the fermion number is conserved, but fermion
and antifermion numbers are not conserved separately. In free field theories they are, and in
the interacting quantum field theories, the introduction of boson fermion interaction vertices is
necessary. This brings infinities into the theory.

1. In TGD, the second quantized fermions in H are free and the boson fields are not included
as primary fields but are bound states of fermions and antifermions. Is it possible to produce
pairs at all and therefore also bosons? For example, is the emission of a photon from an
electron possible? If a photon is a fermion-antifermion pair, then the fermion and antifermion
numbers cannot be preserved separately. How to achieve this?

2. If fundamental fermions correspond to light-like curves at light-like orbit of partonic 2-surfaces,
pair creation requires that that fermion trajectory turns in time direction. At this point
velocity is infinite and this looks like a causal anomaly. There are two options: the fermion
changes the sign of its energy or transforms to antiferion with the same sign of energy.

Different signs of energy is not possible since the annihilation operator creating the fermion
with opposite energy would annihilate either the final state or some fermion in the final state
so that both fermion and antifermion numbers of the final state would be the same as those
of the initial state.

On the other hand, it can be said that positive energy antifermions propagate backwards
in time because in the free fermion field since the terms proportional to fermion creation
operators and antifermion annihilation operators appear in the expression of the field as sum
of spinor modes.

Therefore a fermion-antifermion pair with positive energies can be created and corresponds
to a pair of creation operators. It could also correspond to a boson emission and to a field
theory vertex, in which the fermion, antifermion and boson occur. In TGD, however, the
boson fields are not included as primary fields. Is such a ”vertex without a vertex” possible
at all?

3. Can one find an interpretation for this creation of a pair that is in harmony with the standard
view. Space-time surfaces are associated with induced classical gauge potentials. In standard
field theory, they couple to fermion-antifermion pairs, and pairs can be created in classical
fields. The modified Dirac equation [K113] and the Dirac equation in H also have such a
coupling. Now the modified Dirac equation holds true at the fermion lines at the light-like
orbits of the partonic 2-surface. Does the creation of pairs happen in this way? It might
do so: also in the path integral formalism of field theories, bosons basically correspond to
classical fields and the vertex is just this except that in TGD fermions are restricted to 1-D
lines.

Fundamental fermion pair creation vertices as local defects of the standard smooth
structure of the space-time surface?

Here comes the possible connection with a very general mathematical problem of general relativity
that I have already discussed.
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1. Causal anomalies as time loops that break causality are more the rule than an exception in
general relativity the essence of the causal anomaly is the reversal of the arrow of time. Causal
anomalies correspond to exotic diffeo-structures that are possible only in dimension D = 4!
Their number is infinite.

2. Quite generally, the exotic smooth structures reduce to defects of the usual differentiable
structure and have measure zero. Assume that they are point like defects. Exotic differentiable
structures are also possible in TGD, and the proposal is that the associated defects correspond
to a creation of fermion-fermion pairs for emission of fermion pairs of of gauge bosons and
Higgs particle identified in TGD as bound states of fermion-antifermion pairs. This picture
generalizes also to the case of gravitons, which would involve a pair of vertices of this kind.
The presence of 2 vertices might relate to the weakness of the gravitational interaction.

The reversal of the fermion line in time direction would correspond to a creation of a fermion-
antifermion pair: fermion and antiferion would have the same sign of energy. This would be
a causal anomaly in the sense that the time direction of the fermion line is reversed so that
it becomes an antifermion.

I have proposed that this causal anomaly is identifiable as an anomaly of differentiable struc-
ture so that emission of bosons and fermion pairs would only be possible in dimension 4: the
space-time dimension would be unique!

3. But why would a point-like local defect of the differentiable structure correspond to a fermion
pair creation vertex. In TGD, the point-like fermions correspond to 1-D light-like curves at
the light-like orbit of the partonic 2-surface.

In the pair creation vertex in presence of classical induced gauge potentials, one would have
a V-shaped world line of fermion turning backwards in time meaning that antifermion is
transformed to fermion. The antifermion and fermion numbers are not separately conserved
although the total fermion number is. If one assumes that the modified Dirac equation holds
true along the entire fermion worldline, there would be no pair creation.

If it holds true only outside the V-shaped vertex the modified Dirac action for the V-shaped
fermion libe can be transformed to a difference of antifermion number equal to the disconti-
nuity of the antifermion part of the fermion current identified as an operator at the vertex.
This would give rise to a non-trivial vertex and the modified gamma matrices would code
information about classical bosonic action.

4. The 1-D curve formed by fermion and antifermion trajectories with opposite time direction
turns backwards in time at the vertex. At the vertex, the curve is not differentiable and this is
what the local defect of the standard smooth differentiable structure would mean physically!

Master formula for the scattering amplitudes: finally?

Most pieces that have been identified over the years in order to develop a master formula for the
scattering amplitudes are as such more or less correct but always partially misunderstood. Maybe
the time is finally ripe for the fusion of these pieces to a single coherent whole. I will try to list
the pieces into a story in the following.

1. The vacuum functional, which is the exponential Kähler function defined by the classical
bosonic action defining the preferred extremal a an analog of Bohr orbit, is the starting point.
Physically, the Kähler function corresponds to the bosonic action (e.g. EYM) in field theories.

Because holography is almost unique, it replaces the path integral by a sum over 4-D Bohr
trajectories as a functional integral over 3-surfaces plus discrete sum.

2. However, the fermionic part of the action is missing. I have proposed a long time ago a super
symmetrization of the WCW Kähler function by adding to it what I call modified Dirac action.
It relies on modified gamma matrices modified gamma matrices Γα, which are contractions
ΓkT

αk of H gamma matrices Γk with the canonical momentum currents Tαk = ∂L/∂∂αhk
defined by the Lagrangian L. Modified Dirac action is therefore determined by the bosonic
action from the requirement of supersymmetry. This supersymmetry is however quite different
from the SUSY associated with the standard model and it assigns to fermonic Noether currents
their super counterparts.
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Bosonic field equations for the space-time surface actually follow as hermiticity conditions
for the modified Dirac equation. These equations also guarantee the conservation of fermion
number(s). The overall super symmetrized action that defines super symmetrized Kähler
function in WCW would be unambiguous. One would get exactly the same master formula
as in quantum field theories, but without the path integral.

3. The overall super symmetrized action is sum of contributions assignable to the space-time
surface itself, its 3-D light-like parton orbits as boundaries between Minkowskian regions and
Euclidian wormhole contact, 2-D string world sheets and their 1-D boundaries as orbits of
point-like fermions. These 1-D boundaries are the most important and analogous to the lines
of ordinary Feynman diagrams. One obtains a dimensional hierarchy.

4. One can assign to these objects of varying dimension actions defined in terms of the induced
geometry and spinor structure. The supersymmetric actions for the preferred extremals anal-
ogous to Bohr orbit in turn give contributions to the super symmetrized Kähler function as
an analogue of the YM action so that, apart from the reduction of path integral to a sum
over 4-D Bohr orbits, there is a very close analogy with the standard quantum field theory.

However, some problems are encountered.

1. It seems natural to assume that a modified Dirac equation holds true. I have presented an
argument for how it indeed emerges from the induction for the second quantized spinor field
in H restricted to the space-time surface assuming modified Dirac action.

The problem is, however, that the fermionic action, which should define vertex for fermion pair
creation, disappears completely if Dirac’s equation holds everywhere! One would not obtain
interaction vertices in which pairs of fermions arise from classical induced fields. Something
goes wrong. In this vertex total fermion number is conserved but fermion and antifermion
numbers are changed since antifermion transforms to fermion at the V-shaped vertex: this
condition should be essential.

2. If one gives up the modified Dirac equation, the fermionic action does not disappear. In this
case, one should construct a Dirac propagator for the modified Dirac operator. This is an
impossible task in practice.

Moreover, the construction of the propagator is not even necessary and in conflict with
the fact that the induced spinor fields are second quantized spinors of H restricted to the
space-time surface and the propagators are therefore well-defined and calculable and define
the propagation at the space-time surface.

3. Should we conclude that the modified Dirac equation cannot hold everywhere? What these,
presumably lower-dimensional regions of space-time surface, are and could they give the
interaction vertices as topological vertices?

The key question is how to understand geometrically the emission of fermion pairs and
bosons as their bound states?

1. I have previously derived a topological description for reaction vertices. The fundamental 1
→ 2 vertex (for example e→e+ gamma) generalizes the basic vertex of Feynman diagrams,
where a fermion emits a boson or a boson decays into a pair of fermions. Three lines meet at
the ends.

In TGD, this vertex can topologically correspond to the decomposition of a 3-surface into two
3-surfaces, to the decomposition of a partonic 2-surface into two, to the decomposition of a
string into two, and finally, to the turning of the fermion line backwards from time. One can
say that the n-surfaces are glued together along their n − 1-dimensional ends, just like the
1-surfaces are glued at the vertex in the Feynman diagram.

2. In the previous section, I already discussed how to identify vertex for fermion-antifermion
pair creation as a V-shaped turning point of a 1-D fermion line. The fermion line turns back
in time and fermion becomes an antifermion. In TGD, the quantized boson field at the vertex
is replaced by a classical boson field. This description is basically the same as in the ordinary
path integral where the gauge potentials are classical.

The problem was that if the modified Dirac equation holds everywhere, there are no pair
creation vertices. The solution of the problem is that the modified Dirac equation at the
V-shaped vertex cannot hold true.
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What this means physically is that fermion and antifermion numbers are not separately con-
served in the vertex. The modified Dirac action for the fermion line can be transformed to the
change of antifermion number as operator (or fermion number at the vertex) expressible as
the change of the antifermion part of the fermion number. This is expressible as the discon-
tinuity of a corresponding part of the conserved current at the vertex. This picture conforms
with the appearance of gauge currents in gauge theory vertices. Notice that modified gamma
matrices determined by the bosonic action appear in the current.

3. This argument was limited to 1-D objects but can be generalized to higher-dimensional de-
fects by assuming that the modified Dirac equation holds true everywhere except at defects
represented as vertices, which become surfaces. The modified Dirac action reduces to an
integral of the discontinuity of say antifermion current at the vertex, i.e. the change of the
antifermion charge as an operator.

What remains more precisely understood and generalized, is the connection with the irre-
ducible exotic smooth structures possible only in 4-D space-time.

1. TGD strongly suggests that 0-dimensional vertices generalize to topological vertices repre-
sentable as surfaces of dimension n = 0, 1, 2, 3 assignable to objects carrying induced spinor
field. In the 1→ 2 vertex, the orbit of an n < 4- dimensional surface would turn back in
the direction of time and would define a V-shaped structure in time direction. These would
be the various topological vertices that I have previously arrived at, but guided by a phys-
ical intuition. Also now the vertex would boild down to the discontinuity of say antifermion
current instead of the current itself at the vertex.

2. It is known that exotic smooth structures reduce to standard ones except in a set of defects
having measure zero. Also non-point-like defects might be possible in contrast to what I
assumed at first. If the defects are surfaces, their dimension is less than 4. If not, then only
the direction of fermion lines could change.

If the generalization is possible, also 1-D, 2-D, and 3-D defects, defining an entire hierarchy of
particles of different dimensions, is possible. As a matter of fact, a longstanding issue has been
whether this prediction should be taken seriously. Note that in topological condensed matter
physics, defects with various dimensions are commonplace. One talks about bulk states,
boundary states, edge states and point-like singularities. In this would predict hierarchy of
fermionic object of various dimensions.

To summarize, exotic smooth structures would give vertices without vertices assuming only
free fermions fields and no primary boson fields! And this is possible only in space-time dimension
4!

5.8 A possible connection with family replication phenomenon?

In TGD framework the genus g of the partonic 2-surfaces is proposed to label fermion families
[K28, K60, K64]. One can characterize by genus g the topology of light-like partonic orbits and
identify the three fermion generators as 2-surfaces with genus g = 0, 1, 2 with the special property
that they are always hyper-elliptic. Quantum mechanically also topological mixing giving rise to
CKM mixing is possible. The view is that given connected 3-surface can contain several light-like
3-surface with different genera. For instance, hadrons would be such surfaces.

There are however questions to be answered.

1. The genera g = 0, 1, 2 assigned with the free fermion families correspond to Riemann surfaces,
which are always hyper-elliptic allowing therefore Z2 as a global conformal symmetry. These
complex curves correspond to degrees n = 2, 3, 4 for the corresponding polynomials. For
n ≤ 4 can write explicit solutions for the roots of the polynomials. Could there be a deep
connection between particle physics and mathematical cognition?

2. The homology and genus for 2-surfaces of CP2 correlate with each other [A76]: is this con-
sistent with the proposed topologicization of color hypercharge implying color confinement?

3. heff/h = n hypothesis means that dark variant of particle particle characterized by genus g
is n-fold covering of this surface. In the general case the genus of covering is different. Is this
consistent with the genus-generation correspondence?
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4. The degree of complex curve correlates with the genus of the curve. Is generation-genus
correspondence consistent with the assumption that partonic 2-surfaces have algebraic curve
as CP2 projection (this need not be the case)?

5.8.1 How the homology charge and genus correlate?

Complex surfaces in CP2 are highly interesting from TGD point of view.

1. The model for elementary particles assumes that the partonic 2-surfaces carrying fermion
number are homologically non-trivial, in other words they carry Kähler magnetic monopole
flux having values q = ±1 and q = ±2. The idea is that color hyper charge Y = {±2/3,±1/3}
is proportional to n for quarks and color confinement topologizes to the vanishing of total
homology charge [K64].

2. The explanation of the family replication phenomenon [K28] in terms of genus-generation
correspondence states that the three quarks and lepton generations correspond to the three
lowest genera g = 0, 1, 2 for partonic 2-surfaces. Only these genera are always hyper-elliptic
allowing thus a global Z2 conformal symmetry. The physical vision is that for higher genera
the handles behave like free particles. Is this proposal consistent with the proposal for the
topologization of color confinement?

There is a result [A76] (page 124) stating that if the homology charge q is divisible by 2
then one must have g ≥ q2/4 − 1. If q is divisible by h, which is odd power of prime, one has
g ≥ (q2/4− 1)− (q2/4h2). For q = 2 the theorem allows g ≥ 0 so that all genera with color hyper
charge Y = ±2/3 are realized.

The theorem says however nothing about q = 0, 1. These charges can be assigned to the two
different geodesic spheres of CP2 with g = 0 remaining invariant under SO(3) and U(2) subgroups
of SU(3) respectively. Is g > 0 possible for q = 1 as the universality of topological color confinement
would require? For q = 3 one would have g ≥ 1. For q = 4 h = 2 divides q and one has g ≥ 2. It
would seem g ≥ 5. The conditions become more restrictive for higher q, which suggests that for
q = 0, 1 one has g ≥ 0 so that the topologization of color hypercharge would make sense.

5.8.2 Euler characteristic and genus for the covering of partonic 2-
surface

Hierarchy of Planck constants heff/h = n means a hierarchy of space-time surfaces identifiable as
n-fold coverings. The proposal is that the number of sheets in absence of singularities is maximal
possible and equals to the dimension of the extension dividing the order of its Galois group.

The Euler characteristic of n-fold covering in absence of singular points is χn = nχ. If there
are singular (ramified) points these give a correction term given by Riemann-Hurwitz formula (see
http://tinyurl.com/y7n2acub.)

In absence of singularities one has from χ = −2(g − 1) and χn = nχ

gn = n(g − 1) + 1 . (5.8.1)

For n = 1 this indeed gives g1 = g independent of g. One can also combine this with the formula
g = (d− 1)(d− 2)/2 holding for non-singular algebraic curves of degree d.

Singularities are unavoidable at algebraic points of cognitive representations at which some
subgroup of Galois group leaves the point invariant (say rational point in ordinary sense). One can
consider the possibility that fermions are located at the singular points at which several sheets of
covering touch each other. This would give a correction factor to the formula. If the projection map
from the covering to based is of form Π(z) = zn at the singular point P , one says that singularity
has ramimifaction index eP = n and the algebraic genus would increase to

gn = n(g − 1) + 1 +
1

2

∑
P

(eP − 1) . (5.8.2)

http://tinyurl.com/y7n2acub
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Indeed, singularities mean that sheets touch each other at singular points and this increases con-
nectivity.

Under what conditions the genus of dark partonic surface with n > 1 can be same as that
of the ordinary partonic surface representing visible matter? For the genera g = 0 and g = 1 this
is possible so that these genera would be in an exceptional role also from the point of view of dark
matter.

1. For g = 1 one has gn = g = 1 independent of n in absence of singular point. Torus topology
(assignable to muon and (c,s) quarks) is exceptional. In presence of singularities the genus
would increase by the

∑
P (eP − 1)/2 independent of the value of n. The lattice of points for

elliptic surfaces would suggest existence of infinite number of singular points if the abelian
group operations preserve the singular character of the points so that the genus would become
infinite.

2. For g = 0 one would have gn = −n + 1 in absence of singularities. Only n = 1 - ordinary
matter - is possible without singularities. Dark matter is however possible if singularities are
allowed. For sphere one would obtain gn = −n + 1 +

∑
P (eP − 1)/2 ≥ 0. The condition

n ≤
∑
P (eP − 1)/2 + 1 must therefore hold true for g ≥ 0.

The condition gn = −n + 1 +
∑
P (eP − 1)/2 = g = 0 gives

∑
P (eP − 1) = 2(n − 1). For

spherical topology it is possible to have dense set of rational points so that it is possible create
cognitive representations with arbitrary number of points which can be also singular. One
might argue that this kind of situation corresponds to a non-perturbative phase.

3. For g = 2 one would have gn = n+ 1 +
∑
P (eP − 1)/2 and genus would grow with n even in

absence of singularities and would be very large for large values of heff . gn = 2 is obtained
with n = 1 (ordinary matter) and no singular points not even allowed for n = 1. gn = g = 2
is not possible for n > 1.

Note that dark g ≥ 2 fermions cannot correspond to lower generation fermions with singular
points of covering. More generally, one could say that g ≥ 2 fermions can exists only with
standard value of Planck constant unless they are singular coverings of g < 2 fermions.

What is clear that the model of dark matter predicts breaking of universality. This breaking
is not seen in the standard model couplings but makes it visible in amore delicate manner and
might allow to understand why the masses of fermions increase with generation index.

5.8.3 All genera are not representable as non-singular algebraic curves

Suppose for a moment that partonic 2-surfaces correspond to rational maps of algebraic curves in
CP2 to M4 that is deformations of these curves in M4 direction. This assumption is of course
questionable but deserves to be sttudied.

The formula (for algebraic curve see http://tinyurl.com/nt6tkey)

g =
(d− 1)(d− 2)

2
+

∑
δs

2
,

where δs > 0 characterizes the singularity, does not allow all genera for algebraic curves for∑
δs = 0: one has g = 0, 0, 1, 3, 6, 10, .. for d = 1, 2, ....

For instance, g = 2, which would correspond in TGD to third quark or lepton generation is
not possible without singularities for d = 3 curve having g = 1 without singularities!

This raises questions. Could the third fermion generation actually correspond to g = 3?
Or does it correspond to g = 2 2-surface of CP2, which is more general surface than algebraic
curve meaning that it is not representable as complex surface? Or could third generation fermions
correspond to g = 0 or g = 1 curves with singular point of covering by Galois group so that several
sheets touch each other?

To sum up, if the results for algebraic varieties generalize to TGD framework, they suggest
notable differences between different fermion families. Universality of standard model interactions
says that the only differences between fermion families are due to the differ masses. It is not clear
whether the different masses could be due to the differences at number theoretical level and dark
matter sectors.

http://tinyurl.com/nt6tkey
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1. All genera can appear as as ordinary matter (d = 1). Dark variants of g = 1 states have
gd = 1 automatically in absence of singular points. Dark variants of g = 0 states must have
singular point in order to give gn = 0. Dark variants of g = 2 states with gd = 2 are obtained
from g = 1 states with singularities. The special role of the two lowest is analogous to their
special role for algebraic curves.

2. If one assumes that partonic 2-surfacs correspond to algebraic curves, one obtains again that
g = 2 surfaces must correspond to singular g = 0 and g = 1 which could be dark in TGD
sense.

5.9 Summary and future prospects

In the following I give a brief summary about what has been done. I concentrate on M8 − H
duality since the most significant results are achieved here.

It is fair to say that the new view answers the following a long list of open questions.

1. When M8−H correspondence is true (to be honest, this question emerged during this work!)?
What are the explicit formulas expressing associativity of the tangent space or normal space
of the 4-surface?

The key element is the formulation in terms of complexified M8 - M8
c - identified in terms

of octonions and restriction M8
c →M8. One loses the number field property but for polyno-

mials ring property is enough. The level surfaces for real and imaginary parts of octonionic
polynomials with real coefficients define 4-D surfaces in the generic case.

Associativity condition is an additional condition reducing the dimension of the space-time
surface unless some components of RE(P ) or IM(P ) are critical meaning that also their
gradients vanish. This conforms with the quantum criticality of TGD and provides a concrete
first principle realization for it.

An important property of IM(P1P2) is its linearity with respect to IM(Pi) implying that
this condition gives the surfaces IM(Pi) = 0 as solutions. This generalizes by induction
to IM(P1P2...Pn). For RE(P1P2) = 0 linearity does not hold true and there is a genuine
interaction. A physically attractive idea idea is that RE(P1P2) = 0 holds true inside CDs
and for wormhole contacts between space-time sheets with Minkoskian signature. One can
generalizes this also to IM(P1/P2) and RE(P1/P2) if rational functions are allowed. Note
however that the origins of octonionic coordinates in Pi must be on the octonionic real line.

2. How this picture corresponds to twistor lift? The twistor lift of Kähler action (dimension-
ally reduced Kähler action in twistor space of space-time surface) one obtains two kinds of
space-time regions. The regions, which are minimal surfaces and obey dynamics having no
dependence on coupling constants, correspond naturally to the critical regions in M8 and H.

There are also regions in which one does not have extremal property for both Kähler action
and volume term and the dynamics depends on coupling constant at the level of H. These
regions are associative only at their 3-D ends at boundaries of CD and at partonic orbits, and
the associativity conditions at these 3-surfaces force the initial values to satisfy the conditions
guaranteeing preferred extremal property. The non-associative space-time regions are assigned
with the interiors of CDs. . The particle orbit like space-time surfaces entering to CD are
critical and correspond to external particles.

It has later turned out [L64] that it might be possible to take the associativity conditions
to extreme in the sense that they would hold everywhere apart from a set of discrete points
and space-time surface would be minimal surfaces at all points except this finite set of points.
There would be transfer of conserved quantities assignable to the volume term and the 4-D
Kähler action (coming as dimensionally reduced 6-D Kähler action for the twistor lift of TGD)
only at these points and elementary fermions would be naturally assignable to these points.

3. The surprise was that M4 ⊂M8 is naturally co-associative. If associativity holds true also at
the level of H, M4 ⊂ H must be associative. This is possible if M8−H duality maps tangent
space in M8 to normal space in H and vice versa.

4. The connection to the realization of the preferred extremal property in terms of gauge con-
ditions of subalgebra of SSA is highly suggestive. Octonionic polynomials critical at the
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boundaries of space-time surfaces would determine by M8 −H correspondence the solution
to the gauge conditions and thus initial values and by holography the space-time surfaces in
H.

5. A beautiful connection between algebraic geometry and particle physics emerges. Free many-
particle states as disjoint critical 4-surfaces can be described by products of corresponding
polynomials satisfying criticality conditions. These particles enter into CD , and the non-
associative and non-critical portions of the space-time surface inside CD describe the interac-
tions. One can define the notion of interaction polynomial as a term added to the product of
polynomials. It can vanish at the boundary of CD and forces the 4-surface to be connected
inside CD. It also spoils associativity: interactions are switched on. For bound states the
coefficients of interaction polynomial are such that one obtains a bound state as associative
space-time surface.

6. This picture generalizes to the level of quaternions. One can speak about 2-surfaces of space-
time surface with commutative or co-commutative tangent space. Also these 2-surfaces would
be critical. In the generic case commutativity/co-commutativity allows only 1-D curves.

At partonic orbits defining boundaries between Minkowskian and Euclidian space-time regions
inside CD the string world sheets degenerate to the 1-D orbits of point like particles at their
boundaries. This conforms with the twistorial description of scattering amplitudes in terms
of point like fermions.

For critical space-time surfaces representing incoming states string world sheets are possible
as commutative/co-commutative surfaces (as also partonic 2-surfaces) and serve as correlates
for (long range) entaglement) assignable also to macroscopically quantum coherent system
(heff/h = n hierarchy implied by adelic physics).

7. The octonionic polynomials with real coefficients form a commutative and associative algebra
allowing besides algebraic operations function composition. Space-time surfaces therefore
form an algebra and WCW has algebra structure. This could be true for the entire hierarchy
of Cayley-Dickson algebras, and one would have a highly non-trivial generalization of the
conformal invariance and Cauchy-Riemann conditions to their n-linear counterparts at the
n:th level of hierarchy with n = 1, 2, 3, .. for complex numbers, quaternions, octonions,... One
can even wonder whether TGD generalizes to this entire hierarchy!

8. In the original version of this article I did not realize that there are two options for realizing
the idea that the M4

c projection of space-time surface in M8
c must belong to M4.

(a) I proposed that the projection from M8
c to real M4 (for which M1 coordinate is real

and E3 coordinates are imaginary with respect to i!) defines the real space-time surface
mappable by M8 −H duality to CP2 [L46].

(b) An alternative option, which I have not considered in the original versions of [L46, L48]
is that only the roots of the 4 vanishing polynomials as coordinates of M4

c belong to M4

so that m0 would be real root and mk, k = 1, ..., 3 imaginary with respect to i→ −i. M8
c

coordinates would be invariant (“real”) under combined conjugation i → −i, Ik → −Ik.
In the following I will speak about this property as Minkowskian reality. This could
make sense. Outside CD these conditions would not hold true. This option looks more
attractive than the first one. Why these condition can be true just inside CD, should be
understood.

9. The use of polynomials or rational functions could be also an approximation. Analytic func-
tions of real variable extended to octonionic functions would define the most general space-time
surfaces but the limitations of cognition would force to use polynomial approximation. The
degree n of the polynomial determining also heff = nh0 would determine the quality of the
approximation and at the same time the “IQ” of the system.

All big pieces of quantum TGD are now tightly interlinked.

1. The notion of causal diamond (CD) and therefore also ZEO can be now regarded as a conse-
quence of the number theoretic vision and M8−H correspondence, which is also understood
physically.

2. The hierarchy of algebraic extensions of rationals defining evolutionary hierarchy corresponds
to the hierarchy of octonionic polynomials.
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3. Associative varieties for which the dynamics is critical are mapped to minimal surfaces with
universal dynamics without any dependence on coupling constants as predicted by twistor lift
of TGD. The 3-D associative boundaries of non-associative 4-varieties are mapped to initial
values of space-time surfaces inside CDs for which there is coupling between Kähler action
and volume term.

4. Free many particle states as algebraic 4-varieties correspond to product polynomials in the
complement of CD and are associative. Inside CD the addition of interaction terms vanishing
at its boundaries spoils associativity and makes these varieties connected.

5. The super variant of the octonionic algebraic geometry makes sense, and one obtains a beauti-
ful correlation between the fermion content of the state and corresponding space-time variety.
This suggests that twistorial construction indeed generalizes. Criticality for the external parti-
cles giving rise to additional constraints on the coefficients of polynomials could make possible
to have well-define summation over corresponding varieties.

What mathematical challenges one must meet?

1. One should prove more rigorously that criticality is possible without the reduction of dimen-
sion of the space-time surface.

2. One must demonstrate that SSA conditions can be true for the images of the associative
regions (with 3-D or 4-D). This would obviously pose strong conditions on the values of
coupling constants at the level of H.

Concerning the description of interactions there are several challenges.

1. Do associative space-time regions have minimal surface extremals as images in H and indeed
obeying universal critical dynamics? As found, the study of the known extremals supports
this view.

2. Could one construct the scattering amplitudes at the level of M8? Here the possible problems
are caused by the exponents of action (Kähler action and volume term) at H side. Twistorial
construction [K87] however leads to a proposal that the exponents actually cancel. This
happens if the scattering amplitude can be thought as an analog of Gaussian path integral
around single extremum of action and conforms with the integrability of the theory. In fact,
nothing prevents from defining zero energy states in this manner! If this holds true then it
might be possible to construct scattering amplitudes at the level of M8.

3. What about coupling constants? Coupling constants make themselves visible at H side both
via the vanishing conditions for Noether charges in sub-algebra of SSA and via the values of
the non-vanishing Noether charges. M8−H correspondence determining the 3-D boundaries
of interaction regions within CDs suggests that these couplings must emerge from the level M8

via the criticality conditions posing conditions on the coefficients of the octonionic polynomials
coding for interactions.

Could all coupling constant emerge from the criticality conditions at the level of M8? The
ratio of R2/l2P of CP2 scale and Planck length appears at H level. Also this parameter should
emerge from M8 − H correspondence and thus from criticality at M8 level. Physics would
reduce to a generalization of the catastrophe theory of Rene Thom!

4. The description of interactions at the space-time surface associated with single CD should be
M8 counterpart of the H picture in which 3 light-like partonic orbits meet at common end
topological vertex - defined by a partonic 2-surface and fermions scatter without touching.
Now one has octonionic sparticle lines and interaction vertex becomes possible. This conforms
with the idea that interactions take place at discrete points belonging to the extension of
rationals. The partonic 2-surfaces defining topological vertices would naturally correspond to
the intersections X2 = X4 ∩ S6(tn). If sparticle lines are allowed to move along this space-
like 2-surface (the line becomes space-like) they can intersect and give rise to a fusion vertex
producing the third fermionic line.

The partonic 2-surfaces defining topological vertices would naturally correspond to the inter-
sections X2 = X4 ∩ S6(tn), which satisfy RE(P ) = IM(P ) = 0 and are singular and doubly
critical. If sparticle lines are allowed to move along this space-like 2-surface (the line becomes
space-like) they can intersect and give rise to a fusion vertex producing the third fermionic
line.
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5. Real analyticity requires that the octonionic polynomials have real coefficients. This forces
the origin of octonionic coordinates to be at real line (time axis) in the octonionic sense, and
guarantees the associativity and commutativity of the polynomials. Arbitrary CDs cannot
be located along this line. Can one assume that all CDs involved with observable processes
satisfy this condition?

If not, how do the 4-varieties associated with octonionic polynomials with different origins
interact? How could one avoid losing the extremely beautiful associative and commutative
algebra? It seems that one cannot form their products and sums and must form the Cartesian
product of M8:s with different tips for CDS and formulate the interaction in this framework.
In the case of space-time surfaces associated with different CDs the discrete intersections of
space-time surfaces would define the interaction vertices.

6. Super-octonionic geometry suggests that the twistorial construction of scattering amplitudes
in N = 4 SUSY generalizes to TGD in rather straightforward manner to a purely geometric
construction. Functional integral over WCW would reduce to summations over polynomials
with coefficients in an appropriate extension of rationals and criticality conditions on the coef-
ficients could make the summation well-defined by bringing in finite measurement resolution.

If scattering diagrams are associated with discrete cognitive representations, one obtains a
generalization of super-twistor formalism involving polygons. Super-octonions as counterparts
of super gauge potentials are well-defined if octonionic 8-momenta are quaternionic: indeed,
Grassmannians have quaternionic counterparts but not octonionic ones. There are good
hopes that the twistor Grassmann approach to N = 4 SUSY generalizes. The core part
in the calculation of the scattering diagram would reduce to the construction of octonionic
4-varieties and identifying the points belonging to the extension of rationals considered. The
rest would be dictated by symmetries and integrations over various moduli spaces, which
should be number theoretically universal so that residue calculus strongly suggests itself.

7. What is the connection with super conformal variant of Yangian symmetry, whose generaliza-
tion in TGD framework is highly suggestive? Twistorial construction of scattering amplitudes
at the level of M8 looks highly promising idea and could also realize Yangian supersymmetry.
The conjecture is that the twistorial amplitudes decompose to M4 and CP2 parts with similar
structure with E4 spin (electroweak isospin) replacing ordinary spin and that the integrands
in Grassmannians emerging from the conservation of M4 and E4 4-momenta are identical in
the two cases and thus guarantee Yangian supersymmetry in both sectors. The only differ-
ence would be due to the product of delta functions associated with the “negative helicities”
(weak isospins with negative sign) expressible as a delta function in the complement of SU(3)
Cartan algebra U(1)× U(1) by using exponential map.

It is appropriate to close with a question about fundamentals.

1. The basic structure at M8 side consists of complexified octonions. The metric tensor for the
complexified inner product for complexified octonions (no complex conjugation with respect
to i for the vectors in the inner product) can be taken to have any signature (ε1, ..., ε8),
εi = ±1. By allowing some coordinates to be real and some coordinates imaginary one
obtains effectively any signature from say purely Euclidian signature. What matters is that
the restriction of complexified metric to the allowed sub-space is real. These sub-spaces are
linear Lagrangian manifolds for Kähler form representing the commuting imaginary unit i.
There is analogy with wave mechanics. Why M8 -actually M4 - should be so special real
section? Why not some other signature?

2. The first observation is that the CP2 point labelling tangent space is independent of the
signature so that the problem reduces to the question why M4 rather than some other sig-
nature (ε1, .., ε4). The intersection of real subspaces with different signatures and same origin
(t, r) = 0 is the common sub-space with the same signature. For instance, for (1,−1,−1,−1)
and (−1,−1,−1,−1) this subspace is 3-D t = 0 plane sharing with CD the lower tips of CD.
For (−1, 1, 1, 1) and (1, 1, 1, 1) the situation is same. For (1,−1,−1,−1) and (1, 1,−1,−1)
z = 0 holds in the intersection having as common with the lower boundary of CD the bound-
ary of 3-D light-cone. One obtains in a similar manner boundaries of 2-D and 1-D light-cones
as intersections.
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3. What about CDs in various signatures? For a fully Euclidian signature the counterparts
for the interiors of CDs reduce to 4-D intervals t ∈ [0, T ] and their exteriors and thus the
space-time varieties representing incoming particles reduce to pairs of points (t, r) = (0, 0)
and (t, r) = (T, 0): it does not make sense to speak about external particles. For other
signatures the external particles correspond to 4-D surfaces and dynamics makes sense. The
CDs associated with the real sectors intersect at boundaries of lower dimensional CDs: these
lower-dimensional boundaries are analogous to subspaces of Big Bang (BB) and Big Crunch
(BC).

4. I have not found any good argument for selecting M4 = M1,3 as a unique signature. Should
one allow also other real sections? Could the quantum numbers be transferred between
sectors of different signature at BB and BC? The counterpart of Lorentz group acting as a
symmetry group depends on signature and would change in the transfer. Conservation laws
should be satisfied in this kind of process if it is possible. For instance, in the leakage from
M4 = M1,3 to Mi, j, say M2,2, the intersection would be M1,2. Momentum components
for which signature changes, should vanish if this is true. Angular momentum quantization
axis normal to the plane is defined by two axis with the same signature. If the signatures of
these axes are preserved, angular momentum projection in this direction should be conserved.
The amplitude for the transfer would involve integral over either boundary component of the
lower-dimensional CD.

Could the leakage between signatures be detected as disappearance of matter for CDs in
elementary particle scales or lab scales?

5. One can also raise a question about the role of WCW geometry as a continuous infinite-
D geometry: could the discretization by cognitive representations making WCW effectively
discrete mean its loss? It seems that this cannot be the case. At least in the real sector
continuum must be present and the discretization reflects only the discreteness of cognitive
representations. In principle continuous WCW could make sense also in p-adic sectors of the
adele.

The identification of space-time surfaces as zero loci of polynomials generalizes to rational
functions and even transcendental functions although the existence of the p-adic counterparts
of these functions requires additional conditions. Could one interpret the representation
in terms of polynomials and possibly rational functions as an approximation? Could the
hierarchy of approximations obtained in this manner give rise to a hierarchy of hyper-finite
factors of type II1 defining a hierarchy of measurement resolutions [K112]?



Chapter 6

Does M8 −H duality reduce
classical TGD to octonionic
algebraic geometry?: Part III

6.1 Introduction

In the third chapter about M8 − H duality the question whether the space-time surfaces in M8

allow a global slicing by string world sheets X2 defined by an integrable distribution of local
tangent spaces M2(x) ⊂ M4 and their orthogonal duals or whether there is only a discrete set of
surfaces X2 is discussed. Discrete set is obtained by requiring that space-time surface or its normal
space contains string world sheet as a complex (commutative) sub-manifold. By the strong form
of holography (SH) this is enough to deduce the image of X4 ⊂M8 in H from the boundary data
consisting of the H-images of X2 and metrically 2-D light-like partonic orbits X3

L of topological
dimension D = 3.

Also the relation of M8 − H duality to p-adic length scale hypothesis and dark matter
hierarchy are discussed and it is shown that the notion of p-adic length scale emerging from p-adic
mass calculations emerges also geometrically.

The fermionic aspects of M8 −H duality are discussed: the basic purely number theoretic
elements are the octonionic realization of M8 spinors and the replacement of Dirac equation as a
partial differential equation with an algebraic equation for octonionic spinors. Dirac equation for
octonionic spinors is analogous to the algebraic momentum space variant of the ordinary Dirac
equation. This provides also considerable understanding about the bosonic aspects of M8 − H
duality. In particular, the pre-images of X3

L ⊂ X4 ⊂ H in M8 correspond to mass shells for
massless octonionic spinor modes realized as light-like 3-surfaces in M8. One can say that M8

picture realizes the momentum space dual of the modified Dirac equation in X4 ⊂ H. Twistor
Grassmannian picture supports the view that spinor modes also in H are localized to X3

L ⊂ X4,
and obey the modified Dirac equation associated with Chern-Simons term.

Cognitive representations is the third basic topic of the chapter. Cognitive representations
are identified as sets of points in an extension of rationals for algebraic varieties with “active”
points containing fermion. The representations are discussed at both M8- and H level. General
conjectures from algebraic geometry support the vision that these sets are concentrated at lower-
dimensional algebraic varieties such as string world sheets and partonic 2-surfaces and their 3-D
orbits identifiable also as singularities of these surfaces. For the earlier work related to adelic TGD
and cognitive representations see [L52, L38, L43].

The notion is applied in various cases and the connection with M8 − H duality is rather
loose.

1. Extensions of rationals are essentially coders of information. There the possible analogy of
extensions of rationals with genes deserves discussion. Extensions, which are not extensions of
extensions would be analogous to genes. The notion of conserved gene as number theoretical
analogy for Galois extensions as the Galois group of extension which is normal subgroup of

288
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Galois extension.

2. The work of Peter Scholze [A72] based on the notion of perfectoid has raised a lot of interest
in the community of algebraic geometers. One application of the notion relates to the attempt
to generalize algebraic geometry by replacing polynomials with analytic functions satisfying
suitable restrictions. Also in TGD this kind of generalization might be needed at the level of
M4 × CP2 whereas at the level of M8 algebraic geometry might be enough. The notion of
perfectoid as an extension of p-adic numbers Qp allowing all p:th roots of p-adic prime p is
central and provides a powerful technical tool when combined with its dual, which is function
field with characteristic p.

Could perfectoids have a role in TGD? The infinite-dimensionality of perfectoid is in conflict
with the vision about finiteness of cognition. For other p-adic number fields Qq, q 6= p the
extension containing p:th roots of p would be however finite-dimensional even in the case of
perfectoid. Furthermore, one has an entire hierarchy of almost-perfectoids allowing powers of
pm:th roots of p-adic numbers. The larger the value of m, the larger the number of points in
the extension of rationals used, and the larger the number of points in cognitive representations
consisting of points with coordinates in the extension of rationals. The emergence of almost-
perfectoids could be seen in the adelic physics framework as an outcome of evolution forcing
the emergence of increasingly complex extensions of rationals [L44].

3. The construction of cognitive representation represents a well-known mathematical problem of
finding the points of space-time surface with embedding space coordinates in given extension
of rationals. Number theorist Minhyong Kim [A59, A68] has speculated about very interesting
general connection between number theory and physics. The reading of a popular article about
Kim’s work revealed that number theoretic vision about physics provided by TGD has led to
a very similar ideas and suggests a concrete realization of Kim’s ideas [L79]. In the following I
briefly summarize what I call identification problem. The identification of points of algebraic
surface with coordinates, which are rational or in extension of rationals, is in question. In
TGD framework the embedding space coordinates for points of space-time surface belonging
to the extension of rationals defining the adelic physics in question are common to reals and
all extensions of p-adics induced by the extension. These points define what I call cognitive
representation, whose construction means solving of the identification problem.

Cognitive representation defines discretized coordinates for a point of “world of classical
worlds” (WCW) taking the role of the space of spaces in Kim’s approach. The symmetries
of this space are proposed by Kim to help to solve the identification problem. The maximal
isometries of WCW necessary for the existence of its Kähler geometry provide symmetries
identifiable as symplectic symmetries. The discrete subgroup respecting extension of ratio-
nals acts as symmetries of cognitive representations of space-time surfaces in WCW, and one
can identify symplectic invariants characterizing the space-time surfaces at the orbits of the
symplectic group.

4. One expects that large cognitive representations are winners in the number theoretical fight
for survival. Strong form of holography suggests that it is enough to consider cognitive
representations restricted to string world sheets and partonic 2-surfaces. If the 2-surface pos-
sesses large group of symmetries acting in extension of rationals, one can have large cognitive
representations as orbit of point in extension. Examples of highly symmetric 2-D surfaces
are geodesic spheres assignable to partonic 2-surfaces and cosmic strings and elliptic curves
assignable with string world sheets and cosmic strings [L90].

5. Rationals and their extensions give rise to a unique discretizations of space-time surface (for
instance) - cognitive representation - having interpretation in terms of finite measurement
resolution. There are howevever many open questions. Should one allow only octonionic
polynomials defined as algebraic continuations of real polynomials or should one allow also
analytic functions and regard polynomials as approximations. Zeta functions are especially
interesting analytic functions and Dekekind zetas characterize extensions of rationals and one
can pose physically motivated questions about them [L68].
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6.2 About M 8 − H-duality, p-adic length scale hypothesis
and dark matter hierarchy

M8 −H duality, p-adic length scale hypothesis and dark matter hierarchy as phases of ordinary
matter with effective Planck constant heff = nh0 are basic assumptions of TGD, which all reduce
to number theoretic vision. In the sequel M8−H duality, p-adic length scale hypothesis and dark
matter hierarchy are discussed from number theoretic perspective.

Several new results emerge. Strong form of holography (SH) allows to weaken strong form
of M8 − H duality mapping space-time surfaces X4 ⊂ M8 to H = M4 × CP2 that it allows to
map only certain complex 2-D sub-manifolds of quaternionic space-time surface to H: SH allows
to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds are determined by conditions
completely analogous to those determined space-time surface as quaternionic sub-manifold and
only discrete set of them is obtained.

M8 duality allows to relate p-adic length scales Lp to differences for the roots of the polyno-
mial defining the extension defining “special moments in the life of self” assignable causal diamond
(CD) central in zero energy ontology (ZEO). Hence p-adic length scale hypothesis emerges both
from p-adic mass calculations and M8 −H duality. It is proposed that the size scale of CD cor-
respond to the largest dark scale nLp for the extension and that the sub-extensions of extensions
could define hierarchy of sub-CDs. Skyrmions are an important notion if nuclear and hadron
physics, M8−H dyality suggests an interpretation of skyrmion number as winding number as that
for a map defined by complex polynomial.

6.2.1 Some background

A summary of the basic notions and ideas involved is in order.

p-Adic length scale hypothesis

In p-adic mass calculations [K60] real mass squared is obtained by so called canonical identification
from p-adic valued mass squared identified as analog of thermodynamical mass squared using p-adic
generelization of thermodynamics assuming super-conformal invariance and Kac-Moody algebras
assignable to isometries ad holonomies of H = M4 × CP2. This implies that the mass squared is
essentially the expectation value of sum of scaling generators associated with various tensor factors
of the representations for the direct sum of super-conformal algebras and if the number of factors
is 5 one obtains rather predictive scenario since the p-adic temperature Tp must be inverse integer
in order that the analogs of Boltzmann factors identified essentially as pL0/Tp .

The p-adic mass squared is of form Xp + O(p2) and mapped to X/p + O(1/p2). For the
p-adic primes assignable to elementary particles (M127 = 2127 − 1 for electron) the higher order
corrections are in general extremely small unless the coefficient of second order contribution is
larger integer of order p so that calculations are practically exact.

Elementary particles seem to correspond to p-adic primes near powers 2k. Corresponding
p-adic length - and time scales would come as half-octaves of basic scale if all integers k are allowed.
For odd values of k one would have octaves as analog for period doubling. In chaotic systems also
the generalization of period doubling in which prime p = 2 is replaced by some other small prime
appear and there is indeed evidence for powers of p = 3 (period tripling as approach to chaos).
Many elementary particles and also hadron physics and electroweak physics seem to correspond to
Mersenne primes and Gaussian Mersennes which are maximally near to powers of 2.

For given prime p also higher powers of p define p-adic length scales: for instance, for
electron the secondary p-adic time scale is .1 seconds characterizing fundamental bio-rhythm.
Quite generally, elementary particles would be accompanied by macroscopic length and time scales
perhaps assignable to their magnetic bodies or causal diamonds (CDs) accompanying them.

This inspired p-adic length scale hypothesis stating the size scales of space-time surface
correspond to primes near half-octaves of 2. The predictions of p-adic are exponentially sensitive
to the value of k and their success gives strong support for p-adic length scale hypothesis. This
hypothesis applied not only to elementary particle physics but also to biology and even astrophysics
and cosmology. TGD Universe could be p-adic fractal.
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Dark matter as phases of ordinary matter with heff = nh0

The identification of dark matter as phases of ordinary matter with effective Planck constant
heff = nh0 is second key hypothesis of TGD. To be precise, these phases behave like dark matter
and galactic dark matter could correspond to dark energy in TGD sense assignable to cosmic
strings thickened to magnetic flux tubes.

There are good arguments in favor of the identification h = 6h0 [L31, L60]. “Effective”
means that the actual value of Planck constant is h0 but in many-sheeted space-time n counts
the number of symmetry related space-time sheets defining space-time surface as a covering. Each
sheet gives identical contribution to action and this implies that effective value of Planck constant
is nh0.

M8 −H duality

M8 − H duality (H = M4 × CP2) [L76] has taken a central role in TGD framework. M8 − H
duality allows to identify space-time regions as ”roots” of octonionic polynomials P in complexified
M8 - M8

c - or as minimal surfaces in H = M4 × CP2 having 2-D singularities.
Remark:Oc,Hc,Cc,Rc will be used in the sequel for complexifications of octonions, quater-

nions, etc.. number fields using commuting imaginary unit i appearing naturally via the roots of
real polynomials.

The precise form of M8 −H duality has however remained unclear. Two assumptions are
involved.

1. Associativity stating that the tangent or normal space of at the point of the space-time space-
time surface M8 is associative - that is quaternionic. There are good reasons to believe that
this is true for the polynomial ansatz everywhere but there is no rigorous proof.

2. The tangent space of the point of space-time surface at points mappable from M8 to H must
contain fixed M2 ⊂M4 ⊂M8 or an integrable distribution of M2(x) so that the 2-surface of
M4 determined by it belongs to space-time surface.

The strongest, global form of M8 − H duality states that M2(x) is contained to tangent
spaces of X4 at all points x. Strong form of holography (SH) states allows also the option for
which this holds true only for 2-D surfaces - string world sheets and partonic 2-surfaces - therefore
mappable to H and that SH allows to determined X4 ⊂ H from this data. In the following a
realization of this weaker form of M8−H duality is found. Note however that one cannot exclude
the possibility that also associativity is true only at these surfaces for the polynomial ansatz.

Number theoretic origin of p-adic primes and dark matter

There are several questions to be answered. How to fuse real number based physics with various
p-adic physics? How p-adic length scale hypothesis and dark matter hypothesis emerge from TGD?

The properties of p-adic number fields and the strange failure of complete non-determinism
for p-adic differential equations led to the proposal that p-adic physics might serve as a correlate
for cognition, imagination, and intention. This led to a development of number theoretic vision
which I call adelic physics. A given adele corresponds to a fusion of reals and extensions of various
p-adic number fields induced by a given extension of rationals.

The notion of space-time generalizes to a book like structure having real space-time surfaces
and their p-adic counterparts as pages. The common points of pages defining is back correspond to
points with coordinates in the extension of rationals considered. This discretization of space-time
surface is in general finite and unique and is identified as what I call cognitive representation. The
Galois group of extension becomes symmetry group in cognitive degrees of freedom. The ramified
primes of extension are exceptionally interesting and are identified as preferred p-adic primes for
the extension considered.

The basic challenge is to identify dark scale. There are some reasons to expect correlation
between p-adic and dark scales which would mean that the dark scale would depend on ramified
primes, which characterize roots of the polynomial defining the extensions and are thus not defined
completely by extension alone. Same extension can be defined by many polynomials. The näıve
guess is that the scale is proportional to the dimension n of extension serving as a measure for
algebraic complexity (there are also other measures). p-Adic length scales Lp would be proportional
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nLp, p ramified prime of extension? The motivation would be that quantum scales are typically
proportional to Planck constant. It turns out that the identification of CD scale as dark scale is
rather natural.

6.2.2 New results about M8 −H duality

In the sequel some new results about M8−H duality are deduced. Strong form of holography (SH)
allows to weaken the assumptions making possible M8 −H duality. It would be enough to map
only certain complex 2-D sub-manifolds of quaternionic space-time surface in M8 to H: SH would
allow to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds would be determined
by conditions completely analogous to those determined space-time surface as quaternionic sub-
manifold and they form a discrete set.

Strong form of holography (SH)

Ordinary 3-D holography is forced by general coordinate invariance (GCI) and loosely states that
the data at 3-D surfaces allows to determined space-time surface X4 ⊂ H. In ZEO 3-surfaces
correspond to pairs of 3-surfaces with members at the opposite light-like boundaries of causal
diamond (CD) and are analogous to initial and final states of deterministic time evolution as Bohr
orbit.

This poses additional strong conditions on the space-time surface.

1. The conjecture is that these conditions state the vanishing of super-symplectic Noether charges
for a sub-algebra of super-symplectic algebra SCn with radial conformal weights coming as
n-multiples of those for the entire algebra SC and its commutator [SCn, SC] with the entire
algebra: these conditions generalize super conformal conditions and one obtains a hierarchy
of realizations.

This hierarchy of minimal surfaces would naturally corresponds to the hierarchy of extensions
of rationals with n identifiable as dimension of the extension giving rise to effective Planck
constant. At the level of Hilbert spaces the inclusion hierarchies for extensions could also
correspond to the inclusion hierarchies of hyper-finite factors of type I1 [K112] so that M8−H
duality would imply beautiful connections between key ideas of TGD.

2. Second conjecture is that the preferred extremals (PEs) are extremals of both the volume term
and Kähler action term of the action resulting by dimensional reduction making possible the
induction of twistor structure from the product of twistor spaces of M4 and CP2 to 6-D S2

bundle over X4 defining the analog of twistor space. These twistor spaces must have Kähler
structure since action for 6-D surfaces is Kähler action - it exists only in these two cases [A57]
so that TGD is unique.

Strong form of holography (SH) is a strengthening of 3-D holography. Strong form of GCI
requires that one can use either the data associated either with

• light-like 3-surfaces defining partonic orbits as surfaces at which signature of the induced
metric changes from Euclidian to Minkowskian or

• the space-like 3-surfaces at the ends of CD to determine space-time surface as PE (in case
that it exists).

This suggests that the data at the intersections of these 2-surfaces defined by partonic 2-surfaces
might be enough for holography. A slightly weaker form of SH is that also string world sheets
intersecting partonic orbits along their 1-D boundaries is needed and this form seems more realistic.

SH allows to weaken strong form of M8−H duality mapping space-time surfaces X4 ⊂M8 to
H = M4×CP2 that it allows to map only certain complex 2-D sub-manifolds of quaternionic space-
time surface to H: SH allows to determine X4 ⊂ H from this 2-D data. Complex sub-manifolds
are determined by conditions completely analogous to those determined space-time surface as
quaternionic sub-manifold and only discrete set of them is obtained.
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Space-time as algebraic surface in M8
c regarded complexified octonions

The octonionic polynomial giving rise to space-time surface as its “root” is obtained from ordi-
nary real polynomial P with rational coefficients by algebraic continuation. The conjecture is
that the identification in terms of roots of polynomials of even real analytic functions guarantees
associativity and one can formulate this as rather convincing argument [?] Space-time surface X4

c

is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of Oc valued polynomial
obtained as an Oc continuation of a real polynomial P with rational coefficients, which can be
chosen to be integers. These options correspond to complexified-quaternionic tangent- or normal
spaces. For P (x) = xn + .. ordinary roots are algebraic integers. The real 4-D space-time surface
is projection of this surface from M8

c to M8. One could drop the subscripts ”c” but in the sequel
they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of CD
corresponds to a root t = rn of P . For monic polynomials these time values are algebraic integers
and Galois group permutes them.

One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical vision
- adelic physics [?, ?] suggests that polynomial coefficients are rational or perhaps in extensions of
rationals. The real coefficients could in principle be replaced with complex numbers a+ ib, where
i commutes with the octonionic units and defines complexifiation of octonions. i appears also in
the roots defining complex extensions of rationals.

How do the solutions assignable to the opposite boundaries of CD relate to each
other?

CD has two boundaries. The polynomials associated with them could be different in the general
formulation discussed in [L103, L109] but they could be also same. How are the solutions associated
with opposite boundaries of CD glued together in a continuous manner?

1. The polynomials assignable to the opposite boundaries of CD are allowed to be polynomials
of o resp. (o− T ): here T is the distance between the tips of CD.

2. CD brings in mind the realization of conformal invariance at sphere: the two hemispheres
correspond to powers of z and 1/z: the condition z = 1/z at unit circle is essential and there
is no real conjugation. How the sphere is replaced with 8-D CD which is also complexified.
The absence of conjugation looks natural also now: could CD contain a 3-surface analogous
to the unit circle of sphere at which the analog of z = 1/z holds true? If so, one has
P (o, z) = P (1/o, z) and the solutions representing roots fo P (o, z) and P (1/o, z) can be glued
together.

Note that 1/o can be expressed as o/oo when the Minkowskian norm squared oo is non-
vanishing and one has polynomial equation also now. This condition is true outside the
boundary of 8-D light-cone, in particular near the upper boundary of CD.

The counter part for the length squared of octonion in Minkowskian signature is light-one
proper time coordinate a2 = t2− r2 for M8

+. Replacing o which scaled dimensionless variable
o1 = o/(T/2) the gluing take place along a = T/2 hyperboloid.

One has algebraic holomorphy with respect to o but also anti-holomorphy is possible. What
could these two options correspond to? Could the space-time surfaces assignable to self and its
time-reversal relate by octonionic conjugation o → o relating two Fock vacuums annihilated by
fermionic annihilation resp. creation operators?

In [L103, L109] the possibility that the sequence of SSFRs or BSFRs could involve iteration
of the polynomial defining space-time surface - actually different polynomials were allowed for two
boundaries. There are 3 options: each SSFR would involve the replacement Q = P ◦ ..◦P → P ◦Q,
the replacement occurs only when new “special moments in the life of self” defined by the roots
of P as t = rn balls of cd, or the replacement can occur in BSFR when the metabolic resources
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do not allow to continue the iteration (the increase of heff during iteration increases the needed
metabolic feed).

The iteration is compatible with the proposed picture. The assumption P (0) = 0 implies
that iterates of P contain also the roots of P as roots - they are like conserved genes. Also the 8-D
light-cone boundary remains invariant under iteration. Even more general function decompositions
P → Q→ P are consistent with the proposed picture.

Brane-like solutions

One obtains also 6-D brane-like solutions to the equations.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L47, L48, L49]. At δM8
+ the octonionic

coordinate o is light-like and one can write o = re, where 8-D time coordinate and radial
coordinate are related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-spheres

S6 represented as surfaces tM = t = rN , rM =
√
r2
N − r2

E ≤ rN , rE ≤ rN , where the value of
Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski coordinate.
The points with distance rM from origin of t = rN ball of M4 has as fiber 3-sphere with
radius r =

√
r2
N − r2

E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to
the boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D
surface, and empty in the generic case (it is however quite not clear whether topological notion
of “genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.

The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their 2-D
ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary Feynman
diagrams. Obviously this would make the definition of the generalized vertices mathematically
elegant and simple.

Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at
S6. The interpretation of the times tn as moments of phase transition like phenomena is
suggestive. ZEO based theory of consciousness suggests interpretation as moments for state
function reductions analogous to weak measurements ad giving rise to the flow of experienced
time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as
initial data fixing the 4-D roots of polynomials. This would give precise content to strong
form of holography (SH), which is one of the central ideas of TGD and strengthens the 3-
D holography coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of
CD define unique preferred extremals. The reduction to 2-D holography would be due to
preferred extremal property realizing the huge symplectic symmetries and making M8 − H
duality possible as also classical twistor lift.

I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4 ∩ S6? This is not possible since time coordinate tM constant at the roots
and varies at string world sheets.

Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition de-

termining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-valued
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“real” or “imaginary” for P vanishes. This condition allows universal brane-like solution as
a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified time=constant
hyperplanes defined by the roots t = rn of P defining “special moments in the life of self”
assignable to CD. The condition for reality in Rc sense in turn gives roots of t = rn a hyper-
surfaces in M2

c .

Explicit realization of M8 −H duality

M8 − H duality allows to map space-time surfaces in M8 to H so that one has two equivalent
descriptions for the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with
2-D singularities in H satisfying an infinite number of additional conditions stating vanishing
of Noether charges for super-symplectic algebra actings as isometries for the “world of classical
worlds” (WCW). Twistor lift allows variants of this duality. M8

H duality predicts that space-
time surfaces form a hierarchy induced by the hierarchy of extensions of rationals defining an
evolutionary hierarchy. This forms the basis for the number theoretical vision about TGD.

M8−H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Associativity condition for tangent-/normal space is the first essential condition for the exis-
tence of M8 −H duality and means that tangent - or normal space is quaternionic.

2. The tangent space of space-time surface and thus space-time surface itself must contain a
preferred M2

c ⊂ M4
c or more generally, an integrable distribution of tangent spaces M2

c (x)
and similar distribution of their complements E2c(x). The string world sheet like entity
defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would correspond to
partonic 2-surface.

One can imagine two realizations for this condition.
Option I: Global option states that the distributions M2

c (x) and E2
c (x) define slicing of X4

c .
Option II: Only discrete set of 2-surfaces satisfying the conditions exist, they are mapped

to H, and strong form of holography (SH) applied in H allows to deduce space-time surfaces in
H. This would be the minimal option.

That the selection between these options is not trivial is suggested by following.

1. For massless extremals (MEs, topological light rays) parameterized by light-like vector vector
k defining M2 ⊂ M2 × E2 ⊂ M4 at each point and by space-like polarization vector ε
depending on single transversal coordinate of E2 [K10].

2. CP2 coordinates have an arbitrary dependence on both u = k ·m and w = ε ·m and can be
also multivalued functions of u and w. Single light-like vector k is enough to identify M2.
CP2 type extremals having metric and Kähler form of CP2 have light-like geodesic as M4

projection defining M2 and its complement E2 in the normal space.

3. String like objects X2×Y 2 ⊂M4×CP2 are minimal surfaces and X2 defines the distribution
of M2(x) ⊂M4. Y 2 ddefines the complement of this distribution.

Option I is realized in all 3 cases. It is not clear whether M2 can depend on position in the
first 2 cases and also CP2 point in the third case. It could be that only a discrete set of these
string world sheets assignable to wormhole contacts representing massless particles is possible
(Option II).

How these conditions would be realized?

1. The basic observation is that X2c can be fixed by posing to the non-vanishing Hc-valued
part of octonionic polynomial P condition that the Cc valued “real” or “imaginary” part in
Cc sense for P vanishes. M2

c would be the simplest solution but also more general complex
sub-manifolds X2

c ⊂ M4
c are possible. This condition allows only a discrete set of 2-surfaces

as its solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u+ iv. One should have family of polynomials differing by
a constant term, which should be real so that v = 0 surfaces would form a discrete set.
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2. As found, there are also classes special global solutions for which the choice of M2
c is global

and does not depend on space-time point. The interpretation would be in terms of modes of
classical massless fields characterized by polarization and momentum. If the identification of
M2
c is correct, these surfaces are however unstable against perturbations generating discrete

string world sheets and orbits of partonic 2-surfaces having interpretation space-time counter-
parts of quanta. That fields are detected via their quanta was the revolutionary observation
that led to quantum theory. Could quantum measurement induce the instability decomposing
the field to quanta at the level of space-time topology?

3. One can generalize this condition so that it selects 1-D surface in X2
c . By assuming that

Rc-valued “real” or “imaginary” part of quaternionic part of P at this 2-surface vanishes.
one obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit or

distribution of the imaginary unit having interpretation as complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The
outcome would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.

This option could be made possible by SH. SH states that preferred extremals are determined
by data at 2-D surfaces of X4. Even if the conditions defining X2

c have only a discrete set of
solutions, SH at the level of H could allow to deduce the preferred extremals from the data
provided by the images of these 2-surfaces under M8−H duality. Associativity and existence
of M2(x) would be required only at the 2-D surfaces.

4. I have proposed that physical string world sheets and partonic 2-surfaces appear as singu-
larities and correspond to 2-D folds of space-time surfaces at which the dimension of the
quaternionic tangent space degenerates from 4 to 2 [L75] [K10]. This interpretation is con-
sistent with a book like structure with 2-pages. Also 1-D real and imaginary manifolds could
be interpreted as folds or equivalently books with 2 pages.

For the singular surfaces the dimension quaternionic tangent or normal space would reduce
from 4 to 2 and it is not possible to assign CP2 point to the tangent space. This does not
of course preclude the singular surfaces and they could be analogous to poles of analytic
function. Light-like orbits of partonic 2-surfaces would in turn correspond to cuts.

5. What could the normal space singularity mean at the level of H? Second fundamental form
defining vector basis in normal space is expected to vanish. This would be the case for minimal
surfaces.

(a) String world sheets with Minkowskian signature (in M4 actually) are expected to be
minimal surfaces. In this case T matters and string world sheets could be mapped to H
by M8 −H duality and SH would work for them.

(b) The light-like orbits of partonic 2-surfaces with Euclidian signature in H would serve
as analogs of cuts. N is expected to matter and partonic 2-surfaces should be minimal
surfaces. Their branching of partonic 2-surfaces is thus possible and would make possible
(note the analogy with the branching of soap films) for them to appear as 2-D vertices in
H.
The problem is to identify the pre-images of partonic 2-surfaces in M8. The light-likeness
of the orbits of partonic 2-surfaces (induced 4-metric changes its signature and degenerates
to 3-D) should be important. Could light-likeness in this sense define the pre-images
partonic orbits in M8?

Remark: It must be emphasized that SH makes possible M8−H correspondence assuming
that also associativity conditions hold true only at partonic 2-surfaces and string world sheets. Thus
one could give up the conjecture that the polynomial ansatz implies that tangent or normal spaces
are associative. Proving that this is the case for the tangent/normal spaces of these 2-surfaces
should be easier.

Does M8 −H duality relate hadron physics at high and low energies?

During the writing of this article I realized that M8 − H duality has very nice interpretation in
terms of symmetries. For H = M4 × CP2 the isometries correspond to Poincare symmetries and
color SU(3) plus electroweak symmetries as holonomies of CP2. For octonionic M8 the subgroup
SU(3) ⊂ G2 is the sub-group of octonionic automorphisms leaving fixed octonionic imaginary unit
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invariant - this is essential for M8 −H duality. SU(3) is also subgroup of SO(6) ≡ SU(4) acting
as rotation on M8 = M2 × E6. The subgroup of the holonomy group of SO(4) for E4 factor of
M8 = M4 ×E4 is SU(2)×U(1) and corresponds to electroweak symmetries. One can say that at
the level of M8 one has symmetry breaking from SO(6) to SU(3) and from SO(4) = SU(2)×SO(3)
to U(2).

This interpretation gives a justification for the earlier proposal that the descriptions provided
by the old-fashioned low energy hadron physics assuming SU(2)L × SU(2)R and acting acting as
covering group for isometries SO(4) of E4 and by high energy hadron physics relying on color
group SU(3) are dual to each other.

Skyrmions and M8 −H duality

I received a link (https://tinyurl.com/ycathr3u) to an article telling about research (https:
//tinyurl.com/yddwhr2o) carried out for skyrmions, which are very general condensed matter
quasiparticles. They were found to replicate like DNA and cells. I realized that I have not clarified
myself the possibility of skyrmions on TGD world and decided to clarify my thoughts.

1. What skyrmions are?

Consider first what skyrmions are.

1. Skyrmions are topological entities. One has some order parameter having values in some
compact space S. This parameter is defined in say 3-ball such that the parameter is constant
at the boundary meaning that one has effectively 3-sphere. If the 3rd homotopy group of
S characterizing topology equivalence classes of maps from 3-sphere to S is non-trivial, you
get soliton-llike entities, stable field configurations not deformable to trivial ones (constant
value). Skyrmions can be assigned to space S which is coset space SU(2)L×SU(2)R/SU(2)V ,
essentially S3 and are labelled by conserved integer-valued topological quantum number.

2. One can imagine variants of this. For instance, one can replace 3-ball with disk. SO(3) = S3

with 2-sphere S2. The example considered in the article corresponds to discretized situation
in which one has magnetic dipoles/spins at points of say discretized disk such that spins have
same direction about boundary circle. The distribution of directions of spin can give rise to
skyrmion-like entity. Second option is distribution of molecules which do not have symmetry
axis so that as rigid bodies the space of their orientations is discretized version of SO(3). The
field would be the orientation of a molecule of lattice and one has also now discrete analogs
of skyrmions.

3. More generally, skyrmions emerge naturally in old-fashioned hadron physics, where SU(2)L×
SU(2)R/SU(2)V involves left-handed, right-handed and vectorial subgroups of SO(4) =
SU(2)L × SU(2)R. The realization would be in terms of 4-component field (π, σ), where
π is charged pion with 3 components - axial vector - and σ which is scalar. The additional
constraint π · π + σ2 = constant defines 3-sphere so that one has field with values in S3.
There are models assigning this kind of skyrmion with nucleon, atomic nuclei, and also in the
bag model of hadrons bag can be thought of as a hole inside skyrmion. These models seem
to have something to do with reality so that a natural question is whether skyrmions might
appear in TGD.

2. Skyrmion number as winding number

In TGD framework one can regard space-time as 4-surface in either octonionic M8
c , c refers

here to complexification by an imaginary unit i commuting with octonions, or in M4 × CP2. For
the solution surfaces M8 has natural decomposition M8 = M2×E6 and E6 has SO(6) as isometry
group containing subgroup SU(3) having automorphisms of octonions as subgroup leaving M2

invariant. SO(6) = SU(4) contains SU(3) as subgroup, which has interpretation as isometries of
CP2 and counterpart of color gauge group. This supports M8−H duality, whose most recent form
is discussed in [L101].

The map S3 → S3 defining skyrmion could be taken as a phenomenological consequence
of M8 − H duality implying the old-fashioned description of hadrons involving broken SO(4)
symmetry (PCAC) and unbroken symmetry for diagonal group SO(3)V (CCV). The analog of
(π, sigma) field could correspond to a B-E condensate of pions (π, sigma).

https://tinyurl.com/ycathr3u
https://tinyurl.com/yddwhr2o
https://tinyurl.com/yddwhr2o
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The obvious question is whether the map S3 → S3 defining skyrmion could have a deeper
interpretation in TGD framework. I failed to find any elegant formulation. One could however
generalize and ask whether skyrmion like entities characterize by winding number are predicted by
basic TGD.

1. In the models of nucleon and nuclei the interpretation of conserved topological skyrmion num-
ber is as baryon number. This number should correspond to the homotopy class of the map in
question, essentially winding number. For polynomials of complex number degree corresponds
to winding number. Could the degree n = heff/h0 of polynomial P having interpretation
as effective Planck constant and measure of complexity - kind of number theoretic IQ - be
identifiable as skyrmion number? Could it be interpreted as baryon number too?

2. For leptons regarded as local 3 anti-quark composites in TGD based view about SUSY [L81]
the same interpretation would make sense. It seems however that the winding number must
have both signs. Degree is n is however non-negative.

Here complexification of M8 to M8
c is essential. One an allow both holomorphic and anti-

holomorphic continuations of real polynomials P (with rational coefficients) using complex-
ification defined by commutative imaginary unit i in M8

c so that one has polynomials P (z)
resp. P (z) in turn algebraically continued to complexified octonionic polynomials P (z, o)
resp. P (z, o).

Particles resp. antiparticles would correspond to the roots of octonionic polynomial P (z, o)
resp. P (z, o) meaning space-time geometrization of the particle-antiparticle dichotomy and
would be conjugates of each other. This could give a nice physical interpretation to the
somewhat mysterious complex roots of P .

3. More detailed formulation

To make this formulation more detailed on must ask how 4-D space-time surfaces correspond
to 8-D “roots” for the “imaginary” (“real” ) part of complexified octonionic polynomial as surfaces
in M8

c .

1. Equations state the simultaneous vanishing of the 4 components of complexified quaternion
valued polynomial having degree n and with coefficients depending on the components of
Oc, which are regarded as complex numbers x+ iy, where i commutes with octonionic units.
The coefficients of polynomials depend on complex coordinates associated with non-vanishing
“real” (“imaginary”) part of the Oc valued polynomial.

2. To get perspective, one can compare the situation with that in catastrophe theory in which
one considers roots for the gradient of potential function of behavior variables xi. Potential
function is polynomial having control variables as parameters. Now behavior variable corre-
spond “imaginary” (“real” ) part and control variables to “real” (“imaginary”) of octonionic
polynomial.

For a polynomial with real coefficients the solution divides to regions in which some roots are
real and some roots are complex. In the case of cusp catastrophe one has cusp region with
3-D region of the parameter defined by behavior variable x and 2 control parameters with 3
real roots, the region in which one has one real root. The boundaries for the projection of
3-sheeted cusp to the plane defined by control variables correspond to degeneration of two
complex roots to one real root.

In the recent case it is not clear whether one cannot require the M8
c coordinates for space-time

surface to be real but to be in M8 = M1 + iE7 .

3. Allowing complex roots gives 8-D space-time surfaces. How to obtain real 4-D space-time
surfaces?

(a) One could project space-time surfaces to real M8 to obtain 4-D real space-time surfaces.
For M8 this would mean projection to M1 + iE7 and in time direction the real part of
root is accepted and is same for the root and its conjugate. For E7 this would mean
that imaginary part is accepted and means that conjugate roots correspond to different
space-time surfaces and the notion of baryon number is realized at space-time level.

(b) If one allows only real roots, the complex conjugation proposed to relate fermions and
anti-fermions would be lost.
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4. One can select for 4 complexM8
c coordinatesXk of the surface and the remaining 4 coordinates

Y k can be formally solved as roots of n:th degree polynomial with dynamical coefficients
depending on Xk and the remaining Y k. This is expected to give rise to preferred extremals
with varying dimension of M4 and CP2 projections.

5. It seems that all roots must be complex.

(a) The holomorphy of the polynomials with respect to the complex M8
c coordinates implies

that the coefficients are complex in the generic point M8
c . If so, all 4 roots are in general

complex but do not appear as conjugate pairs. The näıve guess is that the maximal
number of solutions would be n4 for a given choice of M8 coordinates solved as roots.
An open question is whether one can select subset of roots and what happens at t = rn
surfaces: could different solutions be glued together at them.

(b) Just for completeness one can consider also the case that the dynamical coefficients are
real - this is true in the E8 sector and whether it has physical meaning is not clear. In
this case the roots come as real roots and pairs formed by complex root and its conjugate.
The solution surface can be divided into regions depending on the character of 4 roots.
The n roots consist of complex root pairs and real roots. The members or complex root
pairs are mapped to same point in E8.

4. Could skyrmions in TGD sense replicate?

What about the observation that condensed matter skyrmions replicate? Could this have
analog at fundamental level?

1. The assignment of conserved topological quantum number to the skyrmion is not consistent
with replication unless the skyrmion numbers of outgoing states sum up to that of the initial
state. If the system is open one can circumvent this objection. The replication would be like
replication of DNA in which nucleotides of new DNA strands are brought to the system to
form new strands.

2. It would be fascinating if all skyrmions would correspond to space-time surfaces at funda-
mental M8 level. If so, skyrmion property also in magnetic sense could be induced by from
a deeper geometric skyrmion property of the MB of the system. The openness of the system
would be essential to guarantee conservation of baryon number. Here the fact that leptons
and baryons have opposite baryon numbers helps in TGD framework. Note also ordinary
DNA replication could correspond to replication of MB and thus of skyrmion sequences.

6.2.3 About p-adic length scale hypothesis and dark matter hierarchy

It is good to introduce first some background related to p-adic length scale hypothesis discussed
in chapters of [K68] and dark matter hierarchy discussed in chapters [K50, K51], in particular in
chatper [?].

General form of p-adic length scale hypothesis

The most general form of p-adic length scale hypothesis does not pose conditions on allowed p-adic
primes and emerges from p-adic mass calculations [K28, K60, K70]. It has two forms corresponding
to massive particles and massless particles.

1. For massive particles the preferred p-adic mass calculations based on p-adic thermodynamics
predicts the p-adic mass squared m2 to be proportional to p or its power- the real counterpart
of m2 is proportional to 1/p or its power. In the simplest case one has

m2 =
X

p

~
L0

,

where L0 is apart from numerical constant the length R of CP2 geodesic circle. X is a
numerical constant not far from unity. X ≥ 1 is small integer in good approximation. For
instance for electron one has x = 5.
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By Uncertainty Principle the Compton length of particle is characterizing the size of 3-surfaces
assignable to particle are proportional to

√
p:

Lc(m) = ~
m =

√
1
XLp , Lp =

√
pL0 = .

Here Lp is p-adic length scale and corresponds to minimal mass for given p-adic prime. p-Adic
length scale would be would characterize the size of the 3-surface assignable to the particle
and would correspond to Compton length.

2. For massless particles mass vanishes and the above picture is not possible unless there is very
small mass coming from p-adic thermodynamics and determined by the size scale of CD - this
is quite possible. The preferred time/spatial scales p-adic energy- equivalently 3-momentum
are proportional to p-adic prime p or its power. The real energy is proportional to 1/p. At
the embedding space level the size of scale causal diamond (CD) [L80] would be proportional
to p: L = T = pL0, L0 = T0 for c = 1. The interpretation in terms of Uncertainty Principle
is possible.

There would be therefore two levels: space-time level and embedding space level . At the
space-time level the primary p-adic length scale would be proportional to

√
p whereas the

p-adic length scale at embedding space-time would correspond to secondary p-adic length
scale proportional to p. The secondary p-adic length scales would assign to elementary new
physics in macroscopic scales. For electron the size scale of CD would be about .1 seconds,
the time scale associated with the fundamental bio-rhythm of about 10 Hz.

3. A third piece in the picture is adelic physics [L52, L53] inspiring the hypothesis that effective
Planck constant heff given by heff/h0 = n, h = 6h0, labels the phases of ordinary matter
identified as dark matter. n would correspond to the dimension of extension of rationals.

The connection between preferred primes and the value of n = heff/h0 is interesting. One
proposal is that preferred primes p in p-adic length scale hypothesis determining the mass
scale of particle correspond to so called ramified primes, which characterize the extensions.
The p-adic variant of the polynomial defining space-time surfaces in M8 picture would have
vanishing discriminant in order O(p). Since discriminant is proportional to the product of
differences of different roots of the polynomial, two roots would be very near to each other
p-adically. This would be mathematical correlate for criticality in p-adic sense.

M8 − H duality [L76, L73] leads to the prediction that the roots rn of polynomial defining
the space-time region in M8 correspond to preferred time values t = tn =∝ rn- I have called
t = tn “special moments in the life of self”. Since the squares for the differences for the roots
are proportional to ramified primes, these time differences would code for ramified primes
assignable to the space-time surface. There would be several p-adic time scales involved and
they would be coded by tij = ri− rj , whose moduli squared are divided by so called ramified
primes defining excellent candidates for preferred p-adic primes. p-Adic physics would make
itself visible at the level of space-time surface in terms of “special moments in the life of self”.

4. p-Adic length scales emerge naturally from M8 − H duality [L76, L73]. Ramified primes
would in M8 picture appear as factors of time differences associated with “special moments
in the life of self” associated with CD [L73]. One has |ti − tj | ∝

√
pij , pij ramified prime. It

is essential that square root of ramified prime appears here.

This suggests strongly that p-adic length scale hypothesis is realized at the level of space-
time surface and there are several p-adic length scales present coded to the time differences.
Knowing of the polynomial would give information about p-adic physics involved. If dark
scales correlate with p-adic length scales as proposed, the definition of dark scale should
assume the dependence of ramified primes quite generally rather than as a result of number
theoretic survival of fittest as one might also think.

The factors ti − tj are proportional - not only to the typically very large p-adic prime pmax
charactering the system - but also smaller primes or their powers. Could the scales in question
be of form lp =

√
X
√
pmaxL0 rather than p-adic length scales Lpram defined by various

ramified primes. Here X would be integer consisting of small ramified primes.

p-Adic mass calculations predict in an excellent approximation the mass of the particle is
given by m = (

√
X/
√
p)m0, X small integer and m0 = 1/L0. Compton length would be
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given by Lc(p) =
√
p/
√
X)L0. The identification lp = Lc(p) would be attractive but is not

possible unless one has X = 1. In this case one would be considering p-adic length scale Lp.
the interpretation in terms of multi-p-adicity seems to be the realistic option.

About more detailed form of p-adic length scale hypothesis

More specific form of p-adic length scale hypothesis poses conditions on physically preferred p-adic
primes. There are several guesses for preferred primes. They could be primes near to integer
powers 2k, where k could be positive integer, which could satisfy additional conditions such as
being odd, prime or be associated with Mersenne prime or Gaussian Mersenne. One can consider
also powers of other small primes such as p = 2, 3, 5. p-Adic length scale hypothesis in is basic
form would generalize the notion of period doubling. For odd values of k one would indeed obtain
period doubling, tripling, etc... suggesting strongly chaos theoretic origin.

1. p-Adic length scale hypothesis in its basic form

Consider first p-adic length scale hypothesis in its basic form.

1. In its basic form states that primes p ' 2k are preferred p-adic primes and correspond by
p-adic mass calculations p-adic length scales Lp ≡ L(k) ∝ √p = 2k/2. Mersenne primes and
primes associated with Gaussian Mersennes as especially favored primes and charged leptons
(k ∈ {127, 113, 107}) and Higgs boson (k = 89) correspond to them. Also hadron physics
(k = 107) and nuclear physics (k = 113) correspond to these scales. One can assign also to
hadron physics Mersenne prime and the conjecture is that Mersennes and Gaussian Mersennes
define scaled variants of hadron physics and electroweak physics. In the length scale between
cell membrane thickness fo 10 nm and nuclear size about 2.5 µm there are as many as 4
Gaussian Mersennes corresponding to k ∈ {151, 157, 163, 167}.
Mersenne primes correspond to prime values of k and I have proposed that k is prime for
fundamental p-adic length scales quite generally. There are also however also other p-adic
length scales - for instance, for quarks k need not be prime - and it has remained unclear
what criterion could select the preferred exponents k. One can consider also the option that
odd values of k defined fundamental p-adic length scales.

2. What makes p-adic length scale hypothesis powerful is that masses of say scaled up variant of
hadron physics can be estimated by simple scaling arguments. It is convenient to use electron’s
p-adic length scale and calculate other p-adic length scales by scaling L(k) = 2(k−127)/2L(127).

Here one must make clear that there has been a confusion in the definitions, which was
originally due to a calculational error.

1. I identified the p-adic length scale L(151) mistakenly as L(151) = 2(k−127)/2Le(127) by using
instead of L(127) electron Compton length Le ' L(127/

√
5. The notation for these scales

would be therefore Le(k) identified as Le(k) = 2(k−127)/2Le(127) and I have tried to use it
systematically but failed to use the wrong notation in informal discussions.

2. This mistake might reflect highly non-trivial physics. It is scaled up variants of Le which
seem to appear in physics. For instance, Le(151) ' 10 nm corresponds to basic scale in
living matter. Why the biological important scales should correspond to scaled up Compton
lengths for electron? Could dark electrons with scaled up Compton scales equal to Le(k) be
important in these scales? And what about the real p-adic length scales relate to these scales
by a scaling factor

√
5 ' 2.23?

2. Possible modifications of the p-adic length scale hypothesis

One can consider also possible modifications of the p-adic length scale hypothesis. In an
attempt to understand the scales associated with INW structures in terms of p-adic length scale
hypothesis it occurred to me that the scales which do not correspond to Mersenne primes or
Gaussian Mersennes might be generated somehow from the these scales.

1. Geometric mean L =
√
L(k1)L(k2) would length scale which would correspond to Lp with

p ' 2(k1+k2)/2. This is of the required form only if k = k1 + k2 is even so that k1 and k2
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are both even or odd. If one starts from Mersennes and Gaussian Mersennes the condition is
satisfied. The value of k = (k1 + k2)/2 can be also even.

Remark: The geometric mean (127 + 107)/2 = 117 of electronic and hadronic Mersennes
corresponding to mass 16 MeV rather near to the mass of so called X boson [L32] (https:
//tinyurl.com/ya3yuzeb).

2. One can also consider the formula L = (L(k1)L(k2)..L(kn))1/n but in this case the scale
would correspond to prime p ' 2k1+...kn)/n. Since (k1 + ..kn)/n is integer only if k1 + ...kn is
proportional to n.

What about the allowed values of fundamental integers k? It seems that one must allow all
odd integers.

1. If only prime values of k are allowed, one can obtain obtain for twin prime pair (k− 1, k+ 1)
even integer k as geometric mean

√
k if k is square. If prime k is not a member of this

kind of pair, it is not possible to get integers k − 1 and k + 1. If only prime values of k are
fundamental, one could assign to k = 89 characterizing Higgs boson weak bosons k = 90
possibly characterizing weak bosons. Therefore it seems that one must allow all odd integers
with the additional condition already explained.

2. Just for fun one can check whether k = 161 forced by the argument related to electroweak scale
and heff corresponds to a geometric mean of two Gaussian Mersennes. One has k(k1, k2) =
(k2 + k2)/2 giving the list k(151, 157) = 154), k(151, 163) = 157 Gaussian Mersenne itself,
k(151, 167) = 159, k(157, 163) = 160, k(157, 167) = 162, k(163, 167) = 165. Unfortunately,
k = 161 does not belong to this set. If one allows all odd values of k as fundamental, the
problem disappears.

One can also consider refinements of p-adic length scale hypothesis in its basic form.

1. One can consider also a generalization of p-adic length scale hypothesis to allow length scales
coming as powers of small primes. The small primes p = 2, 3, 5 assignable to Platonic solids
would be especially interesting. p = 2, 3, 5 and also Fermat primes and Mersenne primes are
maximally near to powers of two and their powers would define secondary and higher p-adic
length scales. In this sense the extension would not actually bring anything new.

There is evidence for the occurrence of long p-adic time scales coming as powers of 3 [I10, I11]
(http://tinyurl.com/ycesc5mq) and [K71] (https://tinyurl.com/y8camqlt. Further-
more, prime 5 and Golden Mean are related closely to DNA helical structure. Portion of
DNA with L(151) contains 10 DNA codons and is the minimal length containing an integer
number of codons.

2. The presence of length scales associated with 1 nm and 2 nm thick structures encourage to
consider the possibility of p-adic primes near integers 2k3l5m defining generators of multi-
plicative ideals of integers. They do not satisfy the maximal nearness criterion anymore but
would be near to integers representable as products of powers of primes maximally near to
powers of two.

What could be the interpretation of the integer k appearing in p ' 2k? Elementary particle
quantum numbers would be associated with wormhole contacts with size scale of CP2 whereas
elementary particles correspond to p-adic size scale about Compton length. What could determine
the size scale of wormhole contact? I have proposed that to p-adic length scale there is associated
a scale characterizing wormhole contact and depending logarithmically on it and corresponds to
Lk = (1/2)log(p)L0 = (k/2)log(2)L0. The generalization of this hypothesis to the case of p '
2k3l5m... be straightforward and be Lk,l,m = (1/2)(klog(2) + llog(3) +mlog(5) + ..).

Dark scales and scales of CDs and their relation to p-adic length scale hierarchy

There are two length scale hierarchies. p-Adic length scale hierarchy assignable to space-time
surfaces and the dark hierarchy assignable to CDs. One should find an identification of dark scales
and understand their relationship to p-adic length scales.

1. Identification of dark scales

https://tinyurl.com/ya3yuzeb
https://tinyurl.com/ya3yuzeb
http://tinyurl.com/ycesc5mq
https://tinyurl.com/y8camqlt
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The dimension n of the extension provides the roughest measure for its complexity via the
formula heff/h0 = n. The basic - rather ad hoc - assumption has been that n as dimension of
extension defines not only heff but also the size scale of CD via L = nL0.

This assumption need not be true generally and already the attempt to understand grav-
itational constant [L102] as a prediction of TGD led to the proposal that gravitational Planck
constant hgr = ngrh0 = GMm/v0 [E18] could be coded by the data relating to a normal subgroup
of Galois group appearing as a factor of n.

The most general option is that dark scale is coded by a data related to extension of its
sub-extension and this data involves ramified primes. Ramified primes depend on the polyno-
mial defining the extension and there is large number polynomials defining the same extension.
Therefore ramified ramifies code information also about polynomial and dynamics of space-time
surface.

First some observations.

1. For Galois extension the order n has a natural decomposition to a product of orders ni of its
normal subgroups serving also as dimensions of corresponding extensions: n =

∏
i ni. This

implies a decomposition of the group algebra of Galois group to a tensor product of state
spaces with dimensions ni [L109].

2. Could one actually identify several dark scales as the proposed identifications of gravitational,
electromagnetic, etc variants of heff suggest? The hierarchy of normal subgroups of Galois
group of rationals corresponds to sub-groups with orders given by N(i, 1) = nini−1...ni−1 of
n define orders for the normal subgroups of Galois group. For extensions of k−1:th extension
of rationals one has N(i, k) = nini−1...ni−k. The most general option is that these normal
subgroups provide only the data allowing to associate dark scales to each of them. The
spectrum of heff could correspond to the {Ni,k} or at least the set {Ni,1}.

3. The extensions with prime dimension n = p have no non-trivial normal subgroups and n = p
would hold for them. For these extensions the state space of group algebra is prime as Hilbert
space and does not decompose to tensor product so that it would represent fundamental
system. Could these extensions be of special interest physically? SSFRs would naturally
involve state function reduction cascades proceeding downwards along hierarchy of normal
subgroups and would represent cognitive measurements [L109].

The original guess was that dark scale LD = nLp, where n is the order n for the extensions
and p is a ramified prime for the extension. A generalized form would allow LD = N(i, 1)Lpk for
the sub-extension such that pk is ramified prime for the sub-extension.

2. Can one identify the size scale of CD as dark scale?

It would be natural if the scale of CD would be determined by the extension of rationals.
Or more generally, the scales of CD and hierarchy of sub-CDs associated with the extension would
be determined by the inclusion hierarchy of extensions and thus correspond to the hierarchy of
normal sub-groups of Galois group.

The simplest option would be LCD = LD so that the size scales of sub-CD would correspond
dark scales for sub-extension given by LCD,i = N(i, 1)Lpk , pk ramified prime of sub-extension.

1. The differences |ri − rj | would correspond to differences for Minkowski time of CD. CD need
not contain all values of hyperplanes t = ri and the evolution by SSFR would gradually bring
in day-light all roots rn of the polynomial P defining space-time surface as “very special
moments in the life of self”. If the size scale of CD is so large that also the largest value of
|ri| is inside the upper or lower half of CD, the size scale of CD would correspond roughly to
the largest p-adic length scale.

CD contains sub-CDs and these could correspond to normal subgroups of Galois extension as
extension of extension of ....

2. One can ask what happens when all special moments t = rn have been experienced? Does
BSFR meaning death of conscious entity take place or is there some other option? In [L103]
I considered a proposal for how chaos could emerge via iterations of P during the sequence
of SSFRs.

One could argue that when CD has reached by SSFRs following unitary evolutions a size for
which all roots rn have become visible, the evolution could continues by the replacement of
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P with P ◦ P , and so on. This would give rise to iteration and space-time analog for the
approach to chaos.

3. Eventually the evolution by SSFRs must stop. Biological arguments suggests that metabolic
limitations cause the death of self since the metabolic energy feed is not enough to preserve
the distribution of values of heff (energies increase with heff ∝ Nn, for N :th iteration and
heff is reduced spontaneously) [L110].

6.3 Fermionic variant of M 8 −H duality

The topics of this section is M8 −H duality for fermions. Consider first the bosonic counterpart
of M8 −H duality.

1. The octonionic polynomial giving rise to space-time surface X4 as its “root” is obtained
from ordinary real polynomial P with rational coefficients by algebraic continuation. The
conjecture is that the identification in terms of roots of polynomials of even real analytic
functions guarantees associativity and one can formulate this as rather convincing argument
[L47, L48, L49]. Space-time surface X4

c is identified as a 4-D root for a Hc-valued “imaginary”
or “real” part of Oc valued polynomial obtained as an Oc continuation of a real polynomial
P with rational coefficients, which can be chosen to be integers. These options correspond to
complexified-quaternionic tangent- or normal spaces. For P (x) = xn + .. ordinary roots are
algebraic integers. The real 4-D space-time surface is projection of this surface from M8

c to
M8. One could drop the subscripts ”c” but in the sequel they will be kept.

M4
c appears as a special solution for any polynomial P . M4

c seems to be like a universal
reference solution with which to compare other solutions.

One obtains also brane-like 6-surfaces as 6-spheres as universal solutions. They have M4

projection, which is a piece of hyper-surface for which Minkowski time as time coordinate of
CD corresponds to a root t = rn of P . For monic polynomials these time values are algebraic
integers and Galois group permutes them.

2. One cannot exclude rational functions or even real analytic functions in the sense that Taylor
coefficients are octonionically real (proportional to octonionic real unit). Number theoretical
vision - adelic physics [L52], suggests that polynomial coefficients are rational or perhaps
in extensions of rationals. The real coefficients could in principle be replaced with complex
numbers a + ib, where i commutes with the octonionic units and defines complexifiation of
octonions. i appears also in the roots defining complex extensions of rationals.

The generalization of the relationship between reals, extensions of p-adic number fields, and
algebraic numbers in their intersection is suggestive. The “world of classical worlds” (WCW)
would contain the space-time surfaces defined by polynomials with general real coefficients.
Real WCW would be continuous space in real topology. The surfaces defined by rational or
perhaps even algebraic coefficients for given extension would represent the intersection of real
WCW with the p-adic variants of WCW labelled by the extension.

3. M8−H duality requires additional condition realized as condition that also space-time surface
itself contains 2-surfaces having commutative (complex) tangent or normal space. These
surfaces can be 2-D also in metric sense that is light-like 3-D surfaces. The number of these
surfaces is finite in generic case and they do not define a slicing of X4 as was the first
expectation. Strong form of holography (SH) makes it possible to map these surfaces and
their tangent/normal spaces to 2-D surfaces M4 × CP2 and to serve as boundary values for
the partial differential equations for variational principle defined by twistor lift. Space-time
surfaces in H would be minimal surface apart from singularities.

Concerning M8−H duality for fermions, there are strong guidelines: also fermionic dynamics
should be algebraic and number theoretical.

1. Spinors should be octonionic. I have already earlier considered their possible physical inter-
pretation. [L23].

2. Dirac equation as linear partial differential equation should be replaced with a linear algebraic
equation for octonionic spinors which are complexified octonions. The momentum space
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variant of the ordinary Dirac equation is an algebraic equation and the proposal is obvious:
PΨ = 0, where P is the octonionic continuation of the polynomial defining the space-time
surface and multiplication is in octonionic sense. The conjugation in Oc is induced by the
conjugation of the commuting imaginary unit i. The square of the Dirac operator is real if the
space-time surface corresponds to the projection Oc → M8 → M4 with real time coordinate
and imaginary spatial coordinates so that the metric defined by the octonionic norm is real
and has Minkowskian signature. Hence the notion of Minkowski metric reduces to octonionic
norm for Oc - a purely number theoretic notion.

The masslessness condition restricts the solutions to light-like 3-surfaces mklP
kP l = 0 in

Minkowskian sector analogous to mass shells in momentum space - just as in the case of
ordinary massless Dirac equation. P (o) rather than octonionic coordinate o would define
momentum. These mass shells should be mapped to light-like partonic orbits in H.

3. This picture leads to the earlier phenomenological picture about induced spinors inH. Twistor
Grassmann approach suggests the localization of the induced spinor fields at light-like partonic
orbits in H. If the induced spinor field allows a continuation from 3-D partonic orbits to the
interior of X4, it would serve as a counterpart of virtual particle in accordance with quantum
field theoretical picture.

6.3.1 M8 −H duality for space-time surfaces

It is good to explain M8−H duality for space-time surfaces before discussing it in fermionic sector.

Space-time as 4-surface in M8
c = Oc

One can regard real space-time surface X4 ⊂ M8 as a M8−-projection of X4
c ⊂ M8

c = Oc. M
4
c

is identified as complexified quaternions Hc [L76, L101]. The dynamics is purely algebraic and
therefore local an associativity is the basic dynamical principle.

1. The basic condition is associativity of X4 ⊂ M8 in the sense that either the tangent space
or normal space is associative - that is quaternionic. This would be realized if X4

c as a root
for the quaternion-valued “real” or “imaginary part” for the Oc algebraic continuation of real
analytic function P (x) in octonionic sense. Number theoretical universality requires that the
Taylor coefficients are rational numbers and that only polynomials are considered.

The 4-surfaces with associative normal space could correspond to elementary particle like
entities with Euclidian signature (CP2 type extremals) and those with associative tangent
space to their interaction regions with Minkowskian signature. These two kinds space-time
surfaces could meet along these 6-branes suggesting that interaction vertices are located at
these branes.

2. The conditions allow also exceptional solutions for any polynomial for which both “real”
and “imaginary” parts of the octonionic polynomial vanish. Brane-like solutions correspond
to 6-spheres S6 having t = rn 3-ball B3 of light-cone as M4 projection: here rn is a root
of the real polynomial with rational coefficients and can be also complex - one reason for
complexification by commuting imaginary unit i. For scattering amplitudes the topological
vertices as 2-surfaces would be located at the intersections ofX4

c with 6-brane. Also Minkowski
space M4 is a universal solution appearing for any polynomial and would provide a universal
reference space-time surface.

3. Polynomials with rational coefficients define EQs and these extensions form a hierarchy real-
ized at the level of physics as evolutionary hierarchy. Given extension induces extensions of
p-adic number fields and adeles and one obtains a hierarchy of adelic physics. The dimension
n of extension allows interpretation in terms of effective Planck constant heff = n× h0. The
phases of ordinary matter with effective Planck constant heff = nh0 behave like dark matter
and galactic dark matter could correspond to classical energy in TGD sense assignable to
cosmic strings thickened to magnetic flux tubes. It is not completely clear whether number
galactic dark matter must have heff > h. Dark energy in would correspond to the volume
part of the energy of the flux tubes.

There are good arguments in favor of the identification h = 6h0 [L58]. “Effective” means that
the actual value of Planck constant is h0 but in many-sheeted space-time n counts the number
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of symmetry related space-time sheets defining X4 as a covering space locally. Each sheet
gives identical contribution to action and this implies that effective value of Planck constant
is nh0.

The ramified primes of extension in turn are identified as preferrred p-adic primes. The moduli
for the time differences |tr− ts| have identification as p-adic time scales assignable to ramified
primes [L101]. For ramified primes the p-adic variants of polynomials have degenerate zeros
in O(p) = 0 approximation having interpretation in terms of quantum criticality central in
TGD inspired biology.

4. During the preparation of this article I made a trivial but overall important observation.
Standard Minkowski signature emerges as a prediction if conjugation in Oc corresponds to
the conjugation with respect to commuting imaginary unit i rather than octonionic imaginary
units as though earlier. If the space-time surface corresponds to the projection Oc →M8 →
M4 with real time coordinate and imaginary spatial coordinates the metric defined by the
octonionic norm is real and has Minkowskian signature. Hence the notion of Minkowski metric
reduces to octonionic norm for Oc - a purely number theoretic notion.

Realization of M8 −H duality

M8 − H duality allows to X4 ⊂ M8 to X4 ⊂ H so that one has two equivalent descriptions for
the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with 2-D preferred 2-
surfaces defining holography making possibleM8−H duality and possibly appearing as singularities
in H. The dynamics of minimal surfaces, which are also extremals of Kähler action, reduces
for known extremals to purely algebraic conditions analogous to holomorphy conditions in string
models and thus involving only gradients of coordinates. This condition should hold generally and
should induce the required huge reduction of degrees of freedom proposed to be realized also in
terms of the vanishing of super-symplectic Noether charges already mentioned [K85].

Twistor lift allows several variants of this basic duality [L88]. M8
H duality predicts that

space-time surfaces form a hierarchy induced by the hierarchy of EQs defining an evolutionary
hierarchy. This forms the basics for the number theoretical vision about TGD.

As already noticed, X4 ⊂ M8 would satisfy an infinite number of additional conditions
stating vanishing of Noether charges for a sub-algebra SSAn ⊂ SSA of super-symplectic algebra
SSA actings as isometries of WCW.

M8−H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions [L76].

1. Associativity condition for tangent-/normal spaces is the first essential condition for the exis-
tence of M8−H duality and means that tangent - or normal space is associative/quaternionic.

2. Each tangent space of X4 at x must contain a preferred M2
c (x) ⊂ M4

c such that M2
c (x)

define an integrable distribution and therefore complexified string world sheet in M4
c . This

gives similar distribution for their orthogonal complements E2c(x). The string world sheet
like entity defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would
correspond to partonic 2-surface. This condition generalizes for X4 with quaternionic normal
space. A possible interpretation is as a space-time correlate for the selection of quantization
axes for energy (rest system) and spin.

One can imagine two realizations for the additional condition.

Option I: Global option states that the distributions M2
c (x) and E2

c (x) define a slicing of
X4
c .

Option II: Only a discrete set of 2-surfaces satisfying the conditions exist, they are mapped
to H, and strong form of holography (SH) applied in H allows to deduce X4 ⊂ H. This would be
the minimal option.

It seems that only Option II can be realized.

1. The basic observation is that X2
c can be fixed by posing to the non-vanishing Hc-valued part

of octonionic polynomial P condition that the Cc-valued “real” or “imaginary” part in Cc
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sense for P vanishes. M2
c would be the simplest solution but also more general complex sub-

manifolds X2
c ⊂M4

c are possible. This condition allows only a discrete set of 2-surfaces as its
solutions so that it works only for Option II.

These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u+ iv. One should have family of polynomials differing by
a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. SH makes possible M8 −H duality assuming that associativity conditions hold true only at
2-surfaces including partonic 2-surfaces or string world sheets or perhaps both. Thus one can
give up the conjecture that the polynomial ansatz implies the additional condition globally.

SH indeed states that PEs are determined by data at 2-D surfaces ofX4. Even if the conditions
defining X2

c have only a discrete set of solutions, SH at the level of H could allow to deduce
the PEs from the data provided by the images of these 2-surfaces under M8−H duality. The
existence of M2(x) would be required only at the 2-D surfaces.

3. There is however a delicacy involved: X2 might be 2-D only metrically but not topologically!
The 3-D light-like surfaces X3

L indeed have metric dimension D = 2 since the induced 4-
metric degenerates to 2-D metric at them. Therefore their pre-images in M8 would be natural
candidates for the singularities at which the dimension of the quaternionic tangent or normal
space reduces to D = 2 [L75] [K10]. If this happens, SH would not be quite so strong as
expected. The study of fermionic variant of M8 −H-duality supports this conclusion.

One can generalize the condition selecting X2
c so that it selects 1-D surface inside X2

c . By
assuming that Rc-valued “real” or “imaginary” part of complex part of P sense at this 2-surface
vanishes. One obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit

or distribution of the imaginary unit having interpretation as a complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The outcome
would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.

6.3.2 What about M8 −H duality in the fermionic sector?

During the preparation of this article I become aware of the fact that the realization M8−H duality
in the fermionic sector has remained poorly understood. This led to a considerable integration of
the ideas about M8 − H duality also in the bosonic sector and the existing phenomenological
picture follows now from M8 −H duality. There are powerful mathematical guidelines available.

Octonionic spinors

By supersymmetry, octonionicity should have also fermionic counterpart.

1. The interpretation of M8
c as complexified octonions suggests that one should use complexified

octonionic spinors in M8
c . This is also suggested by SO(1,7) triality unique for dimension

d = 8 and stating that the dimensions of vector representation, spinor representation and
its conjugate are same and equal to D = 8. I have already earlier considered the possibility
to interpret M8 spinors as octonionic [L23]. Both octonionic gamma matrices and spinors
have interpretation as octonions and gamma matrices satisfy the usual anti-commutation
rules. The product for gamma matrices and gamma matrices and spinors is replaced with
non-associative octonionic product.

2. Octonionic spinors allow only one M8-chirality, which conforms with the assumption of TGD
inspired SUSY that only quarks are fundamental fermions and leptons are their local com-
posites [L81].

3. The decomposition of X2 ⊂ X4 ⊂M8 corresponding to R ⊂ C ⊂ Q ⊂ O should have analog
for the Oc spinors as a tensor product decomposition. The special feature of dimension D = 8
is that the dimensions of spinor spaces associated with these factors are indeed 1, 2, 4, and 8
and correspond to dimensions for the surfaces!

One can define for octonionic spinors associative/co-associative sub-spaces as quaternionic/co-
quaternionic spinors by posing chirality conditions. For X4 ⊂M8

c one could define the analogs
of projection operators P± = (1± γ5)/2 as projection operators to either factor of the spinor
space as tensor product of spinor space associated with the tangent and normal spaces of
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Figure 6.1: M8 −H duality.

X4: the analog of γ5 would correspond to tangent or normal space depending on whether
tangent or normal space is associative. For the spinors with definite chirality there would
be no entanglement between the tensor factors. The condition would generalize the chirality
condition for massless M4 spinors to a condition holding for the local M4 appearing as
tangent/normal space of X4.

4. The chirality condition makes sense also for X2 ⊂ X4 identified as complex/co-complex
surface of X4. Now γ5 is replaced with γ3 and states that the spinor has well-defined spin
in the direction of axis defined by the decomposition of X2 tangent space to M1 × E1 with
M1 defining real octonion axis and selecting rest frame. Interpretation in terms of quantum
measurement theory is suggestive.

What about tangent space quantum numbers in M8 picture. In H-picture they correspond
to spin and electroweak quantum numbers. In M8 picture the geometric tangent space group for
a rest system is product SU(2)× SU(2) with possible modifications due to octonionicity reducing
tangent space group to those respecting octonionic automorphisms.

What about the sigma matrices for the octonionic gamma matrices? The surprise is that
the commutators of M4 sigma matries and those of E4 sigma matrices close to the sama SO(3)
algebra allowing interpretation as representation for quaternionic automorphisms. Lorentz boosts
are represented trivially, which conforms with the fact that octonion structure fixes unique rest
system. Analogous result holds in E4 degrees of freedom. Besides this one has unit matrix
assignable to the generalize spinor structure of CP2 so that also electroweak U(1) factor is obtained.

One can understand this result by noticing that octonionic spinors correspond to 2 copies of
a tensor products of the spinor doublets associated with spin and weak isospin. One has 2⊗2 = 3⊕1
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so that one must have 1⊕3⊕1⊕3. The octonionic spinors indeed decompose like 1+1+3+3 under
SU(3) representing automophisms of the octonions. SO(3) could be interpreted as SO(3) ⊂ SU(3).
SU(3) would be represented as tangent space rotations.

Dirac equation as partial differential equation must be replaced by an algebraic equa-
tion

Algebraization of dynamics should be also supersymmetric. The modified Dirac equation in H is
linear partial differential equation and should correspond to a linear algebraic equation in M8.

1. The key observation is that for the ordinary Dirac equation the momentum space variant of
Dirac equation for momentum eigenstates is algebraic! Could the interpretation for M8 −H
duality as an analog of momentum-position duality of wave mechanics considered already
earlier make sense! This could also have something to do with the dual descriptions of
twistorial scattering amplitudes in terms of either twistor and momentum twistors. Already
the earlier work excludes the interpretation of the octonionic coordinate o as 8-momentum.
Rather, P (o) has this interpretation and o corrresponds to embedding space coordinate.

2. The first guess for the counterpart of the modified Dirac equation at the level of X4 ⊂ M8

is PΨ = 0, where Ψ is octonionic spinor and the octonionic polynomial P defining the
space-time surface can be seen as a generalization of momentum space Dirac operator with
octonion units representing gamma matrices. If associativity/co-associativity holds true, the
equation becomes quaternionic/co-quaternionic and reduces to the 4-D analog of massless
Dirac equation and of modified Dirac equation in H. Associativity hols true if also Ψ satisfies
associativity/co-associativity condition as proposed above.

3. What about the square of the Dirac operator? There are 3 conjugations involved: quaternionic
conjugation assumed in the earlier work, conjugation with respect to i, and their combination.
The analog of octonionic norm squared defined as the product oco

∗
c with conjugation with

respect to i only, gives Minkowskian metric mklo
kol as its real part. The imaginary part of

the norm squared is vanishing for the projection Oc → M8 → M4 so that time coordinate
is real and spatial coordinates imaginary. Therefore Dirac equation allows solutions only for
the M4 projection X4 and M4 (M8) signature of the metric can be said to be an outcome
of quaternionicity (octonionicity) alone in accordance with the duality between metric and
algebraic pictures.

Both P †P and PP should annihilate Ψ. P †PΨ = 0 gives mklP
kP

l
= 0 as the analog of

vanishing mass squared in M4 signature in both associative and co-associative cases. PPΨ =
0 reduces to PΨ = 0 by masslessness condition. One could perhaps interpret the projection
X4
c →M8 →M4 in terms of Uncertainty Principle.

There is a U(1) symmetry involved: instead of the plane M8 one can choose any plane
obtained by a rotation exp(iφ) from it. Could it realize quark number conservation in M8

picture?

For P = o having only o = 0 as root Po = 0 reduces to o†o = 0 and o takes the role of
momentum, which is however vanishing. 6-D brane like solutions S6 having t = rn balls
B3 ⊂ CD4 as M4 projections one has P = 0 so that the Dirac equation trivializes and does
not pose conditions on Ψ. o would have interpretation as space-time coordinates and P (o) as
position dependent momentum components P k.

The variation of P at mass shell of M8
c (to be precise) could be interpreted in terms of the

width of the wave packet representing particle. Since the light-like curve at partonic 2-surface
for fermion at X3

L is not a geodesic, mass squared in M4 sense is not vanishing. Could one
understand mass squared and the decay width of the particle geometrically? Note that mass
squared is predicted also by p-adic thermodynamics [K60].

4. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−H
duality [L76] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like orbit
of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces as X3
L

gives a very powerful constraint on SH and M8 −H duality.

5. Also at 2-surfaces X2 ⊂ X4 an the variant Dirac equation would hold true and should
commute with the corresponding chirality condition. Now D†DΨ = 0 gives 2-D variant
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of masslessness condition with 2-momentum components represented by those of P . 2-D
masslessness locates the spinor to a 1-D curve X1

L. Its H-image would naturally contain the
boundary of the string word sheet at X3

L assumed to carry fermion quantum numbers and
also the boundary of string world sheet at the light-like boundary of CD4. The interior of
string world sheet in H would not carry induced spinor field.

6. The general solution for both 4-D and 2-D cases can be written as Ψ = PΨ0, Ψ0 a constant
spinor - this in a complete analogy with the solution of modified Dirac equation in H. P
depends on position: the WKB approximation using plane waves with position dependent
momentum seems to be nearer to reality than one might expect.

The phenomenological picture at H-level follows from the M8-picture

Remarkably, the partly phenomenological picture developed at the level of H is reproduced at
the level of M8. Whether the induced spinor fields in the interior of X4 are present or not, has
been long standing question since they do not seem to have any role in the physical picture. The
proposed picture answers this question.

Consider now the explicit realization of M8 −H-duality for fermions.

1. SH and the expected analogy with the bosonic variant of M8 − H duality lead to the first
guess. The spinor modes in X4 ⊂ M8 restricted to X2 can be mapped by M8 −H-duality
to those at their images X2 ⊂ H, and define boundary conditions allowing to deduce the
solution of the modified Dirac equation at X4 ⊂ H. X2 would correspond to string world
sheets having boundaries X1

L at X3
L.

The guess is not quite correct. Algebraic Dirac equation requires that the solutions are
restricted to the 3-D and 1-D mass shells PkP

k = 0 in M8. This should remain true also in
H and X3

L and their 1-D intersections X1
L with string world sheets remain. Fermions would

live at boundaries. This is just the picture proposed for the TGD counterparts of the twistor
amplitudes and corresponds to that used in twistor Grassmann approach!

For 2-D case constant octonionic spinors Ψ0 and gamma matrix algebra are equivalent with
the ordinary Weyl spinors and gamma matrix algebra and can be mapped as such to H. This
gives one additional reason for why SH must be involved.

2. At the level of H the first guess is that the modified Dirac equation DΨ = 0 is true for
D based on the modified gamma matrices associated with both volume action and Kähler
action. This would select preferred solutions of modified Dirac equation and conform with
the vanishing of super-symplectic Noether charges for SSAn for the spinor modes. The guess
is not quite correct. The restriction of the induced spinors to X3

L requires that Chern-Simons
action at X3

L defines the modified Drac action.

3. The question has been whether the 2-D modified Dirac action emerges as a singular part of 4-
D modified Dirac action assignable to singular 2-surface or can one assign an independent 2-D
Dirac action assignable to 2-surfaces selected by some other criterion. For singular surfaces
M8−H duality fails since tangent space would reduce to 2-D space so that only their images
can appear in SH at the level of H.

This supports the view that singular surfaces are actually 3-D mass shells M8 mapped to X3
L

for which 4-D tangent space is 2-D by the vanishing of
√
g4 and light-likeness. String world

sheets would correspond to non-singular X2 ⊂ M8 mapped to H and defining data for SH
and their boundaries X1

L ⊂ X3
L and X1

L ⊂ CD4 would define fermionic variant of SH.

What about the modified Dirac operator D in H?

1. For X3
L modified Dirac equation DΨ = 0 based on 4-D action S containing volume and Kähler

term is problematic since the induced metric fails to have inverse at X3
L. The only possible

action is Chern-Simons action SCS used in topological quantum field theories and now defined
as sum of C-S terms for Kähler actions in M4 and CP2 degrees of freedom. The presence
of M4 part of Kähler form of M8 is forced by the twistor lift, and would give rise to small
CP breaking effects explaining matter antimatter asymmetry [L81]. SC−S could emerge as a
limit of 4-D action.



6.3. Fermionic variant of M8 −H duality 311

The modified Dirac operator DC−S uses modified gamma matrices identified as contractions
ΓαCS = Tαkγk, where Tαk = ∂LCS/∂(∂αh

k) are canonical momentum currents for SC−S
defined by a standard formula.

2. CP2 part would give conserved Noether currents for color in and M4 part Poincare quantum
numbers: the apparently small CP breaking term would give masses for quarks and leptons!
The bosonic Noether current JB,A for Killing vector jkA would be proportional to JαB,A =

Tαk jAk and given by JB,A = εαβγ [JβγAk +AβJγk]jkA.

Fermionic Noether current would be JF,A = ΨJαΨ 3-D Riemann spaces allow coordinates in
which the metric tensor is a direct sum of 1-D and 2-D contributions and are analogous to
expectation values of bosonic Noether currents. One can also identify also finite number of
Noether super currents by replacing Ψ or Ψ by its modes.

3. In the case of X3
L the 1-D part light-like part would vanish. If also induced Kähler form

is non-vanishing only in 2-D degrees of freedom, the Noether charge densities J t reduce to
J t = JAkj

k
A, J = εαβγJβγ defining magnetic flux. Modified Dirac operator would reduce to

D = JAkγ
kDt and 3-D solutions would be covariantly constant spinors along the light-like

geodesics parameterized by the points 2-D cross section. One could say that the number of
solutions is finite and corresponds to covariantly constant modes continued from X1

L to X3
L.

This picture is just what twistor Grassmannian approach led to [L64].

A comment inspired by the ZEO based quantum measurement theory

I cannot resist the temptation to make a comment relating to quantum measurement theory in-
spired by zero energy ontology (ZEO) extending to a theory of consciousness [L80, L109, L110].

I have proposed [L101, L103] that the time evolution by “big” state function reductions
(BSFRs) could be induced by iteration of real polynomial P - at least in some special cases. The
foots of the real polynomial P would define a fractal at the limit of larger number of iterations.
The roots of n-fold iterate ◦nP would contain the inverse images under ◦−n+1P of roots of P and
for P (0) = 0 the inverse image ◦nP would consist of inverse images under ◦−kP , k = 0, ...., n− 1,
of roots of P .

Also the mass shells for ◦nP would be unions of inverses images under ◦−kP , k = 0, , ...., n−1,
of roots of P . This gives rather concrete view about evolution of M4 projections of the partonic
orbits. A rough approximate expression for the largest root of real P approximated as P (x) '
anx

n + an− 1ixn−1 for large x is xmax ∼ an/an−1. For ◦nP one obtains the same estimate. This
suggests that the size scales of the partonic orbits are same for the iterates. The mass shells would
not differ dramatically: could they have an interpretation in terms of mass splitting?

The evolution by iteration would add new partonic orbits and preserve the existing ones:
this brings in mind conservation of genes in biological evolution. This is true also for a more general
evolution allowing general functional decomposition Q→ Q ◦ P to occur in BSFR.

What next in TGD?

The construction of scattering amplitudes has been the dream impossible that has driven me for
decades. Maybe the understanding of fermionic M8 − H duality provides the needed additional
conceptual tools. The key observation is utterly trivial but far reaching: there are 3 possible
conjugations for octonions corresponding to the conjugation of commutative imaginary unit or
of octonionic imaginary units or both of them. 1st norm gives a real valued norm squared in
Minkowski signature natural at M8 level! Second one gives a complex valued norm squared in
Euclidian signature. 1st and 2nd norms are equivalent for octonions light-like with respect to the
first norm. The 3rd conjugation gives a real-valued Euclidian norm natural at the level of Hilbert
space.

1. M8 picture looks simple. Space-time surfaces in M8 can be constructed from real polynomials
with real (rational) coefficients, actually knowledge of their roots is enough. Discrete data -
roots of the polynomial!- determine space-time surface as associative or co-associative region!
Besides this one must pose additional condition selecting 2-D string world sheets and 3-D light-
like surfaces as orbits of partonic 2-surfaces. These would define strong form of holography
(SH) allowing to map space-time surfaces in M8 to M4 × CP2.
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2. Could SH generalize to the level of scattering amplitudes expressible in terms of n-point
functions of CFT?! Could the n points correspond to the roots of the polynomial defining
space-time region!

Algebraic continuation to quaternion valued scattering amplitudes analogous to that giving
space-time sheets from the data coded SH should be the key idea. Their moduli squared are
real - this led to the emergence of Minkowski metric for complexified octonions/quaternions)
would give the real scattering rates: this is enough! This would mean a number theoretic
generalization of quantum theory.

3. One can start from complex numbers and string world sheets/partonic 2-surfaces. Conformal
field theories (CFTs) in 2-D play fundamental role in the construction of scattering string the-
ories and in modelling 2-D statistical systems. In TGD 2-D surfaces (2-D at least metrically)
code for information about space-time surface by strong holography (SH) .

Are CFTs at partonic 2-surfaces and string world sheets the basic building bricks? Could
2-D conformal invariance dictate the data needed to construct the scattering amplitudes for
given space-time region defined by causal diamond (CD) taking the role of sphere S2 in
CFTs. Could the generalization for metrically 2-D light-like 3-surfaces be needed at the level
of ”world of classical worlds” (WCW) when states are superpositions of space-time surfaces,
preferred extremals?

The challenge is to develop a concrete number theoretic hierarchy for scattering amplitudes:
R→ C → H → O - actually their complexifications.

1. In the case of fermions one can start from 1-D data at light-like boundaries LB of string world
sheets at light-like orbits of partonic 2-surfaces. Fermionic propagators assignable to LB
would be coded by 2-D Minkowskian QFT in manner analogous to that in twistor Grassmann
approach. n-point vertices would be expressible in terms of Euclidian n-point functions for
partonic 2-surfaces: the latter element would be new as compared to QFTs since point-like
vertex is replaced with partonic 2-surface.

2. The fusion (product?) of these Minkowskian and Euclidian CFT entities corresponding to
different realization of complex numbers as sub-field of quaternions would give rise to 4-
D quaternionic valued scattering amplitudes for given space-time sheet. Most importantly:
there moduli squared are real for both norms.

It is not quite clear whether one must use the 1st Minkowskian norm requiring “time-like”
scattering amplitudes to achieve non-negative probabilities or use the 3rd norm to get the
ordinary positive-definite Hilbert space norm. A generalization of quantum theory (CFT)
from complex numbers to quaternions (quaternionic ”CFT”) would be in question.

3. What about several space-time sheets? Could one allow fusion of different quaternionic scat-
tering amplitudes corresponding to different quaternionic sub-spaces of complexified octonions
to get octonion-valued non-associative scattering amplitudes. Again scattering rates would
be real. This would be a further generalization of quantum theory.

There is also the challenge to relate M8- and H-pictures at the level of WCW. The formula-
tion of physics in terms of WCW geometry [K85, L87] leads to the hypothesis that WCW Kähler
geometry is determined by Kähler function identified as the 4-D action resulting by dimensional
reduction of 6-D surfaces in the product of twistor spaces of M4 and CP2 to twistor bundles having
S2 as fiber and space-time surface X4 ⊂ H as base. The 6-D Kähler action reduces to the sum of
4-D Kähler action and volume term having interpretation in terms of cosmological constant.

The question is whether the Kähler function - an essentially geometric notion - can have a
counterpart at the level of M8.

1. SH suggests that the Kähler function identified in the proposed manner can be expressed
by using 2-D data or at least metrically 2-D data (light-like partonic orbits and light-like
boundaries of CD). Note that each WCW would correspond to a particular CD.

2. Since 2-D conformal symmetry is involved, one expects also modular invariance meaning that
WCW Kähler function is modular invariant, so that they have the same value for X4 ⊂ H
for which partonic 2-surfaces have induced metric in the same conformal equivalence class.
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3. Also the analogs of Kac-Moody type symmetries would be realized as symmetries of Kähler
function. The algebra of super-symplectic symmetries of the light-cone boundary can be
regarded as an analog of Kac-Moody algebra. Light-cone boundary has topology S2 × R+

where R+ corresponds to radial light-like ray parameterized by radial light-like coordinate r.
Super symplectic transformations of S2 × CP2 depend on the light-like radial coordinate r,
which is analogous to the complex coordinate z for he Kac-Moody algebras.

The infinitesimal super-symplectic transformations form algebra SSA with generators propor-
tional to powers rn . The Kac-Moody invariance for physical states generalizes to a hierarchy
of similar invariances. There is infinite fractal hierarchy of sub-algebras SSAn ⊂ SSA with
conformal weights coming as n-multiples of those for SSA. For physical states SSAn and
[SSAn, SSA] would act as gauge symmetries. They would leave invariant also Kähler func-
tion in the sector WCWn defined by n. This would define a hierarchy of sub- WCWs of the
WCW assignable to given CD.

The sector WCWn could correspond to extensions of rationals with dimension n, and one
would have inclusion hierarchies consisting of sequences of ni with ni dividing ni+1. These
inclusion hierarchies would naturally correspond to those for hyper-finite factors of type II1

[K112].

6.4 Cognitive representations and algebraic geometry

The general vision about cognition is realized in terms of adelic physics as physics of sensory
experience and cognition [L52, L51]. Rational points and their generalization as ratios of algebraic
integers for geometric objects would define cognitive representations as points common for real
and various p-adic variants of the space-time surface. The finite-dimensionality for induced p-adic
extensions allows also extensions of rationals involving root of e and its powers. This picture
applies both at space-time level, embedding space level, and at the level of space-time surfaces but
basically reduces to embedding space level. Hence counting of the (generalized) rational points for
geometric objects would be determination of the cognitive representability.

6.4.1 Cognitive representations as sets of generalized rational points

The set of rational points depends on the coordinates chosen and one can argue that one must
allow different cognitive representations and classify them according to their effectiveness.

How uniquely the M8
c coordinates can be chosen?

1. Polynomial property allows only linear transformations of the complex octonionic coordinates
with coefficients which belong to the extension of rationals used. This poses extremely strong
restrictions on the allowed representations once the quaternionic moduli defining a foliation of
M4

0 is chosen. One has therefore moduli space of quaternionic structures. One must also fix
the time axis in M4 assignable to real octonions.

2. One can also define several inequivalent octonionic structures and associate a moduli space to
these. The moduli space for octonionic structures would correspond to the space of M4

0 ⊂M8s
as quaternionic planes containing fixed M2

0 . One can allow even allow Lorentz transforms
mixing real and imaginary octonionic coordinates. It seems that these moduli are not relevant
at the level of H.

What could the precise definition of rationality?

1. The coordinates of point are rational in the sense defined by the extension of rationals used.
Suppose that one considers parametric representations of surfaces as maps from space-time
surface to embedding space. Suppose that one uses as space-time coordinates subset of pre-
ferred coordinates for embedding space. These coordinate changes cannot be global and one
space-time surface decomposes to regions in which different coordinates apply.

2. The coordinate transformations between over-lapping regions are birational in the sense that
both the map and its inverse are in terms of rational functions. This makes the notion of
rationality global.

3. When cognitively easy rational parametric representations are possible? For algebraic curves
with g ≥ 2 in CP2 represented as zeros of polynomials this cannot the case since the number
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of rational points is finite for instance for g ≥ 2 surfaces. There is simple explanation for
this. Solving second complex coordinate in terms of the other one gives it as an algebraic
function for g ≥ 2: this must be the reason for the loss of dense set of rational points. For
elliptic surfaces y2 − x3 − ax− b = 0 y2 is however polynomial of x and one can find rational
parametric representation by taking y2 as coordinate [L43]. For g = 0 one has linear equations
and one obtains dense set of rational points. For conic sections one can also have dense set
of rational points but not always. Generalizing from this it would seem that the failure to
have rational parametric representation is the basic reason for the loss of dense set of rational
points.

This picture does not work for general surfaces but generalizes for algebraic varieties defined
by several polynomial equations. The co-dimension dc = 1 case is however unique and the most
studied one since for several polynomial equations one encounters technical difficulties when the
intersection of the surfaces defined by the dc polynomials need not be complete for dc > 1. In
the recent situation one has dc = 4 but octonion analyticity could be powerful enough symmetry
to solve the problem of non-complete intersections by eliminating them or providing a physical
interpretation for them.

6.4.2 Cognitive representations assuming M8 −H duality

Many questions should be answered.

1. Can one generalize the results applying to algebraic varieties? Could the general vision about
rational and potentially dense set of rational points generalize?. At M8 side the description of
space-time surfaces as algebraic varieties indeed conforms with this picture. Could one under-
stand SH from the fact that real analyticity octonionic polynomials are determined by ordinary
polynomial real coordinate completely? In information theoretic sense sense SH reduces to 1-D
holography and the polynomial property makes the situation effectively discrete since finite
number of points of real axis allows to determine the octonionic polynomial completely! It is
a pity that one cannot measure octonionic polynomial directly!

2. Also the notion of Zariski dimension should make sense in TGD at M8 side. Preferred ex-
tremals define the notion of closed set for given CD at M8 side? It would indeed seem that
one define Zariski topology at the level of M8

c . Zariski topology would require 4-surfaces,
string world sheets, or partonic 2-surfaces and even 1-D curves. This picture conforms with
the recent view about TGD and resembles the M-theory picture, where one has branes. SH
suggests that the analog of Zariski dimension of space-time surface reduces to that for strings
world sheets and partonic 2-surfaces and that even these are analogous to 1-D curves by com-
plex analyticity. Integrability of TGD and preferred extremal property would indeed suggest
simplicity.
M8 −H hypothesis suggests that these conjectures make sense also at H side. String world
sheets, partonic 2-surface, space-like 3-surfaces at the ends of space-time surface at boundaries
of CD, and light-like 3-surfaces correspond to closed sets also at the level of WCW in the
topology most natural for WCW.

3. Also the problems related to Minkowskian signature could be solved. String world sheets
are problematic because of the Minkowskian signature. They however have the topology of
disk plus handles suggesting immediately a vision about cognitive representations in terms of
rational points. One can can complexify string world sheets and it seems possible to apply the
results of algebraic geometry holding true in Euclidian signature. This would be analogous to
the Wick rotation used in QFTs and also in twistor Grassmann approach.

4. What about algebraic geometrization of the twistor lift? How complex are twistor spaces of
M4, CP2 and space-time surface? How can one generalize twistor lift to the level of M8.
S2 bundle structure and the fact that S2 allows a dense set of rational suggests that the
complexity of twistor space is that of space-time surface itself so that the situation actually
reduces to the level of space-time surfaces.

Suppose one accepts M8−H duality requiring that the tangent space of space-time surface
at given point x contains M2(x) such that M2(x) define an integrable distribution giving rise to
string world sheets and their orthogonal complements give rise to partonic 2-surfaces. This would
give rise to a foliation of the space-time surface by string world sheets and partonic 2-surface
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conjecture on basis of the properties of extremals of Kähler action. As found these foliations could
correspond to quaternion structures that is allowed choices of quaterionic coordinates.

Should one define cognitive representations at the level of M8 or at the level of M4 ×CP2?
Or both? For M8 option the condition that space-time point belongs to an extension of rationals
applies at the level of M8 coordinates. For M4 × CP2 option cognitive representations are at the
level of M4 and CP2 parameterizing the points of M4 and their tangent spaces. The formal study
of partial differential equations alone does not help much in counting the number of rational points.
One can define cognitive representation in very many ways, and some cognitive representation could
be preferred only because they are more efficient than others. Hence both cognitive representations
seems to be acceptable.

Some cognitive representations are more efficient than others. General coordinate invari-
ance (GCI) at the level of cognition is broken. The precise determination of cognitive efficiency
is a challenge in itself. For instance, the use of coordinates for which coordinate lines are orbits
of subgroups of the symmetry group should be highly efficient. Only coordinate transformations
mediated by bi-rational maps can take polynomial representations to polynomial representations.
It might well be that only a rational (in generalized sense) sub-group G2 of octonionic automor-
phisms is allowed. For rational surfaces allowing parametric representation in terms of polynomial
functions the rational points form a dense set.

The cognitive resolution for a dense set of rational points is unrealistically high since cog-
nitive representation would contain infinite number of points. Hence one must tighten the notion
of cognitive representation. The rational points must contain a fermion. Fermions are indeed are
identified as correlates for Boolean cognition [K27]. This would suggests a view in which cognitive
representations are realized at the light-like orbits of partonic 2-surfaces at which Minkowskian
associative and Euclidian co-associative space-time surfaces meet. The general wisdom is that
rational points are localized to lower-dimensional sub-varieties (Bombieri-Lang conjecture): this
conforms with the view that fermion lines reside at the orbits of partonic 2-surfaces.

6.4.3 Are the known extremals in H easily cognitively representable?

Suppose that one takes TGD inspired adelic view about cognition seriously. If cognitive repre-
sentations correspond to rational points for an extension of rationals, then the surfaces allowing
large number of this kind of points are easily representable cognitively by adding fermions to these
points. One could even speculate that mathematical cognition invents those geometric objects,
which are easily cognitively representable and thus have a large number of rational points.

Could the known extremals of twistor lift be cognitively easy?

Also TGD is outcome of mathematical cognition. Could the known extremals of the twistor lift
of Kähler action be cognitively easy? This is suggested by the fact that even such a pariah class
theoretician as I am have managed to discover then! Positive answer could be seen as support for
the proposed description of cognition!

1. If one believes in M8 − H duality and the proposed identification of associative and co-
associative space-time surfaces in terms of algebraic surfaces in octonionic space M8

c , the
generalization of the results of algebraic geometry should give overall view about the cogni-
tive representations at the level of M8. In particular, surfaces allowing rational parametric
representation (polynomials would have rational coefficients) would allow dense set or rational
points since the images of rational points are rational. Rationals are understood here as ratios
of algebraic integers in extension of rationals.

2. Also for H the existence of parameter representation using preferred H-coordinates and ra-
tional functions with rational coefficients implies that rational points are dense. If M8 − H
correspondence maps the parametric representations in terms of rational functions to simi-
lar representations, dense set of rational points is preserved in the correspondence. There is
however no obvious reason why M8 −H duality should have this nice property.
One can even play with the idea that the surfaces, which are cognitively difficult at the M8

side, might be cognitively easy at H-side or vice versa. Of course, if the explicit representation
as algebraic functions makes sense at M8 side, this side looks cognitively ridiculously easy
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as compared to H side. The preferred extremal property and SH can however change the
situation.

3. At M8 side and for a given point of M4 there are several points of E4 (or vice versa) if the
degree of the polynomial is larger than n = 1 so that for the image of the surface H there
are several CP2 points for a given point of M4 (or vice versa) depending on the choice of
coordinates. This is what the notion of the many-sheeted space-time predicts.

4. The equations for the surface at H side are obtained by a composite map assigning first to the
coordinates of X4 ⊂M8 point of M4×E4, and then assigning to the points of X4 ⊂M8 CP2

coordinates of the tangent space of the point. At this step the slightly non-local tangent space
information is fed in and the surfaces in M4×CP2 cannot be given by zeros of polynomials. The
indeed satisfy instead of algebraic equations partial differential equations given by the Kähler
action for the twistor lift TGD. Algebraic equations instead of partial differential equations
suggests that the M8 representation is much simpler than H-representation. On the other
hand, reduction to algebraic equations at M8 side could have interpretation in terms of the
conjectured complete integrability of TGD [K10, K100].

Testing the idea about self-reference

In any case, it is possible to test the idea about self-reference by looking whether the known
extremals in H are cognitively easy and even have a dense set of rational points in natural coordi-
nates. Here I will consider the situation at the level of M4 × CP2. It was already found that the
known extremals can have inverse images in M8.

1. Canonically imbedded M4 with linear coordinates and constant CP2 coordinates rational is
the simple example about preferred extremal and it seems that TGD based cosmology at
microscopic relies on these extremals. In this case it is obvious that one has a dense set of
rational points at both sides. Could this somehow relate to the fact that physics as physics
M4 was discovered before general relativity?
Canonically imbedded M4 corresponds to a first order octonionic polynomial for which imag-
inary part is put to constant so that tangent space is same everywhere and corresponds to a
constant CP2 coordinate.

2. CP2 type extremals have 4-D CP2 projection and light-like geodesic line of M4 as M4 projec-
tion. One can choose the time parameter as a function of CP2 coordinates in infinitely many
ways. Clearly the rational points are dense in any CP2 coordinates.

3. Massless extremals (MEs) are given as zeros of arbitrary functions of CP2 coordinates and 2M4

coordinates representing local light-like direction and polarization direction orthogonal to it.
In the simplest situation these directions are constant. In the general case light-like direction
would define tangent space of string world sheet giving rise also to a distribution of ortogonal
polarization planes. This is consistent with the general properties of the M8 representation
and corresponds to the decomposition of quaternionic tangent plane to complex plane and its
complement. One can ask whether one should allow only polynomials with rational coefficients
as octonionic polynomials.

4. String like objects X2 × Y 2 with X2 ⊂M4 a minimal surface and Y 2 complex or Lagrangian
surface of CP2 are also basic extremals and their deformations in M4 directions are expected
to give rise to magnetic flux tubes.
If Y 2 is complex surface with genus g = 0 rational points are dense. Also for g = 1 one obtains
a dense set of rational points in some extension of rationals. For elliptic curves one has lattice
of rational points. What happens for Lagrangian surfaces Y 2? In this case one does not have
complex curves but real co-dimension 2 surfaces. There is no obvious objection why these
surfaces would not be possible.

5. What about string world sheets? If the string world is static M2 ⊂ M4 one has a dense
set of rational points. One however expects something more complex. If the string world
sheet is rational map M2 to its orthogonal complement E2 one has rational surface. For
rotating strings this does not make sense except for certain period of time. If the choice
of the quaternion structure corresponds to a choice of minimal surface in M4 as integrable
distribution for M2(x), the coordinates associated with the Hamilton-Jacobi structure could
make the situation simple.
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If one restricts the consideration the intersections of partonic 2-surfaces and string world sheets
at two boundaries of CD the situation simplifies and the question is only about the rationality
of the M4 coordinates at rational points of Y 2 ⊂ CP2. This would simplify the situation
enormously and might even allow to use existing knowledge.

6. The slicing of of space-time surfaces by string world sheets and partonic 2-surfaces required by
Hamilton-Jacobi structure could be seen as a fibering analogous to that possessed by elliptic
surfaces. This suggest that M8 counterparts of spacetime surfaces are not of general type in
Kodaira classification and that the number of rational points can be large. If the existence
of Hamilton-Jacobi structure does not allow handles, this factor would be cognitively simple.
This would however suggests that fermion number is not localized at the ends of strings
only - as assumed in the construction of scattering amplitudes inspired by twistor Grassmann
approach [L30] - but also to the interior of the light-like curves inside string world sheets.

6.4.4 Twistor lift and cognitive representations

What about twistor lift of TGD replacing space-time surfaces with their twistor spaces. Consider
first M8 side.

1. At M8 side S2 seems to introduce nothing new. One might expect that the situation does not
change at H-side since space-time surfaces are obtained essentially by dimensional reduction
and the possible problem relates to the choice of base space as section of is twistor bundle
and the embedding of space-time as base space could have singularities at the boundary of
Euclidian and Minkowskian space-time regions as discussed in [L43].
At the side of M8 the proposed induction of twistor structure is just a projection of the twistor
sphere S6 to its geodesic sphere and one has 4-D moduli space for geodesic spheres S2 ⊂ S6. If
one interprets the choice of S2 ⊂ S6 as as a section in the moduli space, the moduli of S2 can
depend on the point of space-time surface. Note that there are is also a position dependent
choice of preferred point of S2 representing Kähler form, and this choice is good candidate for
giving rise to Hamilton-Jacobi structures with position dependent M2.

2. The notion of Kodaira dimension is defined also for co-dimension 4 algebraic varieties in M8
c .

The cognitively easiest spacetime surfaces would allow rational parametric representation with
complex coordinates serving as parameters. If this is not possible, one has algebraic functions,
which makes the situation much more complex so that the number of rational points would
be small.

3. For some complex enough extensions of rationals the set of rational points can be dense. g ≥ 2
genera are basic example and one expects also in more general case that polynomials involving
powers larger than n = 4 make the situation problematic. The condition that real or imaginary
part of real analytic octonionic polynomial is in question is a strong symmetry expected to
faciliate cognitive representability.

4. The general intuitive wisdom from algebraic geometry is that the rational points are dense only
in lower-dimensional sub-varieties (Bombieri-Lang and Vojta conjectures mentioned in the first
section). The general vision inspired by SH and the proposal for the construction of twistor
amplitudes indeed is that the algebraic points (rational in generalized sense) defining cognitive
representations are associated with the intersections of string world sheets and partonic 2-
surfaces to which fermions are assigned. This would suggest that partonic 2-surfaces and
string world sheets contain the cognitive representation, which under additional conditions
can contain very many points.

5. An interesting question concerns the M8 counterparts of partonic 2-surfaces as space-time re-
gions with Minkowskian and Euclidian signature. The partonic orbits representing the bound-
aries between these regions should be mapped to each other by M8−H duality. This conforms
with the fact that induced metric must have degenerate signature (0,−1,−1,−1) at partonic
orbits. Can one assume that the topologies of partonic 2-surfaces at two sides are identical?
Consider partonic 2-surface of genus g in M4 × CP2 - say at the boundary of CD. It should
be inverse image of a 2-surface in M4 × E4 such that the tangent space of this surface la-
belled by CP2 coordinates is mapped to a 2-surface in M4 × CP2. If the inverse of M8 −H
correspondence is continuous one expects that g is preserved.
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Consider next the H-side. There is a conjecture that for Cartesian product the Kodaira
dimension is sum dK =

∑
i dK,i of the Kodaira dimensions for factors. Suppose that CP1 fiber as

surface in the 12-D twistor bundle T (M4) × T (CP2) has Kodaira dimension dK(CP1) = −∞ (it
is expected to be rational surface) then the fact that the bundle decomposes to Cartesian product
locally and rational points are pairs of rational points in the factors, is indeed consistent with the
proposal. S2 would give dense set of rational points in S2 and the bundle would have infinite
number of rational points.

In TGD context, it is however space-time surface which matters. Space-time surface as
section of the bundle would not however have a dense set of points in the general case and the
relevant Kodaira dimension be dK = dK(X4). One can of course ask whether the space-time surface
as an algebraic section (not many of them) of the twistor bundle could chosen to be cognitively
simple.

6.4.5 What does cognitive representability really mean?

The following considerations reflect the ideas inspired by Face Book debate with Santeri Satama
(SS) relating to the notion of number and the notion of cognitive representation.

SS wants to accept only those numbers that are constructible, and SS mentioned the notion
of demonstrability due to Gödel. According to my impression demonstrability means that number
can be constructed by a finite algorithm or at least that the information needed to construct the
number can be constructed by a finite algorithm although the construction itself would not be
possible as digit sequence in finite time. If the constructibility condition is taken to extreme, one
is left only with rationals.

As a physicists, I cannot consider starting to do physics armed only with rationals: for
instance, continuous symmetries and the notion of Riemann manifold would be lost. My basic
view is that we should identify the limitations of cognitive representability as limitations for what
can exist. I talked about cognitive representability of numbers central in the adelic physics approach
to TGD. Not all real numbers are cognitively representable and need not be so.

Numbers in the extensions of rationals would be cognitively representable as points with
coordinates in an extension of rationals. The coordinates themselves are highly unique in the
octonionic approach to TGD and different coordinates choices for complexified octonionic M8 are
related by transformations changing the moduli of the octonion structure. Hence one avoids prob-
lems with general coordinate invariance). Not only algebraic extensions of rationals are allowed.
Neper number e is an exceptional transcendental in that ep is p-adic number and finite-D extensions
of p-adic numbers by powers for root of e are possible.

My own basic interest is to find a deeper intuitive justification for why algebraic numbers
shoud be cognitively representable. The näıve view about cognitive representability is that the
number can be produced in a finite number of steps using an algorithm. This would leave only
rationals under consideration and would mean intellectual time travel to ancient Greece.

Situation changes if one requires that only the information about the construction of number
can be produced in a finite number of steps using an algorithm. This would replace construction
with the recipe for construction and lead to a higher abstraction level. The concrete construction
itself need not be possible in a finite time as bit sequence but could be possible physically (

√
2 as a

diagonal of unit square, one can of course wonder where to buy ideal unit squares). Both number
theory and geometry would be needed.

Stern-Brocot tree associated with partial fractions indeed allows to identify rationals as
finite paths connecting the root of S-B tree to the rational in question. Algebraic numbers can
be identified as infinite periodic paths so that finite amount of information specifies the path.
Transcendental numbers would correspond to infinite non-periodic paths. A very close analogy
with chaos theory suggests itself.

Demonstrability viz. cognitive representability

SS talked about demonstrable numbers. According to Gödel demonstrable number would be
representable by a formula G, which is provable in some axiom system. I understand this that
G would give a recipe for constructing that number. In computer programs this can even mean
infinite loop, which is easy to write but impossible to realize in practice. Here comes the possibility
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that demonstrability does not mean constructibility in finite number of steps but only a finite recipe
for this.

The requirement that all numbers are demonstrable looks strange to me. I would talk about
cognitive representability and reals and p-adic number fields emerge unavoidably as prerequisites
for this notion: cognitive representation must be about something in order to be a representation.

About precise construction of reals or something bigger - such as surreals - containing them,
there are many views and I am not mathematician enough to take strong stance here. Note however
that if one accepts surreals as being demonstrable (I do not really understand what this could mean)
one also accept reals as such. These delicacies are not very interesting for the formulation of physics
as it is now.

The algorithm defining G defines a proof. But what does proof mean? Proof in mathematical
sense would reduce in TGD framework be a purely cognitive act and assignable to the p-adic
sectors of adele. Mathematicians however tend to forget that for physicist the demonstration
is also experimental. Physicist does not believe unless he sees: sensory perception is needed.
Experimental proofs are what physicists want. The existence of

√
2 as a diagonal of unit square is

experimentally demonstrable in the sense of being cognitively representable but not deducible from
the axioms for rational numbers. As a physicist I cannot but accept both sensory and cognitive
aspects of existence.

Instead of demonstrable numbers I prefer to talk about cognitively representable numbers.

1. All numbers are cognizable (p-adic) or sensorily perceivable (real). These must form continua
if one wants to avoid problems in the construction of physical theories, where continuous
symmetries are in a key role.
Some numbers but not all are also cognitively representable that is being in the intersection
reals and p-adics - that is in extension of rationals if one allows extensions of p-adics induced by
extensions of rationals. This generalizes to intersection of space-time surfaces with real/p-adic
coordinates, which are highly unique linear coordinates at octonionic level so that objections
relating to a loss of general coordinate invariance are circumvented. General coordinate trans-
formations reduce to automorphisms of octonions.
The relationship to the axiom of choice is interesting. Should axiom of choice be restricted
to the points of complexified octonions with coordinates in extensions of rationals? Only
points in the extensions could be selected and this selection process would be physical in the
sense that fermions providing realization of quantum Boolean algebra would reside at these
points [K27]. In preferred octonionic coordinates the M8 coordinates of these points would be
in given extension of rationals. At the limit of algebraic numbers these points would form a
dense set of reals.
Remark: The spinor structure of “world of classical worlds” (WCW) gives rise to WCW
spinors as fermionic Fock states at given 3-surface. In ZEO many-fermion states have inter-
pretation in terms of superpositions of pairs of Boolean statements A → B with A and B
represented as many-fermion states at the ends of space-time surface located at the oppo-
site light-like boundaries of causal diamond (CD). One could say that quantum Boolean logic
emerges as square root of Kähler geometry of WCW.
At partonic 2-surfaces these special points correspond to points at which fermions can be
localized so that the representation is physical. Universe itself would come in rescue to make
representability possible. One would not anymore try to construct mathematics and physics
as distinct independent disciplines.
Even observer as conscious entity is necessarily brought into both mathematics and physics.
TGD Universe as a spinor field in WCW is re-created state function reduction by reduction
and evolves: evolution for given CD corresponds to the increase of the size of extension of
rationals in statistical sense. Hence also mathematics with fixed axioms is replaced with a q
dynamical structure adding to itself new axioms discovery by discovery [L53, L52].

2. Rationals as cognitively representable numbers conforms with näıve intuition. One can however
criticize the assumption that also algebraic numbers are such. Consider

√
2: one can simply

define it as length of diagonal of unit square and this gives a meter stick of length
√

2: one
can represent any algebraic number of form m+ n

√
2 by using meter stricks with length of 1

and
√

2. Cognitive representation is also sensory representation and would bring in additional
manner to represent numbers.
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Note that algebraic numbers in n-dimensional extension are points of n-dimensional space
and their cognitive representations as points on real axis obtained by using the meter sticks
assignable to the algebraic numbers defining base vectors. This should generalize to the roots
arbitrary polynomials with rational or even algebraic coefficients. Essentially projection form
n-D extension to 1-D real line is in question. This kind of projection might be important in
number theoretical dynamics. For instance, quasi-periodic quasi-crystals are obtained from
higher-D periodic crystals as projections.
n-D algebraic extensions of p-adics induced by those of rationals might also related to our
ability to imagine higher-dimensional spaces.

3. In TGD Universe cognitive representability would emerge from fundamental physics. Exten-
sions of rationals define a hierarchy of adeles and octonionic surfaces are defined as zero loci
for real or imaginary parts (in quaternionic sense) of polynomials of real argument with coef-
ficients in extension continued to octonionic polynomials [L46]. The zeros of real polynomial
have a direct physical interpretation and would represent algebraic numbers physically. They
would give the temporal positions of partonic 2-surfaces representing particles at light-like
boundary of CD.

4. Note that all calculations with algebraic numbers can be done without using approximations
for the genuinely algebraic numbers defining the basis for the extension. This actually simplifies
enormously the calculation and one avoids accumulating errors. Only at the end one represents
the algebraic units concretely and is forced to use rational approximation unless one uses above
kind of cognitive representation.

For these reasons I do not feel any need to get rid of algebraics or even transcendentals.
Sensory aspects of experience require reals and cognitive aspects of experience require p-adic num-
bers fields and one ends up with adelic physics. Cognitive representations are in the intersection of
reality and various p-adicities, something expressible as formulas and concrete physical realizations
or at least finite recipes for them.

What the cognitive representability of algebraic numbers could mean?

Algebraic numbers should be in some sense simple in order to be cognitively representable.

1. For rationals representation as partial fractions produces the rational number by using a finite
number of steps. One starts from the top of Stern-Brocot (S-B) tree (see http://tinyurl.

com/yb6ldekq) and moves to right or left at each step and ends up to the rational number
appearing only once in S-B tree.

2. Algebraic numbers cannot be produced in a finite number of steps. During the discussion
I however realized that one can produce the information needed to construct the algebraic
number in a finite number of steps. One steps to a new level of abstraction by replacing the
object with the information allowing to construct the object using infinite number of steps
but repeating the same sub-algorithm with finite number of steps: infinite loop would be in
question.
Similar abstraction takes place as one makes a step from the level of space-time surface to the
level of WCW. Space-time surface with a continuum of points is represented by a finite number
of WCW coordinates, in the octonionic representation of space-time surface by the coefficients
of polynomial of finite degree belonging to an extension of rationals [L46]. Criticality conditions
pose additional conditions on the coefficients. Finite number of algebraic points at space-time
surface determines the entire space-time surface under these conditions! Simple names for
complex things replacing the complex things is the essence of cognition!

3. The interpretation for expansions of numbers in given base suggests an analog with complexity
theory and symbolic dynamics associated with division. For cognitively representable num-
bers the information about this dynamics should be coded by an algorithm with finite steps.
Periodic orbit or fixed point orbit would be the dynamical analog for simplicity. Non-periodic
orbit would correspond to complexity and possibly also chaos.

These ideas led to two approaches in attempt to understand the cognitive representability
of algebraic numbers.

1. Generalized rationals in extensions of rationals as periodic orbits for the dynamics of
division

http://tinyurl.com/yb6ldekq
http://tinyurl.com/yb6ldekq
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The first approach allows to represent ratios of algebraic integers for given extension using
periodic expansion in the base so that a finite amount of information is needed to code the number
if one accepts the numbers defining the basis of the algebraic extension as given.

1. Rationals allow periodic expansion with respect to any base. For p-adic numbers the base is
naturally prime. Therefore the information about rational is finite. One can see the expansion
as a periodic orbit in dynamics determining the expansion by division m/n in given base.
Periodicity follows from the fact that the output of the division algorithm for a given digit has
only a finite number of outcomes so that the process begins to repeat itself sooner or later.

2. This generalizes to generalized rationals in given extension of rationals defined as ratios of
algebraic integers. One can reduce the division to the construction of the expansion of ordi-
nary rational identified as number theoretic norm |N | of the denominator in the extension of
rationals considered.
The norm |N | of N is the determinant |N | = det(N) for the linear map of extension induced
by multiplication with N . det(N) is ordinary (possibly p-adic) integer. This is achieved by
multiplying 1/N by n − 1 conjugates of N both in numerator and denominator so that one
obtains product of n − 1 conjugates in the numerator and det(N) in the denominator. The
computation of 1/N as series in the base used reduces to that in the case of rationals.

3. One has now periodic orbits in n-dimensional space defined by algebraic extensions which for
ordinary rationals reduced to periodic orbits in 1-D space. This supports the interpretation of
numbers as orbits of number theoretic dynamics determining the next digit of the generalized
rational for given base. This picture also suggests that transcendentals correspond to non-
periodic orbits. Some transcendentals could still allow a finite algorithm: in this case the
dynamics would be still deterministic. Some transcendentals would be chaotic.

4. Given expansion of algebraic number is same for all extensions of rationals containing the
extension in question and the ultimate extension corresponds to algebraic numbers.

The problem of this approach is that the algebraic numbers defining the extension do not
have representation and must be accepted as irreducibles.

2. Algebraic numbers as infinite periodic orbits in the dynamics of partial fractions

Second approach is based on partial fractions and Stern-Brocot tree (see http://tinyurl.

com/yb6ldekq, see also http://tinyurl.com/yc6hhboo) and indeed allows to see information
about algebraic numbers as constructible by using an algorithm with finite number of steps, which
is allowed if one accepts abstraction as basic aspect of cognition. I had managed to not become
aware of this possibility and am grateful for SS for mentioning the representation of algebraics in
terms of S-B tree.

1. The definition S-B tree is simple: if m/n and m′/n′ are any neighboring rationals at given
level in the tree, one adds (m + m′)/(n + n′) between them and obtains in this manner the
next level in the tree. By starting from (0/1) and (1/0) as representations of zero and ∞ one
obtains (0/1)(1/1)(1/0) as the next level. One can continue in this manner ad infinitum. The
nodes of S-B tree represent rational points and it can be shown that given rational appears
only once in the tree.
Given rational can be represented as a finite path beginning from 1/1 at the top of tree
consisting of left moves L and right moves R and ending to the rational which appears only once
in S-B tree. Rational can be thus constructured by a sequences Ra0La1La2 .... characterized
by the sequence a0; a1, a2.... For instance, 4/11 = 0 + 1/(2 + x) , x = 1/(1 + 1/3) corresponds
to R0L2R1L3−1 labelled by 0; 2, 1, 3.

2. Algebraic numbers correspond to infinite but periodic paths in S-B tree in the sense that some
sequence of L:s and R:s characterized by sequences of non-negative integers starts to repeat
itself. Periodicity means that the information needed to construct the number is finite.
The actual construction as a digit sequence representing algebraic number requires infinite
amount of time. In TGD framework octonionic physics would come in rescue and construct
algebraic numbers as roots of polynomials having concrete interpretations as coordinate values
assignable to fermions at partonic 2-surfaces.

3. Transcendentals would correspond to non-periodic infinite sequences of L:s and R:s. This does
not exclude the possibility that these sequences are expressible in terms of some rule involving

http://tinyurl.com/yb6ldekq
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finite number of steps so that the amount of information would be also now finite. Information
about number would be replaced by information about rule.
This picture conforms with the ideas about transition to chaos. Rationals have finite paths. A
possible dynamical analog is particle coming at rest due to the dissipation. Algebraic numbers
would correspond to periodic orbits possible in presence of dissipation if there is external feed
of energy. They would correspond to dynamical self-organization patterns.
Remark: If one interprets the situation in terms of conservative dynamics, rationals would
correspond to potential minima and algebraic numbers closed orbits around them.
The assignment of period doubling and p-pling to this dynamics as the dimension of exten-
sion increases is an attractive idea. One would expect that the complexity of periodic orbits
increases as the degree of the defining irreducible polynomial increases. Algebraic numbers as
maximal extension of rationals possibly also containing extension containing all rational roots
of e and transcendentals would correspond to chaos.
Transcendentals would correspond to non-periodic orbits. These orbits need not be always
chaotic in the sense of being non-predictable. For instance, Neper number e can be said to
be p-adically algebraic number (ep is p-adic integer albeit infinite as real integer). Does the
sequence of L:s and R:s allow a formula for the powers of L and R in this case?

4. TGD should be an integrable theory. This suggests that scattering amplitudes involve only
cognitive representations as number theoretic vision indeed strongly suggests [L46]. Cogni-
tively representable numbers would correspond to the integrable sub-dynamics [L56]. Also in
chaotic systems both periodic and chaotic orbits are present. Complexity theory for charac-
terization of real numbers exists. The basic idea is that complexity is measured by the length
of the shortest program needed to code the bit sequences coding for the number.

Surreals and ZEO

The following comment is not directly related to cognitive representability but since it emerged dur-
ing discussion, I will include it. SS favors surreals (see http://tinyurl.com/86jatas) as ultimate
number field containing reals as sub-field. I must admit that my knowledge and understanding of
surreals is rather fragmentary.

I am agnostic in these issues and see no conflict between TGD view about numbers and
surreals. Personally I however like very much infinite primes, integers, and rationals over surreals
since they allow infinite numbers to have number theoretical anatomy [K94]. A further reason is
that the construction of infinite primes resembles structurally repeated second quantization of the
arithmetic number field theory and could have direct space-time correlate at the level of many-
sheeted space-time. One ends up also to a generalization of real number. Infinity can be seen as
something related to real norm: everything is finite with respect to various p-adic norms.

Infinite rationals with unit real norm and various p-adic norms bring in infinitely complex
number theoretic anatomy, which could be even able to represent even the huge WCW and the
space of WCW spinor fields. One could speak of number theoretical holography or algebraic
Brahman=Atman principle. One would have just complexified octonions with infinitely richly
structure points.

Surreals are represented in terms of pairs of sets. One starts the recursive construction from
empty set identified as 0. The definition says that the pairs (.|.) of sets defining surreals x and y
satisfy x ≤ y if the left hand part of x as set is to left from the pair defining y and the right hand
part of y is to the right from the pair defining x. This does not imply that one has always x < y,
y < x or x = y as for reals.

What is interesting that the pair of sets defining surreal x is analogous to a pair of states
at boundaries of CD defining zero energy state. Is there a connection with zero energy ontology
(ZEO)? One could perhaps say at the level of CD - forgetting everything related to zero energy
states - following. The number represented by CD1 - say represented as the distance between its
tip - is smaller than than the number represented by CD2, if CD1 is inside CD2. This conforms
with the left and righ rule if left and right correspond to the opposite boundaries of CD. A more
detailed definition would presumably say that CD1 can be moved so that it is inside CD2.

What makes this also interesting is that CD is the geometric correlate for self, conscious
entity, also mathematical mental image about number.

http://tinyurl.com/86jatas
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6.5 Galois groups and genes

In an article discussing a TGD inspired model for possible variations of Geff [L61], I ended up
with an old idea that subgroups of Galois group could be analogous to conserved genes in that
they could be conserved in number theoretic evolution. In small variations such as above variation
Galois subgroups as genes would change only a little bit. For instance, the dimension of Galois
subgroup would change.

The analogy between subgoups of Galois groups and genes goes also in other direction. I have
proposed long time ago that genes (or maybe even DNA codons) could be labelled by heff/h = n
. This would mean that genes (or even codons) are labelled by a Galois group of Galois extension
(see http://tinyurl.com/zu5ey96) of rationals with dimension n defining the number of sheets of
space-time surface as covering space. This could give a concrete dynamical and geometric meaning
for the notion of gene and it might be possible some day to understand why given gene correlates
with particular function. This is of course one of the big problems of biology.

6.5.1 Could DNA sequence define an inclusion hierarchy of Galois ex-
tensions?

One should have some kind of procedure giving rise to hierarchies of Galois groups assignable to
genes. One would also like to assign to letter, codon and gene and extension of rationals and its
Galois group. The natural starting point would be a sequence of so called intermediate Galois
extensions EH leading from rationals or some extension K of rationals to the final extension E.
Galois extension has the property that if a polynomial with coefficients in K has single root in E,
also other roots are in E meaning that the polynomial with coefficients K factorizes into a product
of linear polynomials. For Galois extensions the defining polynomials are irreducible so that they
do not reduce to a product of polynomials.

Any sub-group H ⊂ Gal(E/K)) leaves the intermediate extension EH invariant in element-
wise manner as a sub-field of E (see http://tinyurl.com/y958drcy). Any subgroup H ⊂
Gal(E/K)) defines an intermediate extension EH and subgroup H1 ⊂ H2 ⊂ ... define a hier-
archy of extensions EH1 > EH2 > EH3 ... with decreasing dimension. The subgroups H are normal
- in other words Gal(E) leaves them invariant and Gal(E)/H is group. The order |H| is the
dimension of E as an extension of EH . This is a highly non-trivial piece of information. The
dimension of E factorizes to a product

∏
i |Hi| of dimensions for a sequence of groups Hi.

Could a sequence of DNA letters/codons somehow define a sequence of extensions? Could
one assign to a given letter/codon a definite group Hi so that a sequence of letters/codons would
correspond a product of some kind for these groups or should one be satisfied only with the
assignment of a standard kind of extension to a letter/codon?

Irreducible polynomials define Galois extensions and one should understand what happens
to an irreducible polynomial of an extension EH in a further extension to E. The degree of EH

increases by a factor, which is dimension of E/EH and also the dimension of H. Is there a standard
manner to construct irreducible extensions of this kind?

1. What comes into mathematically uneducated mind of physicist is the functional decomposition
Pm+n(x) = Pm(Pn(x)) of polynomials assignable to sub-units (letters/codons/genes) with
coefficients in K for a algebraic counterpart for the product of sub-units. Pm(Pn(x)) would
be a polynomial of degree n+m in K and polynomial of degree m in EH and one could assign
to a given gene a fixed polynomial obtained as an iterated function composition. Intuitively
it seems clear that in the generic case Pm(Pn(x)) does not decompose to a product of lower
order polynomials. One could use also polynomials assignable to codons or letters as basic
units. Also polynomials of genes could be fused in the same manner.

2. If this indeed gives a Galois extension, the dimension m of the intermediate extension should be
same as the order of its Galois group. Composition would be non-commutative but associative
as the physical picture demands. The longer the gene, the higher the algebraic complexity
would be. Could functional decomposition define the rule for who extensions and Galois
groups correspond to genes? Very näıvely, functional decomposition in mathematical sense
would correspond to composition of functions in biological sense.

3. This picture would conform with M8−M4×CP2 correspondence [L46] in which the construc-
tion of space-time surface at level of M8 reduces to the construction of zero loci of polynomials

http://tinyurl.com/zu5ey96
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of octonions, with rational coefficients. DNA letters, codons, and genes would correspond to
polynomials of this kind.

6.5.2 Could one say anything about the Galois groups of DNA letters?

A fascinating possibility is that this picture could allow to say something non-trivial about the
Galois groups of DNA letters.

1. Since n = heff/h serves as a kind of quantum IQ, and since molecular structures consisting
of large number of particles are very complex, one could argue that n for DNA or its dark
variant realized as dark proton sequences can be rather large and depend on the evolutionary
level of organism and even the type of cell (neuron viz. soma cell). On the other, hand one
could argue that in some sense DNA, which is often thought as information processor, could
be analogous to an integrable quantum field theory and be solvable in some sense. Notice also
that one can start from a background defined by given extension K of rationals and consider
polynomials with coefficients in K. Under some conditions situation could be like that for
rationals.

2. The simplest guess would be that the 4 DNA letters correspond to 4 non-trivial finite groups
with smaller possible orders: the cyclic groups Z2, Z3 with orders 2 and 3 plus 2 finite groups
of order 4 (see the table of finite groups in http://tinyurl.com/j8d5uyh). The groups of
order 4 are cyclic group Z4 = Z2 × Z2 and Klein group Z2 ⊕ Z2 acting as a symmetry group
of rectangle that is not square - its elements have square equal to unit element. All these 4
groups are Abelian. Polynomial equations of degree not larger than 4 can be solved exactly in
the sense that one can write their roots in terms of radicals.

3. Could there exist some kind of connection between the number 4 of DNA letters and 4 polyno-
mials of degree less than 5 for whose roots one an write closed expressions in terms of radicals
as Galois found? Could it be that the polynomials obtained by a a repeated functional com-
position of the polynomials of DNA letters have also this solvability property?
This could be the case! Galois theory states that the roots of polynomial are solvable by
radicals if and only if the Galois group is solvable meaning that it can be constructed from
abelian groups using Abelian extensions (see https://cutt.ly/4RuXmGo).
Solvability translates to a statement that the group allows so called sub-normal series 1 <
G0 < G1... < Gk such that Gj−1 is normal subgroup of Gj and Gj/Gj−1 is an abelian group.
An equivalent condition is that the derived series GBG(1) BG(2) B ... in which j+ 1:th group
is commutator group of Gj ends to trivial group. If one constructs the iterated polynomials
by using only the 4 polynomials with Abelian Galois groups, the intuition of physicist suggests
that the solvability condition is guaranteed! Wikipedia article also informs that for finite
groups solvable group is a group whose composition series has only factors which are cyclic
groups of prime order.
Abelian groups are trivially solvable, nilpotent groups are solvable, p-groups (having order,
which is power prime) are solvable and all finite p-groups are nilpotent. Every group with
order less than 60 elements is solvable. Fourth order polynomials can have at most S4 with 24
elements as Galois groups and are thus solvable. Fifth order polynomials can have the smallest
non-solvable group, which is alternating group A5 with 60 elements as Galois group and in
this case are not solvable. Sn is not solvable for n > 4 and by the finding that Sn as Galois
group is favored by its special properties (see https://arxiv.org/pdf/1511.06446.pdf).
A5 acts as the group icosahedral orientation preserving isometries (rotations). Icosahedron
and tetrahedron glued to it along one triangular face play a key role in TGD inspired model of
bio-harmony and of genetic code [L24, L62]. The gluing of tetrahedron increases the number
of codons from 60 to 64. The gluing of tetrahedron to icosahedron also reduces the order of
isometry group to the rotations leaving the common face fixed and makes it solvable: could
this explain why the ugly looking gluing of tetrahedron to icosahedron is needed? Could
the smallest solvable groups and smallest non-solvable group be crucial for understanding the
number theory of the genetic code.

An interesting question inspired by M8 − H-duality [L46] is whether the solvability could
be posed on octonionic polynomials as a condition guaranteeing that TGD is integrable theory
in number theoretical sense or perhaps following from the conditions posed on the octonionic

http://tinyurl.com/j8d5uyh
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polynomials. Space-time surfaces in M8 would correspond to zero loci of real/imaginary parts
(in quaternionic sense) for octonionic polynomials obtained from rational polynomials by analytic
continuation. Could solvability relate to the condition guaranteeing M8 duality boiling down to the
condition that the tangent spaces of space-time surface are labelled by points of CP2. This requires
that tangent or normal space is associative (quaternionic) and that it contains fixed complex sub-
space of octonions or perhaps more generally, there exists an integrable distribution of complex
subspaces of octonions defining an analog of string world sheet.

What could the interpretation for the events in which the dimension of the extension of
rationals increases? Galois extension is extensions of an extension with relative Galois group
Gal(rel) = Gal(new)/Gal(old). Here Gal(old) is a normal subgroup of Gal(new). A highly
attractive possibility is that evolutionary sequences quite generally (not only in biology) correspond
to this kind of sequences of Galois extensions. The relative Galois groups in the sequence would
be analogous to conserved genes, and genes could indeed correspond to Galois groups [K33] [L46].
To my best understanding this corresponds to a situation in which the new polynomial Pm+n

defining the new extension is a polynomial Pm having as argument the old polynomial Pn(x):
Pm+n(x) = Pm(Pn(x)).

What about the interpretation at the level of conscious experience? A possible interpretation
is that the quantum jump leading to an extension of an extension corresponds to an emergence
of a reflective level of consciousness giving rise to a conscious experience about experience. The
abstraction level of the system becomes higher as is natural since number theoretic evolution as
an increase of algebraic complexity is in question.

This picture could have a counterpart also in terms of the hierarchy of inclusions of hyperfi-
nite factors of type II1 (HFFs). The included factor M and including factor N would correspond
to extensions of rationals labelled by Galois groups Gal(M) and Gal(N) having Gal(M) ⊂ Gal(M)
as normal subgroup so that the factor group Gal(N)/Gal(M) would be the relative Galois group
for the larger extension as extension of the smaller extension. I have indeed proposed [L63] that the
inclusions for which included and including factor consist of operators which are invariant under
discrete subgroup of SU(2) generalizes so that all Galois groups are possible. One would have
Galois confinement analogous to color confinement: the operators generating physical states could
have Galois quantum numbers but the physical states would be Galois singlets.

6.6 Could the precursors of perfectoids emerge in TGD?

In algebraic-geometry community the work of Peter Scholze [A72] (see http://tinyurl.com/

y7h2sms7) introducing the notion of perfectoid related to p-adic geometry has raised a lot of
interest. There are two excellent popular articles about perfectoids: the first article in AMS
(see http://tinyurl.com/ydx38vk4) and second one in Quanta Magazine (see http://tinyurl.

com/yc2mxxqh). I had heard already earlier about the work of Scholze but was too lazy to even
attempt to understand what is buried under the horrible technicalities of modern mathematical
prose. Rachel Francon re-directed my attention to the work of Scholze (see http://tinyurl.com/

yb46oza6). The work of Scholze is interesting also from TGD point of view since the construction
of p-adic geometry is a highly non-trivial challenge in TGD.

1. One should define first the notion of continuous manifold but compact-open characteristic
of p-adic topology makes the definition of open set essential for the definition of topology
problematic. Even single point is open so that hopes about p-adic manifold seem to decay
to dust. One should pose restrictions on the allowed open sets and p-adic balls with radii
coming as powers of p are the natural candidates. p-Adic balls are either disjoint or nested:
note that also this is in conflict with intuitive picture about covering of manifold with open
sets. All this strangeness originates in the special features of p-adic distance function known
as ultra-metricity. Note however that for extensions of p-adic numbers one can say that the
Cartesian products of p-adic 1-balls at different genuinely algebraic points of extension along
particular axis of extension are disjoint.

2. At level of M8 the p-adic variants of algebraic varieties defined as zero loci of polynomials do
not seem to be a problem. Equations are algebraic conditions and do not involve derivatives
like partial differential equations naturally encountered if Taylor series instead of polynomials
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are allowed. Analytic functions might be encountered at level of H = M4 × CP2 and here
p-adic geometry might well be needed.
The idea is to define the generalization of p-adic algebraic geometry in terms of p-adic func-
tion fields using definitions very similar to those used in algebraic geometry. For instance,
generalization of variety corresponds to zero locus for an ideal of p-adic valued function field.
p-Adic ball of say unit radius is taken as the basic structure taking the role of open ball in
the topology of ordinary manifolds. This kind of analytic geometry allowing all power series
with suitable restrictions to function field rather than allowing only polynomials is something
different from algebraic geometry making sense for p-adic numbers and even for finite fields.

3. One would like to generalize the notion of analytic geometry even to the case of number
fields with characteristic p (p-multiple of element vanishes), in particular for finite fields Fp
and for function fields Fp[t]. Here one encounters difficulties. For instance, the factorial 1/n!
appearing as normalization factor of forms diverges if p divides it. Also the failure of Frobenius
homomorphism to be automorphism for Fp[t] causes difficulties in the understanding of Galois
groups.

The work of Scholze has led to a breakthrough in unifying the existing ideas in the new
framework provided by the notion of perfectoid. The work is highly technical and involves infinite-
D extension of ordinary p-adic numbers adding all powers of all roots p1/pm , m = 1, 2.... Formally,
an extension by powers of p1/p∞ is in question.

This looks strange at first but it guarantees that all p-adic numbers in the extension have p:th
roots, one might say that one forms a p-fold covering/wrapping of extension somewhat analogous to
complex numbers. This number field is called perfectoid since it is perfect meaning that Frobenius
homomorphism a→ ap is automorphism by construction. Frob is injection always and by requiring
that p:th roots exist always, it becomes also a surjection.

This number field has same Galois groups for all of its extensions as the function field
G[t] associated with the union of function fields G = Fp[t

1/pm ]. Automorphism property of Frob
saves from the difficulties with the factorization of polynomials and p-adic arithmetics involving
remainders is replaced with purely local modulo p arithmetics.

6.6.1 About motivations of Scholze

Scholze has several motivations for this work. Since I am not a mathematician, I am unable to
really understand all of this at deep level but feel that my duty as user of this mathematics is at
least to try!

1. Diophantine equations is a study of polynomial equations in several variables, say x2+2xy+y =
0. The solutions are required to be integer valued: in the example considered x = y = 0 and
x = −y = −1 is such a solution. For integers the study of the solution is very difficult and
one approach is to study these equations modulo p that is reduced the equations to finite field
Gp for any p. The equations simplify enormously since ane has ap = a in Fp. This identity in
fact defines so called Frobenius homomorphism acting as automorphism for finite fields. This
holds true also for more complex fields with characteristic p say the ring Fp[t] of power series
of t with coefficients in Fp.
The powers of variables, say x, appearing in the equation is reduced to at most xp−1. One
can study the solutions also in p-adic number fields. The idea is to find first whether finite
field solution, that is solution modulo p, does exist. If this is the case, one can calculate higher
powers in p. If the series contains finite number of terms, one has solution also in the sense of
ordinary integers.

2. One of the related challenges is the generalization of the notion of variety to a geometry defined
in arbitrary number field. One would like to have the notion of geometry also for finite fields,
and for their generalizations such as Fp[t] characterized by characteristic p (px = 0 holds true
for any element of the field). For fields of characteristic 1 - extensions of rationals, real, and
p-adic number fields) xp = 0 not hold true for any x 6= 0. Any field containing rationals as
sub-field, being thus local field, is said to have characteristic equal to 1. For local fields the
challenge is relatively easy.

3. The situation becomes more difficult if one wants a generalization of differential geometry.
In differential geometry differential forms are in a key role. One wants to define the notion
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of differential form in fields of characteristic p and construct a generalization of cohomology
theory. This would generalize the notion of topology to p-adic context and even for finite fields
of finite character. A lot of work has been indeed done and Grothendieck has been the leading
pioneer.
The analogs of cohomology groups have values in the field of p-adic numbers instead of ordinary
integers and provide representations for Galois groups for the extensions of rationals inducing
extensions of p-adic numbers and finite fields.
In ordinary homology theory non-contractible sub-manifolds of various dimensions correspond
to direct summands Z (group of integers) for homology groups and by Poincare duality those
for cohomology groups. For Galois groups Z is replaced with ZN . N depends on extension to
which Galois group is associated and if N is divisible by p one encounters technical problems.
There are many characteristic p- and p-adic cohomologies such as etale cohomology, chrys-
talline cohomology, algebraic de-Rham cohomology. Also Hodge theory for complex differen-
tial forms generalizes. These cohomologies should be related by homomorphism and category
theoretic thinking the proof of the homomorphism requires the construction of appropriate
functor between them.
The integrals of forms over sub-varieties define the elements of cohomology groups in ordinary
cohomology and should have p-adic counterparts. Since p-adic numbers are not well-ordered,
definite integral has no straightforward generalization to p-adic context. One might however
be able to define integrals analogous to those associated with differential forms and depending
only on the topology of sub-manifold over which they are taken. These integrals would be
analogous to multiple residue integrals, which are the crux of the twistor approach to scattering
amplitudes in super-symmetric gauge theories. One technical difficulty is that for a field of
finite characteristic the derivative of Xp is pXp−1 and vanishes. This does not allow to define
what integral

∫
Xp−1dX could mean. Also 1/n! appears as natural normalization factor of

forms but if p divides it, it becomes infinite.

6.6.2 Attempt to understand the notion of perfectoid

Consider now the basic ideas behind the notion of perfectoid.

1. For finite finite fields Fp Frobenius homomorphism a → ap is automorphism since one has
ap = a in modulo p arithmetics. A field with this property is called perfect and all local fields
are perfect. Perfectness means that an algebraic number in any extension L of perfect field K
is a root of a separable minimal polynomial. Separability means that the number of roots in
the algebraic closure of K of the polynomial is maximal and the roots are distinct.

2. All fields containing rationals as sub-fields are perfect. For fields of characteristic p Frob need
not be a surjection so that perfectness is lost. For instance, for Fp[t] Frob is trivially injection
but surjective property is lost: t1/p is not integer power of t.
One can however extend the field to make it perfect. The trick is simple: add to Fp[t] all
fractional powers t1/p

n

so that all p:th roots exist and Frob becomes and automorphism.
The automorphism property of Frob allows to get rid of technical problems related to a
factorization of polynomials. The resulting extension is infinite-dimensional but satisfies the
perfectness property allowing to understand Galois groups, which play key role in various
cohomology theories in characteristic p.

3. Let K = Qp[p
1/p∞ ] denote the infinite-dimensional extension of p-adic number field Qp by

adding all powers of pm:th roots for all all m = 1, 2, .... This is not the most general option:
K could be also only a ring. The outcome is perfect field although it does not of course have
Frobenius automorphism since characteristic equals to 1.
One can divide K by p to get K/p as the analog of finite field Fp as its infinite-dimensional
extension. K/p allows all p:th roots by construction and Frob is automorphism so that K/p
is perfect by construction.
The structure obtained in this manner is closely related to a perfect field with characteristic
p having same Galois groups for all its extensions. This object is computationally much more
attractive and allows to prove theorems in p-adic geometry. This motivates the term perfectoid.

4. One can assign to K another object, which is also perfectoid but has characteristic p. The
correspondence is as follows.
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(a) Let Fp be finite field. Fp is perfect since it allows trivially all p:th roots by ap = a. The
ring Fp[t] is however not prefect since t1/p

m

is not integer power of t. One must modify
Fp[t] to obtain a perfect field. Let Gm = Fp[t

1/pm ] be the ring of formal series in powers of
t1/p

m

defining also function field. These serious are called t-adic and one can define t-adic
norm.

(b) Define t-adic function field Kb called the tilt of K as

Kb = ∪m=1,...(K/p)[t
1/pm][t] .

One has all possible power series with coefficients in K/p involving all roots t1/p
m

, m =
1, 2, ..., besides powers of positive integer powers of t. This function field has characteristic
p and all roots exist by construction and Frob is automorphism. Kb/t is perfect meaning
that the minimal polynomials for the for given analog of algebraic number in any of its
extensions allows separable polynomial with maximal number of roots in its closure.

This sounds rather complicated! In any case, Kb/t has same number theoretical structure as
Qp[p

1/p∞ ]/p meaning that Galois groups for all of its extensions are canonically isomorphic to
those for extensions of K. Arithmetics modulo p is much simpler than p-adic arithmetic since
products are purely local and there is no need to take care about remainders in arithmetic
operations, this object is much easier to handle.
Note that also p-adic number fields fields Qp as also Fp = Qp/p are perfect but the analog of
Kb = Fb[t] fails to be perfect.

6.6.3 Second attempt to understand the notions of perfectoid and its
tilt

This subsection is written roughly year after the first version of the text. I hope that it reflects a
genuine increase in my understanding.

1. Scholze introduces first the notion of perfectoid. This requires some background notions. The
characteristic p for field is defined as the integer p (prime) for which px = 0 for all elements
x. Frobenius homomorphism (Frob familiarly) is defined as Frob : x → xp. For a field of
characteristic p Frob is an algebra homomorphism mapping product to product and sum to
sum: this is very nice and relatively easy to show even by a layman like me.

2. Perfectoid is a field having either characteristic p = 0 (reals, p-adics for instance) or for which
Frob is a surjection meaning that Frob maps at least one number to a given number x.

3. For finite fields Frob is identity: xp = x as proved already by Fermat. For reals and p-
adic number fields with characteristic p=0 it maps all elements to unit element and is not a
surjection. Field is perfect if it has either p = 0 (reals, p-adics) or if Frobenius is surjection.
Finite fields are obviously perfectoids too.

Scholze introduces besides perfectoids K also what he calls tilt Kb of the perfectoid. Kb

is infinite-D extension of p-adic numbers by iterated p:th roots p-adic numbers: the units of the

extension correspond to the roots p1/pk . They are something between p-adic number fields and
reals and leads to theorems giving totally new insights to arithmetic geometry. Unfortunately, my
technical skills in mathematics are hopelessly limited to say anything about these theorems.

1. As we learned during the first student year of mathematics, real numbers can be defined as
Cauchy sequences of rationals converging to a real number, which can be also algebraic number
or transcendental. The elements in the tilt Kb would be this kind of sequences.

2. Scholze starts from (say) p-adic numbers and considers infinite sequence of iterates of 1/p:th

roots. At given step x → x1/p. This gives the sequence (x, x1/p, x1/p2

, x1/p3

, ...) identified as
an element of the tilt Kb. At the limit one obtains 1/p∞ root of x.
Remark: For finite fields each step is trivial (xp = x) so that nothing interesting results: one
has (x, x, x, x, ...)

(a) For p-adic number fields the situation is non-trivial. x1/p exists as p-adic number for all
p-adic numbers with unit norm having x = x0 + x1p+ .... In the lowest order x ' x0 the
root is just x since x is effectively an element of finite field in this approximation. One can
develop the x1/p to a power series in p and continue the iteration. The sequence obtained
defines an element of tilt Kb of field K, now p-adic numbers.
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(b) If the p-adic number x has norm pn, n 6= 0 and is therefore not p-adic unit, the root
operation makes sense only if one performs an extension of p-adic numbers containing all

the roots p1/pk . These roots define one particular kind of extension of p-adic numbers
and the extension is infinite-dimensional since all roots are needed. One can approximate
Kb by taking only finite number iterated roots.

3. The tilt is said to be fractal: this is easy to understand from the presence of the iterated p:th
root. Each step in the sequence is like zooming. One might say that p-adic scale becomes p:th
root of itself. In TGD the p-adic length scale Lp is proportional to p1/2: does the scaling mean
that the p-adic length scale would defined hierarchy of scales proportional to p1/2kp: root of
itself and approach the CP2 scale since the root of p approaches unity. Tilts as extensions by
iterated roots would improve the length scale resolution.

One day later after writing this I got the feeling that I might have vaguely understood one
more important thing about the tilt of p-adic number field: changing of the characteristic 0 of
p-adic number field to characteristics p > 0 of the corresponding finite field for its tilt. What could
this mean?

1. Characteristic p (p is the prime labelling p-adic number field) means px = 0. This property
makes the mathematics of finite fields extremely simple: in the summation one need not take
care of the residue as in the case of reals and p-adics. The tilt of the p-adic number field would
have the same property! In the infinite sequence of the p-adic numbers coming as iterated p:th
roots of the starting point p-adic number one can sum each p-adic number separately. This is
really cute if true!

2. It seems that one can formulate the arithmetics problem in the tilt where it becomes in principle
as simple as in finite field with only p elements! Does the existence of solution in this case
imply its existence in the case of p-adic numbers? But doesn’t the situation remain the same
concerning the existence of the solution in the case of rational numbers? The infinite series
defining p-adic number must correspond a sequence in which binary digits repeat with some
period to give a rational number: rational solution is like a periodic solution of a dynamical
system whereas non-rational solution is like chaotic orbit having no periodicity? In the tilt
one can also have solutions in which some iterated root of p appears: these cannot belong to
rationals but to their extension by an iterated root of p.

The results of Scholze could be highly relevant for the number theoretic view about TGD
in which octonionic generalization of arithmetic geometry plays a key role since the points of
space-time surface with coordinates in extension of rationals defining adele and also what I call
cognitive representations determining the entire space-time surface if M8 −H duality holds true
(space-time surfaces would be analogous to roots of polynomials). Unfortunately, my technical
skills in mathematics needed are hopelessly limited.

TGD inspires the question is whether this kind of extensions could be interesting physically.
At the limit of infinite dimension one would get an ideal situation not realizable physically if
one believes that finite-dimensionality is basic property of extensions of p-adic numbers appearing
in number theoretical quantum physics (they would related to cognitive representations in TGD).
Adelic physics [L52] involves all finite-D extensions of rationals and the extensions of p-adic number
fields induced by them and thus also cutoffs of extensions of type Kb- which I have called precursors
of Kb.

How this relates to Witt vectors?

Witt vectors provide an alternative representation of p-adic arithmetics of p-adic integers in which
the sum and product are reduced to purely local digit-wise operations for each power of p for the
components of Witt vector so that one need not worry about carry pinary digit.

1. The idea is to consider the sequence consisting pinary cutoffs to p-adic number xmodpn and
identify p-adic integer as this kind of sequence as n approaches infinity. This is natural
approach when one identifies finite measurement resolution or cognitive resolution as a cutoff
in some power of pn. One simply forms the numbers Xn = x mod pn+1: for numbers 1, ..., p−
1 they are called Teichmueller representatives and only they are needed to construct the
sequences for general x. One codes this sequence of pinary cutoffs to Witt vector.
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2. The non-trivial observation made by studying sums of p-adic numbers is that the sequence
X0, X1, X2, ... of approximations define a sequence of components of Witt vector as W0 = X0,

W1 = Xp
0 +pX1, W2 = X

(
0p

2)+pXp
1 +p2X2, ... or more formally Wn = Sumi<np

iZX
[
ip

(n−i)].
3. The non-trivial point is that Witt vectors form a commutative ring with local digit-wise mul-

tiplication and sum modulo p: there no carry digits. Effectively one obtains infinite Cartesian
power of finite field Fp. This means a great simplification in arithmetics. One can do the
arithmetics using Witt vectors and deduce the sum and product from their product.

4. Witt vectors are universal. In particular, they generalize to any extension of p-adic numbers.
Could Witt vectors bring in something new from physics point of view? Could they allow a
formulation for the hierarchy of pinary cutoffs giving some new insights? For instance, neuro-
computationalist might ask whether brain could perform p-adic arithmetics using a linear array
of modules (neurons or neuron groups) labelled by n = 1, 2, ... calculates sum or product for
component Wn of Witt vector? No transfer of carry bits between modules would be needed.
There is of course the problem of transforming p-adic integers to Witt vectors and back - it
is not easy to imagine a natural realization for a module performing this transformation. Is
there any practical formulation for say p-adic differential calculus in terms of Witt vectors?

I would seem that Witt vectors might relate in an interesting manner to the notion of
perfectoid. The basic result proved by Petter Scholtze is that the completion ∪nQp(p1/pn) of p-
adic numbers by adding pn:th roots and the completion of Laurent series Fp((t)) to ∪nFp((t1/p

n

))
have isomorphic absolute Galois groups and in this sense are one and same thing. On the other
hand, p-adic integers can be mapped to a subring of Fp(t) consisting of Taylor series with elements
allowing interpretation as Witt vectors.

6.6.4 TGD view about p-adic geometries

As already mentioned, it is possible to define p-adic counterparts of n-forms and also various p-adic
cohomologies with coefficient field taken as p-adic numbers and these constructions presumably
make sense in TGD framework too. The so called rigid analytic geometry is the standard proposal
for what p-adic geometry might be.

The very close correspondence between real space-time surfaces and their p-adic variants
plays realized in terms of cognitive representations [L54, L53, L46] plays a key role in TGD frame-
work and distinguishes it from approaches trying to formulate p-adic geometry as a notion inde-
pendent of real geometry.

Ordinary approaches to p-adic geometry concentrate the attention to single p-adic prime. In
the adelic approach of TGD one considers both reals and all p-adic number fields simultaneously.

Also in TGD framework Galois groups take key role in this framework and effectively replace
homotopy groups and act on points of cognitive representations consisting of points with coordi-
nates in extension of rationals shared by real and p-adic space-time surfaces. One could say that
homotopy groups at level of sensory experience are replaced by Galois at the level of cognition. It
also seems that there is very close connection between Galois groups and various symmetry groups.
Galois groups would provide representations for discrete subgroups of symmetry groups.

In TGD framework there is strong motivation for formulating the analog of Riemannian
geometry of H = M4 × CP2 for p-adic variants of H. This would mean p-adic variant of Kähler
geometry. The same challenge is encountered even at the level of “World of Classical Worlds”
(WCW) having Kähler geometry with maximal isometries. p-Adic Riemann geometry and n-
forms make sense locally as tensors but integrals defining distances do not make sense p-adically
and it seems that the dream about global geometry in p-adic context is not realizable. This makes
sense: p-adic physics is a correlate for cognition and one cannot put thoughts in weigh or measure
their length.

Formulation of adelic geometry in terms of cognitive representations

Consider now the key ideas of adelic geometry and of cognitive representations.

1. The king idea is that p-adic geometries in TGD framework consists of p-adic balls of possibly
varying radii pn assignable to points of space-time surface for which the preferred embed-
ding space coordinates are in the extension of rationals. At level of M8 octonion property
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fixes preferred coordinates highly uniquely. At level of H preferred coordinates come from
symmetries.
These points define a cognitive representation and inside p-adic points the solution of field
equations is p-adic variant of real solution in some sense. At M8 level the field equations
would be algebraic equations and real-p-adic correspondence would be very straightforward.
Cognitive representations would make sense at both M8 level and H level.
Remark: In ordinary homology theory the decomposition of real manifold to simplexes re-
duces topology to homology theory. One forgets completely the interiors of simplices. Could
the cognitive representations with points labelling the p-adic balls could be seen as analogous
to decompositions to simplices. If so, homology would emerge as something number theo-
retically universal. The larger the extension of rationals, the more precise the resolution of
homology would be. Therefore p-adic homology and cohomology as its Poincare dual would
reduce to their real counterparts in the cognitive resolution used.

2. M8 − H correspondence would play a key role in mapping the associative regions of space-
time varieties in M8 to those in H. There are two kinds of regions. Associative regions
in which polynomials defining the surfaces satisfy criticality conditions and non-associative
regions. Associative regions represent external particles arriving in CDs and non-associative
regions interaction regions within CDs.

3. In associative regions one has minimal surface dynamics (geodesic motion) at level of H and
coupling parameters disappear from the field equations in accordance with quantum criticality.
The challenge is to prove that M8 −H correspondence is consistent with the minimal surface
dynamics n H. The dynamics in these regions is determined in M8 as zero loci of polynomials
satisfying quantum criticality conditions guaranteeing associativity and is deterministic also
in p-adic sectors since derivatives are not involved and pseudo constants depending on finite
number of pinary digits and having vanishing derivative do not appear. M8−H correspondence
guarantees determinism in p-adic sectors also in H.

4. In non-associative regions M8−H correspondence does not make sense since the tangent space
of space-time variety cannot be labelled by CP2 point and the real and p-adic H counterparts
of these regions would be constructed from boundary data and using field equations of a
variational principle (sum of the volume term and Kähler action term), which in non-associative
regions gives a dynamics completely analogous to that of charged particle in induced Kähler
field. Now however the field characterizes extended particle itself.
Boundary data would correspond to partonic 2-surfaces and string world sheets and possibly
also the 3-surfaces at the ends of space-time surface at boundaries of CD and the light-like
orbits of partonic 2-surfaces. At these surfaces the 4-D (!) tangent/normal space of space-time
surface would be associative and could be mapped by M8 −H correspondence from M8 to H
and give rise to boundary conditions.
Due to the existence of p-adic pseudo-constants the p-adic dynamics determined by the action
principle in non-associative regions inside CD would not be deterministic in p-adic sectors.
The interpretation would be in terms of freedom of imagination. It could even happen that
boundary values are consistent with the existence of space-time surface in p-adic sense but not
with the existence of real space-time surfaces. Not all that can be imagined is realizable.

At the level of M8 this vision seems to have no obvious problems. Inside each ball the same
algebraic equations stating vanishing of IM(P ) (imaginary part of P in quaternionic sense) hold
true. At the level of H one has second order partial differential equations, which also make sense
also p-adically. Besides this one has infinite number of boundary conditions stating the vanishing
of Noether charges assignable to sub-algebra super-symplectic algebra and its commutator with
the entire algebra at the 3-surfaces at the boundaries of CD. Are these two descriptions really
equivalent?

During writing I discovered an argument, which skeptic might see as an objection against
M8 −H correspondence.

1. M8 correspondence maps the space-time varieties in M8 in non-local manner to those in
H = M4 × CP2. CP2 coordinates characterize the tangent space of space-time variety in M8

and this might produce technical problems. One can map the real variety to H and find the
points of the image variety satisfying the condition and demand that they define the “spine”
of the p-adic surface in p-adic H.
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2. The points in extensions of rationals in H need not be images of those in M8 but should this be
the case? Is this really possible? M4 point in M4×E4 would be mapped to M4 ⊂M4×CP2:
this is trivial. 4-D associative tangent/normal space at m containing preferred M2 would be
characterized by CP2 coordinates: this is the essence of M8 −H correspondence. How could
one guarantee that the CP2 coordinates characterizing the tangent space are really in the
extension of rationals considered? If not, then the points of cognitive representation in H are
not images of points of cognitive representation in M8. Does this matter?

Are almost-perfectoids evolutionary winners in TGD Universe?

One could take perfectoids and perfectoid spaces as a mere technical tool of highly refiner mathe-
matical cognition. Since cognition is basic aspect of TGD Universe, one could also ask perfectoids
or more realistically, almost-perfectoids, could be an outcome of cognitive evolution in TGD Uni-
verse?

1. p-Adic algebraic varieties are defined as zero loci of polynomials. In the octonionic M8 ap-
proach identifying space-time varieties as zero loci for RE or IM of octonionic polynomial (RE
and IM in quaternionic sense) this allows to define p-adic variants of space-time surfaces as va-
rieties obeying same polynomial equations as their real counterparts provided the coefficients
of octonion polynomials obtainable from real polynomials by analytic continuation are in an
extension of rationals inducing also extension of p-adic numbers.
The points with coordinates in the extension of rationals common to real and p-adic variants
of M8 identified as cognitive representations are in key role. One can see p-adic space-time
surfaces as collections of “monads” labelled by these points at which Cartesian product of 1-D
p-adic balls in each coordinate degree. The radius of the p-adic ball can vary. Inside each ball
the same polynomial equations are satisfied so that the monads indeed reflect other monads.
Kind of algebraic hologram would be in question consisting of the monads. The points in
extension allow to define ordinary real distance between monads. Only finite number of monads
would be involved since the number of points in extension tends to be finite. As the extension
increases, this number increases. Cognitive representations become more complex: evolution
as increase of algebraic complexity takes place.

2. Finite-dimensionality for the allowed extensions of p-adic number fields is motivated by the idea
about finiteness of cognition. Perfectoids are however infinite-dimensional. Number theoretical
universality demands that on only extensions of p-adics induced by those of rationals are
allowed and defined extension of the entire adele. Extensions should be therefore be induced
by the same extension of rationals for all p-adic number fields.
Perfectoids correspond to an extension of Qp apparently depending on p. This dependence is
in conflict with number theoretical universality if real. This extension could be induced by
corresponding extension of rationals for all p-adic number fields. For p-adic numbers Qq q 6= p
all equation ap

n

= x reduces to an = x mod p and this in term to am = x mod p, m = n mod p.
Finite-dimensional extension is needed to have all roots of required kind! This extension is
therefore finite-D for all q 6= p and infinite-D for p.

3. What about infinite-dimensionality of the extension. The real world is rarely perfect and our
thoughts about it even less so, and one could argue that we should be happy with almost-
perfectoids! “Almost” would mean extension induced by powers of p1/pm for large enough m,
which is however not infinite. A finite-dimensional extension approaching perfectoid asymp-
totically is quite possible!

4. One could see the almost perfectoid as an outcome of evolution and perfectoid as the asymp-
totic states. High dimension of extension means that p-adic numbers and extension of rationals
have large number of common numbers so that also cognitive representations contain a large
number of common points. Maybe the p-adic number fields, which are evolutionary winners,
have managed to evolve to especially high-dimensional almost-perfectoids! Note however that
also the roots of e can be considered as extensions of rationals since corresponding p-adic
extensions are finite-dimensional. Similar evolution can be considered also now.
To get some perspective mote that for large primes such as M127 = 2127 − 1 characterizing

electron the lowest almost perfectoid would give powers of M
1/M127

127 = (2127 − 1)1/(2127−1) ∼
1 + log(2)2−120! The lattice of points in extension is extremely dense near real unit. The
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density of of points in cognitive representations near this point would be huge. Note that
the length scales comes as negative powers of two, which brings in mind p-adic length scale
hypothesis [K68].

Although the octonionic formulation in terms of polynomials (or rational functions iden-
tifying space-time varieties as zeros or poles of RE(P ) or IM(P ) is attractive in its simplicity,
one can also consider the possibility of allowing analytic functions of octonion coordinate obtained
from real analytic functions. These define complex analytic functions with commutative imaginary
unit used to complexify octonions. Could meromorphic functions real analytic at real axis having
only zeros and poles be allowed? The condition that all p-adic variants of these functions exist
simultaneously is non-trivial. Coefficients must be in the extension of rationals considered and
convergence poses restrictions. For instance, ex converges only for |x|p < 1. These functions might
appear at the level of H.

6.7 Secret Link Uncovered Between Pure Math and Physics

I learned about a possible existence of a very interesting link between pure mathematics and physics
(see http://tinyurl.com/y86bckmo). The article told about ideas of number theorist Minhyong
Kim working at the University of Oxford. As I read the popular article, I realized it is something
very familiar to me but from totally different view point.

Number theoretician encounters the problem of finding rational points of an algebraic curve
defined as real or complex variant in which case the curve is 2-D surface and 1-D in complex sense.
The curve is defined as root of polynomials polynomials or several of them. The polynomial have
typically rational coefficients but also coefficients in extension of rationals are possible.

For instance, Fermat’s theorem is about whether xn + yn = 1, n = 1, 2, 3, ... has rational
solutions for n ≥ 1. For n = 1, and n = 2 it has, and these solutions can be found. It is now
known that for n > 2 no solutions do exist. Quite generally, it is known that the number is finite
rather than infinite in the generic case.

A more general problem is that of finding points in some algebraic extension of rationals.
Also the coefficients of polynomials can be numbers in the extension of rationals. A less demanding
problem is mere counting of rational points or points in the extension of rationals and a lot of
progress has been achieved in this problem. One can also dream of classifying the surfaces by the
character of the set of the points in extension.

I have consider the identification problem earlier in [L46] and I glue here a piece of text
summarizing some basic results. The generic properties of sets of rational points for algebraic
curves are rather well understood. Mordelli conjecture proved by Falting as a theorem (see http:

//tinyurl.com/y9oq37ce) states that a curve over Q with genus g = (d− 1)(d− 2)/2 > 1 (degree
d > 3) has only finitely many rational points.

1. Sphere CP1 in CP2 has rational points as a dense set. Quite generally rational surfaces,
which by definition allow parametric representation using polynomials with rational coefficients
(encountered in context of Du Val singularities characterized by the extended Dynkin diagrams
for finite subgroups of SU(2)) allow dense set of rational points [A61, A69]).
g = 0 does not yet guarantee that there is dense set of rational points. It is possible to have
complex conics (quadratic surface) in CP2 with no rational points. Note however that this
depends on the choice of the coordinates: if origin belongs to the surface, there is at least one
rational point

2. Elliptic curve y2 − x3 − ax − b in CP2 (see http://tinyurl.com/lovksny) has genus g = 1
and has a union of lattices of rational points and of finite cyclic groups of them since it has
origin as a rational point. This lattice of points are generated by translations. Note that
elliptic curve has no singularities that is self intersections or cusps (for a = 0, b = 0 origin is a
singularity).
g = 1 does not guarantee that there is infinite number of rational points. Fermat’s last theorem
and CP2 as example. xd + yd = zd is projectively invariant statement and therefore defines a
curve with genus g = (d − 1)(d − 2)/2 in CP2 (one has g = 0, 0, 2, 3, 6, 10, ...). For d > 2, in
particular d = 3, there are no rational points.

3. g ≥ 2 curves do not allow a dense set of rational points nor even potentially dense set of
rational points.

http://tinyurl.com/y86bckmo
http://tinyurl.com/y9oq37ce
http://tinyurl.com/y9oq37ce
http://tinyurl.com/lovksny
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In my article [L46] providing TGD perspective about the role of algebraic geometry in
physics, one can find basic results related to the identification problem including web links and
references to literature.

6.7.1 Connection with TGD and physics of cognition

The identification problem is extremely difficult even for mathematicians - to say nothing about
humble physicist like me with hopelessly limited mathematical skills. It is however just this problem
which I encounter in TGD inspired vision about adelic physics [L53, L52, L46]. Recall that in
TGD space-times are 4-surfaces in H = M4×CP2, preferred extremals of the variational principle
defining the theory [K85, L64].

1. In this approach p-adic physics for various primes p provide the correlates for cognition: there
are several motivations for this vision. Ordinary physics describing sensory experience and the
new p-adic physics describing cognition for various primes p are fused to what I called adelic
physics. The adelic physics is characterized by extension of rationals inducing extensions of
various p-adic number fields. The dimension n of extension characterizes kind of intelligence
quotient and evolutionary level since algebraic complexity is the larger, the larger the value
of n is. The connection with quantum physics comes from the conjecture that n is essentially
effective Planck constant heff/h0 = n characterizing a hierarchy of dark matters. The larger
the value of n the longer the scale of quantum coherence and the higher the evolutionary level,
the more refined the cognition.

2. An essential notion is that of cognitive representation [K71] [L52, L46]. It has several realiza-
tions. One of them is the representation as a set of points common to reals and extensions of
various p-adic number fields induced by the extension of rationals. These space-time points
have points in the extension of rationals considered defining the adele. The coordinates are
the embedding space coordinates of a point of the space-time surface. The symmetries of
embedding space provide highly unique embedding space coordinates.

3. The gigantic challenge is to find these points common to real number field and extensions of
various p-adic number fields appearing in the adele.

4. If this were not enough, one must solve an even tougher problem. In TGD the notion of
“world of classical worlds” (WCW) is also a central notion [K85]. It consists of space-time
surfaces in embedding space H = M4 × CP2, which are so called preferred extremals of the
action principle of theory. Quantum physics would reduce to geometrization of WCW and
construction of classical spinor fields in WCW and representing basically many-fermion states:
only the quantum jump would be genuinely quantal in quantum theory.
There are good reasons to expect that space-time surfaces are minimal surfaces with 2-D
singularities, which are string world sheets - also minimal surfaces [L64, L75]. This gives nice
geometrization of gauge theories since minimal surfaces equations are geometric counterparts
for massless field equations.
One must find the algebraic points, the cognitive representation, for all these preferred ex-
tremals representing points of WCW (one must have preferred coordinates for H - the sym-
metries of embedding space crucial for TGD and making it unique, provide the preferred
coordinates)!

5. What is so beautiful is that in given cognitive resolution defined by the extension of ratio-
nals inducing the discretization of space-time surface, the cognitive representation defines the
coordinates of the space-time surfaces as a point of WCW. In finite cognitive and measure-
ment resolution this huge infinite-dimensional space WCW discretizes and the situation can
be handled using finite mathematics.

6.7.2 Connection with Kim’s work

So: what is then the connection with the work and ideas of Kim. There has been a lot of progress
in understanding the problem: here I an only refer to the popular article.

1. One step of progress has been the realization that if one uses the fact that the solutions are
common to both reals and various p-adic number fields helps a lot. The reason is that for
rational points the rationality implies that the solution of equation representable as infinite
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power series of p contains only finite number powers of p. If one manages to prove the this
happens for even single prime, a rational solution has been found.
The use of reals and all p-adic numbers fields is nothing but adelic physics. Real surfaces
and all its p-adic variants form pages of a book like structure with infinite number of pages.
The rational points or points in extension of rationals are the cognitive representation and are
points common to all pages in the back of the book.
This generalizes also to algebraic extensions of rationals. Solving the number theoretic problem
is in TGD framework nothing but finding the points of the cognitive representation. The
surprise for me was that this viewpoint helps in the problem rather than making it more
complex.
There are however problematic situations in some cases the hypothesis about finite set of
algebraic points need not make sense. A good example is Fermat for x + y = 1. All rational
points and also algebraic points are solutions. For x2 +y2 = 1 the set of Pythagorean triangles
characterizing the solutions is infinite. How to cope with these situations in which one has
accidental symmetries as one might say?

2. Kim argues that one can make even further progress by considering the situation from even
wider perspective by making the problem even bigger. Introduce what the popular article (see
http://tinyurl.com/y86bckmo) calls the space of spaces. The space of string world sheets is
what string models suggests. WCW is what TGD suggests. One can get a wider perspective
of the problem of finding algebraic points of a surface by considering the problem in the space
of surfaces and at this level it might be possible to gain much more understanding. The notion
of WCW would not mean horrible complication of a horribly complex problem but possible
manner to understand the problem!
The popular article mentioned in the beginning mentions so called Selmer varieties as a possible
candidate for the space of spaces. From the Wikipedia article (see http://tinyurl.com/

y27so3f2) telling about Kim one can find a link to an article [A59] related to Selmer varieties.
This article goes over my physicist’s head but might give for a more mathematically oriented
reader some grasp about what is involved. One can find also a list of publications of Kim (see
http://people.maths.ox.ac.uk/kimm/.
Kim also suggests that the spaces of gauge field configurations could provide the spaces of
spaces. The list contains an article [A68] with title Arithmetic Gauge Theory: A Brief Intro-
duction (see http://tinyurl.com/y66mphkh) , which might help physicist to understand the
ideas. An arithmetic variant of gauge theory could provide the needed space of spaces.

6.7.3 Can one make Kim’s idea about the role of symmetries more con-
crete in TGD framework?

The crux of the Kim’s idea is that somehow symmetries of space of spaces could come in rescue in
the attempts to understand the rational points of surface. The notion of WCW suggest in TGD
framework rather concrete realization of this idea that I have discussed from the point of view of
construction of quantum states.

1. A little bit more of zero energy ontology (ZEO) is needed to follow the argument. In ZEO
causal diamonds (CDs) are central. CDs are defined as intersections of future and past directed
light-cones with points replaced with CP2 and forming a scale hierarchy are central. Space-time
surfaces are preferred extremals with ends at the opposite boundaries of CD indeed looking
like diamond. Symplectic group for the boundaries of causal diamond (CD) is the group of
isometries of WCW [K85] [L64]. Maximal isometry group is required to guarantee that the
WCW Kähler geometry has Riemann connection - this was discovered for loop spaces by Dan
Freed [A44]. Its Lie algebra has structure of Kac- Moody algebra with respect to the light-
like radial coordinate of the light-like boundary of CD, which is piece of light-cone boundary.
This infinite-D group plays central role in quantum TGD: it acts as maximal group of WCW
isometries and zero energy states are invariant under its action at opposite boundaries.

2. As one replaces space-time surface with a cognitive representation associated with an extension
of rationals, WCW isometries are replaced with their infinite discrete subgroup acting in the
number field define by the extension of rationals defining the adele. These discrete isometries
do not leave the cognitive representation invariant but replace with it new one having the same

http://tinyurl.com/y86bckmo
http://tinyurl.com/y27so3f2
http://tinyurl.com/y27so3f2
http://people.maths.ox.ac.uk/kimm/
http://tinyurl.com/y66mphkh
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number of points and one obtains entire orbit of cognitive representations. This is what the
emergence of symmetries in wider conceptual framework would mean.

3. One can in fact construct invariants of the symplectic group. Symplectic transformations leave
invariant the Kähler magnetic fluxes associated with geodesic polygons with edges identified
as geodesic lines of H. There are also higher-D symplectic invariants. The simplest polygons
are geodesic triangles. The symplectic fluxes associated with the geodesic triangles define
symplectic invariants characterizing the cognitive representation. For the twistor lift one must
allow also M4 to have analog of Kähler form and it would be responsible for CP violation and
matter antimatter asymmetry [L41]. Also this defines symplectic invariants so that one obtains
them for both M4 and CP2 projections and can characterize the cognitive representations in
terms of these invariants. Note that the existence of twistor lift fixes the choice of H uniquely
since M4 and CP2 are the only 4-D spaces allowing twistor space with Kähler structure [A57]
necessary for defining the twistor lift of Kähler action.
More complex cognitive representations in an extension containing the given extension are
obtained by adding points with coordinates in the larger extension and this gives rise to new
geodesic triangles and new invariants. A natural restriction could be that the polynomial
defining the extension characterizing the preferred extremal via M8 − H duality defines the
maximal extension involved.

4. Also in this framework one can have accidental symmetries. For instance, M4 with CP2

coordinates taken to be constant is a minimal surface, and all rational and algebraic points
for given extension belong to the cognitive representation so that they are infinite. Could this
has something to do with the fact that we understand M4 so well and have even identified
space-time with Minkowski space! Linear structure would be cognitively easy for the same
reason and this could explain why we must linearize.
CP2 type extremals with light-like M4 geodesic as M4 projection is second example of acci-
dental symmetries. The number of rational or algebraic points with rational M4 coordinates
at light-like curve is infinite - the situation is very similar to x + y = 1 for Fermat. Sim-
plest cosmic strings are geodesic sub-manifolds, that is products of plane M2 ⊂M4 and CP2

geodesic sphere. Also they have exceptional symmetries.
What is interesting from the point of view of proposed model of cognition is that these cog-
nitively easy objects play a central role in TGD: their deformations represent more complex
dynamical situations. For instance, replacing planar string with string world sheet replaces
cognitive representation with a discrete or perhaps even finite one in M4 degrees of freedom.

5. A further TGD based simplification would be M8 − H (H = M4 × CP2) duality in which
space-time surfaces at the level of M8 are algebraic surfaces, which are mapped to surfaces in
H identified as preferred extremals of action principle by the M8−H duality [L46]. Algebraic
surfaces satisfying algebraic equations are very simple as compared to preferred extremals
satisfying partial differential equations but “preferred” is what makes possible the duality. This
huge simplification of the solution space of field equations guarantees holography necessitated
by general coordinate invariance implying that space-time surfaces are analogous to Bohr
orbits. It would also guarantee the huge symmetries of WCW making it possible to have
Kähler geometry.
This suggests in TGD framework that one finds the cognitive representation at the level of M8

using methods of algebraic geometry and maps the points to H by using the M8 −H duality.
TGD and octonionic variant of algebraic geometry would meet each other.
It must be made clear that now solutions are not points but 4-D surfaces and this probably
means also that points in extension of rationals are replaced with surfaces with embedding
space coordinates defining function in extensions of rational functions rather than rationals.
This would bring in algebraic functions. This might provide also a simplification by providing
a more general perspective. Also octonionic analyticity is extremely powerful constraint that
might help.
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6.8 Cognitive representations for partonic 2-surfaces, string
world sheets, and string like objects

Cognitive representations are identified as points of space-time surface X4 ⊂ M4 × CP2 having
embedding space coordinates in the extension of of rationals defined by the polynomial defined by
the M8 pre-image of X4 under M8−H correspondence [L47, L48, L84, L76, L74, L68]. Cognitive
representations have become key piece in the formulation of scattering amplitudes [L78] . One
might argue that number theoretic evolution as increase of the dimension of the extension of
rationals favors space-time surfaces with especially large cognitive representations since the larger
the number of points in the representation is, the more faithful the representation is.

One can pose several questions if one accepts the idea that space-time surfaces with large
cognitive representations are survivors.

1. Preferred p-adic primes are proposed to correspond to the ramified primes of the extension
[L86]. The proposal is that the p-adic counterparts of space-time surfaces are identifiable
as imaginations whereas real space-time surfaces correspond to realities. p-Adic space-time
surfaces would have the embedding space points in extension of rationals as common with real
surfaces and large number of these points would make the representation realistic. Note that
the number of points in extension does not depend on p-adic prime.
Could some extensions have an especially high number of points in the cognitive representation
so that the corresponding ramified primes could be seen as survivors in number theoretical
fight for survival, so to say? Galois group of the extension acts on cognitive representation.
Galois extension of an extension has the Galois group of the original extension as normal
subgroup so that ormal Galois group is analogous to a conserved gene.

2. Also the type of extremal matters. For instance, for instance canonically imbedded M4 and
CP2 contain all points of extension. These surfaces correspond to the vanishing of real or
imaginary part (in quaternionic sense) for a linear octonionic polynomial P (o) = o! As a
matter of fact, this is true for all known preferred extremals under rather mild additional
conditions. Boundary conditions posed at both ends of CD in ZEO exclude these surfaces and
the actual space-time surfaces are expected to be their deformations.

3. Could the surfaces for which the number of points in cognitive representation is high, be the
ones most easily discovered by mathematical mind? The experience with TGD supports pos-
itive answer: in TGD the known extremals [K10] are examples of such mathematical objects!
If so, one should try to identify mathematical objects with high symmetries and look whether
they allow TGD realization.

4. One must also specify more precisely what cognitive representation means. Strong form of
holography (SH) states that the information gives at 2-D surfaces - string world sheets and
partonic 2-surfaces - is enough to determine the space-time surfaces. This suggests that it
is enough to consider cognitive representation restricted to these 2-surfaces. What kind of
2-surfaces are the cognitively fittest one? It would not be surprising if surfaces with large
symmetries acting in extension were favored and elliptic curves with discrete 2-D translation
group indeed turn out to be assigable string world sheets as singularities and string like objects.
In the case of partonic 2-surfaces geodesic sphere of CP2 is similar object.

All known extremals, in particular preferred extremals, are good candidates in this respect
because of their high symmetries. By strong form of holography (SH) partonic 2-surfaces and
string world sheets are expected to give rise to cognitive representations. Also cosmic strings are
expected to carry them. Under what conditions these representations are large?

6.8.1 Partonic 2-surfaces as seats of cognitive representations

One can start from SH and look the situation more concretely. The situation for partonic 2-surfaces
has been considered already earlier [L85, L73] but deserves a separate discussion.

1. Octonionic polynomials allow special solutions for which the entire polynomial vanishes. This
happens at 6-sphere S6 at the boundary of 8-D light-cone. S6 is analogous to brane and has
radius R = rn, which is a root of the real polynomial with rational coefficients algebraically
continued to the octonionic polynomial.
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S6 has the ball B3 of radius rn of the light-cone M4
+ with time coordinate t = rn as analog

of base space and sphere S3 of E4 with radius R =
√
r2
n − r2, r the radial coordinate of B3

as an analog of fiber. The analog of the fiber contracts to a point at the boundary of the
light-cone. The points with B3 projection and E4 coordinates in extension of rationals belong
to the cognitive representation. The condition that R2 = xix

i = r2
n− r2 is square of a number

of extension is rather mild and allows infinite number of solutions.

2. The 4-D space-time surfacesX4 are obtained as generic solutions of Im(P (o)) = 0 orRe(P (o)) =
0. Their intersection with S6 - partonic 2-surface X2 - is 2-D. The assumption is that the
incoming and outgoing 4-D space-time surfaces representing orbits of particles in topological
sense are glued together at X2 and possibly also in their interiors. X2 serves as an analog of
vertex for 3-D particles. This gives rise to topological analogs of Feynman diagrams.
In the generic case the number of points in cognitive representation restricted to X2 is finite
unless the partonic 2-surface X2 is special - say correspond to a geodesic spere of S6.

3. The discrete isometries and conformal symmetries of the cognitive representation restricted
to X2 possibly represented as elements of Galois group might play a role. For X2 = S2 the
finite discrete subgroups of SO(3) giving rise to finite tessellations and appearing in ADE
correspondence might be relevant. For genera g = 01, 2 conformal symmetry Z2 is always
possible but for higher genera only in the case of hyper-elliptic surfaces- this used to explain
why only g = 0, 1, 2 correspond to observed particles [K28] whereas higher genera could be
regarded as many-particle states of handles having continuous mass spectrum. Torus is an
exceptional case and one can ask whether discrete subgroup of its isometries could be realized.

4. In TGD inspired theory of consciousness [L54, L73] the moments t = rn corresponds to “very
special moments in the life of self”. They would be also cognitively very special - kind of
eureka moments with a very large number of points in cognitive representation. The question
is whether these surfaces might be relevant for understanding the nature of mathematical
consciousness and how the mathematical notions emerge at space-time level.

6.8.2 Ellipticity

Surfaces with discrete translational symmetries is a natural candidate for a surface with very large
cognitive representation. Are their analogs possible? The notions of elliptic function, curve, and
surface suggest themselves as a starting point.

1. Elliptic functions (http://tinyurl.com/gpugcnh) have 2-D discrete group of translations as
symmetries and are therefore doubly periodic and thus identifiable as functions on torus.
Weierstrass elliptic functions P(z;ω1, ω2) (http://tinyurl.com/ycu8oa4r) are defined on
torus and labelled by the conformal equivalence class λ = ω1/ω2 of torus identified as the
ratio λ = ω1/ω2 of the complex numbers ωi defining the periodicities of the lattice involved.
Functions P(z;ω1, ω2) are of special interest as far as elliptic curves are considered and defines
an embedding of elliptic curve to CP2 as will be found.
If the periods are in extension of rationals then values in the extension appear infinitely
many times. Elliptic functions are not polynomials. Although the polynomials giving rise to
octonionic polynomials could be replaced by analytic functions it seems that elliptic functions
are not the case of primary interest. Note however that the roots rn could be also complex
and could correspond to values of elliptic function forming a lattice.

2. Elliptic curves (http://tinyurl.com/lovksny) are defined by the polynomial equation

y2 = P (x) = x3 + ax+ b . (6.8.1)

An algebraic curve of genus 1 allowing 2-D discrete translations as symmetries is in question. If
a point of elliptic curve has coordinates in extension of rationals then 2-D discrete translation
acting in extension give rise to infinite number of points in the cognitive representation. Clearly,
the 2-D vectors spanning the lattice defining the group must be in extension of rationals.

One can indeed define commutative sum P + Q for the points of the elliptic curve. The
detailed definition of the group law and its geometric illustration can be found in Wikipedia article
(http://tinyurl.com/lovksny).

1. Consider real case for simplicity so that elliptic curve is planar curve. y2 = P (x) = x3 +ax+ b
must be non-negative to guarantee that y is real. P (x) ≥ 0 defines a curve in upper (x, y)

http://tinyurl.com/gpugcnh
http://tinyurl.com/ycu8oa4r
http://tinyurl.com/lovksny
http://tinyurl.com/lovksny
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plane extending from some negative value xmin corresponding to y2 = P (xmin) = 0 to the
right. Given value of y can correspond to 3 real roots or 1 real root of Py(x) = y2 − P (x).

At the two extrema of Py(x) 2 real roots co-incide. The graph of y = ±
√
P (x) is reflection

symmetric having two branches beginning from (xmin, y = 0).

2. The negative −P is obtained by reflection with respect to x-axis taking yP to −yP . Neutral
element O is identified as point a infinity (assuming compactification of the plane to a sphere)
which goes to itself under reflection y → −y.

3. One assigns to the points P and Q of the elliptic curve a line y = sx+d containing them so that
one has s = (yp − yQ)/(xP − xQ). In the generic case the line intersects the elliptic curve also
at third point R since Py=sx+d(x) is third order polynomial having three roots (xP , xQ, xR).
It can happen that 2 roots are complex and one has 1 real root. At criticalityfor the transiton
from 3 to 1 real roots one has xQ = xR.
Geometrically one can distinguish between 4 cases.

• The roots P,Q,R of Py=sx+d(x) are different and finite: one defines the sum as P +Q =
−R.

• P 6= Q and Q = R (roots Q and R are degenerate): P +Q+Q = O giving R = −P/2.

• P and Q are at a line parallel to y-axis and one has R = O: P +Q+O = O and P = −Q.

• P is double root of Py=sx+d(x) with tangent parallel to y-axis at the point (xmin, y = 0)
at which the elliptic curve begins so that one has R = O: P + P +O = O gives P = −P .
This corresponds to torsion.

4. Elliptic surfaces (see http://tinyurl.com/yc33a6dg) define a generalization of elliptic curves
and are defined for 4-D complex manifolds. Fiber is required to be smooth and has genus 1.

6.8.3 String world sheets and elliptic curves

In twistor lift of TGD space-time surfaces identifiable as minimal surfaces with singularities, which
are string world sheets and partonic 2-surfaces. Preferred extremal property means that space-time
surfaces are extremals of both Kähler action and volume action except at singularities.

Are string world sheets with very large number of points in cognitive representation possible?
One has right to expect that string world sheets allow special kind of symmetries allowing large,
even infinite number of points at the limit of large sheet and related by symmetries acting in the
extension of rationals. If one of the points is in the extension, also other symmetry related points
are in the extension. For a non-compact group, say translation one would have infinite number
of points in the representation but the finite size of CD would pose a limitation to the number of
points.

String world sheets are good candidates for the realization of elliptic curves.

1. The general conjecture is that preferred extremals allow what I call Hamilton-Jacobi structure
for M4 [K85]. The distribution of tangent spaces having decomposition M4(x) = M2(x) ×
E2(x) would be integrable giving rise to a family of string world sheets Y 2 and partonic 2-
surfaces X2 more general than those defined above. X2 and Y 2 are orthogonal to each other
at each point of X4. One can introduce local light-cone coordinates (u, v) for Y 2 and local E2

complex coordinate w for X2.

2. Space-time surface itself would be a deformation of M4 with Hamilton-Jacobi structure in CP2

direction. w coordinate as function w(z) of CP2 complex coordinate z or vice versa would
define the string world sheet. This would be a transversal deformation of the basic string world
sheet Y 2: stringy dynamics is indeed transversal.

3. The idea about maximal cognitive representation suggests that w ↔ z correspondence defines
elliptic curve. One would have y2 = P (x) = x3 + ax + b with either (y = w, x = z) or
(y = z, x = w). A natural conjecture is that for the space-time surface corresponding to
a given extension K of rationals the coefficients a an b belong to K so that the algebraic
complexity of string world sheet would increase in number theoretic evolution [L83]. The orbit
of a algebraic point at string world sheet would be lattice made finite by the size of CD. Elliptic
curves would define very special deformed string world sheets in space-time.

4. It is interesting to consider the pre-image of given point y (y = w or y = z) covering point
x. One has y = ±

√
u, u = P (x) corresponding to group element and its negative: there are

http://tinyurl.com/yc33a6dg
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two points of covering given value of u. u = P (x) covers 3 values of x. The values of x would
belong to 6-fold covering of rationals. The number theoretic interpretation for the effective
Planck constant heff = nh0 states that n is the number of sheets for space-time surface as
covering.
There is evidence that heff = h corresponds to n = 6 [L31]. Could 6-fold covering of rationals
be fundamental since it gives very large cognitive representation at the level of string world
sheets?
For extensions K of rationals the x coordinates for the points of cognitive representation would
belong to 6-D extension of K.

5. Ellipticity condition would apply on the string world sheets themselves. In the number the-
oretic vision string world sheets would correspond at M8 level to singularities at which the
quaternionic tangent space degenerates to 2-D complex space. Are these conditions consistent
with each other? It would seem that the two conditions would select cognitively very spe-
cial string world sheets and partonic 2-surfaces defining by strong form of holography (SH)
space-time surface as a hologram in SH. Consciousness theorist interested in mathematical
cognition might ask whether the notion of elliptic surfaces have been discovered just because
it is cognitively very special. In the case of partonic 2-surfaces geodesic sphere of CP2 is similar
object.

6.8.4 String like objects and elliptic curves

String like objects - cosmic strings - and their deformations, are fundamental entities in TGD based
cosmology and astrophysics and also in TGD inspired quantum biology. One can assign elliptic
curves also to string like objects.

1. Quite generally, the products X2 × Y 2 ⊂M4 of string world sheets X2 and complex surfaces
Y 2 of CP2 define extremals that I have called cosmic strings [K10].

2. Elliptic curves allow a standard embedding to CP2 as complex surfaces constructible in terms
of Weierstrass elliptic function P(z) (http://tinyurl.com/ycu8oa4r) satisfying the identity

[P ′(z)]2 = [P(z)]3 − g2P(z)− g3 . (6.8.2)

Here g2 and g3 are modular invariants. This identity is of the same form as the condition
y2 = x3 + ax + b with identifications y = P ′(z), x = P(z) and (a = −g2, b = −g3). From the
expression

y2 = x(x− 1)(x− λ) (6.8.3)

in terms of the modular invariant λ = ω1/ω2 of torus one obtains

g2 = 41/3

3 (λ2 − λ+ 1 , g3 = 1
27 (λ+ 1)(2λ2 − 5λ+ 2) . (6.8.4)

Note that third root of a appears in the formula. The so called modular discriminant

∆ = g3
2 − 27g2

3 = λ2(λ− 1)2 . (6.8.5)

vanishes for λ = 0 and λ = 1 for which the lattice degenerates.

3. The embedding of the elliptic curve to CP2 can be expressed in projective coordinates of CP2

as

(z1, z2, z3) = (ξ1, ξ2, 1) = (
P ′(w)

2
,P(w), 1) . (6.8.6)

6.9 Are fundamental entities discrete or continuous and what
discretization at fundamental level could mean?

There was an interesting FB discussion about discrete and continuum. I decided to write down
my thoughts and emphasize those points that I see as important.

http://tinyurl.com/ycu8oa4r
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6.9.1 Is discretization fundamental or not?

The conversation inspired the question whether discreteness is something fundamental or not. If
it is assumed to be fundamental, one encounters problems. The discrete structures are not unique.
One has deep problem with the known space-time symmetries. Symmetries are reduced to discrete
subgroup or totally lost. A further problem is the fact that in order to do physics, one must bring
in topology and length measurements.

In discrete situation topology, in particular space-time dimension, must be put in via ho-
mology effectively already meaning use of embedding to Euclidian space. Length measurement
remains completely ad hoc. The construction of discrete metric is highly non-unique procedure
and the discrete analog of of say Einstein’s theory (Regge calculus) is rather clumsy. One feeds
in information, which was not there by using hand weaving arguments like infrared limit. It is
possible to approximate continuum by discretization but discrete to continuum won’t go.

In hype physics these hand weaving arguments are general. For instance, the emergence of
3-space from discrete Hilbert space is one attempt to get continuum. One puts in what is factually
a discretization of 3-space and then gets 3-space back at IR limit and shouts ”Eureka!”.

6.9.2 Can one make discretizations unique?

Then discussion went to numerics. Numerics is for mathematicians same as eating for poets. One
cannot avoid it but luckily you can find people doing the necessary programming if you are a
professor. Finite discretization is necessary in numerics and is highly unique.

I do not have anything personal against discretization as a numerical tool. Just the opposite,
I see finite discretization as absolutely essential element of adelic physics as an attempt to describe
also the correlates of cognition in terms of p-adic physics with p-adic space-time sheets as correlates
of ”thought bubbles” [L52, L53]. Cognition is discrete and finite and uses rational numbers: this
is the basic clue.

1. Cognitive representations are discretizations of (for instance) space-time surface. One can
say that physics itself builds its cognitive representation in all scales using p-adic space-time
sheets. They should be unique once measurement resolution is characterized if one is really
talking about fundamental physics.
The idea abou tp-adic physics as physics of cognition indeed led to powerful calculational
recipes. In p-adic thermodynamics the predictions come in power series of p-adic prime p
and for the values of p assignable to elementary particles the two lowest terms give practically
exact result [K60]. Corrections are of order 10−76 for electron characterized by Mersenne prime
M127 = 2127 − 1 ∼ 1038.

2. Adelic physics [L52] provides the formulation of p-adic physics: it is assumed that cognition is
universal. Adele is a book like structure having as pages reals and extensions of various p-adic
number fields induced by given extension of rationals. Each extension of rationals defines its
own extension of the rational adele by inducing extensions of p-adic number fields. Common
points between pages consist of points in extension of rationals. The books associated with
the adeles give rise to an infinite library.
At space-time level the points with coordinates in extension define what I call cognitive
representation. In the generic case it is discrete and has finite number of points. The
loss of general coordinate invariance is the obvious objection. In TGD however the sym-
metries of the embedding space fix the coordinates used highly uniquely. M8 − H duality
(H = M4×CP2) and octonionic interpretation implies that M8 octonionic linear coordinates
are highly unique [L46, L76]. Note that M8 must be complexified. Different coordinatiza-
tions correspond to different octonionic structures- to different moduli - related by Poincare
transformations of M8. Only rational time translations as transformations of octonionic real
coordinate are allowed as coordinate changes respecting octonionic structure.

3. Discretization by cognitive representation is unique for given extension of rationals defining the
measurement resolution. At the limit of algebraic numbers algebraic points form a dense set
of real space-time surface and p-adic space-time surfaces so that the measurement resolution
is ideal. One avoids the usual infinities of quantum field theories induced by continuous
delta functions, which for cognitive representations are replaced with Kronecker deltas. This
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seems to be the best that one can achieve with algebraic extensions of rationals. Also for
transcendental extensions the situation is discrete.
This leads to a number theoretic vision about second quantization of induced spinor fields
central for the construction of gamma matrices defining the spinor structure of ”world of
classical worlds” (WCW) providing the arena of quantum dynamics in TGD analogous to the
super-space of Wheeler [K85]. One ends up to a construction allowing to understand TGD
view about SUSY as necessary aspect of second quantization of fermions and leads to the
conclusions that in the simplest scenario only quarks are elementary fermions and leptons can
be seen as their local composites analogous to super partners.

4. Given polynomial defining space-time surfaces in M8 defines via its roots extension of rationals.
The hierarchy of extensions defines an evolutionary hierarchy. The dimension n of extension
defines kind of IQ measuring algebraic complexity and n corresponds also to effective Planck
constant labelling phases of dark matter in TGD sense so that a direct connection with physics
emerges.
Embedding space assigns to a discretization a natural metric. Distances between points of
metric are geodesic distances computed at the level of embedding space.

5. An unexpected finding was that the equations defining space-time surfaces as roots of real or
imaginary parts of octonionic polynomials have also 6-D brane like entities with topology of S6

as solutions [L73, L84]. These entities intersect space-time surfaces at 3-D sections for which
linear M4 time is constant. 4-D roots can be glued together along these branes. These solutions
turn out to have an interpretation in TGD based theory of quantum measurement extending to
a theory of consciousness. The interpretation as moments of ”small” state function reductions
as counterparts of so called weak measurements. They could correspond to special moments
in the life of conscious entity.

6.9.3 Can discretization be performed without lattices?

For a systems obeying dynamics defined by partial differential equations, the introduction of lat-
tices seems to be necessary aspect of discretization. The problem is that the replacement of
derivatives with discrete approximations however means that there is no hope about exact results.
In the general case the discretization for partial differential equations involving derivatives forces
to introduce lattice like structures. This is not needed in TGD.

1. At the level of M8 ordinary polynomials give rise to octonionic polynomials and space-time
surfaces are algebraic surfaces for which imaginary or real part of octonionic polynomial in
quaternionic sense vanishes. The equations are purely algebraic involving no partial derivatives
and there is no need for lattice discretization.
For surfaces defined by polynomials the roots of polynomial are enough to fix the polynomials
and therefore also the space-time surface uniquely: discretization is not an approximation but
gives an exact result! This could be called number theoretical holography and generalizes the
ordinary holography. Space-time surfaces are coded by the roots of polynomials with rational
coefficients.

2. What about the field equations at the level of H = M4 × CP2? M8 − H duality maps
these surfaces to preferred extremals as 4-surfaces in H analogous to Bohr orbits. Twistor
lift of TGD predicts that they should be minimal surfaces with 2-D singularities being also
extremals of 4-D Kähler action. The field equations would reduce locally to purely algebraic
conditions. In properly chosen coordinates for H they are expected to be determined in terms
of polynomials coding for the same extension of rationals as their M8 counterparts so that the
degree should be same [L76]. This would allow to deduce the partial derivatives of embedding
space for the image surfaces without lattice approximation.

3. The simplest assumption is that the polynomials have rational coefficients. Number theoretic
universality allows to consider also algebraic coefficients. In both cases also WCW is discretized
and given point -space-time surface in QCD has coordinates given by the points of the number
theoretically universal cognitive representation of the space-time surface. Even real coefficients
are possible. This would allow to obtain WCW as a continuum central for the construction of
WCW metric but is not consistent with number theoretical universality.
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Can one have polynomial/functions with rational coefficients and discretization of WCW with-
out lattice but without losing WCW metric? Maybe the same trick that works at space-time
level works also in WCW!

(a) The group WCW isometries is identified as symplectic transformations of δM4
± × CP2

(δM4
± denotes light-cone boundary) containing the boundary of causal diamond CD. The

Lie algebra Sympl of this group is analogous half-Kac Moody algebra having symplectic
transformations of S2 × CP2 as counterpart of finite-D Lie group has fractal structure
containing infinite number of sub-algebras Sympln isomorphic to algebra itself: the con-
formal weights assignable to radial light-like coordinate are n-multiples of those for the
entire algebra. Note that conformal weights of Sympl are non-negative.

(b) One formulation for the preferred extremal property is in terms of infinite number of
analogs of gauge conditions stating the vanishing of classical and also Noether charges
for Sympln and [Sympln, Sympl]. The conditions generalize to the super-counterpart of
Sympl and apply also to quantum states rather than only space-time surfaces. In fact,
while writing this I realized that - contrary to the original claim - also the vanishing of
the Noether charges of higher commutators is required so that effectively Sympln would
define normal subgroup of Sympl. These conditions does not follow automatically.
The Hamiltonians of Sympl(S2 × CP2) are also labelled by the representations of the
product of the rotation group SO(3) ⊂ SO(3, 1) of S2 and color group SU(3) together
forming the analog of the Lie group defining Kac-Moody group. This group does not
have have the fractal hierarchy of subgroups. The strongest condition is that the algebra
corresponding to Hamiltonian isometries does not annihilate the physical states.
The space of states satisfying the gauge conditions is finite-D and that WCW becomes
effectively finite-dimensional. A coset space associated with Sympl would be in question
and it would have maximal symmetries as also WCW. The geometry of the reduced WCW,
WCWred could be deduced from symmetry considerations alone.

(c) Number theoretic discretization would correspond to a selection of points of this subspace
with the coordinates in the extension of rationals.The metric of WCWred,n at the points of
discretization would be known and no lattice discretization would be needed. The gauge
conditions are analogous to massless Dirac equation in WCW and could be solved in the
points of discretization without introducing the lattice to approximate derivatives. As a
matter fact, Dirac equation can be formulated solely in terms of the generators of Sympl.

(d) This effectively restricts WCW to WCWred,n in turn reduced to its discrete subset - since
infinite number of WCW coordinates are fixed. If this sub-space can be regarded as realiza-
tion of infinite number of algebraic conditions by polynomials with rational coefficients one
can assign to it extension of rationals defining naturally the discretization of WCWred,n.
This extension is naturally the same as for space-time surfaces involved so that the degree
of polynomials defining WCWred,n would be naturally n and same as that for the poly-
nomial defining the space-time surface. WCWred,n would decompose to union of spaces
WCWred,En labelled by extensions En of rationals with same dimension n.
There is analogy with gauge fixing. WCWred,En is a coset space of WCW defined by the
gauge conditions. One can represent this coset space as a sub-manifold of WCW by taking
one representative point from each coset. This choice is not unique but one can hope
finding a gauge choice realized by an infinite number of polynomials of degree n defining
same extension of rationals as the polynomial defining the space-time surfaces in question.

(e) WCW spinor fields would be always restricted to finite-D algebraic surface of WCWred,En

expressible in terms of algebraic equations. Finite measurement resolution indeed strongly
suggests that WCW spinor field mode is non-vanishing only in a region parameterized
in WCW by finite number of parameters. There is also a second manner to see this.
WCWred,En could be also seen as n+ 4-dimensional surface in WCW .

(f) One can make this more concrete. Cognitive representation by points of space-time surface
with coordinates in the extension - possibly satisfying additional conditions such as be-
longing to the 2-D vertices at which space-time surfaces representing different roots meet
- provides WCW coordinates of given space-time surface. Minimum number of points
corresponds to the dimension of extension so that the selection of coordinate can be re-
dundant. As the values of these coordinates vary, one obtains coordinatization for the
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sector of WCWred,En . An interesting question is whether one could represent the dis-
tances of space-time surfaces in this space in terms of the data provided by the points of
discretization.
An interesting question is whether one can represent the distances of space-time surfaces
in this space in terms of the data provided by the points of cognitive representation. One
can define distance between two disjoint surfaces as the minimum of distance between the
points of 2-surfaces. Could something like this work now? The points would be restricted
to the cognitive representations. Could one define the distance between two cognitive
representations with same number N of points in the following manner.
Consider all bipartitions formed by the cognitive representations obtained by connecting
their points together in 1-1 manner. There are N! bipartitions of this kind if the number
of points is N. Calculate the sum of the squares of the embedding space distances between
paired points. Find the bipartition for which this distance squared is minimum and define
the distance between cognitive representations as this distance. This definition works also
when the numbers of points are different.

(g) If there quantum states are the basic objects and there is nothing ”physical” behind them
one can ask how we can imagine mathematical structures which different from basic struc-
ture of TGD. Could quantum states of TGD Universe in some sense represent all math-
ematical objects which are internally consistent. One could indeed say that at the level
of WCW all n + 4-D manifolds can be represented concretely in terms of WCW spinor
fields localized to n-D subspaces of WCW. WCW spinor fields can represent concept of
4-surface of WCWred,n as a quantum superposition of its instance and define at the same
time n+ 4-D surfaces [L87] [L75, L79, L78, L87].

6.9.4 Simple extensions of rationals as codons of space-time genetic
code

A fascinating idea is that extensions of rationals define the analog of genetic code for space-time
surfaces, which would therefore represent number theory and also finite groups.

(a) The extensions of rationals define an infinite hierarchy: the proposal is that the dimension
of extensions corresponds to the integer n characterizing subalgebra Sympln. This would
give direct correspondence between the inclusions of HFFs assigned to the hierarchy of
algebras Sympln and hierarchy of extensions of rationals with dimension n.
Galois group for a extension of extension contains Galois group of extension as normal sub-
group and is therefore not simple. Extension hierarchies correspond to inclusion hierarchies
for normal subgroups. Simple Galois groups are in very special position and associated with
what one might call simple extensions serving as fundamental building bricks of inclusion
hierarchies. They would be like elementary particles and define fundamental space-time
regions. Their Galois groups would act as groups of physical symmetries.

(b) One can therefore talk about elementary space-time surfaces in M8 and their compositions
by function composition of octonionic polynomials. Simple groups would label elementary
space-time regions. They have been classified: (see http://tinyurl.com/y3xh4hrh). The
famous Monster groups are well-known examples about simple finite groups and would have
also space-time counterparts. Also the finite subgroups of Lie groups are special and those
of SU(2) are associated with Platonic solids and seem to play key role in TGD inspired
quantum biology. In particular, vertebrate genetic code can be assigned to icosahedral
group.

(c) There is also an analogy with genes. Extensions with simple Galois groups could be seen
as codons and sequences of extension obtained by functional composition as analogs of
genes. I have even conjectured that the space-time surfaces associated with genes could
quite concretely correspond to extensions of extensions of ...

http://tinyurl.com/y3xh4hrh
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6.9.5 Are octonionic polynomials enough or are also analytic func-
tions needed?

I already touched the question whether also analytic functions with rational coefficients (num-
ber theoretical universality) might be needed.

(a) The roots of analytic functions generate extension of rationals. If the roots involve tran-
scendental numbers they define infinite extensions of rationals. Neper number e is very
special in this sense since ep is ordinary p-adic number for all primes p so that the induced
extension is finite-dimensional. One could thus allow it without losing number theoretical
universality. The addition of π gives infinite-D extension but one could do by adding only
roots of unity to achieve finite-D extensions with finite accuracy of phase measurement.
Phases would be number theoretically universal but not angles.

(b) One could of course consider only transcendental functions with rational roots. Trigono-
metric function sin(x/2π) serves as a simple example. One can also argue that since
physics involves in an essential manner trigonometric functions via Fourier analysis, the
inclusion of analytic functions with algebraic roots must be allowed.

(c) What about analytic functions as limits of polynomials with rational coefficients such
that the number of roots becomes infinite at the limit? Also their imaginary and real
part can vanish in quaternionic sense and could define space-time surfaces - analogs of
transcendentals as space-time surfaces. It is not clear whether these could be allowed or
not.

Could one have a universal polynomial like function giving algebraic numbers as the extension
of rationals defined by its algebraic roots? Could Riemann zeta (see http://tinyurl.com/

nfbkrsx) code algebraic numbers as an extension via its roots. I have conjectured that roots
of Riemann zeta are algebraic numbers: could they span all algebraic numbers?
It is known that the real or imaginary part of Riemann zeta along s = 1/2 critical line can
approximate any function to arbitrary accuracy: also this would fit with universality. Could
one think that the space-time surface defined as root of octonionic continuation of zeta could
be universal entity analogous to a fixed point of iteration in the construction of fractals? This
does not look plausible.

4. One can construct iterates of Riemann zeta having at least the same roots as zeta by the rule

f0(s) = ζ(s) ,
fn(s) = ζ(fn−1(s))− ζ(0), ζ(0) = −1/2 .

(6.9.1)

ζ is not a fixed point of this iteration as the fractal universality would suggest. The set of
roots however is. Should one be happy with this.

5. Riemann zeta has also counterpart in all extensions of rationals known as Dedekind zeta (see
http://tinyurl.com/y5grktv) [L50, L86, L77]. Riemann zeta is therefore not unique. One
can ask whether Dedekind zetas associated with simple Galois groups are special and whether
Dedekind zetas associated with extensions of extensions of .... can be constructed by using
the Dedekind zetas of simple extensions. How do the roots of Dedekind zeta depend on the
associated extension of rationals? How the roots of Dedekind zeta for extension of extension
defined by composite of two polynomials depend on extensions involved? Are the roots union
for the roots associated with the composites?

6. What about forming composites of Dedekind zetas? Categorical according to my primitive
understanding raises the question whether a composition of extensions could correspond to
a composition of functions. Could Dedekind zeta for a composite of extensions be obtained
from a composite of Dedekind zetas for extensions? Requiring that roots of extension E1 are
preserved would give formula

ζD,E1E2
= ζD,E1

◦ ζD,E2
− ζD,E1

(0) . (6.9.2)

The zeta function would be obtained by an iteration of simple zeta functions labelled by
simple extensions. The inverse image for the set of roots of ζD,E1 under ζD,E2 that is the set
ζ−1
D,E2

(roots(ζD,E1) would define also roots of ζD,E1E2 . This looks rather sensible.
But what about iteration of Riemann zeta, which corresponds to trivial extension? Riemann
ζ is not invariant under iteration although its roots are. Should one accept this and say that

http://tinyurl.com/nfbkrsx
http://tinyurl.com/nfbkrsx
http://tinyurl.com/y5grktv
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it is the set of roots which defines the invariant. Could one say that the iterates of various
Dedekind zetas define entities which are somehow universal.



Chapter 7

Could quantum randomness have
something to do with classical
chaos?

7.1 Introduction

There was an interesting guest post by Tim Palmer in the blog of Sabine Hosssenfelder (http:
//tinyurl.com/yx7htn3u).

7.1.1 Palmer’s idea

Consider first what was said in the post ”Undecidability, Uncomputability and the Unity of Physics.
Part 1” by Tim Palmer.

1. I understood (perhaps mis-) that the idea is to reduce quantum randomness to classical chaos.
If this is taken to mean that quantum theory reduces to chaos theory, I will not follow. The
precise rules of quantum measurement having interpretation as measurements performed for
the observables - typically generators of symmetries - are very restrictive and it is extremely
difficult to image that classical physics could explain them. Quantum theory is much more than
probability theory. Probabilities are essentially moduli squared for probability amplitudes and
this gives rise to interference and entanglement. Therefore the idea of reducing state function
reduction (SFR) and quantum randomness to classical chaos does not look promising. One
could however consider the possibility classical chaos is in some sense as a correlate for quantum
randomness or associated with state function reductions.

2. The difficulty to combine general relativity (GRT) to quantum gravity was mentioned. The
difficulty is basically due to the loss of Poincare symmetries in curved space-time. Already
string models solve the problem by assuming that strings live in M10 or its spontaneous
compactification. Strings are however 2-D, not 4-D, and this leads to a catastrophe. In TGD
H = M4×CP2 allows to have Poincare invariance and conservation laws are not lost. In QFT
picture this means that the existence of energy guarantees existence of Hamiltonian defining
time evolution operator and S-matrix.

3. It was noticed that chaos in quantum theory cannot be assigned to Schrödinger equation. This
is true and applies quite generally to unitary time evolution generated by unitary S-matrix
acting linearly. It as also noticed that in statistical mechanism Liouville operator defines a
linear equation for phase space probability distribution analogous to Schrödinger equation.
Liouville equation allows the classical system to be non-linear and chaotic. Could Schrödinger
equation in some sense replace Liouville equation in in quantum theory since phase space
ceases to make sense by Uncertainty Principle.
Could Schrödinger equation allow in some sense non-linear chaotic classical systems? In Copen-
hagen interpretation no classical system exists except at macroscopic limit as an approxima-
tion. One has only wave function coding for the knowledge about physical system changing in
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quantum measurement. There is no classical reality and there are no classical orbits of particle
since one gives up the notion of Bohr orbit. Could Bohr orbit be more than approximation?

The author considers also the question about definition of chaos.

1. Chaos is difficult to define in GRT. The replacement time coordinate with its logarithm expo-
nentially growing difference becomes linearly growing and one does not have chaos. By general
coordinate invariance this definition of chaos does not therefore make sense.

2. Strange attractors are typical asymptotic situations in chaotic systems and can make sense
also in general relativity (GRT). They represent lower dimensional manifolds to which the
dynamics of the system is restricted asymptotically. It is not possible to predict to which
strange attractor the chaotic dynamical system ends up. This definition of chaos makes sense
also in GRT.

Remark: One must remember that the notion of chaos is often used in misleading sense.
The increase of complexity looks like chaos for external observer but need not have anything to do
with genuine chaos.

7.1.2 Could TGD allow realization of Palmer’s idea in some form?

It came as a surprise to me that these to notions could a have deep relationship in TGD framework.

1. Strong form of Palmer’s idea stating that quantum randomness reduces to classical chaos cer-
tainly fails but one can consider weaker forms of the idea. Even these variants fail in Copen-
hagen interpretation since strictly speaking there is no classical reality, only wave function
coding for the knowledge about the system. Bohr orbits should be more than approximation
and in TGD framework space-time surface as preferred extremal of action is analogous to Bohr
orbit and classical physics defined by Bohr orbits is an exact part of quantum theory.

2. In the zero energy ontology (ZEO) of TGD the idea works in weaker form and has very strong
implications for the more detailed understanding of ZEO and M8−M4×CP2 duality. Ordinary
(”big”) state functions (BSFRs) meaning the death of the system in a universal sense and
re-incarnation with opposite arrow of time would involve quantum criticality accompanied
by classical chaos assignable to the correspondence between geometric time and subjective
time identified as sequence of “small” state function reductions (SSFRs) as analogs of weak
measurements. The findings of Minev et al [L69] give strong support for this view [L69] and
Libet’s findings about active aspects of consciousness [J3] can be understood if the act of free
will corresponds to BSFR.

M8 picture identifies 4-D space-time surfaces X4 as roots for “imaginary” or “real” part of
octonionic polynomial P2P1 obtained as a continuation of real polynomial P2(L− r)P1(r) , whose
arguments have origin at the the tips of B and A and roots a the light-cone boundaries associated
with tips. Causal diamond (CD) is identified intersection of future and past directed light-cones
light-cones A and B. In the sequences of SSFRs P2(L− r) assigned to B varies and P1(r) assigned
to A is unaffected. L defines the size of CD as distance τ = 2L between its tips.

Besides 4-S space-time surfaces there are also brane-like 6-surfaces corresponding to roots
ri,k of Pi(r) and defining “special moments in the life of self” having ti = ri,k ball as M4

+ projection.
The number of roots and their density increases rapidly in the sequence of SSFRs. The condition
that the largest root belongs to CD gives a lower bound to it size L as largest root. Note that L
increases.

Concerning the approach to chaos, one can consider three options.
Option I: The sequence of steps consisting of unitary evolutions followed by SSFR corre-

sponds to a functional factorization at the level of polynomials as sequence P2 = Q1 ◦Q2 ◦ ...Qn.
The size L of CD increases if it corresponds to the largest root, also the tip of active boundary of
CD must shift so that the argument of P2 L− r is replaced in each iteration step to with updated
argument with larger value of L identifiable as the largest root of P2.

Option II: A completely unexpected connection with the iteration of analytic functions
and Julia sets, which are fractals assigned also with chaos interpreted as complexity emerges. In a
reasonable approximation quantum time evolution by SSFRs could be induced by an iteration of
a polynomial or even an analytic function: P2 = P2 → P ◦22 → .... For P2(0) = 0 the roots of the
iterate consists of inverse images of roots of P2 by P ◦−k2 for k = 0, ..., N − 1.
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Suppose that M8 and X4 are complexified and thus also t = r and “real” X4 is the projection
ofX4

c to realM8. Complexify also the coefficients of polynomials P . If so, the Mandelbrot and Julia
sets (http://tinyurl.com/cplj9pe and http://tinyurl.com/cvmr83g) characterizing fractals
would have a physical interpretation in ZEO.

Chaos is approached in the sense that the inverse images of the roots of P2 assumed to
belong to filled Julia set approaching to points of Julia set of P2 as the number N of iterations
increases in statistical sense. The size L as largest root of P ◦N2 would increase with N if CD is
assumed to contain all roots. The density of the roots in Julia set increases near L since the size
of CD is bounded by the size Julia set. One could perhaps say that near the t = L in the middle
of CD the life of self when the size of CD has become almost stationary, is the most intensive.

Option III: A conservative option is to consider only real polynomials P2(r) with real
argument r. Only non-negative real roots rn are of interest whereas in the general case one
considers all values of r. For a large N the inverse iterates of the roots of P2 would approach to
the real Julia set obtained as a real projection of Julia set for complex iteration.

How the size L of CD is determined and when can BSFR occur?

Option I: If L is minimal and thus given by the largest root of P ◦N2 in Julia set, it is bound
to increase in the iteration (this option is perhaps too deterministic). Should L be smaller than
the sizes of Julia sets of bothA and B if the iteration gives no roots outside Julia set.

Could BSFR become probable when L as the largest allowed root for P ◦N2 is larger than the
size of Julia set of A? There would be no more new “special moments in the life of self” and this
would make death and re-incarnation with opposite arrow of time probable. The size of CD could
decrease dramatically in the first iteration for P1 if it is determined as the largest allowed root of
P1: the re-incarnated self would have childhood.

Option II: The size of CD could be determined in SSFR statistically as an allowed root of
P2. Since the density of roots increases, one would have a lot of choices and quantum criticality
and fluctuations of the order of clock time τ = 2L: the order of subjective time would not anymore
correspond to that for clock time. BSFR would occur for the same reason as for the first option.

The fact that fractals quite generally assignable to iteration (http://tinyurl.com/ctmcdx5)
appear everywhere gives direct support for the ZEO based view about consciousness and self-
organization and would give a completely new meaning for “self” in “self-organization” [L77].
Fractals, quantum measurement theory, theory of self-organization, and theory of consciousness
would be closely related.

7.2 Could classical chaos and state function reduction relate
to each other in TGD Universe?

In the sequel the idea about connection between chaos in some sense and state function reductions
as they are understood in ZEO is discussed.

7.2.1 Classical physics is an exact part of quantum physics in TGD

Concerning the relation between classical and quantum the situation changes in TGD frame-
work. Classical physics becomes an exact part of quantum theory. In zero energy ontology (ZEO)
quantum states are superpositions of space-time surfaces preferred extremals of basic variational
principle connecting 3-surfaces at opposite boundaries of causal diamond (CD). This solves the
well-known basic problem of quantum measurement theory. Unitary time evolution operator or its
generalization are totally different things from classical time evolution defined by highly non-linear
field equations. There is nothing preventing quantum counterpart of chaos - it need not be clas-
sical chaos at space-time level but could correspond to some other form of chaos. Ordinary state
function reduction in ZEO involves naturally quantum criticality involving long range quantum
fluctuations assignable to chaotic systems so that the correlation between classical chaos defined
in proper manner and state function reduction might make sense.

http://tinyurl.com/cplj9pe
http://tinyurl.com/cvmr83g
http://tinyurl.com/ctmcdx5
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7.2.2 TGD space-time and M8 −H duality

M8−H duality combined with zero energy ontology (ZEO) is central for the TGD inspired proposal
for the connection between chaos and quantum.

Basic vision

Consider first what TGD space-time is.

1. In TGD framework space-times can be regarded 4-surfaces in H = M4 ×CP2 or in complexi-
fiation of octonionic M8. Linear Minkowski coordinates or Robertson-Walker coordinates for
light-cone (used in TGD based cosmology) provide highly unique coordinate choice and this
problem disappears. Exponential divergence in M4 coordinates could be used as a symptom
for a chaotic behavior.

2. The solutions of field equations are preferred extremals satisfying extremely powerful additional
conditions giving rise to a huge generalization of the ordinary 2-D conformal symmetry to 4-D
context. In fact, twistor twist of TGD predicts that one has minimal surfaces, which are also
extremals of 4-D Kähler action apart from 2-D singularities identifiable as string world sheets
and partonic 2-surfaces having a number theoretical interpretation. The huge symmetries
act as maximal isometry group of “world of classical worlds” (WCW) consisting of preferred
extremals connecting pair of 3-surfaces, whose members are located at boundaries of causal
diamond (CD). These symmetries strongly suggest that TGD represents completely integrable
system and thus non-chaotic and diametrical opposite of a chaotic system. Therefore the chaos
- if present - would be something different.

M8−H duality suggests an analogous picture at the level of M8. M8−H duality in itse most
restrictive form states that space-time surfaces are characterized by “roots” of rational polynomials
extended to complexified octonionic ones by replacing the real coordinate by octonionic coordinate
o [L47, L48, L49].

1. One can define the imaginary and real parts IM(P ) and RE(P ) of P (o) in octonionic sense
by using the decomposition of octonions o = q1 + I4q2 to two quaternions so that IM(P )
and RE(P ) are quaternion valued. For 4-D space-time surfaces one has either IM(P ) = 0 or
RE(P ) = 0 in the generic case. The curve defined by the vanishing of imaginary or real part
of complex function serves as the analog.

2. If the condition P (0) = 0 is satisfied, the boundary of δM8
+ of M8 light-cone is special. By the

light-likeness of δM8
+ points the polynomial P (o) at δM8

+ reduces to ordinary real polynomial
P (r) of the radial M4 coordinate r identifiable as linear M4 time coordinate t: r = t.
Octonionic roots P (o) = 0 at M8 light-cone reduce to roots t = rn of the real polynomial P (r)
and give rise to 6-D exceptional solutions with IM(P ) = RE(P ) = 0 vanish. The solutions
are located to δM8

+ and have topology of 6-sphere S6 having 3-balls B3 with t = rn as of
M4

+ projections. The “fiber” at point of B3 with radial M4 coordinate rM ≤ rn is 3-sphere
S3 ⊂ E4 ⊂M8 = M4 × E4 contracting to point at the δM4

+.
These 6-D objects are analogous to 5-branes in string theory and define “special moments
in the life of self”. At these surfaces the 4-D “roots” for IM(P ) or RE(P ) intersect and
intersection is 2-D partonic surface having interpretation as a generalization of vertex for
particles generalized to 3-D surfaces (instead of strings). In string theory string world sheets
have boundaries at branes. Strings are replaced with space-time surfaces and branes with
“special moments in the life of self”.
Quite generally, one can consider gluing 4-D “roots” for different polynomials P1 and P2 at
surface t = rn when rn is common root. For instance, P and its iterates P ◦N having rn and
the lower inverse iterates as common roots can be glued in this manner.

3. It is possible complexify M8 and thus also r. Complexification is natural since the roots of
P are in general complex. Also 4- space-time surface is complexified to 8-D surface and real
space-time surface can be identified as its real projection.

To sum up, space-time surfaces would be coded a polynomial with rational or at most
algebraic coefficients. Essentially the discrete data provided by the roots rn of P would dictate
the space-time surface so that one would have extremely powerful form of holography.

One can consider generalizations of the simplest picture.
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1. One can also consider a generalization of polynomials to general analytic functions F of octo-
nions obtained as octonionic continuation of a real function with rational Taylor coefficients:
the identification of space-time surfaces as “roots” of IM(F ) or RE(F ) makes sense.

2. What is intriguing that for space-time surfaces for which IM(F1) = 0 and IM(F2) = 0, one
has IM(F1F2) = RE(F1)IM(F2)+IM(F1)RE(F2) = 0. One can multiply space-time surfaces
by multiplying the polynomials. Multiplication is possible also when one has RE(F1) = 0 and
IM(F2) = 0 or RE(F2) = 0 or IM(F1) = 0 since one has RE(F1F2) = RE(F1)RE(F2) −
IM(F1)IM(F2) = 0.
For IM(F ) = 0 type space-time surfaces one can even define polynomials analytic functions of
the space-time surface with rational Taylor coefficients. One could speak of functions having
space-time surface as argument, space-time surface itself would behave like number.

3. One can also form functional composites P ◦Q (also for analytic functions with complex coef-
ficients). Since P ◦Q at IM(Q) = 0 surface is quaternionic, its image by P is quaterionic and
satisfies IM(P ◦ Q) = 0 so that one obtains a new solution. One can iterate space-time sur-
faces defined by Im(P ) = 0 condition by iterating these polynomials to give P, P circ2, ..., P ◦N ...
From IM(P ) = 0 solutions one obtains a solutions with RE(Q) = 0 by multiplying the M8

coordinates with I4 appearing in o = q1 + I4q2.
The Im(P ) = 0 solutions can be iterated to give P → P ◦ P → .., which suggests that the
sequence of SSFRs could at least approximately correspond to the dynamics of iterations and
generalizations of Mandelbrot and Julia sets and other complex fractals and also their space-
time counterparts. Chaos (or rather, complexity theory) including also these fractals could be
naturally part of TGD!

Building many-particle states at the level of M8

The polynomials defining surfaces in M8 are defined in preferred M8 coordinates with preferred
selection of M8 time axis M1 as real octonionic axis and one octonionic imaginary axes charac-
terizing subspace M2 ⊂M8. M4 ⊂M8 is quaternionic subspace containing M2. Different choices
of M4 supM2 are labelled by points of CP2 and M8 −H duality maps these choices to points of
CP2.

The origin of M8 coordinates coordinates must be at M1 so that the 8-D Poincare symmetry
reduces to time translations and rotations of around spatial coordinate axis M2 respecting the
rationality of polynomial coefficients or in more general case the extension of rationals associated
with the coefficients. This corresponds to a selection of quantization axis for energy and angular
momentum and could have a deeper meaning in quantum measurement theory.

The Lorentz transformations of M4 change the direction of time axis and also M2 in the
general case and generate new octonionic structure and quaternonic structure. One should under-
stand how space-time regions as roots of octonionic polynomials with different rest frames relate
to each other.

The intuitive picture is that each particle as a region determined by octonionic polynomial
corresponds to its own CD and rest frame determined by its 4-momentum in fixed coordinate frame
for M4. Also quantization axis of spin fixed. One can assign CD for to interacting many particle
system with common rest frame. One can speak of external (incoming and outgoing) free particles
with their own CDs characterizing their rest systems. The challenges is to related the polynomials
Pn associated with the external particles to the polynomial characterizing the interacting system.

1. Assume that the polynomial defining the CD is product P1P2 of polynomials P1 and P2

assignable to its active and passive boundaries with origins of octonionic coordinates at the
tips t = 0 and t = τ of CD. If the space-time surface reduces to the root of P1 at passive
boundary and root of IM(P2) at active boundary, one could say that the 3-surfaces at these
boundaries correspond to P1 and P2 asymptotically. If these conditions are true everywhere,
one has two un-correlated space-time surfaces, which does not make sense. IM(P1)RE(P2) +
RE(P1)IM(P2) = 0 indeed allows more general solutions than IM(P1) = 0 and IM(P2) = 0
everywhere. The fact that the boundaries correspond to special 6-D brane like solutions in
M8 suggests that it is possible to pose the boundary condition IM(P1) = 0 resp. IM(P2) = 0
at the boundaries.

2. The formation of products is possible also at the boundaries so that one can assume that Pi
at the boundary of many-particle CD is with product Pi =

∏
k Pik. The boundary conditions
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would read read Pik = 0 at active resp. passive boundary of many-particle CD respectively.
The interpretation would be that Pik corresponds to an external particle which is in interacting
state at active boundary. In the interior of many-particle CD only the condition Im(P1P2) = 0
would hold true so that interactions of particles would have algebraic description.

3. One should also understand how the external particles characterized by CDs with different
rest frame are glued to the boundary of many-particle CD. Assume that M4 is same for all
these particles so that CP2 coordinates are same. The boundaries of 4-D CDs are 3-D light-
cones with different origins so that their M4 intersection is 2-D defining a 2-D surface at the
boundary of CD. The interpretation in terms of partonic 2-surface suggests itself. The partonic
2-surfaces of free particle and its interacting variant would be same at the intersection.
The gluing should correspond to a root t = rn of polynomial defining a “special moment in
the life of self”. The roots of P1 and its Lorentz boots as values of coordinates at light-radial
geodesic are related by Lorentz boost and are not same in general. One could require that the
root rn and its Lorentz boost belong to the 2-D interaction of two light-cones and thus define
two points of partonic 2-surface. These points would not be identical and the interaction would
be non-local in the scale of partonic 2-surface. It seems that the condition that root rn and
Lorentz boost L(rm) co-incide would pose too strong constraints on external momenta.

7.2.3 In what sense chaos/complexity could emerge in TGD Universe?

Consider now in what sense chaos (or complexity, one must be precise here) could emerge in TGD
framework?

1. Chaos (or complexity) could be an approximate property emerging in number theoretical dis-
cretization for cognitive representations labelled by extensions of rationals as the dimension
of extension and therefore algebraic complexity increases ad the number of points in cognitive
representation as points of M8 with coordinates in the extension of rationals increases. The
minimal number of points corresponds to the degree of the polynomial determining the exten-
sion. At the limit of maximal complexity the extension would consists of algebraic numbers
and the cognitive representation would be dense subset of space-time surface. It is not clear
whether the roots rn are also dense along time axis.

2. Also transcendental extensions of rationals can be considered. Typically they are infinite-D in
both real and p-adic sectors. Exponential function is however number-theoretically completely
unique. Neper number e and its roots define infinite-D extensions of rationals but - rather re-
markably - finite-dimensional extensions of p-adic numbers since ep is ordinary p-adic number.
Extension of rationals would become infinite-D but the induced extensions of rationals would
remain finite-D in accordance with the idea that cognition is always finite-D.
Could one allow e and its roots and thus exponential functions besides polynomials? Could
exponential divergence be the hallmark of chaos or perhaps the first step in the transition
to transcendental chaos (or rather, complexity)? Could chaos (complexity) in real sense be
possible for extensions of rationals generated by a root of e? One can however argue that the
finite dimension of induced p-adic extensions means that cognitive chaos is not yet present.
For general transcendentals the dimensions of p-adic extensions are infinite and one would have
also cognitive chaos (infinite complexity). Could the transition to chaos means the emergence
of analytic functions with rational coefficients having also roots, which are transcendentals.
Chaos would mean that one can only approximated f analytic function as a polynomial giving
approximation for the roots. By M8−H duality these roots would correspond to values of M4

time inside light-cone, preferred moments of time [L73]. These would become transcendental
and in general p-adic extension would become infinite-D.

3. An interesting analogy with real numbers emerges. Real numbers have expansion in powers
of any integer, in particular any prime p. The sequence defined by the coefficients of the
expansion are analogous to an orbit of a discrete dynamical system. For transcendentals the
expansion is unpredictable and analogous to a chaotic orbit.
For rationals this expansion is periodic so that one has analog of a periodic orbit. This applies
also to expansion of rationals formed from the integers in finite-D extensions of rationals. One
must of course accept that the algebraic numbers defining the roots do not allow periodic
expansion but one can do all calculations in extension and perform approximation only at
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end of computation. Therefore the extensions of rationals represent also islands of order
in the ocean of trancendental chaos. Could one see he gradual increase of the dimension
of extension of rationals as a transition to chaos: of course, chaos would be wrong term
since increase in algebraic complexity, which corresponds to evolution in TGD Universe is in
question. Cognition becomes more and more refined.

4. As found, space-time surfaces behave like numbers and one can have functions having space-
time surface as argument. Could the picture about emergence of chaos for reals be translated
to the level of space-time surfaces identified as “roots” of octonion analytic function in M8?
The polynomial space-time surfaces would represent islands of order in chaos defined by general
analytic functions with rational Taylor coefficients.

Can one imagine a connection between quantum randomness and chaos?

To my view, the reduction of quantum randomness to classical chaos is definitely excluded. Quan-
tum classical correspondence allows however to consider a looser connection between quantum
randomness and chaos.

1. The following considerations lead to a formulation of a more precise view about the sequence
of steps consisting of a unitary evolution followed by SSFR as a a model of self. M8 − H
duality involving representation of space-time surface in terms of a polymial with rational
coefficients leads to an approximate model of the quantal time evolution by SSFRs as quantum
counterpart for an iteration of a polynomial map, and gives a direct connection with chaos
as algebraic complexity in the sense of generalization of Mandelbrot and Julia sets (http:
//tinyurl.com/cplj9pe and http://tinyurl.com/cvmr83g).
The identification of time evolution as iteration P → P ◦2 → ... is very probably only an
approximation. More general picture would assume that the corresponds to a functional
factorization of P as P = P1 ◦ P2 ◦ ... ◦ Pn. Even this assumption can be only approximate.

2. The fixed points of iteration would correspond to asymptotics for the evolution of space-time
surface defined by iteration and approach of CD to a fixed point CD. This conforms with the
idea that fixed points of iteration as representations of fractals, criticality and chaos. Chaos
understood as genuine chaos could correspond to a fluctuation of the arrow of time in the
sequence of SSFRs as a fixed point of iteration is reached.

It must be of course made clear that the view about M8 − H duality already considered
and the view about the emergence of fractals to be discussed are only one of the many options
that one can imagine and involve many poorly understood aspecs. Only time will tell whether the
proposals work and how they must be improved.

Chaos and time

TGD Universe has gigantic symmeries [K31, K85] and looks like a completely integrable system and
the idea about genuine chaos at space-time level does not look attractive. M8−H duality suggests
that chaos - actually complexity - in the sense of Mandelbrot fractals looks more promising idea.
ZEO int turn suggests that chaos could be associated with the relationship between geometric and
subjective time in the sense that the orderings of the two times would not be strictly identical.

1. Often the chaos is taken to mean increase of complexity (Mandelbrot and Julia sets), which
actually means a diametric opposite of chaos. In TGD framework a more promising connection
is between finite measurement resolution and complexity as that for extension of rationals.
For trivial extensions of rationals the points of cognitive representation have rational M8

(and becase also H-) coordinates. All other points fail to have a cognitive representation. For
extensions of rationals the number of points in cognitive representations increases: the increase
of cognitive complexity has actually nothing to do with emergence of a genuine chaos. Here
one must be however very cautious and one must consider ZEO view about state function
reduction in detail to see what happens.

2. M8−H duality allows to consider a concrete example. The roots rn of real rational polynomials
P or even analytic functions correspond “special moments in the life of self”. Could the increase
of complexity be understood in terms of what happens for the roots. The number of these
moments equals to the degree n of P and cognitive representation more and more complex

http://tinyurl.com/cplj9pe
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since the dimension of extension equals to n: this could occur in BSFRs at least. The clock
defined by the moments roots t = rk could become more precise. It will be found that in
presence of quantum criticality the emerging complexity could also correspond to a genuine
chaos.

3. One can define clock time as a temporal distance τ between tips of CD after “small” state
function reduction (SSFR), which corresponds to weak measurement in standard picture. Pas-
sive boundary and the states at the passive boundary of CD remain unchanged (generalized
Zeno effect) and the states at active boundary is change. Also the distance between tips of
CD changes but increases in statistical sense.
The statistical nature of the change implies that the ordering for subjective time as sequence
of SSFRs is not quite the same as that for τ (one could of course assume that only increase of
the CD size is possible in BSFR but this would be an ad hoc assumption). This corresponds
to a kind of quantum randomness due to the state function reductions. If the number of roots
is large and the average time chronon is small, the changes of time order could occur often.
Could this have interpretation as a genuine chaos in short time scales due to SSFRs? This
need not correspond to a genuine chaos at the level of space-surfaces as preferred extremals.
Chaos as algebraic complexity could however increases and would be consistent with complete
integrability: this happends in n increases in BSFRs.

Chaos in death according to ZEO

The assignment of a genuine chaos to death looks natural from what we know about biological
death. Could this assignment make sense in ZEO where BSFR corresponds in a well-defined sense
to death?

1. Recall that BSFR corresponds to ordinary state function reduction in which the arrow of
geometric time identifiable as distance between the tips of CD changes: self dies and re-
incarnates with an opposite arrow of time. The active boundary of CD becomes passive. The
passive boundary becomes active and the size of CD starts to statistically increase in opposite
time direction in SSFRs. The former passive boundary CD can remain at the critical moment
but could also shift towards the former active boundary - the re-incarnated self would have
small CD and could have “childhood.”
The continual increase of CD looks strange. Also our mental images would increase in size
and unless one makes special assumptions (say that the average change of the size of CD is
proportional to its size (scaling)) one ends up with difficulties. Time evolution as stepwise
scaling would be indeed natural.

2. Under what conditions does BSFR - death and reincarnation - occur? A quantum criticality
implying instability against BSFR should be involved. The size scales of CD as temporal
distances τ between its tips would have critical values τcr at which death of self in this universal
sense could take place. τcr could be integer multiple of CP2 length scale with allowed integers
being primes of preferred primes allowed by p-adic length scale hypothesis. Criticality indeed
involves long range fluctuations assigned with chaotic behavior: the simplest example is the
transition to chaos in convection as energy feed to the system increases.

3. A concrete model for SSFRs [L80] suggests that one can assign to CD temperature T satisfying
T ∝ 1/τ so that the evolution of self would correspond to T as analog of cosmic temperature.
Death could correspond to a critical temperature Tcr (τcr) and would be unavoidable. The
quantum criticality assignable to death could correspond to the emergence of a genuine tempo-
ral chaos. The time order would become more and more ill-defined, and time τ would go forth
and back so that eventually one would τ = τcrit as size of CD and death would occur. This
however requires that the number of roots rn increases so that also their density increases.
This requires that the degree of the polynomial P defining the extension increases. Can this
be consistent with the assumption that passive boundary does not change?
Remark: Why I take this seriously is that I have had near death experience being in clinically
unconscious but actually conscious state and I experienced quite literally the flow of time forth
and back and was fighting to preserve the usual arrow of time.

4. This picture applies to all BSFRs and SSFRs and therefore to ordinary state functions reduc-
tions in all scales: the findings of Minev et al [L69] can be understood if the arrow of time
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indeed changes [L69]. There would be a connection between state function reductions and
chaos understood as genuine chaos. The idea that this chaos corresponds to a strange attrac-
tor at space-time level is not plausible. Rather it could be analogous to chaos in the sense of
an attractor of iteration of complex function by functional decomposition. Fixed point is also
a fractal and corresponds to criticality.

What gives rise to the lethal quantum criticality, BSFR, and death?

What could give rise to quantum criticality leading to death and reincarnation of self as BSFR?

1. If P remains the same during SSFRs, one could think that once the CD size is so large that all
“special moments in the life of self” have been experienced as time values τ = rn, the system
is ready to die. But how could this give rise to quantum criticality?

2. Assume that CD is defined as the intersection of future and past light-cones and the polynomial
P corresponds to a product P1(r)P2(L − r) of polynomials associated with these two light-
cones such that Pi vanishes at the tip of its light-cone corresponding to r = 0 resp. L− r = 0.
P1 associated with the passive boundary of CD would not change in SSFRs but P2 associated
with the active boundary would change. Most importantly its degree would increase and the
number of roots and their density would increase too. Eventually the density of active roots
would become so high that death as BSFR is bound to occur as event τ = τcr .
Remark: One can consider two options: real M8 and real r or complexified M8 and complex
r.

3. As already noticed, if the space-time surface reduces to the root of P1 at passive boundary and
root of P2 at active boundary, one could say that the 3-surfaces at these boundaries correspond
to P1 and P2 asymptotically. The fact that the boundaries correspond to special 6-D brane
like solutions in M8 sugests that the boundary conditions are possible.

4. The statistically increasing extension of rationals would correspond to “personal” evolution
for the changing part of self during life cycle. Note that n = heff/h0 corresponds to the scale
of quantum coherence thus increasing. This extension would define the evolutionary level of
the unchanging part (“soul”) during the next re-incarnation.

Could polynomial iteration approximate quantum time evolution by SSFRs in statis-
tical sense?

I have considered rather concrete models for the counterpart of S-matrix for given space-time
surface [L63, L64, L81] but the deeper understanding of the sequence of SSFRs is still lacking
although quite concrete proposals already exists.

Number theoretical vision suggests that also the time evolution by SSFRs should reduce to
number theory being induced by some natural number theoretical dynamics.

1. The most general option is that in each SSFR a superposition over extensions defined by various
polynomials with varying rational coefficients is generated. The idea about the correspondence
of the sequence of SSFRs with a functional decomposition of polynomials is however attractive.

2. The sequence of unitary evolutions brings strongly in mind the iteration U → U2 → U3....
One can however consider also the possibly U → U1U → U2U1U.... The obvious guess for the
iteration of U is that it is induced by a functional iteration of polynomial P2 assigned to the
active boundary of CD P2 → P2 ◦ P2 → .... The more general option would not be iteration
anymore but a composition of form P2 → P3 ◦ P2 → .....
The boundary conditions at the boundary of CD and at gluing points - possibly t = rn surfaces
to which 6-branes are assignable as special solutions and identified as “special moments in the
life of self” could make the superpositions of functional composites more probable contributions
in the superposition. The polynomial P ◦ Q has same roots as Q (for P (0) = Q(0) = 0) and
this favors conservative state function reductions preserving the state already achieved.
Iteration would be even more conservative option. If the solutions assignable to P and Q are
to be glued together along brane with t = rn they must share rn as root. This would favor
iterations if one has superposition over different rational coefficient values for P and Q with
fixed degree.
Remark: Also critical points of Q as zeros of derivative are preserved in Q → P → Q as
one finds by applying chain rule. For iteration both the new critical points/roots of P ◦ P ◦k
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are inverse images of critical points/roots of P ◦k. Only roots are of significance in the picture
considered.

3. Superpositions of different iterates generated in the unitary time evolution preceding SSFR are
required by the model of temporal chaos. SSFR selects extension of rationals and thus fixed
iteration. In statistical sense the degree of iteration is bound to increase so that in statistical
sense quantum iteration reduces to classical one. At the limit of fixed point of iteration the
number of critical points t = pn and roots t = rn of the iterate increases as also their density
along time axis and temporal chaos emerges leading to fluctuation of CD size τ .

4. Iteration of the real polynomial P satisfying P (0) = 0 would mean that one would have
a series extensions obtained as powers of generating extension: E, E ◦ E, E ◦ E ◦ E ,...
conserving the roots of E provided the polynomials involved vanish at origin: P (0) = 0. The
proposal has been that biological evolution corresponds to a more general series of extensions
E1, E2 ◦E1, E3 ◦E2 ◦E1, ... Also now Galois groups in the series of them would be conserved.
I have proposed that Galois groups are analogs of conserved genes [L46, L49].

The proposed picture is only one possibility to interpret evolution of self as iteration leading
to chaos in the proposed sense.

1. One could argue that the polynomial Pnk = Pn ◦ .... ◦ Pn associated with the active boundary
remains the same during SSFRs as long as possible. This because the increase of degree from
nk to n(k+ 1) in Pnk → Pnk ◦Pn increases heff by factor (k+ 1)/k so that the metabolic feed
needed to preserve the value of heff increases.
Rather, when all roots of the polynomials P assignable to the active boundary of CD are
revealed in the gradual increase of CD preserving Pnk, the transition Pnk → Pnk ◦ Pn could
occur provided the metabolic resources allow this. Otherwise BSFR occurs and self dies and re-
incarnates. The idea that BSFR occurs when metabolic resources are not available is discussed
in [L110].

2. Could Pnk → Pnk ◦ Pn occur only in BSFRs so that the degree n of P would be preserved
during single life cycle of self - that n can increase only in BSFRs was indeed the original
guess.

7.2.4 Basic facts about iteration of real polynomials

The iteration of real polynomials and also more general functions can be understood graphically.
Assign to a x point y = f(x) of the graph and reflect through the line y = x and project to the
graph to obtain the image point x1 = f(x). Fixed points x = f(x) correspond to the intersections
of the line y = x and graph y = f(x). The magnitude |df/dx| at the intersection point determines
whether it is attractor (|df/dx| < 1 or repellor (|df/dx| ≥ 1) in which case large jumps in the value
of x can occur, as one can easily check. Quite generally iteration in the part of the graph below
(above) y = x decreases (increases) x. Real polynomial c− x2 provides a simple example.

Feigenbaum discovered by iterating logistic map numerically (http://tinyurl.com/u3zwmar)
that the approach to chaos - not only for logistic map but - for real functions f(x) with one quadratic
maximum and depending on a varied parameter a is universal. Period-doubling bifurcations occur
at parameter values satisfying at the limit n→∞

aN−1 − aN−2

aN − aN−1
→ 4.669201609... .

Second universality relates to the widths of tines - distances between the branches of bifurcation
- appearing in the sequence of bifurcations. The ratio between width of the tine to widths of its
sub-tines approaches at the limit N →∞ to constant given by

α = 2.502907875095892822283902873218... .

.
In TGD framework conservative option would correspond to real M4 so that the coordinates

t and r would be real and the polynomials P1 an P2 would have real coefficients. The time evolution
by iterations of P2 would reduce to an iteration of a real polynomial P2.

The number of real roots is in general smaller than the degree n of the polynomial. Only
non-negative roots can be considered since one as r ≥ 0 and r = 0 is a root. This condition could

http://tinyurl.com/u3zwmar
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generalize to complex polynomials of complexified r as a condition Re(rc) ≥ 0 guaranteeing that
roots are in the upper half plane for the variable z = irc.

The real polynomial P (x) of degree n one has either positive or negative values between
neighboring roots and at least one extremum between them. The n roots of Pn(x) gives rise to Nn
roots in N :th iteration and only non-negative ones are allowed. Since the roots are below the axis
y = s, the root is obtained from the inverse of the roots by reflecting with respect to y = x and
projecting to the graph. The inverse of this operation increases the root. One has special case of
complex iteration.

7.2.5 What about TGD analogs of Mandelbrot -, Julia-, and Fatou sets?

What about the interpretation of Mandelbrot -, Julia-, and Fatou sets (http://tinyurl.com/
cplj9pe and http://tinyurl.com/cvmr83g) in the proposed picture? Could the iteration of P2

define analogs of Mandelbrot and Julia fractals? This would give the long-sought-for connection
between quantum physics and Mandelbrot and Julias sets, which are simply too beautiful objects
to lack a physical application. Period-doubling bifurcations (http://tinyurl.com/t2swmdg) are
involved with the iteration of real functions and relate closely to the complex fractals when the
polynomials considered have real coefficients.

1. In the simplest situation both Mandelbrot and Julia sets are fractals associated with the
iteration of complex polynomial Pc(z) = z2 + c where z and c are complex numbers (note that
in TGD would have c = 0 in this case). One can consider also more general polynomials and
even rational functions, in particular polynomial f = P2 defined earlier, and replace z = 0
with any critical point satisfying df/dz = 0. Even meromorphic transcendental functions can
be considered: what is required that the image contains the domain.

2. Mandelbrot set M is defined as the region of the plane spanned by the values of c for which the
iteration starting from the critical point zcr does not lead to infinity. Physically the restriction
to Mandelbrot set looks natural.

3. For rational functions Julia set Jc (http://tinyurl.com/cplj9pe corresponds to a fixed
value of c, and is defined as points z for which are unstable in the sense that for an arbitrary
small perturbation of z iteration can lead to infinity. Inside Jc the iteration is repelling:
|f(w) − f(z)| > |w − z| for all w in neighbourhood of z within Jc. One can say that the
behavior is chaotic within Jc and regular in its complement - Fatou set. Julia set can contain
also cycles and iteration in Jc leads to these cycles. These cycles are analogs of the limit
cycles appearing in the iteration of real-valued function discovered by Feigenbaum (http:
//tinyurl.com/u3zwmar).
For polynomials Julia set can be identified as the boundary of the filled Julia set consisting of
points for which iterates remain bounded. Also the inverse iterates in this set remain bounded.
The filled Jc - denote it by Jc,in - can be regarded as a set of points, which are inverse images
of fixed points of the polynomial. All points except at most two points of Jc can be regarded as
points in the limiting set for the union ∪nf−n(z) of the inverse images for the points z in filled
Julia set. Julia set and its complement Fatou set are invariant under both P and P−1 and
therefore also under their functional powers. Julia set is the set of pre-images for practically
any point of Jc: this can be used for computational purposes. If I have understood correctly
there can be single exceptional point for which this is not the case. Jc can be regarded as a
fractal curve. For parameter values inside M Jc is connected, which seems counter intuitive.
For c outside the M , Julia set is a discrete Cantor space, Fatou dust.
What is remarkable from TGD point of view is that the new roots obtained in N :th step
of iteration are N − 1:th inverse images of the roots of P . Since polynomial iteration takes
sufficiently distant points to ∞, its inverse does the opposite so that the roots of P ◦N are
bounded: this strongly suggests that the roots of P ◦N are in Jc if those of P2 are. One can
say that the situation becomes chaotic at the large N limit since the number of roots increases
without bound.

4. Fatou set Fc can be identified as the complement of Julia set. Fatou set fills the complex
plane densely and has disjoint components, which contain at least one point with df/dz = 0
unless Fatou set contains z = ∞. Note however that critical point is ot fixed point as in
gradient dynamics. This allows to deduce the number or at least upper bound for the number

http://tinyurl.com/cplj9pe
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of components of Fatou set, which equals to the degree n of polynomial in the generic case. All
components have entire Jc accumulation points. Since the points of Jc are infinitely near to
more than 2 disjoint sets for Fatou set with more than 2 components, Jc cannot be a smooth
curve in this case being thus fractal. However, the Julia set of P = z2 + c is also fractal
although Fatou set has only two components corresponding to the critical point z = 0 and
z =∞.

A couple of examples are in order: for P (z) = z2 Julia set is unit circle S1 and Fatou set
has interior and exterior of S1 as its components. The cycles in Julia set correspond to roots of
unity and the orbits of other points form dense sets of unit circle. For P (z) = z2 − 2 Julia set
is the interval (−2, 2) having fixed points as its ends. Fatou set has only one component as the
complement of Julia set. For P (z) = z2 + c, c complex Julia set is in general fractal. Hence the
roots of the polynomial need not belong to Julia set.

Emergence of Mandelbrot and Julia sets from ZEO assuming M8 −H duality

Consider now the application to TGD assuming M8 −H duality [L47, L48, L49, L76] .

1. In TGD framework complex numbers x + iy emerge in the complexification of M8 and i
commutes with octonionic units. If space-time surfaces are identified as real projection of their
complexified variants obtained as roots of polynomials one can consider also polynomials with
complexified coefficients c. Note that c would be complex rational but one can also consider
complex algebraic numbers. The most general situation corresponds to analytic functions with
complex rational Taylor coefficients. Complex argument with complex coefficients is possible
space-time surface is identified by projection the complex space-time surface to real part of
complexified M8 [L47, L48, L48].

2. The complexified light-like coordinate r at the active boundary CD defines the analog of z plane
in which iterates of P2 act. r corresponds directly to the complexified linear time coordinate
t of M8 (time-axis connects tips of CD) and the roots rn of P2 correspond to the “special
moments in the life of self” as time values t = rn. Assume that P2(0) vanishes so that rn are
also roots of iterates.

3. Julia set Jc bounds filled Julia set Jc,in of the complexified r-plane, whose interior points
remain inside Jc,in in the iterations by fixed P2. Julia set Jc is connected but the Fatou set as
its complement has several components labelled by the n−1 points pk satisfying dP2(z)/dz = 0
and by z = ∞ so that Fatou set has n components. The inverse iterates of roots need not
belong to Fatou sets not containing ∞ or to the filled Julia set.

4. There are several Mandelbrot sets and the extrema of P2 satisfying dP2/dr = 0 label them.
The extrema of P2 are also extrema of its iterates. There are n−1 extrema pk. In the real case
they can be classified as either attractors or repellors but in complex situation they correspond
to saddle points. Denote by M(pn) the region of parameter space of polynomial coefficients c
for which the iteration starting starting at p(n) does not lead outside it.
In the real case the iteration of P2 leads to the attractors t = pk. In complex case the situation
is not so simple and the basic of attraction is replaced with the Fatou set Fc(pk).
Since c parameterizes points in the space of polynomials characterizing space-time surfaces in
TGD, Mandelbrot set can be defined as a sub-space of “world of classical worlds” (WCW).
Inside M(pn) the iteration maps rn to a point Min(rn). Note that also new roots emerge in
each iteration and the Mandelbrot set for the iterates contains more components.

Remark: In TGD only the roots of P2 are interesting. The roots of iterates are inverse
iterates of roots of P2.

Could one understand the size of CD and its evolution during the iteration of P2?

1. Consider first the situation for real time t = r and real polynomials. Since the boundary of
CD contains only the roots t = rn, the simplest guess is that the size of CD corresponds to
the largest root of P ◦N2 . The size of CD would increase in the iterations. The inverse images
of the roots approach to Julia set so that the real counterpart of Julia set is important for
understanding the asymptotic situation. Mandelbrot set defines the coefficient values for which
iteration does not lead to infinity.
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2. The situation is essentially the same for complexified time. The size of CD would correspond
to the modulus for the largest of the iterate root and increases during iteration. The size of
CD approaches to that for a point in Julia set.

Could the iteration lead to a stationary size of CD?

One can represent an objection to the idea that quantum iteration of P2 could be more than an
approximation.

1. Suppose that the size of CD is determined by the maximum for the iterates of the roots of
P2. Suppose that the parameters c are fixed and belong to Mandelbrot set M(pk). For given
c there is therefore an upper for τ = 2r given by r = rmax(c, pk) for the Fatou set Fc(pk). One
gets stuck to fixed τ since maximal root cannot become larger than rmax(c) in the iteration.
Note that in this situation the number of roots of P ◦k2 increases and if they corresponds to
“special moments in the life of self”, this could lead to quantum criticality and occurrence of
BSFR.

2. Fluctuations of τ in the sequences of SSFRs is possible if superpositions of iterates are allowed.
This could cause BSFR would occur and eventually second BSFR would eventually lead to the
original situation. If P2 is not modified, the iteration continues and one is still at criticality.
BSFR soon occurs and same repeats itself.

Is this situation acceptable? Maybe - I have considered the possibility that the size of CD
remains below some upper bound [L80, L70]. The selves such as our mental images could continue
to live in the geometric past and memories would be communications with them. Or should one
get rid of this situation? How?

1. Assume that SSFR creates a superposition of iterates with varying values of parameters c
belonging to the Mandelbrot set M(P2). The value of rmax(c, pk) depends on c and it is
possible to increase the value of τ in statistical sense if SSFR selects the values of c suitably.
The value of L would be however given by maximal root and would remain below the maximum
rmax of rmax(c, pk) in M(P2) if c belongs to M(P2). τ = 2L would remain below the maximum
for the size of Jc(P2) in M(P2). One would get stuck if this size is finite, which is the case if
rmax(c, pk) is bounded as function of c and pk?
Is rmax(c, pk) bounded? The polynomials with given degree of can have arbitrarily large roots
and critical points in the same extension of rationals. Therefore it might be possible to avoid
getting stuck if there is no restriction on the size of the roots of P2 in the superposition over
different values of c.

When death occurs and can self have a childhood?

I hope that talking about death and reincarnation does not irritate the reader too much. I use these
terms as precisely defined technical terms applying universally. There are two extreme options for
what happens to the former passive boundary in BSFR. The real situation could be between these
two.

1. The first shift after reincarnation is to geometric past so that CD size increases.

2. The first shift is towards the former active boundary so that the size of CD decreases at least to
the size of CD when the iteration of P2 began. The reincarnated self would have “childhood”
and would start from scratch so to say.

Consider P1P2 option. Suppose that time evolution is induced by iteration of either poly-
nomial and maximal root defines the size of the size of CD. What happens to P1?

1. Could the new functional iteration start from where it stopped in previous re-incarnation: if
P1 is n:th functional power of Q (P1 = Q◦n), the first step would corresponds to P1 → Q ◦P1.
This conservative option does not quite correspond to the idea that one starts from scratch.

2. If P1 can change, could one require that P1 is replaced with a polynomial, which is minimal
in the sense that it is not functional power of form P1,new = Q◦nnew. Or could one even require
that it is functional prime having prime valued degree: n = p. This would mean starting from
scratch except that the algebraic extension of P2 is fixed.
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Probably these options represent only extreme situations. The most general option is that
BSFR generates a state, which corresponds to a superposition of extensions of rationals character-
ized by polynomials P2P1, P2 fixed, and from these one is selected.

Suppose that L as the size of CD is minimal and thus given by the largest root of P ◦N2 in the
filled Julia set, it is bound to increase in the iteration (this option is perhaps too deterministic).
Under what conditions can BSFR occur? Can the re-incarnated self have childhood?

1. One can argue that L should be smaller than the sizes of Julia sets of both A and B since
the iteration gives no roots outside Julia set. This would require iteration to stop when the
largest root of P circN2 exceeds the size of the Julia set of A. When applied to B this condition
would prevent BSFRs in the opposite time direction would prevent the growth of CD and it
would become stationary. This condition looks too deterministic.

2. This picture suggests that the unitary evolution preceding SSFR creates a superposition of
iterates P ◦N2 and that the size of CD as outcome of SSFR is determined statistically as a
maximal root for P ◦N2 selected in the iteration. N could also decrease. Since the density of
roots increases, one would have a lot of choices for the maximal root and quantum criticality
and fluctuations of the order of clock time τ = 2L: the order of subjective time would not
anymore correspond to that for clock time.

3. Could BSFR become only probable as L as the largest root for the iterate P ◦N2 has exceeded
the size of Julia set of A? A quantum analogy with super-cooling comes in mind. The size
of CD boundary at side A would contain more volume than needed to store the information
provided by the roots rn and bring no new “special moments in the life of self” at A side. At B
side the density of these moments would eventually become large enough so that the reduction
of the size of CD destroying part of these moments would mean only a loss of precision. Could
this make death and re-incarnation with an opposite arrow of time probable?
If P ◦N2 is achieved during the life cycle, the reduction in the size of CD in BSFR would reduce
N to N1 < N . For P1 = QM1 similar reduction of M to M1 < M would take place. If one
returns to the situation when the iterated started, all new “special moments” are lost. Nothing
would have been learned but one could start from scratch and live a childhood, as one might
say.
In the proposed picture - one of many - the opposite boundaries of CD would correspond
to both short and long range quantum fluctuations. Could this observation be raised to a
guiding principle: could one even say that the opposite boundaries of CD give holistic and
reductionistic representations.

4. Do the roots of P ◦N2 belonging to filled Julia set approach the Julia set as N increases? Or
are they located randomly inside Julia set? Indeed, the inverse iterate of a root of P2 is larger
than the root as one finds graphically. The P ◦N2 does the same for the roots P ◦N2 . If this
argument is correct, the density of the roots is largest near Julia set and near the maximum
L− t = L− r near the corner of CD.

5. The proposed picture is interesting from the point of view of consciousness theory. Action
would be near the corner of CD in the sense that conscious experience would gain most of its
content in Minkowskian sense here whereas larger smaller values of L− r.
This does not mean paradox since the size of CD inreases and special moments already expe-
rienced are shifted to the future direction and would define the unchanging part - “soul” - of
the next re-incarnation. This could be seen as wisdom gained in the previous life [L80].

6. Suppose that the approach to chaos in the iteration of P2 indeed leads to death and re-
incarnation. Can one avoid this or at least increase the span of life cycle? Could one start
a new life by replacing P2 with some polynomial Q2 in the iteration so that the new iterates
would be of form QN2

2 ◦ P ◦N1
2 . If the replacement is done sufficiently early, the development

of chaos might be delayed since reaching the boundary of Julia set of Q would require quite a
many iterations if its largest root is larger than that for P2. This is also true if the degree of
Q2 is small enough.

Unexpected observations about memories

Some comments about memories in the model of self based on iteration.
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1. The conscious activity is at the corner of CD in middle of CD if the new roots define “special
moments in the life of self” as conscious experiences. The roots rn of P ◦N2 defining already
experienced special moments shift to Minkowskian geometric future as CD increases in size.
Subjective memories are in Minkowskian future and become in re-incarnation stable memories
about previous life!
Subjective memories from recent and previous life could be obtained by communications with
geometric future and past involving time reflection of the signal so that the constraints due to
the finite light velocity can be overcome.
One can ask whether self can have “remember” or “anticipate” also external world. If this
is possible then the “memories” are indeed from geometric past and “anticipations” from
geometric future.

2. The view about subjective memories raises interesting speculations (to be made with tongue in
cheek). Consider an unlucky theoretician who believes that he has discovered wonderful theory
and has used his lifetime to develop it. Unfortunately, colleagues have not shown a slightest
to his theory. Although personal fame might not matter for him, he might be interested in
knowing during his lifetime whether his life work will ever gain recognition. Is this possible in
TGD Universe?
Suppose that dreams involve sub-selves representing signals to Minkowskian future and their
time reflection inside CD (re-incarnation). If sub-selves near the boundary of CD are able to
send time signals to geometric future they might get information about the external world,
maybe even about what colleagues think about the theory of unlucky theoretician. Dreams
might allow to receive this information indirectly. Dreams might even involve meetings with
colleagues of geometricfuture and if their behavior is very respectful, unlucky theoretician
might wonder whether his work might have been recognized or is this only wishful thinking!

3. Usually it is thought the recollection of past is not good idea. One can however argue that it
communication not only with subjective past but also with objective future (the world external
to personal CD). This would give information about the external world of geometric future
and also increase the span the time scale of conscious experience and of temporal quantum
coherence. This might helpful or a theoretician not interested in fashionable thinking only.

7.3 Can one define the analogs of Mandelbrot and Julia sets
in TGD framework?

The stimulus to this contribution came from the question related to possible higher-dimensional
analogs of Mandelbrot and Julia sets (see this). The notion complex analyticity plays a key role
in the definition of these notions and it is not all clear whether one can define these analogs.

I have already earlier considered the iteration of polynomials in the TGD framework [?]
suggesting the TGD counterparts of these notions. These considerations however rely on a view
of M8 −H duality which is replaced with dramatically simpler variant and utilizing the hologra-
phy=holomorphy principle [L138] so that it is time to update these ideas.

This principle states that space-time surfaces are analogous to Bohr orbits for particles
which are 3-D surfaces rather than point-like particles. Holography is realized in terms of space-
time surfaces which can be regarded as complex surfaces in H = M4 × CP2 in the generalized
sense. This means that one can give H 4 generalized complex coordinates and 3 such generalized
complex coordinates can be used for the 4-surface. These surfaces are always minimal surfaces
irrespective of the action defining them as its extermals and the action makes itself visible only at
the singularities of the space-time surface.

7.3.1 Ordinary Mandelbrot and Julia sets

Consider first the ordinary Mandelbrot and Julia sets.

1. The simplest example of the situation is the map f : z → z2 +c. One can consider the iteration
of f by starting from a selected point z and look for various values of complex parameter c
whether the iteration converges or diverges to infinity. The interface between the sets of the
complex c-plane is 1-D Mandelbrot set and is a fractal. One can generalize the iteration to an
arbitrary rational function f , in particular polynomials.

https://www.setzeus.com/community-blog-posts/mandelbulb-three-dimensional-fractals


362Chapter 7. Could quantum randomness have something to do with classical chaos?

2. For polynomials of degree n also consider n − 1 parameters ci, i = 1, ..., n, to obtain n − 1
complex-dimensional analog of Mandelbrot set as boundaries of between regions where the
iteration lead or does not lead to infinity. For n = 2 one obtains a 4-D set.

3. One can also fix the parameter c and consider the iteration of f . Now the complex z-plane
decomposes to two a finite region with a finite number of components and its complement, Fa-
tou set. The iteration does not lead out from the finite region but diverges in the complement.
The 1-D fractal boundary between these regions is the Julia set.

7.3.2 Holography= holomorphy principle

The generalization to the TGD framework relies heavily on holography=holomorphy principle.

1. In the recent formulation of TGD, holography required by the realization of General Coordinate
Invariance is realized in terms of two functions f1, f2 of 4 analogs of generalized complex
coordinates, one of them corresponds to the light-like (hypercomplex) M4 coordinate for a
surface X2 ⊂M4 and the 3 complex coordinates to those of Y 2 orthogonal to X2 and the two
complex coordinates of CP2.
Space-time surfaces are defined by requiring the vanishing of these two functions: (f1, f2) =
(0, 0). They are minimal surfaces irrespective of the action as long it is general coordinate
invariant and constructible in terms of the induced geometry.

2. In the number theoretic vision of TGD, M8 − H-duality [L138] maps the space-time as a
holomorphic surface X4 ⊂ H is mapped to an associative 4-surface Y 4 ⊂ M8. The condition
for holography in M8 is that the normal space of Y 4 is quaternionic.
In the number theoretic vision, the functions fi are naturally rational functions or polynomials
of the 4 generalized complex coordinates. I have proposed that the coefficients of polynomials
are rationals or even integers, which in the most stringent approach are smaller than the
degree of the polynomial. In the most general situation one could have analytic functions with
rational Taylor coefficients.
The polynomials fi = Pi form a hierarchy with respect to the degree of Pi, and the iteration
defined is analogous to that appearing in the 2-D situation. The iteration of Pi gives a
hierarchy of algebraic extensions, which are central in the TGD view of evolution as an increase
of algebraic complexity. The iteratikon would also give a hierarchy of increasingly complex
space-time surface and the approach to chaos at the level of space-time would correspond to
approach of Mandelbrot or Julia set.

3. In the TGD context, there are 4-complex coordinates instead of 1 complex coordinate z. The
iteration occurs in H and the vanishing conditions for the iterates define a sequence of 4-
surfaces. The initial surface is defined by the conditions (f1, f2) = 0. This set is analogous to
the set f(z) = 0 for ordinary Julia sets.
One could consider the iteration as (f1, f2) → (f1 ◦ f1, f2 ◦ f2) continued indefinitely. One
could also iterate only f1 or f2. Each step defines by the vanishing conditions a 4-D surface,
which would be analogous to the image of the z = 0 in the 2-D iteration. The iterates form a
sequence of 4-surfaces of H analogous to a sequence of iterates of z in the complex plane.
The sequence of 4-surfaces also defines a sequence of points in the ”world of classical worlds”
(WCW) analogous to the sequence of points z, f(z), .... This conforms with the idea that
3-surface is a generalization of point-like particles, which by holography can be replaced by a
Bohr orbit-like 4-surface.

4. Also in this case, one can see whether the iteration converges to a finite result or not. In the
zero energy ontology (ZEO), convergence could mean that the iterates of X4 stay within a
causal diamond CD having a finite volume.

7.3.3 The counterparts of Mandelbrot and Julia sets at the level of
WCW

What the WCW analogy of the Mandelbrot and Julia sets could look like?

1. Consider first the Mandelbrot set. One could start from a set of roots of (f1, f2) = (c1, c2)
equivalent with the roots of (f1−c1, f2−c2) = (0, 0). Here c1 and c2 define complex parameters
analogous to the parameter c of the Mandelbrot sent. One can iterate the two functions for all
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pairs (c1, c2). One can look whether the iteration converges or not and identify the Mandelbrot
set as the critical set of parameters (c1, c2). The naive expectation is that this set is 3-D
dimensional fractal.

2. The definition of Julia set requires a complex plane as possible initial points of the iteration.
Now the iteration of (f1, f2) = 0 fixes the starting point (not necessarily uniquely since 3-D
surface does not fix the Bohr orbit uniquely: this is the basic motivation for ZEO). The analogy
with the initial point of iteration suggests that we can assume (f1, f2) = (c1, c2) but this leads
to the analog of the Mandelbrot set. The notions coincide at the level of WCW.

3. Mandelbrot and Julia sets and their generalizations are critical in a well-defined sense. Whether
iteration could be relevant for quantum dynamics is of course an open question. Certainly
it could correspond to number theoretic evolution in which the dimension of the algebraic
extension rapidly increases. For instance, one could one consider a WCW spinor field as
a wave function in the set of converging iterates. Quantum criticality would correspond to
WCW spinor fields restricted to the Mandelbrot or Julia sets.

Could the 3-D analogs of Mandelbrot and Julia sets correspond to the light-like partonic
orbits defining boundaries between Euclidean and Minkowskian regions of the space-time surface
and space-time boundaries? Can the extremely complex fractal structure as sub-manifold be
consistent with the differentiability essential for the induced geometry? Could light-likeness help
here.

7.3.4 Do the analogs of Mandelbrot and Julia sets exist at the level of
space-time?

Could one identify the 3-D analogs of Mandelbrot and Julia sets for a given space-time surface?
There are two approaches.

1. The parameter space (c1, c2) for a given initial point h of H for iterations of f1 − c1, f2 − c2)
defines a 4-D complex subspace of WCW. Could one identify this subset as a space-time surface
and interpret the coordinates of H as parameters? If so, there would be a duality, which would
represent the complement of the Fatou set (the thick Julia set) defined as a subset of WCW
as a space-time surface!

2. One could also consider fixed points of iteration for which iteration defines a holomorphic
map of space-time surface to itself. One can consider generalized holomorphic transformations
of H leaving X4 invariant locally. If they are 1-1 maps they have interpretation as general
coordinate transformations. Otherwise they have a non-trivial physical effect so that the
analog of the Julia set has a physical meaning. For these transformations one can indeed find
the 3-D analog of Julia set as a subset of the space-time surface. This set could define singular
surface or boundary of the space-time surface.

7.3.5 Could Mandelbrot and Julia sets have 2-D analogs in TGD?

What about the 2-D analogs of the ordinary Julia sets? Could one identify the counterparts of the
2-D complex plane (coordinate z) and parameter space (coordinate c).

1. Hamilton-Jacobi structure defines what the generalized complex structure is [L134] and defines
a slicing of M4 in terms of integrable distributions of string world sheets and partonic 2-surfaces
transversal or even orthogonal to each other. Partonic 2-surface could play the role of complex
plane and string world sheet the role of the parameter space or vice versa.
Partonic 2-surfaces resp. and string world sheet having complex resp. hyper-complex struc-
tures would therefore be in a key role. M8 −H duality maps these surfaces to complex resp.
co-complex surfaces of octonions having Minkowskian norm defined as number theoretically
as Re(o2).

2. In the case of Julia sets, one could consider generalized holomorphic transformations of H
mapping X4 to itself as a 4-surface but not reducing to 1-1 maps. If f2 (f1) acts trivially
at the partonic 2-surface Y 2 (string world sheet X2), the iteration reduces to that for f1

(f2). Within string world sheets and partonic 2-surfaces the iteration defines Julia set and its
hyperbolic analog in the standard way. One can argue that string world sheets and partonic
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2-surfaces should correspond to singularities in some sense. Singularity could mean this fixed
point property.
The natural proposal is that the light-like 3-surfaces defining boundaries between Euclidean
and Minkowskian regions of the space-time surface define light-like orbits of the partonic 2-
surface. And string world sheets are minimal surfaces having light-like 1-D boundaries at the
partonic 2-surface having physical interpretation as world-lines of fermions.
One could also iterate only f1 or f2 allow the parameter c of the initial value of f1 to vary.
This would give the analog of Mandelbrot set as a set of 2-D surfaces of H and it might have
dual representation as a 2-surface.

3. The 2-D analog of the Mandelbrot set could correspond to a set of 2-surfaces obtained by fixing
a point of the string world sheet X2. Also now one could consider holomorphic maps leaving
the space-time surface locally but not acting 1-1 way. The points of Y 2 would define the values
of the complex parameter c remaining invariant under these maps. The convergence of the
iteration of f1 in the same sense as for the Mandelbrot fractal would define the Mandelbrot
set as a critical set. For the dual of the Mandelbrot set X2 and Y 2 would change their roles.



Chapter 8

TGD view about McKay
Correspondence, ADE Hierarchy,
Inclusions of Hyperfinite Factors,
M8 −H Duality, SUSY, and
Twistors

8.1 Introduction

There are two mysterious looking correspondences involving ADE groups. McKay correspondence
between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin
diagrams of affine ADE groups is the first one. The correspondence between principal diagrams
characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a
subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already
earlier [K112, K43] but the decision to look it again led to a discovery of a bundle of new ideas
allowing to answer several key questions of TGD.

1. Asking questions about M8 − H duality at the level of 8-D momentum space [L46] led to
a realization that the notion of mass is relative as already the existence of alternative QFT
descriptions in terms of massless and massive fields suggests (electric-magnetic duality). De-
pending on choice M4 ⊂M8, one can describe particles as massless states in M4×CP2 picture
(the choice is M4

L depending on state) and as massive states (the choice is fixed M4
T ) in M8

picture. p-Adic thermal massivation of massless states in M4
L picture can be seen as a univer-

sal dynamics independent mechanism implied by ZEO. Also a revised view about zero energy
ontology (ZEO) based quantum measurement theory as theory of consciousness suggests itself.

2. Hyperfinite factors of type II1 (HFFs) [K112, K43] and number theoretic discretization in terms
of what I call cognitive representations [L63] provide two alternative approaches to the notion
of finite measurement resolution in TGD framework. One obtains rather concrete view about
how these descriptions relate to each other at the level of 8-D space of light-like momenta.
Also ADE hierarchy can be understood concretely.

3. The description of 8-D twistors at momentum space-level is also a challenge of TGD. 8-D
twistorializations in terms of octo-twistors (M4

T description) and M4 × CP2 twistors (M4
L

description) emerge at embedding space level. Quantum twistors could serve as a twistor
description at the level of space-time surfaces.

8.1.1 McKay correspondence in TGD framework

Consider first McKay correspondence in more detail.

365
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1. McKay correspondence states that the McKay graphs characterizing the tensor product de-
composition rules for representations of discrete and finite sub-groups of SU(2) are Dynkin
diagrams for the affine ADE groups obtained by adding one node to the Dynkin diagram of
ADE group. Could this correspondence make sense for any finite group G rather than only
discrete subgroups of SU(2)? In TGD Galois group of extensions K of rationals can be any
finite group G. Could Galois group take the role of G?

2. Why the subgroups of SU(2) should be in so special role? In TGD framework quaternions
and octonions play a fundamental role at M8 side of M8−H duality [L46]. Complexified M8

represents complexified octonions and space-time surfaces X4 have quaternionic tangent or
normal spaces. SO(3) is the automorphism group of quaternions and for number theoretical
discretizations induced by extension K of rationals it reduces to its discrete subgroup SO(3)K
having SU(2)K as a covering. In certain special cases corresponding to McKay correspondence
this group is finite discrete group acting as symmetries of Platonic solids. Could this make the
Platonic groups so special? Could the semi-direct products Gal(K) / SU(2)K take the role of
discrete subgroups of SU(2)?

8.1.2 HFFs and TGD

The notion of measurement resolution is definable in terms of inclusions of HFFs and using number
theoretic discretization of X4. These definitions should be closely related.

1. The inclusions N ⊂M of HFFs with indexM : N < 4 are characterized by Dynkin diagrams
for a subset of ADE groups. The TGD inspired conjecture is that the inclusion hierarchies of
extensions of rationals and of corresponding Galois groups could correspond to the hierarchies
for the inclusions of HFFs. The natural realization would be in terms of HFFs with coefficient
field of Hilbert space in extension K of rationals involved.
Could the physical triviality of the action of unitary operators N define measurement resolu-
tion? If so, quantum groups assignable to the inclusion would act in quantum spaces associated
with the coset spaces M/N of operators with quantum dimension d = M : N . The degrees
of freedom below measurement resolution would correspond to gauge symmetries assignable
to N .

2. Adelic approach [L52] provides an alternative approach to the notion of finite measurement
resolution. The cognitive representation identified as a discretization of X4 defined by the
set of points with points having H (or at least M8 coordinates) in K would be common to
all number fields (reals and extensions of various p-adic number fields induced by K). This
approach should be equivalent with that based on inclusions. Therefore the Galois groups of
extensions should play a key role in the understanding of the inclusions.

How HFFs could emerge from TGD?

1. The huge symmetries of “world of classical words” (WCW) could explain why the ADE dia-
grams appearing as McKay graphs and principal diagrams of inclusions correspond to affine
ADE algebras or quantum groups. WCW consists of space-time surfaces X4, which are pre-
ferred extremals of the action principle of the theory defining classical TGD connecting the
3-surfaces at the opposite light-like boundaries of causal diamond CD = cd×CP2, where cd is
the intersection of future and past directed light-cones of M4 and contain part of δM4

±×CP2.
The symplectic transformations of δM4

+ × CP2 are assumed to act as isometries of WCW. A
natural guess is that physical states correspond to the representations of the super-symplectic
algebra SSA.

2. The sub-algebras SSAn of SSA isomorphic to SSA form a fractal hierarchy with confor-
mal weights in sub-algebra being n-multiples of those in SSA. SSAn and the commutator
[SSAn, SSA] would act as gauge transformations. Therefore the classical Noether charges for
these sub-algebras would vanish. Also the action of these two sub-algebras would annihilate
the quantum states. Could the inclusion hierarchies labelled by integers .. < n1 < n2 < n3....
with ni+1 divisible by ni would correspond hierarchies of HFFs and to the hierarchies of ex-
tensions of rationals and corresponding Galois groups? Could n correspond to the dimension
of Galois group of K.

3. Finite measurement resolution defined in terms of cognitive representations suggests a reduc-
tion of the symplectic group SG to a discrete subgroup SGK , whose linear action is char-
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acterized by matrix elements in the extension K of rationals defining the extension. The
representations of discrete subgroup are infinite-D and the infinite value of the trace of unit
operator is problematic concerning the definition of characters in terms of traces. One can
however replace normal trace with quantum trace equal to one for unit operator. This implies
HFFs and the hierarchies of inclusions of HFFs [K112, K43]. Could inclusion hierarchies for
extensions of rationals correspond to inclusion hierarchies of HFFs and of isomorphic sub-
algebras of SSA?

Quantum spinors are central for HFFs. A possible alternative interpretation of quantum
spinors is in terms of quantum measurement theory with finite measurement resolution in which
precise eigenstates as measurement outcomes are replaced with universal probability distributions
defined by quantum group. This has also application in TGD inspired theory of consciousness
[K43]: the idea is that the truth value of Boolean statement is fuzzy. At the level of quantum
measurement theory this would mean that the outcome of quantum measurement is not anymore
precise eigenstate but that one obtains only probabilities for the appearance of different eigenstate.
One might say that probability of eigenstates becomes a fundamental observable and measures the
strength of belief.

8.1.3 New aspects of M8 −H duality

M8−H duality (H = M4×CP2) [L46] has become one of central elements of TGD. M8−H duality
implies two descriptons for the states.

1. M8 −H duality assumes that space-time surfaces in M8 have associative tangent- or normal
space M4 and that these spaces share a common sub-space M2 ⊂ M4, which corresponds to
complex subspace of octonions (also integrable distribution of M2(x) can be considered). This
makes possible the mapping of space-time surfaces X4 ⊂M8 to X4 ⊂ H = M4×CP2) giving
rise to M8 −H duality.

2. M8−H duality makes sense also at the level of 8-D momentum space in one-one correspondence
with light-like octonions. In M8 = M4 × E4 picture light-like 8-momenta are projected to a
fixed quaternionic M4

T ⊂M8. The projections to M4
T ⊃M2 momenta are in general massive.

The group of symmetries is for E4 parts of momenta is Spin(SO(4)) = SU(2)L×SU(2)R and
identified as the symmetries of low energy hadron physics.
M4 ⊃ M2 can be also chosen so that the light-like 8-momentum is parallel to M4

L ⊂ M8.
Now CP2 codes for the E4 parts of 8-momenta and the choice of M4

L and color group SU(3)
as a subgroup of automorphism group of octonions acts as symmetries. This correspond to
the usual description of quarks and other elementary particles. This leads to an improved
understanding of SO(4) − SU(3) duality. A weaker form of this duality S3 − CP2 duality:
the 3-spheres S3 with various radii parameterizing the E4 parts of 8-momenta with various
lengths correspond to discrete set of 3-spheres S3 of CP2 having discrete subgroup of U(2)
isometries.

3. The key challenge is to understand why the MacKay graphs in McKay correspondence and
principal diagrams for the inclusions of HFFs correspond to ADE Lie groups or their affine
variants. It turns out that a possible concrete interpretation for the hierarchy of finite sub-
groups of SU(2) appears as discretizations of 3-sphere S3 appearing naturally at M8 side
of M8 − H duality. Second interpretation is as covering of quaternionic Galois group. Also
the coordinate patches of CP2 can be regarded as piles of 3-spheres and finite measurement
resolution. The discrete groups of SU(2) define in a natural way a hierarchy of measurement
resolutions realized as the set of light-like M8 momenta. Also a concrete interpretation for
Jones inclusions as inclusions for these discretizations emerges.

4. A radically new view is that descriptions in terms of massive and massless states are alterna-
tive options leads to the interpretation of p-adic thermodynamics as a completely universal
massivation mechanism having nothing to do with dynamics. The problem is the paradoxical
looking fact that particles are massive in H picture although they should be massless by defi-
nition. The massivation is unavoidable if zero energy states are superposition of massive states
with varying masses. The M4

L in this case most naturally corresponds to that associated with
the dominating part of the state so that higher mass contributions can be described by using
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p-adic thermodynamics and mass squared can be regarded as thermal mass squared calculable
by p-adic thermodynamics.

5. As a side product emerges a deeper understanding of ZEO based quantum measurement theory
and consciousness theory. 4-D space-time surfaces correspond to roots of octonionic polyno-
mials P (o) with real coefficients corresponding to the vanishing of the real or imaginary part
of P (o).
These polynomials however allow universal roots, which are not 4-D but analogs of 6-D branes
and having topology of S6. Their M4 projections are time =constant snapshots t = rn, rM ≤
rn 3-balls of M4 light-cone (rn is root of P (x)). At each point the ball there is a sphere S3

shrinking to a point about boundaries of the 3-ball.
What suggests itself is following “braney” picture. 4-D space-time surfaces intersect the 6-
spheres at 2-D surfaces identifiable as partonic 2-surfaces serving as generalized vertices at
which 4-D space-time surfaces representing particle orbits meet along their ends. Partonic
2-surfacew would define the space-time regions at which one can pose analogs of boundary
values fixing the space-time surface by preferred extremal property. This would realize strong
form of holography (SH): 3-D holography is implied already by ZEO.
This picture forces to consider a modification of the recent view about ZEO based theory of
consciousness. Should one replace causal diamond (CD) with light-cone, which can be however
either future or past directed. “Big” state function reductions (BSR) meaning the death
and re-incarnation of self with opposite arrow of time could be still present. An attractive
interpretation for the moments t = rn would be as moments assignable to “small” state
function reductions (SSR) identifiable as “weak” measurements giving rise to sensory input of
conscious entity in ZEO based theory of consciousness. One might say that conscious entity
becomes gradually conscious about its roots in increasing order. The famous question “What
it feels to be a bat” would reduce to “What it feels to be a polynomial?”! One must be however
very cautious here.

8.1.4 What twistors are in TGD framework?

The basic problem of the ordinary twistor approach is that the states must be massless in 4-D sense.
In TGD framework particles would be massless in 8-D sense. The meaning of 8-D twistorialization
at space-time level is relatively well understood but at the level of momentum space the situation
is not at all so clear.

1. In TGD particles are massless in 8-D sense. For M4
L description particles are massless in 4-D

sense and the description at momentum space level would be in terms of products of ordinary
M4 twistors and CP2 twistors. For M4

T description particles are massive in 4-D sense. How
to generalize the twistor description to 8-D case?
The incidence relation for twistors and the need to have index raising and lowering operation in
8-D situation suggest the replacement of the ordinary l twistors with either with octo-twistors
or non-commutative quantum twistors.

2. I have assumed that what I call geometric twistor space of M4 is simply M4×S2. It however
turned out that one can consider standard twistor space CP3 with metric signature (3,-3) as
an alternative. This option reproduces the nice results of the earlier approach but the philos-
ophy is different: there is no fundamental length scale but the hierarchy of causal diamonds
(CDs) predicted by zero energy ontology (ZEO) gives rise to the breaking of the exact scaling
invariance of M8 picture. This forces to modify M8 − H correspondence so that it involves
map from M4 to CP3 followed by a projection to hyperbolic variant CP2,h of CP2. Note
that also the original form of M8 − H duality continues to make sense and results from the
modification by projection from CP3,h to M4 rather than CP2,h.
M4 in H would not be be replaced with conformally compactified M4 (M4

conf ) but conformally
compactified cd (cdconf ) for which a natural identification is as CP2 with second complex
coordinate replaced with hypercomplex coordinate. The sizes of twistor spaces of cdconf using
CP2 size as unit would reflect the hierarchy of size scales for CDs. The consideration on the
twistor space of M8 in similar picture leads to the identification of corresponding twistor space
as HP3 - quaternionic variant of CP3: the counterpart of CD8 would be HP2.

3. Octotwistors can be expressed as pairs of quaternionic twistors. Octotwistor approach sug-
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gests a generalization of twistor Grassmannian approach obtained by replacing the bi-spinors
with complexified quaternions and complex Grassmannians with their quaternionic counter-
parts. Although TGD is not a quantum field theory, this proposal makes sense for cognitive
representations identified as discrete sets of spacetime points with coordinates in the exten-
sion of rationals defining the adele [L52] implying effective reduction of particles to point-like
particles.

4. The outcome of octo-twistor approach together withM8−H duality leads to a nice picture view
about twistorial description of massive states based on quaternionic generalization of twistor
Grassmannian approach. A radically new view is that descriptions in terms of massive and
massless states are alternative options, and correspond to two different alternative twistorial
descriptions and leads to the interpretation of p-adic thermodynamics as completely universal
massivation mechanism having nothing to do with dynamics. As a side product emerges a
deeper understanding of ZEO based quantum measurement theory and consciousness theory
relying on the universal roots of octonionic polynomials of M8, which are not 4-D but analogs
of 6-D branes. By M8 −H duality the finite sub-groups of SU(2) of McKay correspondence
appear quite concretely in the description of the measurement resolution of 8-momentum.

What about super-twistors in TGD framework?

1. The parallel progress in the understanding SUSY in TGD framework [L81] in turn led to the
identification of the super-counterparts of M8, H and of twistor spaces modifying dramati-
cally the physical interpretation of SUSY. Super-spinors in twistor space would provide the
description of quantum states. Super-Grassmannians would be involved with the construc-
tion of scattering amplitudes. Quaternionic super Grassmannians would be involved with M8

description.

2. The great surprise from physics point of view is that in fermionic sector only quarks are allowed
by SO(1, 7) triality and that anti-leptons are local 3-quark composites identifiable as spartners
of quarks. Gauge bosons, Higgs and graviton would be also spartners and assignable to super-
coordinates of embedding space expressible as super-polynomials of quark oscillator operators.
Super-symmetrization means also quantization of fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking as
Wheeler might put it.

What about the interpretation of quantum twistors? They could make sense as 4-D space-
time description analogous to description at space-time level. Now one can consider generalization
of the twistor Grassmannian approach in terms of quantum Grassmannians.

8.2 McKay correspondence

Consider first McKay correspondence from TGD point of view.

8.2.1 McKay graphs

McKay graps are defined in the following manner. Consider group G which is discrete but not
necessarily finite. If the group is finite there is a finite number of irreducible representations χI .
Select preferred representation V - usually V is taken to be the fundamental representation of
G and form tensor products χI ⊗ V . Suppose irrep χJ appears nij times in the tensor product
χI ⊗ χ0. Assign to each representation χI dot and connect the dots of χI and χJ by nij arrows.
This gives rise to MacKay graph.

Consider now the situation for finite-D groups of SU(2). 2-D SU(2) spinor representation
as a fundamental representation is essential for obtaining the identification of McKay graphs as
Dynkin diagrams of simply laced affine algebras having only single line connecting the roots (the
angle between positive roots is 120 degrees) (see http://tinyurl.com/z48d92t).

1. For SU(2) representations one has the basic rule j1 − 1/2 ≤ j ≤ j1 + 1/2 for the tensor
product j1 ⊗ 1/2. This rule must be broken for finite subgroups of SU(2) since the number of

http://tinyurl.com/z48d92t
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representations if finite so that branching point appears in McKay graph. In branching point
the decomposition of j1 ⊗ 1/2 decomposes to 3 lower-dimensional representations of the finite
subgroup takes place.

2. Simply lacedness means that given representation appears only once in chiI ⊗ V , when V is
2-D representation as it can be for a subgroup of SU(2). Additional exceptional properties is
the absence of loops (nii = 0) and connectedness of McKay graph.

3. One can consider binary icosahedral group (double covering of icosahedral group A5 with
order 60) as an example (for the McKay graph see http://tinyurl.com/y2h55jwp). The
representations of A5 are 1A, 3A, 3

′
B , 4A, 5A, where integer tells the dimension. Note that

SO(3) does not allow 4-D representation. For binary icosahedral group one obtains also the
representations 2A, 2

′
B , 4B , 6A. The McKay graph of E8 contains one branching point in which

one has the tensor product of 6-D and 2-D representations 6A and 2A giving rise to 5A⊕3C⊕4B .

McKay graphs can be defined for any finite group and they are not even unions of simply
laced diagrams unless one has subgroups of SU(2). Still one can wonder whether McKay corre-
spondence generalizes from subgroups of SU(2) to all finite groups. At first glance this does not
seem possible but there might be some clever manner to bring in all finite groups.

The proposal has been that this McKay correspondence has a deeper meaning. Could simply
laced affine ADE algebras, ADE type quantum algebras, and/or corresponding finite groups act
as symmetry algebras in TGD framework?

8.2.2 Number theoretic view about McKay correspondence

Could the physical picture provided by TGD help to answer the above posed questions?

1. Could one identify discrete subgroups of SU(2) with those of the covering group SU(2) of
SO(3) of quaternionic automorphisms defining the continuous analog of Galois group and
reducing to a discrete subgroup for a finite resolution characterized by extension K of rationals.
The tensor products of 2-D spinor representation of these discrete subgroups SU(2)K would
give rise to irreps appearing in the McKay graph.

2. In adelic physics [L52] extensions K of rationals define an evolutionary hierarchy with effective
Planck constant heff/h0 = n identified as the dimension of K. The action of discrete and
finite subgroups of various symmetry groups can be represented as Galois group action making
sense at the level of X4 [L46] for what I have called cognitive representations. By M8 − H
duality also the Galois group of quaternions and its discrete subgroups appear naturally.
This suggests a possible generalization of McKay correspondence so that it would apply to all
finite groups G. Any finite group G can appear as Galois group. The Galois group Gal(K)
characterizing the extension of rationals induces in turn extensions of p-adic number fields
appearing in the adele. Could the representation of G as Galois group of extension of rationals
allow to generalize McKay correspondence?

Could the following argument inspired by these observations make sense?

1. SU(2) is identified as spin covering of the quaternionic automorphism group. One can define
the subgroups in matrix representation of SU(2) based on complex numbers. One can replace
complex numbers with the extension of rationals and speak of group SU(2)K identified as a
discrete subgroup of SU(2) having in general infinite order.
The discrete finite subgroups G ⊂ SU(2) appearing in the standard McKay correspondence
correspond to extensions K of rationals for which one has G = SU(2)K . These special exten-
sions can be identified by studying the matrix elements of the representation of G and include
the discrete groups Zn acting as rotation symmetries of the Platonic solids. For instance, for
icosahedral group Z2,Z3 and Z5 are involved and correspond to roots of unity.

2. The semi-direct product Gal / SU(2)K with group action

(gal1, g1)(gal2, g2) = (gal1 ◦ gal2, g1(gal1g2))

makes sense. The action of Gal /SU(2)K in the representation is therefore well-defined. Since
all finite groups G can appear as Galois groups, it seems that one obtains extension of the
McKay correspondence to semi-direct products involving all finite groups G representable as
Galois groups.

http://tinyurl.com/y2h55jwp
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3. A good guess is that the number of representations of SU(2)K involved is infinite if SU(2)K
has infinite order. For Ãn and D̃n the branching occurs only at the ends of the McKay graph.
For Ek, k = 6, 7, 8 the branching occurs in middle of the graph (see http://tinyurl.com/

y2h55jwp). What happens for arbitrary G. Does the branching occur at all? One could
argue that if the discrete subgroup has infinite order, the representation can be completed to a
representation of SU(2) in terms of real numbers so that the McKay graphs must be identical.

4. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group
algebra of Gal(K) / SU(2)K and free field representation of ADE type Kac-Moody algebra
identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements
defined by the traces of representation matrices (characters).

5. A possible interpretation of quantum spinors is in terms of quantum measurement theory
with finite measurement resolution in which precise eigenstates as measurement outcomes
are replaced with universal probability distributions defined by quantum group [K43]. TGD
inspired theory of consciousness is a possible application.
Also the notion of quantum twistor [L88] can be considered. In TGD particles are massless in
8-D sense and in general massive in 4-D sense but 4-D twistors are needed also now so that
a modification of twistor approach is needed. The incidence relation for twistors suggests the
replacement of the usual twistors with non-commutative quantum twistors.

8.3 ADE diagrams and principal graphs of inclusions of hy-
perfinite factors of type II1

Dynkin diagrams for ADE groups and corresponding affine groups characterize also the inclusions
of hyperfinite factors of type II1 (HFFs) [K43].

8.3.1 Principal graphs and Dynkin diagrams for ADE groups

1. If the index β =M : N of the Jones inclusion satisfies β < 4, the affine Dynkin diagrams of
SU(n) (discrete symmetry groups of n-polygons) and E7 (symmetry group of octahedron and
cube) and D(2n+ 1) (symmetries of double 2n+1-polygons) are not allowed.

2. Vaughan Jones [A85] (see http://tinyurl.com/y8jzvogn) has speculated that these finite
subgroups could correspond to quantum groups as kind of degenerations of Kac-Moody groups.
Modulo arithmetics defined by the integer n defining the quantum phase suggests itself strongly.
For β = 4 one can construct inclusions characterized by extended Dynkin diagram and any
finite sub-group of SU(2). In this case affine ADE hierarchy appear as principal graphs char-
acterizing the inclusions. For β < 4 the finite measurement resolution could reduce affine
algebra to quantum algebra.

3. The rule is that for odd values of n defining the quantum phase the Dynkin diagram does not
appear. If Dynkin diagrams correspond to quantum groups, one can ask whether they allow
only quantum group representations with quantum phase q = exp(iπ/n) equal to even root of
unity.

8.3.2 Number theoretic view about inclusions of HFFs and preferred
role of SU(2)

Consider next the TGD inspired interpretation.

1. TGD suggests the interpretation in terms of representations of Gal(K(G)) / G for finite sub-
groups G of SU(2), where K(G) would be an extension associated with G. This would gener-
alize to subgroups of SU(2) with infinite order in the case of arbitrary Galois group. Quantum
groups have finite number of representations in 1-1-correspondence with terms of finite-D repre-
sentations of G. Could the representations of Gal(K(G))/G correspond to the representations
of quantum group defined by G?
This would conform with the vision that there are two ways to realize finite measurement
resolution. The first one would be in terms of inclusions of hyper-finite factors. Second would

http://tinyurl.com/y2h55jwp
http://tinyurl.com/y2h55jwp
http://tinyurl.com/y8jzvogn
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be in terms cognitive representations defining a number theoretic discretization of X4 with
embedding space coordinates in the extension of rationals in which Galois group acts.
In fact, also the discrete subgroup of infinite-D group of symplectic transformations of ∆M4

+×
CP2 would act in the cognitive representations and this suggests a far reaching implications
concerning the understanding of the cognitive representations, which pose a formidable looking
challenge of finding the set of points of X4 in given extension of rationals [L78].

2. This brings in mind also the model for bio-harmony in which genetic code is defined in terms
of Hamiltonian cycles associated with icosahedral and tetrahedral geometries [L24, L67]. One
can wonder why the Hamiltonian cycles for cubic/octahedral geometry do not appear. On the
other hand, according to Vaughan the Dynkin diagram for E7 is missing from the hierarchy
of so principal graphs characterizing the inclusions of HFFs for β < 4 (a fact that I failed to
understand). Could the genetic code directly reflect the properties of the inclusion hierarchy?

How would the hierarchies of inclusions of HFFs and extensions of rationals relate to each
other?

1. I have proposed that the inclusion hierarchies of extensions K of rationals accompanied by
similar hierarchies of Galois groups Gal(K) could correspond to a fractal hierarchy of sub-
algebras of hyperfinite factor of type II1. Quantum group representations in ADE hierarchy
would somehow correspond to these inclusions. The analogs of coset spaces for two alge-
bras in the hierarchy define would quantum group representations with quantum dimension
characterizing the inclusion.

2. The quantum group in question would correspond to a quantum analog of finite-D group of
SU(2) which would be in completely unique role mathematically and physically. The infinite-
D group in question could be the symplectic group of δM4

+×CP2 assumed to act as isometries
of WCW. In the hierarchy of Galois groups the quantum group of finite group G ⊂ SU(2)
would correspond to Galois group of an extension K.

3. The trace of unit matrix defining the character associated with unit element is infinite for
these representations for factors of type I. Therefore it is natural to assume that hyper-finite
factor of type II1 for which the trace of unit matrix can be normalized to 1. Sub-factors would
have trace of projector with trace smaller than 1.

4. Do the ADE diagrams for groups Gal(K(G)) / G indeed correspond to quantum groups and
affine algebras? Why the finite groups should give rise to affine/Kac-Moody algebras? In
number theoretic vision a possible answer would be that depending on the value of the index
β of inclusion the symplectic algebra reduces in the number theoretic discretization by gauge
conditions specifying the inclusion either to Kac-Moody group (β = 4) or to quantum group
(β < 4).

What about subgroups of groups other than SU(2)? According to Vaughan there has been
work about inclusion hierarchies of SU(3) and other groups and it seems that the results generalize
and finite subgroups of say SU(3) appear. In this case the tensor products of finite sub-groups
McKay graphs do not however correspond to the principal graphs for inclusions. Could the number
theoretic vision come in rescue with the replacement of discrete subgroup with Galois group and
the identification of SU(2) as the covering for the Galois group of quaternions?

8.3.3 How could ADE type quantum groups and affine algebras be con-
cretely realized?

The questions discussed are following. How to understand the correspondence between the McKay
graph for finite group G ⊂ SU(2) and ADE (affine) group Dynkin diagram for β < 4 (β = 4)?
How the nodes of McKay grap representing the irreps of finite group can correspond to the positive
roots of a Dynkin diagram, which are essentially vectors defined by eigenvalues of Cartan algebra
generators for complexified Lie-algebra basis.

The first thing that comes in mind is the construction of representation of Kac-Moody alge-
bra using scalar fields labelled by Cartan algebra generators (see http://tinyurl.com/y9lkeelk):
these representations are discussed by Edward Frenkel [A45]. The charged generators of Kac-
Moody algebra in the complement of Cartan algebra are obtained by exponentiating the contrac-
tions of the vector formed by these scalar fields with roots to get α · Φ = αiΦ

i. The charged field

http://tinyurl.com/y9lkeelk
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is represented as a normal ordered product : exp(iα · Φ) :. If one can assign to each irrep of G a
scalar field in a natural manner one could achieve this.

Neglect first the presence of the group algebra of Gal(K(G)) /G. The standard rule for the
dimensions of the representations of finite groups reads as

∑
i d

2
I = n(G). For double covering of

G one obtains this rule separately for integer spin representations and half-odd integers spin repre-
sentations. An interesting possibility is that this could be interpreted in terms of supersymmetry
at the level of group algebra in which representation of dimension dI appears dI times.

The group algebra of G and its covering provide a universal manner to realize these repre-
sentations in terms of a basis for complex valued functions in group (for extensions of rationals
also the values of the functions must belong to the extension).

1. Representation with dimension dI occurs dI times and corresponds to dI × dI representation
matrices DI

mn of representation χI , whose columns and rows provide representations for left-
and right-sided action of G. The tensor product rules for the representations χI can be
formulated as double tensor products. For basis states |J, n〉 in χI and |J, n〉 in χJ one has

|I,m〉⊗|J, n〉 = cK,pI,m|J,n|K, p〉 ,

where cK,pJ,n|J,n are Glebch-Gordan coefficients.

2. For the tensor product of matrices DI
mn and DJ

mn one must apply this rule to both indices.
The orthogonality properties of Glebsch-Gordan coefficients guarantee that the tensor product
contains only terms in which one has same representation at left- and right-hand side. The
orthogonality rule is ∑

m,n

cK,pI,m|J,nc
K,q
I,r|J,s ∝ δK,L .

3. The number of states is n(G) whereas the number I(G) of irreps corresponds to the dimension
of Cartan algebra of Kac-Moody algebra or of quantum group is smaller. One should be able
to pick only one state from each representation DI .
The condition that the state X of group algebra is invariant under automorphism gXg−1

implies that the allowed states as function in group algebra are traces Tr(DI)(g) of the rep-
resentation matrices. The traces of representation matrices indeed play fundamental role as
automorphism invariants. This suggests that the scalar fields ΦI in Kac-Moody algebra cor-
respond to Hilbert space coefficients of Tr(DI)(g) as elements of group algebra labelled by
the representation. The exponentiation of α · Φ would give the charged Kac-Moody algebra
generators as free field representation.

4. For infinite sub-groups G ⊂ SU(2) d(G) is infinite. The traces are finite also in this case if
the dimensions of the representations involved are finite. If one interprets the unit matrix as
a function having value 1 in entire group Tr(Id) diverges. Unit dimension for HFFs provide a
more natural notion of dimension d = n(G) of group algebra n(G) as d = n(G) = 1. Therefore
HFFs would emerge naturally.

It is easy to take into account Gal(K(G)). One can represent the elements of semi-direct
product Gal(K(G))/G as functions in Gal(K(G))×G and the proposed construction brings in also
the tensor products in the group algebra of Gal(K(G)). It is however essential that group algebra
elements have values in K. This brings in tensor products of representations Gal and G and the
number of representations is n(Gal)×n(G). The number of fields ΦI as also the number of Cartan
algebra generators of ADE Lie algebra increases from I(G) to I(Gal) × I(G). The reduction of
the extension of coefficient field for the Kac-Moody algebra from complex numbers to K splits the
Hilbert space to sectors with smaller number of states.

8.4 M 8 −H duality

The generalization of the standard twistor Grassmannian approach to TGD remains a challenge
for TGD and one can imagine several approaches. M8−H duality is essential for these approaches
and will be discussed in the sequel.
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The original form of M8 −H duality assumed H = M4 × CP2 but quite recently it turned
out that one could replace the twistor space of M4 identified as M4 × S2 with CP3,h, which is
hyperbolic variant of CP3. This option forces to replace H with H = CP2,h×CP2. M8−H duality
would consist of a map of M4 point to corresponding twistor sphere in CP3,h and its projection to
CP2,h. This option will be discussed in the section about twistor lift of TGD.

8.4.1 M8 −H duality at the level of space-time surfaces

M8 − H duality [L46] relates two views about space-time surfaces X4: as algebraic surfaces in
complexified octonionic M8 and as minimal surfaces with singularities in H = M4 × CP2.

1. Octonion structure at the level of M8 means a selection of a suitable decomposition M8 =
M4 × E4 in turn determining H = M4 × CP2. Choices of M4 share a preferred 2-plane
M2 ⊂M4 belonging to the tangent space of allowed space-time surfaces X4 ⊂M8 at various
points. One can parameterize the tangent space of X4 ⊂M8 with this property by a point of
CP2. Therefore X4 can be mapped to a surface in H = M4 ×CP2: one M8-duality. One can
consider also the possibility that the choice of M2 is local but that the distribution of M2(x)
is integrable and defines string world sheet in M4. In this case M2(x) is mapped to same
M2 ⊂ H.

2. Since 8-momenta p8 are light-like one can always find a choice of M4
L ⊂ M8 such that p8

belongs to M4
L and is thus light-like. The momentum has in the general case a component

orthogonal to M2 so that M4
L is unique by quaternionicity: quaternionic cross product for

tangent space quaternions gives the third imaginary quaternionic unit. For a fixed M4, call
it M4

T , the M4 projections of momenta are time-like. When momentum belongs to M2 the
choices is non-unique and any M4 ⊂M2 is allowed.

3. Space-time surfaces X4 ⊂ M8 have either quaternionic tangent- or normal spaces. Quantum
classical correspondence (QCC) requires that charges in Cartan algebra co-incide with their
classical counters parts determined as Noether charges by the action principle determining X4

as preferred extremal. Parallelity of 8-momentum currents with tangent space of X4 would
conform with the näıve view about QCC. It does not however hold true for the contributions
to four-momentum coming from string world sheet singularities (string world sheet boundaries
are identified as carriers of quantum numbers), where minimal surface property fails.

An important aspect of M8−H duality is the description of space-time surfaces X4
c ⊂M8

c as
roots for the “real” or “imaginary” part in quaternionic sense of complexified-octonionic polynomial
with real coefficients: these options correspond to complexified-quaternionic tangent - or normal
spaces. The real space-time surfaces would be naturally obtained as “real” parts with respect to i
of their complexified counterparts by projection from M8

c to M4
c . One could drop the subscripts

”c” but in the sequel they are kept.
Remark:Oc,Oc,Cc,Rc will be used in the sequel for complexifications of octonions, quater-

nions, etc.. number fields using commuting imaginary unit i appearing naturally via the roots of
real polynomials.

M8−H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions.

1. Space-time surface is identified as a 4-D root for a Hc-valued “imaginary” or “real” part of
Oc valued polynomial obtained as an Oc continuation of a real polynomial P with rational
coefficients, which can be chosen to be integers. For P (x) = xn+ .. ordinary roots are algebraic
integers. The 4-D space-time surface is projection of this surface from M8

c to M8.
The tangent space of space-time surface and thus space-time surface itself contains a preferred
M2
c ⊂ M4

c or more generally, an integrable distribution of tangent spaces M2
c (x). The string

world sheet like entity defined by this distribution is 2-D surface X2
c ⊂ X4

c in Rc sense.
X2c can be fixed by posing to the non-vanishing Qc-valued part of octonionic polynomial con-
dition that the Cc valued “real” or “imaginary” part in Cc sense for this polynomial vanishes.
M2
c would be the simplest solution but also more general complex sub-manifolds X2

c ⊂ M4
c

are possible. In general one would obtain book like structures as collections of several string
world sheets having real axis as back.
By assuming that Rc-valued “real” or “imaginary” part of the polynomial at this 2-surface
vanishes. one obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary
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unit or distribution of the imaginary unit having interpretation as complexified string. To-
gether these kind 1-D surfaces in Rc sense would define local quantization axis of energy and
spin. The outcome would be a realization of the hierarchy R→Cc → Hc → Oc realized as
surfaces.
Remark: Also M4

c appears as a special solution for any polynomial P . M4
c seems to be like

a universal reference solution with which to compare other solutions. M4
c would intersect all

other solutions along string world sheets X2
c . Also this would give rise to a book like structures

with 2-D string world sheet representing the back of given book. The physical interpretation
of these book like structures remains open in both cases.
I have proposed that string world sheets as singularities correspond to 2-D folds of space-
time surfaces at which the dimension of the quaternionic tangent space degenerates from 4 to
2 [L75] [K10]. This interpretation is consistent with the identification as a book like structure
with 2-pages. Also 1-D real and imaginary manifols could be interpreted as folds or equivalently
books with 2 pages.

2. Associativity condition for tangent-/normal space is second essential condition and means
that tangent - or normal space is quaternionic. The conjecture is that the identification in
terms of roots of polynomials guarantees this and one can formulate this as rather convincing
argument [L47, L48, L49].

One cannot exclude rational functions and or even real analytic functions in the sense that
Taylor coefficients are octonionically real (propotional to octonionic real unit). Number theoret-
ical vision - adelic physics [L52], suggests that polynomial coefficients are rational or perhaps in
extensions of rationals. The real coefficients could in principle be replaced with complex numbers
a + ib, where i commutes with the octonionic units and defines complexifiation of octonions. i
appears also in the roots defining complex extensions of rationals.

1. In general the zero loci for imaginary or real part are 4-D but the 7-D light-cone δM8
+ of M8

with tip at the origin of coordinates is an exception [L46]. At δM8
+ the octonionic coordinate

o is light-like and one can write o = re, where 8-D time coordinate and radial coordinate are
related by t = r and one has e = (1 + er)/

√
2 such that one as e2 = e.

Polynomial P (o) can be written at δM8
+ as P (o) = P (r)e and its roots correspond to 6-spheres

S6 represented as surfaces tM = t = rN , rM =
√
r2
N − r2

E ≤ rN , rE ≤ rN , where the value
of Minkowski time t = r = rN is a root of P (r) and rM denotes radial Minkowski coordinate.
The points with distance rM from origin of t = rN ball of M4 has as fiber 3-sphere with radius
r =

√
r2
N − r2

E . At the boundary of S3 contracts to a point.

2. These 6-spheres are analogous to 6-D branes in that the 4-D solutions would intersect them
in the generic case along 2-D surfaces X2. The boundaries rM = rN of balls belong to the
boundary of M4 light-cone. In this case the intersection would be that of 4-D and 3-D surface,
and empty in the generic case (it is however quite not clear whether topological notion of
“genericity” applies to octonionic polynomials with very special symmetry properties).

3. The 6-spheres tM = rN would be very special. At these 6-spheres the 4-D space-time surfaces
X4 as usual roots of P (o) could meet. Brane picture suggests that the 4-D solutions connect
the 6-D branes with different values of rn.
The basic assumption has been that particle vertices are 2-D partonic 2-surfaces and light-like
3-D surfaces - partonic orbits identified as boundaries between Minkowskian and Euclidian
regions of space-time surface in the induced metric (at least at H level) - meet along their 2-D
ends X2 at these partonic 2-surfaces. This would generalize the vertices of ordinary Feynman
diagrams. Obviously this would make the definition of the generalized vertices mathematically
elegant and simple.
Note that this does not require that space-time surfaces X4 meet along 3-D surfaces at S6.
The interpretation of the times tn as moments of phase transition like phenomena is suggestive.
ZEO based theory of consciousness suggests interpretation as moments for state function
reductions analogous to weak measurements ad giving rise to the flow of experienced time.

4. One could perhaps interpret the free selection of 2-D partonic surfaces at the 6-D roots as initial
data fixing the 4-D roots of polynomials. This would give precise content to strong form of
holography (SH), which is one of the central ideas of TGD and strengthens the 3-D holography
coded by ZEO alone in the sense that pairs of 3-surfaces at boundaries of CD define unique
preferred extremals. The reduction to 2-D holography would be due to preferred extremal
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property realizing the huge symplectic symmetries and making M8 − H duality possible as
also classical twistor lift.
I have also considered the possibility that 2-D string world sheets in M8 could correspond to
intersections X4∩S6? This is not possible since time coordinate tM constant at the roots and
varies at string world sheets.
Note that the compexification of M8 (or equivalently octonionic E8) allows to consider also
different variants for the signature of the 6-D roots and hyperbolic spaces would appear for
(ε1, εi, .., ε8), epsiloni = ±1 signatures. Their physical interpretation - if any - remains open
at this moment.

5. The universal 6-D brane-like solutions S6
c have also lower-D counterparts. The condition

determining X2 states that the Cc-valued “real” or “imaginary” for the non-vanishing Qc-
valued “real” or “imaginary” for P vanishes. This condition allows universal brane-like solution
as a restriction of Oc to M4

c (that is CDc) and corresponds to the complexified time=constant
hyperplanes defined by the roots t = rn of P defining “special moments in the life of self”
assignable to CD. The condition for reality in Rc sense in turn gives roots of t = rn a hyper-
surfaces in M2

c .

8.4.2 M8 −H duality at the level of momentum space

M8 −H duality occurs also at the level of momentum space and has different meaning now.

1. At M8 level 8-momenta are quaternionic and light-like. The choices of M4
L ⊃ M2 for which

8-momentum in M4
L, are parameterized by CP2 parameterizing also the choices of tangent or

normal spaces of X4 ⊂M8 at space-time level. This maps M8 light-like momenta to light-like
M4
L momenta and to CP2 point characterizing the M4 and depending on 8-momentum. One

can introduce CP2 wave functions expressible in terms of spinor harmonics and generators of
of a tensor product of Super-Virasoro algebras.

2. For a fixed choice M4
T momenta in general time-like and the E4 component of 8-momentum has

value equal to mass squared. E4 momenta are points of 3-sphere so that SO(3) harmonics with
SO(4) symmetry could parametrize the states. The quantum numbers are M4

T ⊃M2 momenta
with fixed mass and the two angular momenta with identical values for S3 harmonics, which
correspond to the quantum states of a spherical quantum mechanical rigid body, and are given
by the matrix elements Dj

m,n SU(2) group elements (SO(4) decomposes to SU(2)L)×SU(2)R
acting from left and right).
This picture suggests what one might call SO(4) − SU(3) duality at the level of momentum
space. There would be two descriptions of states: as massless states with SU(3) symmetry
and massive states with SO(4) symmetry.

3. What about the space formed by the choices of the space of the light-like 8-momenta? This
space is the space for the choices of preferred M2 and parameterized by the 6-D (symmetric
space G2/SU(3), where SU(3) ⊂ G2 leaving complex plane M2 invariant is subgroup of
quaternionic automorphic group G(2) leaving octonionic real unit defining the rest system
invariant. This space is moduli space for octonionic structures each of which defines family
of space-time surfaces. 8-D Lorent transformations produce even more general octonionic
structures. The space for the choices of color quantization axes is SU(3)/U(1) × U(1), the
twistor space of CP2.

Do M4
L and M4

T have analogs at the space-time level?

As found, the solutions of octonionic polynomials consisting of 4-D roots and special 6-D roots
coming as 6-sphere S6 s at 7-D light-cone of M8. The roots at t = r light-cone boundary are given
by the roots r = rN of the polynomial P (t) and correspond to M4 slices tM = rN , rM ≤ rN . At
point rM S3 fiber as radius r(S3) =

√
r2
N − r2

M and contracts to a point at its boundaries.
Could M4

L and MT have analogies at the space-time level?

1. The sphere S3 associated M4
T could have counterpart at the level of space-time description.

The momenta in M4
T would naturally be mapped to momenta in the section t = rn in this

case the S3:s of different mass squared values would naturally correspond to S3:s assignable
to the points of the balls t = rn and code for mass squared value.
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The counterpart of M4
L should correspond to light-cone boundary but what does CP2 corre-

spond? Could the pile of S3 associated with t = rn correspond also to CP2. Could this be
the case if there is wormhole contact carrying monopole flux at the origin so that the analog
for the replacement of 3-sphere at rCP2

=∞ with homologically non-trivial 2-sphere would be
realized?

2. Does the 6-sphere as a root polynomial have counterpart in H? The image should be consistent
with M8−H duality and correspond to a fixed structure depending on the root rn only. Since
S3 associated with the E4 momenta reduces to a point for M4

L, the natural guess is that S6

reduces to t = rn, 0 ≤ rM ≤ rn surface in H.

S3 − CP2 duality

S3−CP2 duality at the level of quantum numbers suggest strongly itself. What does this require?
One can approach the problem from two different perspectives.

1. The first approach would be that the representations of SU(3) and SO(4) groups somehow
correspond to each other: one could speak of SU(3)−SO(4) duality [K96, K111]. The original
form of this duality was this. The color symmetries of quark physics at high energies would
be dual to the SO(4) = SU(2)L × SU(2)R symmetries of the low energy hadron physics.
Since the physical objects are partons and hadrons formed from the one cannot expect the
duality to hold true at the level of details for the representations, and the comparison of the
representations makes this clear.

2. The second approach relies on the notion of cognitive representation meaning discretization
of CP2 and S3 and counting of points of cognitive representations providing discretization in
terms of M8 or H points belonging to the extension of rationals considered. In this case it is
more natural to talk about S3 − CP2 duality.
The basic observation is that the open region 0 ≤ r < ∞ of CP2 in Eguchi-Hanson coordi-
nates with r labeling 3-spheres S3(r) with finite radius can be regarded as pile of S3(r). In
discretization one would have discrete pile of these 3-spheres with finite number of points in
the extension of rationals. They points of given S3 could be related by isometries in special
cases.

How S3 − CP2 duality at the level of light-like M8 momenta could emerge?

1. Consider first the situation in which one chooses M4 ⊃ M2 sub-spaces so that momentum
projection to it is light-like. For cognitive representation the choices of M4 ⊃M2 correspond
to ad discrete set of points of CP2 and thus points in the pile of S3 with discrete radii since all
E4 parts of momenta with fixed length squared to zero in this choice and each E4 momentum
with fixed lengthand thus identifiable as discrete point of S3 would correspond to one choice.
All these choices would give rise to a pile of S3:s identifiable as set 0 ≤ r < ∞ of CP2. The
number of CP2 points would be same as total number of points in the pile of discrete S3s.
This is what S3 − CP2 duality would say.
Remark: The volumes of CP2 and S3 with unit radius are 8π2 and 2π2 so that ration is
rational number.

2. Consider now the situation for M4
T so that one has non-vanishing M4 mass squared equal to

E4 mass squared, having discretized values. The E4 would momenta correspond to points
for a pile of discretized S3 and thus to the points of CP2 by above argument. One would
have S3 − CP2 correspondence also now as one indeed expects since the two ways to see the
situation should be equivalent.

3. In the space of light-like M8 momenta E8 momenta could naturally organize into repre-
sentations of finite discrete subgroups of SU(2) appearing in McKay correspondence with
ADE groups: the groups are cyclic groups, dihedral groups, and the isometry groups as-
sociated with tetrahedron, octahedron (cube) and icosahedron (dodecahedron) (see http:

//tinyurl.com/yyyn9p95).

4. Could a concrete connection with the inclusion hierarchy of HFFs be based on increasing
momentum resolution realized in terms of these groups at sphere S3. Notice however that
for cyclic and dihedral groups the orbits are circles and pairs of circles for dihedral groups so
that the discretization looks too simple and is rotationally asymmetric. Discretization should
improve as n increases.

http://tinyurl.com/yyyn9p95
http://tinyurl.com/yyyn9p95
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One can of course ask why Cn and Dn with single direction of rotation axes would appear?
Could it be that the directions of rotation axis correspond to the directions defined by the
vertices of the 5 Platonic solids. Or could the orbits of fixed axis under the 5 Platonic orbits
be allowed. Also this looks still too simple.
Could the discretization labelled by nmax be determined by the product of the groups up
to nmax and define a group with infinite order. One can consider also groups defined by
subsets {n1, n2...n3} and these a pair of sequences with larger sequence containing the smaller
one could perhaps define an inclusion. The groups Cn and Dn allow prime decomposition in
obvious manner and it seems enough to include to the product only the groups Cp and Dp,
where p is prime as generators so that one would have set {p1, ...pn} of primes labelling these
groups besides the Platonic groups. The extension of rationals used poses a cutoff on the
number of groups involved and on the group elements representable since since too high roots
of unity resulting in the multiplication of Cpi and Dpj do not belong to the extension.
At the level of momentum space the hierarchy of finite discrete groups of SU(2) would define
the notion measurement resolution. The discrete orbits of SU(2)×U(1) at S3 would be anal-
ogous to tessellations of sphere S2 known as Platonic solids at sphere S2 and appearing in the
ADE correspondence assignable to Jones inclusions as description of measurement resolution.
This would also explain also why Z2 coverings of the subgroups of SO(3) appear in ADE
sequence.
This picture is probably not enough for the needs of adelic physics [L52] allowing all extensions
of rationals. Besides roots of unity only the roots of small integers 2, 3, 5 associated with the
geometry of Platonic solids would be included in these discretizations. One could interpret
these discretizations in terms of subgroups of discrete automorphism groups of quaternions.
Also the extensions of rationals are probably needed.

Could S3−CP2 duality make sense at space-time level? Consider the space-time analog for
the projection of M8 momenta to fixed M4

T .

1. Suppose that the 3-surfaces determining the space-time surfaces as algebraic surfaces in X4 ⊂
M8 are given at the surfaces t = rN , rM ≤ rN and have a 3-D fiber which should be surface in
CP2. On can assign to each point of this ball S3(rM ) with radius going to zero at rM = rN .
One has pile of S3(rM ) which corresponds to the region 0 ≤ r < ∞ of CP2. This set is
discretized. Suppose that the discretization is like momentum discretization. If so, the points
would correspond to points of CP2. It is not however clear why the discretization should be
so symmetric as in momentum discretization.

2. The initial values could be chosen by choosing discrete set of points in this pile of S3:s and this
would give rise to a discrete set of points of CP2 fixing tangent or normal plane of X4 at these
points. One should show that the selection of a point of S6 at each point indeed determines
quaternionic tangent or normal plane plane for a given polynomial P (o) in M8.

It would seem that this correspondence need not hold true.

8.4.3 M8 −H duality and the two ways to describe particles

The isometry groups for M4 × CP2 is P × SU(3) (P for Poincare group). The isometry group
for M8 = M4 × E4 with a fixed choice of M4 breaks down to P × SO(4). A further breaking by
selection M4 ⊂M2 of preferred octonionic complex plane M2 necessary in the algebraic approach
to space-time surfaces X4 ⊂M8 brings in preferred rest system and reduces the Poincare symmetry
further. At the space-time level the assumption that the tangent space of X4 contains fixed M2

or at least integral distribution of M2(x) ⊂M4 is necessary for M8 −H duality [L46].

The representations SO(4) and SU(3) could provide alternative description of physics so
that one would have what I have called SO(4)−SU(3) duality [K96]. This duality could manifest in
the description of strong interaction physics in terms of hadrons and quarks respectively (conserved
vector current hypothesis and partially conserved axial current hypothesis based on Spin(SO(4)) =
SU(2)×SU(2)R. The challenge is to understand in more detail this duality. This could allow also
to understand better how the two twistor descriptions might relate.

SO(4)− SU(3) duality implies two descriptions for the states and scattering amplitudes.

Option I: One uses projection of 8-momenta to a fixed M4
T ⊃M2.
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Option II: One assumes that M4
L ⊃M2 is defines the frame in which quaternionic octonion

momentum is parallel to M4
L: this M4

L depends on particle state and describes this dependence in
terms of wave function in CP2.

Option I: fixed M4
T ⊃M2

For Option I the description would be in terms of a fixed M4
T ⊂ M8 = M4

T × E4 and M2 ⊂ M4
T

fixed for both options. For given quaternionic light-like M8 momentum one would have projection
to M4

T , which is in general massive. E4 momentum would have same the length squared by
light-likeness.

De-localization M4
T mass squared equal to p2(M4

T ) = m2 in E4 can be described in terms
of SO(4) harmonics at sphere having p2(E4) = m2. This would be the description applied to
hadrons and leptons and particles treated as massive particles. Particle mass would be due to the
fixed choice of M4

T . What dictates this choice is an interesting question. An interesting question is
how these descriptions relate to QFT Higgs mechanism as (in principle) alternative descriptions:
the choice of fixed M4

T could be seen as analog for the generation of vacuum expectation of Higgs
selecting preferred direction in the space of Higgs fields.

Option II: varying M4
L ⊃M2

For Option II the description would use M4
L ⊃M2, which is not fixed but chosen so that it contains

light-like M8 momentum. This would give light-like momentum in M4
L identifiable as quaternionic

sub-space of complexified octonions.

1. One could assign to the state wave function function for the choices of M4 and by quaternion-
icity of 8-momenta this would correspond to a state in super-conformal representation with
vanishing M4

L mass: CP2 point would code the information about E4 component light-like
8-momentum. This description would apply to the partonic description of hadrons in terms of
massless quarks and gluons.

2. For this option one could use the product of ordinary M4 twistors and CP2 twistors. One
challenge would be the generalization of the twistor description to the case of CP2 twistors.

p-Adic particle massivation and ZEO

The two pictures about description of light-like M8 momenta do not seem to be quite consistent
with the recent view about TGD in which H-harmonics describe massivation of massless particles.
What looks like a problem is following.

1. The resulting particles are massive in M4. But they should be massless in M4×CP2 descrip-
tion. The non-vanishing mass would suggest the correct description in terms of Option I for
which the description in terms of E4 momenta with length equal to mass and thus identifiable
as points of S3. Momentum space wave functions at S3 - essentially rigid body wave func-
tions given by representation matrices of SU(2) could characterize the states rather than CP2

harmonic.

2. The description based on CP2 color partial waves however works and this would favor Option
II with vanishing M4 mass. What goes wrong?

To understand what might be involved, consider p-adic mass calculations.

1. The massivation of physical fermion states includes also the action of super-conformal gen-
erators changing the mass. The particles are originally massless and p-adic mass squared is
generated thermally and mapped to real mass squared by canonical identification map.
For CP2 spinor harmonics mass squared is of order CP2 mass squared and thus gigantic.
Therefore the mass squared is assumed to contain negative tachyonic ground state contribution
due to the negative half-odd integer valued conformal weight hvac < 0 of vacuum. The origin
of this contribution has remained a mystery in p-adic thermodynamics but it makes possible
to construct massless states. hvac cancels the spinorial contributions and the contribution
from positive conformal weights of super-conformal generators so that the particle states are
massless before thermalization. This would conform with the idea of using varying M4

L and
thus CP2 description.
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2. What does the choice of M4 mean in terms of super-conformal representations? Could the
mysterious vacuum conformal weight hvac provide a description for the effect of the needed
SU(3) rotation of M4 from standard orientation on super-conformal representation. The effect
would be very simple and in certain sense reversal to the effect of Higgs vacuum expectation
value in that it would cancel mass rather than generate it.
An important prediction would be that heavy states should be absent from the spectrum in
the sense that mass squared would be p-adically of order O(p) or O(p2) (in real sense of order
O(1/p) or O(1/p2)). The trick would be that the generation of h0 as a representation of SU(3)
rotation of M4 makes always the dominating contribution to the mass of the state vanishing.
Remark: If the canonical identification I mapping the p-adic mass integers to their real
numbers is of the simplest form m =

∑
n xnp

n → I(m) =
∑
n xnp

−n, it can happen that the
image of rational m/n with p-adic norm not larger than 1 represented as p-adic integer by
expanding it in powers of p, can be near to the maximal value of p and the mass of the state
can be of order CP2 mass - about 10−4 Planck masses. If the canonical identification is defined
as m/n→ I/(m)/I(n) the image of the mass is small for small values of m and n.

3. Unfortunately, it is easy to get convinced that this explanation of hvac is not physically at-
tractive. Identical mass spectra at the level of M8 and H looks like a natural implication of
M8 − H-duality. SU(3) rotation of M4 in M8 cannot however preserve the general form of
M4 × CP2 mass squared spectrum for the M4 projections of M8 momenta at level of M8.
Remark: For H = M4 × CP2 the mass squared in given representation of Super-conformal
symmetries is given as a sum of CP2 mass squared for the spinor harmonic determining the
ground state and of a Virasoro contribution proportional to a non-negative integer. The masses
are required to independent of electroweak quantum numbers.

One can imagine two further identifications for the origin of hvac.

1. Take seriously the possibility of complex momenta allowed by the complexification of M8 by
commuting imagine unit i and also suggested by the generalization of the twistorialization. The
real and imaginary parts of light-like complex 8-momenta p8 = p8,Re + ip8,Im are orthogonal
to each other: p8,Re · p8,Im = 0 so that both real and imaginary parts of p8 are light-like:
p2

8,Re = p2
8,Im = 0. The M4 mass squared can be written has m2 = m2

Re −m2
Im with hvac ∝

−m2
Im. The representations of Super-conformal algebra would be labelled by hvac ∝ m2

Im.
Could the needed wrong sign contribution to CP2 mass squared mass make sense? CP2

type extremals having light-like geodesic as M4 projection are locally identical with CP2 but
because of light-like projection they can be regarded as CP2 with a hole and thus non-compact.
Boundary conditions allow analogs of CP2 harmonics for which spinor d’Alembertian would
have complex eigenvalues.
Does quantum-classical correspondence allow complex momenta: can the classical four-momenta
assignable to 6-D Kähler action be complex? The value of Kähler coupling strength allows the
action to have complex phase but parts with different phases are not allowed. Could the imag-
inary part to 4-momentum could come from the CP2 type extremal with Euclidian signature
of metric?

2. Second - not necessarily independent - idea relies on the observation that in TGD one has
besides the usual conformal algebra acting on complex coordinate z also its analog acting on
the light-like radial coordinate r of light-cone boundary. At light-cone boundary one has both
super-symplectic symmetries of ∆M4

+ × CP2 and extension of super-conformal symmetries of
sphere S2 to analogs of conformal symmetries depending on z and r and it seems that one
must chose between these two options. Also the extension of ordinary Kac-Moody algebra acts
at the light-like orbits of partonic 2-surfaces.
There are two scaling generators: the usual L0 = zd/dz and the second generator L0,1 =
ird/dr. For L0,1 at light-cone boundary powers of zn are replaced with (r/r0)ik = exp(iku),
u = log(r/r0)). Could it be that mass squared operator is proportional to L0 + L0,1 having
eigenvalues h = n − k? The absence of tachyons requires h ≥ 0. Could k characterize
given Super-Virasoro representation? Could k ≥ 0 serve as an analog of positive energy
condition allowing to analytically continue exp(iku) to upper u-plane? How to interpret this
continuation?
The 3-D generalization of super-symplectic symmetries at light-cone boundary and extended
Ka-Moody symmetries at partonic 2-surfaces should be possible in some sense. Could the
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continuation to the upper u-plane correspond to the continuation of the extended conformal
symmetries from light-cone boundary to future light-one and from light-partonic 2-surfaces to
space-time interior?

Why p-adic massivation should occur at all? Here ZEO comes in rescue.

1. In ZEO one can have superposition of states with different 4-momenta, mass values and also
other charges: this does not break conservation laws. How to fix M4 in this case? One
cannot do it separately for the states in superposition since they have different masses. The
most natural choices is as the M4 associated with the dominating contribution to the zero
energy state. The outcome would be thermal massivation described excellently by p-adic
thermodynamics [K60]. Recently a considerable increase in the understanding of hadron and
weak boson masses took place [L89].

2. In ZEO quantum theory is square root of thermodynamics in a well-defined formal sense, and
one can indeed assign to p-adic partition function a complex square root as a genuine zero
energy state. Since mass varies, one must describe the presence of higher mass excitations in
zero energy state as particles in M4 assigned with the dominating part of the state so that the
observed particle mass squared is essentially p-adic thermal expectation value over thermal
excitations. p-Adic thermodynamics would thus describe the fact that the choice of M4

L cannot
not ideal in ZEO and massivation would be possible only in ZEO.

3. Current quarks and constituent quarks are basic notions of hadron physics. Constituent quarks
with rather large masses appear in the low energy description of hadrons and current quarks
in high energy description of hadronic reactions. That both notions work looks rather para-
doxical. Could massive quarks correspond to MT picture and current quarks to M4

L picture
but with p-adic thermodynamics forced by the superposition of mass eigenstates with different
masses.
The massivation of ordinary massless fermion involves mixing of fermion chiralities. This
means that the SU(3) rotation determined by the dominating component in zero energy state
must induce this mixing. This should be understood.

8.4.4 M8 −H duality and consciousness

M8 −H duality is one of the key ideas of TGD and one can ask whether it has implications for
TGD inspired theory of consciousness and it indeed forces to challenge the recent ZEO based view
about consciousness [L54] .

Objections against ZEO based theory of consciousness

Consider first objections against ZEO based view about consciousness.

1. ZEO (zero energy ontology) based view about conscious entity can be regarded as a sequence of
“small” state function reductions (SSRs) identifiable as analogs of so called weak measurements
at the active boundary of causal diamond (CD) receding reduction by reduction farther away
from the passive boundary, which is unchanged as also the members of state pairs at it. One
can say that weak measurements commute with the observables, whose eigenstates the states
at passive boundary are. This asymmetry assigns arrow of time to the self having CD as
embedding space correlate. “Big” state function reductions (BSRs) would change the roles of
boundaries of CD and the arrow of time. The interpretation is as death and re-incarnation of
the conscious entity with opposite arrow of time.
The question is whether quantum classical correspondence (QCC) could allow to say something
about the time intervals between subsequent values of temporal distance between weak state
function reductions.

2. The questionable aspect of this view is that tM = constant sections look intuitively more
natural as seats of quantum states than light-cone boundaries forming part of CD boundaries.
The boundaries of CD are however favoured by the huge symplectic symmetries assignable to
the boundary of M4 light-cone with points replaced with CP2 at level of H. These symmetries
are crucial or the existence of the geometry of WCW (“world of classical worlds”).

3. Second objection is that the size of CD increases steadily: this nice from the point of view
of cosmology but the idea that CD as correlate for a conscious entity increases from CP2
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size to cosmological scales looks rather weird. For instance, the average energy of the state
assignable to either boundary of CD would increase. Since zero energy state is a superposition
of states with different energies classical conservation law for energy does not prevent this [L82]:
essentially quantal effect due to the fact that the zero energy states are not exact eigenstates
of energy could be in question. In BSRs the energy would gradually increase. Admittedly this
looks strange and one must be keen for finding more conventional options.

4. Third objection is that re-incarnated self would not have any “childhood” since CD would
increase all the time.

One can ask whether M8 − H duality and this braney picture has implications for ZEO
based theory of consciousness. Certain aspects of M8−H duality indeed challenge the recent view
about consciousness based on ZEO (zero energy ontology) and ZEO itself.

1. The moments t = rn defining the 6-branes correspond classically to special moments for which
phase transition like phenomena occur. Could t = rn have a special role in consciousness
theory?

(a) For some SSRs the increase of the size of CD reveals new t = rn plane inside CD. One
can argue that these SSRS define very special events in the life of self. This would not
modify the original ZEO considerably but could give a classical signature for how many
ver special moments of consciousness have occurred: the number of the roots of P would
be a measure for the lifetime of self and there would be the largest root after which BSR
would occur.

(b) Second possibility is more radical. One could one think of replacing CD with single trun-
cated future- or past-directed light-cone containing the 6-D universal roots of P up to some
rn defining the upper boundary of the truncated cone? Could t = rn define a sequence of
moments of consciousness? To me it looks more natural to assume that they are associated
with very special moments of consciousness.

2. For both options SSRs increase the number of roots rn inside CD/truncated light-one gradually
and thus its size? When all roots of P (o) would have been measured - meaning that the largest
value rmax of rn is reached -, BSR would be unavoidable.
BSR could replace P (o) with P1(r1 − o): r1 must be real and one should have r1 > rmax.
The new CD/truncated light-cone would be in opposite direction and time evolution would
be reversed. Note that the new CD could have much smaller size size if it contains only the
smallest root r0. One important modification of ZEO becomes indeed possible. The size of
CD after BSR could be much smaller than before it. This would mean that the re-incarnated
self would have “childhood” rather than beginning its life at the age of previous self - kind of
fresh start wiping the slate clean.
One can consider also a less radical BSR preserving the arrow of time and replacing the
polynomial with a new one, say a polynomial having higher degree (certainly in statistical
sense so that algebraic complexity would increase).

Could one give up the notion of CD?

A possible alternative view could be that one the boundaries of CD are replaced by a pair of two
t = rN snapshots t = r0 and t = rN . Or at least that these surfaces somehow serve as correlates
for mental images. The theory might allow reformulation also in this case, and I have actually
used this formulation in popular lectures since it is easier to understand by laymen.

1. Single truncated light-cone, whose size would increase in each SSR would be present now since
the spheres correspond to balls of radius rn at times rn. If r0 = 0, which is the case for
P (o) ∝ o, the tip of the light-cone boundary is one root. One cannot avoid association with
big bang cosmology. For P (0) 6= r0 the first conscious moment of the cosmology corresponds
to t = r0. One can wonder whether the emergence of consciousness in various scales could be
described in terms of the varying value of the smallest root r0 of P (o).
If one allows BSR:s this picture differs from the earlier one in that CDs are replaced with
alternation of light-cones with opposite directions and their intersections would define CD.

2. For this option the preferred values of t for SSRs would naturally correspond to the roots of
the polynomial defining X4 ⊂ M8. Moments of consciousness as state function reductions
would be due to collisions of 4-D space-time surfaces X4 with 6-D branes! They would replace
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the sequence of scaled CD sizes. CD could be replaced with light-one and with the increasing
sequence (r0, ...rn) of roots defining the ticks of clock and having positive and negative energy
states at the boundaries r0 and rn.

3. What could be the interpretation for BSRs representing death of a conscious entity in the
new variant of ZEO? Why the arrow of time would change? Could it be because there are
no further roots of P (o)? The number of roots of P (o) would give the number of small state
function reductions?
What would happen to P (o) in BSR? The vision about algebraic evolution as increase of the
dimension for the extension of rationals would suggest that the degree of P (o) increases as
also the number of roots if all complex roots are allowed. Could the evolution continue in the
same direction or would it start to shift the part of boundary corresponding to the lowest root
in opposite direction of time. Now one would have more roots and more algebraic complexity
so that evolutionary step would occur.
In the time reversal one would have naturally tmax ≥ rnmax for the new polynomial P (t−tmax)
having rnmax as its smallest root. The light-cone in M8 with tip at t = tmax would be in
opposite direction now and also the slices t− tmax = r′n would increase in opposite direction!
One would have two light-cones with opposite directions and the t = rn sections would replace
boundaries of CDs. The reborn conscious entity would start from the lowest root so that also
it would experience childhood.

This option could solve the argued problems of the previous scenario and give concrete
connection with the classical physics in accordance with QCC. On the other hand, a minimal
modification of original scenario combined with M8 −H duality with moments t = rn as special
moments in the life of conscious entity allows also to solve these problems if the active boundary
of CD is interpreted as boundary beyond which classical signals cannot contribute to perceptions.

What could be the minimal modification of ZEO based view about consciousness?

What would be the minimal modification of the earlier picture? Could one assume that CDs serve
as embedding space correlates for the perceptive field?

1. Zero energy states would be defined as before that is in terms of 3-surfaces at boundaries of
CD: this would allow a realization of huge symmetries of WCW and the active boundary A of
CD would define the boundary of the region from which self can receive classical information
about environment. The passive boundary P of CD would define the boundary of the region
providing classical information about the state of self. Also now BSR would mean death and
reincarnation with an opposite arrow of time. Now however CD would shrink in BSR before
starting to grow in opposite time direction. Conscious entity would have “childhood”.

2. If the geometry of CD were fixed, the size scale of the t = rn balls of M4 would first increase
and then start to decrease and contract to a point eventually at the tip of CD. One must
however remember that the size of t = rn planes increases all the time as also the size of
CD in the sequences of SSRs. Moments t = rn could represent special moments in the life
of conscious entity taking place in SSRs in which t = rn hyperplane emerges inside CD with
increased size. The recent surprising findings challenging the Bohrian view about quantum
jumps [L69] can be understood in this picture [L69].

3. t = rn planes could also serve as correlates for memories. As CD increases at active boundary
new events as t = rn planes would take place and give rise to memories. The states at
t = rn planes are analogous to seats of boundary conditions in strong holography and the
states at these planes might change in state function reductions - this would conform with the
observations that our memories are not absolute.

To sum up, the original view about ZEO seems to be essentially correct. The introduction of
moments t = rn as special moments in the life of self looks highly attractive as also the possibility
of wiping the slate clear by reduction of the size of CD in BSR.
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8.5 Could standard view about twistors work at space-time
level after all?

While asking what super-twistors in TGD might be, I became critical about the recent view con-
cerning what I have called geometric twistor space of M4 identified as M4 × S2 rather than CP3

with hyperbolic metric. The basic motivations for the identification come from M8 picture in
which there is number theoretical breaking of Poincare and Lorentz symmetries. Second moti-
vation was that M4

conf - the conformally compactified M4 - identified as group U(2) [B7] (see

http://tinyurl.com/y35k5wwo) assigned as base space to the standard twistor space CP3 of M4,
and having metric signature (3,-3) is compact and is stated to have metric defined only modulo
conformal equivalence class.

As found in the previous section, TGD strongly suggests that M4 in H = M4×CP2 should
be replaced with hyperbolic variant of CP2, and it seems to me that these spaces are not identical.
Amusingly, U(2) and CP2 are fiber and base in the representation of SU(3) as fiber space so that
the their identification does not seem plausible.

On can however ask whether the selection of a representative metric from the conformal
equivalence class could be seen as breaking of the scaling invariance implied also by ZEO intro-
ducing the hierarchy of CDs in M8. Could it be enough to have M4 only at the level of M8 and
conformally compactified M4 at the level of H? Should one have H = cdconf ×CP2? What cdconf
would be: is it hyperbolic variant of CP2?

8.5.1 Getting critical

The only way to make progress is to become very critical now and then. These moments of almost
despair usually give rise to a progress. At this time I got very critical about the TGD inspired
identification of twistor spaces of M4 and CP2 and their properties.

Getting critical about geometric twistor space of M4

Let us first discuss the recent picture and how to modify it so that it is consistent with the hierarchy
of CDs. The key idea is that the twistor space and its base space represents CD so that one obtains
scale hierarchy of twistor spaces as a realization of broken scale invariance giving rise to the p-adic
length scale hierarchy.

1. I have identified the twistor space of M4 simply as T (M4) = M4 × S2. The interpretation
would be at the level of octonions as a product of M4 and choices of M2 as preferred complex
sub-space of octonions with S2 parameterizing the directions of spin quantization axes. Real
octonion axis would correspond to time coordinate. One could talk about the space of of
light-like directions. Light-like vector indeed defines M2. This view could be defended by the
breaking of both translation and Lorentz invariance in the octonionic approach due to the
choice of M2 and by the fact that it seems to work.
Remark: M8 = M4 × E4 is complexified to M8

c by adding a commuting imaginary unit i
appearing in the extensions of rationals and ordinary M8 represents its particular sub-space.
Also in twistor approach one uses often complexified M4.

2. The objection is that it is ordinary twistor space identifiable as CP3 with (3,-3) signature of
metric is what works in the construction of twistorial amplitudes. CP3 has metric as compact
space and coset space. Could this choice of twistor space make sense after all as geometric
twistor space?
Here one must pause and recall that the original key idea was that Poincare invariance is
symmetry of TGD for X4 ⊂ M4 × CP2. Now Poincare symmetry has been transformed to a
symmetry acting at the level of M8 in the moduli space of octonion structures defined by the
choice of the direction of octonionic real axis reducing Poincare group to T ×SO(3) consisting
of time translations and rotations. Fixing of M2 reducrs the group to T × SO(2) and twistor
space can be seen as the space for selections of quantization axis of energy and spin.

3. But what about the space H? The first guess is H = M4
conf × CP2. According to [B7] (see

http://tinyurl.com/y35k5wwo) one has M4
conf = U(2) such that U(1) factor is time- like

and SU(2) factor is space-like. One could understand M4
conf = U(2) as resulting by addition

http://tinyurl.com/y35k5wwo
http://tinyurl.com/y35k5wwo
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and identification of metrically 2-D light-cone boundaries at t = ±∞. This is topologically
like compactifying E3 to S3 and gluing the ends of cylinder S3 ×D1 together to the S3 × S1.
The conformally compactified Minkowski space M4

conf should be analogous to base space of

CP3 regarded as bundle with fiber S2. The problem is that one cannot imagine an analog of
fiber bundle structure in CP3 having U(2) as base. The identification H = M4

conf ×CP2 does
not make sense.

4. In ZEO based breaking of scaling symmetry it is CD that should be mapped to the analog of
M4
conf - call it cdconf . The only candidate is cdconf = CP2 with one hypercomplex coordinate.

To understand why one can start from the following picture. The light-like boundaries of
CD are metrically equivalent to spheres. The light-like boundaries at t = ±∞ are identified
as in the case of M4

conf . In the case of CP2 one has 3 homologically trivial spheres defining
coordinate patches. This suggests that cdconf is simply CP2 with second complex coordinate
made hypercomplex. M4 and E4 differ only by the signature and so would do cdconf and CP2.
The twistor spheres of CP3 associated with points of M4 intersect at point if the points differ
by light-like vector so that one has and singular bundle structure. This structure should have
analog for the compactification of CD. CP3 has also bundle structure CP3 → CP2. The S2

fibers and base are homologically non-trivial and complex analogs of mutually orthogonal line
and plane and intersect at single point. This defines the desired singular bundle structure via
the assignment of S2 to each point of CP2.
The M4 points must belong to the interior of cd and this poses constraints on the distance of
M4 points from the tips of cd. One expects similar hierarchy of cds at the level of momentum
space.

5. In this picture M4
conf = U(2) could be interpreted as a base space for the space of CDs with

fixed direction of time axis identified as direction of octonionic real axis associated with various
points of M4 and therefore of M4

conf . For Euclidian signature one would have base and fiber of
the automorphism sub-group SU(3) regarded as U(2) bundle over CP2: now one would have
CP2 bundle over U(2). This is perhaps not an accident, and one can ask whether these spaces
could be interpreted as representing local trivialization of SU(3) as U(2) × CP2. This would
give to metric cross terms between U(2) and CP2.

6. The proposed identification can be tested by looking whether it generalizes. What the twistor
space for entire M8 would be? cd = CD4 is replaced with CD8 and the discussion of the
preceding chapter demonstrated that the only possible identification of the twistor space is
now is as the 12-D hyperbolic variant of HP3 whereas CD8,conf would correspond to 8-D
hyperbolic variant of HP2 analogous to hyperbolic variant of CP2.

The outcome of these considerations is surprising.

1. One would have T (H) = CP3×F and H = CP2,H ×CP2 where CP2,H has hyperbolic metric
with metric signature (1,−3) having M4 as tangent space so that the earlier picture can be
understood as an approximation. This would reduce the construction of preferred extremals of
6-D Kähler action in T (H) to a construction of polynomial holomorphic surfaces and also the
minimal surfaces with singularities at string world sheets should result as bundle projection.
Since M8−H duality must respect algebraic dynamics the maximal degree of the polynomials
involved must be same as the degree of the octonionic polynomial in M8.

2. The hyperbolic variant Kähler form and also spinor connection of hyperbolic CP2 brings in
new physics beyond standard model. This Kähler form would serve as the analog of Kähler
form assigned to M4 earlier, and suggested to explain the observed CP breaking effects and
matter antimatter asymmetry for which there are two explanations [L81].

Some comments about the Minkowskian signature of the hyperbolic counterparts of CP3

and CP2 are in order.

1. Why the metric of CP3 could not be Euclidian just as the metric of F? The basic objection
is that propagation of fields is not possible in Euclidian signature and one completely loses
the earlier picture provided by M4 × CP2. The algebraic dynamics in M8 picture can hardly
replace it.

2. The map assigning to the point M4 a point of CP3 involves Minkowskian sigma matrices but
it seems that the Minkowskian metric of CP3 is not explicitly involved in the construction
of scattering amplitudes. Note however that the antisymmetric bi-spinor metric for the spin
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1/2 representation of Lorentz group and its conjugate bring in the signature. U(2, 2) as
representation of conformal symmetries suggests (2, 2) signature for 8-D complex twistor space
with 2+2 complex coordinates representing twistors.
The signature of CP3 metric is not explicitly visible in the construction of twistor amplitudes
but analytic continuations are carried out routinely. One has also complexified M4 and M8

and one could argue that the problems disappear. In the geometric situation the signatures of
the subspaces differ dramatically. As already found, analytic continuation could allow to define
the variants of twistor spaces elegantly by replacing a complex coordinate with a hyperbolic
one.
Remark: For E4 CP3 is Euclidian and if one has E4

conf = U(2), one could think of replacing

the Cartesian product of twistor spaces with SU(3) group having M4
conf = U(2) as fiber and

CP2 as base. The metric of SU(3) appearing as subgroup of quaternionic automorphisms
leaving M4 ⊂M8 invariant would decompose to a sum of M4

conf metric and CP2 metric plus

cross terms representing correlations between the metrics of M4
conf and CP2. This is probably

mere accident.

M8 −H duality and twistor space counterparts of space-time surfaces

It seems that by identifying CP3,h as the twistor space of M4, one could develop M8 −H duality
to a surprisingly detailed level from the conditions that the dimensional reduction guaranteed by
the identification of the twistor spheres takes place and the extensions of rationals associated with
the polynomials defining the space-time surfaces at M8- and twistor space sides are the same.
The reason is that minimal surface conditions reduce to holomorphy meaning algebraic conditions
involving first partial derivatives in analogy with algebraic conditions at M8 side but involving no
derivatives.

1. The simplest identification of twistor spheres is by z1 = z2 for the complex coordinates of the
spheres. One can consider replacing zi by its Möbius transform but by a coordinate change
the condition reduces to z1 = z2.

2. AtM8 side one has either RE(P ) = 0 or IM(P ) = 0 for octonionic polynomial obtained as con-
tinuation of a real polynomial P with rational coefficients giving 4 conditions (RE/IM denotes
real/imaginary part in quaternionic sense). The condition guarantees that tangent/normal
space is associative.
Since quaternion can be decomposed to a sum of two complex numbers: q = z1 +Jz2 RE(P ) =
0 correspond to the conditions Re(RE(P )) = 0 and Im(RE(P )) = 0. IM(P ) = 0 in turn
reduces to the conditions Re(IM(P )) = 0 and Im(IM(P )) = 0.

3. The extensions of rationals defined by these polynomial conditions must be the same as at the
octonionic side. Also algebraic points must be mapped to algebraic points so that cognitive
representations are mapped to cognitive representations. The counterparts of both RE(P ) = 0
and IM(P ) = 0 should be satisfied for the polynomials at twistor side defining the same
extension of rationals.

4. M8 −H duality must map the complex coordinates z11 = Re(RE) and z12 = Im(RE) (z21 =
Re(IM) and z22 = Im(IM)) at M8 side to complex coordinates ui1 and ui2 with ui1(0) = 0
and ui2(0) = 0 for i = 1 or i = 2, at twistor side.
Roots must be mapped to roots in the same extension of rationals, and no new roots are allowed
at the twistor side. Hence the map must be linear: ui1 = aizi1 + bizi2 and ui2 = cizi1 + dizi2
so that the map for given value of i is characterized by SL(2,Q) matrix (ai, bi; ci, di).

5. These conditions do not yet specify the choices of the coordinates (ui1, ui2) at twistor side.
At CP2 side the complex coordinates would naturally correspond to Eguchi-Hanson complex
coordinates (w1, w2) determined apart from color SU(3) rotation as a counterpart of SU(3)
as sub-group of automorphisms of octonions.
If the base space of the twistor space CP3,h of M4 is identified as CP2,h, the hyper-complex
counterpart of CP2, the analogs of complex coordinates would be (w3, w4) with w3 hypercom-
plex and w4 complex. A priori one could select the pair (ui1, ui2) as any pair (wk(i), wl(i)),
k(i) 6= l(i). These choices should give different kinds of extremals: such as CP2 type extremals,
string like objects, massless extremals, and their deformations.
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String world sheet singularitees and world-line singularities as their light-like boundaries at
the light-like orbits of partonic 2-surfaces are conjectured to characterize preferred extremals as
surfaces of H at which there is a transfer of canonical momentum currents between Kähler and
volume degrees of freedom so that the extremal is not simultaneously an extremal of both Kähler
action and volume term as elsewhere. What could be the counteparts of these surfaces in M8?

1. The interpretation of the pre-images of these singularities in M8 should be number theoretic
and related to the identification of quaternionic imaginary units. One must specify two non-
parallel octonionic imaginary units e1 and e2 to determine the third one as their cross product
e3 = e1 × e2. If e1 and e2 are parallel at a point of octonionic surface, the cross product
vanishes and the dimension of the quaternionic tangent/normal space reduces from D = 4 to
D = 2.

2. Could string world sheets/partonic 2-surfaces be images of 2-D surfaces in M8 at which this
takes place? The parallelity of the tangent/normal vectors defining imaginary units ei, i = 1, 2
states that the component of e2 orthogonal to e1 vanishes. This indeed gives 2 conditions in
the space of quaternionic units. Effectively the 4-D space-time surface would degenerate into
2-D at string world sheets and partonic 2-surfacesa as their duals. Note that this condition
makes sense in both Euclidian and Minkowskian regions.

3. Partonic orbits in turn would correspond surfaces at which the dimension reduces to D=3
by light-likeness - this condition involves signature in an essential manner - and string world
sheets would have 1-D boundaries at partonic orbits.

Getting critical about implicit assumptions related to the twistor space of CP2

One can also criticize the earlier picture about implicit assumptions related the twistor spaces of
CP2.

1. The possibly singular decomposition of F to a product of S2 and CP2 would has a description
similar to that for CP3. One could assign to each point of CP2 base homologically non-trivial
sphere intersecting it orthogonally.

2. I have assumed that the twistor space T (CP2) = F = SU(3)/U(1) × U(1) allows Kaluza-
Klein type metric meaning that the metric decomposes to a sum of the metrics assignable to
the base CP2 and fiber S2 plus cross terms representing interaction between these degrees of
freedom. It is easy to check that this assumption holds true for Hopf fibration S3 → S2 having
circle U(1) as fiber (see http://tinyurl.com/qbvktsx). If Kaluza-Klein picture holds true,
the metric of F would decompose to a sum of CP2 metric and S2 metric plus cross terms
representing correlations between the metrics of CP2 and S2.

3. One should demonstrate that F = SU(3)/U(1)× U(1) has metric with the expected Kaluza-
Klein property. One can represent SU(3) matrices as products XY Z of 3 matrices. X
represents a point of base space CP2 as matrix, Y represents the point of the fiber S2 =
U(2)/U(1)× U(1) of F in similar manner as U(2) matrix, and the Z represents U(1)× U(1)
element as diagonal matrix [B7](see http://tinyurl.com/y6c3pp2g).
By dropping U(1)×U(1) matrix one obtains a coordinatization of F . To get the line element
of F in these coordinates one could put the coordinate differentials of U(1) × U(1) to zero
in an expression of SU(3) line element. This should leave sum of the metrics of CP2 and S2

with constant scales plus cross terms. One might guess that the left- and righ-invariance of
the SU(3) metric under SU(3) implies KK property.

Also CP3 should have the KK structure if one wants to realize the breaking of scaling
invariance as a selection of the scale of the conformally compactified M4. In absence of KK
structure the space-time surface would depend parametrically on the point of the twistor sphere
S2.

8.5.2 The nice results of the earlier approach to M4 twistorialization

The basic nice results of the earlier picture should survive in the new picture.

1. Central for the entire approach is twistor lift of TGD replacing space-time surfaces with 6-D
surfaces in 12-D T (M4) × T (CP2) having space-time surfaces as base and twistor sphere S2

http://tinyurl.com/qbvktsx
http://tinyurl.com/y6c3pp2g
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as fiber. Dimensional reduction identifying twistor spheres of T (M4) an T (CP2) and makes
these degrees of freedom non-dynamical.

2. Dimensionally reduced action 6-D Kähler action is sum of 4-D Kähler action and a volume
term coming from S2 contribution to the induced Kähler form. On interpretation is as a
generalization of Maxwell action for point like charge by making particle a 3-surface.
The interpretation of volume term is in terms of cosmological constant. I have proposed
that a hierarchy of length scale dependent cosmological constants emerges. The hierarchy of
cosmological constants would define the running length scale in coupling constant evolution
and would correspond to a hierarchy of preferred p-aic length scales with preferred p-adic
primes identified as ramified primes of extension of rationals.

3. The twistor spheres associated M4 × S2 and F were assumed to have same radii and most
naturally same Euclidian signature: this looks very nice since there would be only single
fundamental length equal to CP2 radius determining the radius of its twistor sphere. The
vision to be discussed would be different. There would be no fundamental scale and length
scales would emerge through the length scale hierarchy assignable to CDs in M8 and mapped
to length scales for twistor spaces.
The identification of twistor spheres with same radius would give only single value of cosmo-
logical constant and the problem of understanding the huge discrepancy between empirical
value and its näıve estimate would remain. I have argued that the Kähler forms and metrics
of the two twistor spheres can be rotated with respect to each other so that the induced met-
ric and Kähler form are rotated with respect to each other, and the magnetic energy density
assignable to the sum of the induced Kähler forms is not maximal.
The definition of Kähler forms involving preferred coordinate frame would gives rise to sym-
metry breaking. The essential element is interference of real Kähler forms. If the signatures of
twistor spheres were opposite, the Kähler forms differ by imaginary unit and the interference
would not be possible.
Interference could give rise to a hierarchy of values of cosmological constant emerging as coef-
ficient of the Kähler magnetic action assignable to S2(X4) and predict length scale dependent
value of cosmological constant and resolve the basic problem related to the extremely small
value of cosmological constant.

4. One could criticize the allowance of relative rotation as adhoc: note that the resulting cosmo-
logical constant becomes a function depending on S2 point. For instance, does the rotation
really produce preferred extremals as minimal surfaces extremizing also Kähler action except
at string world sheets? Each point of S2 would correspond to space-time surface X4 with
different value of cosmological constant appearing as a parameter. Moreover, non-trivial rela-
tive rotation spoils the covariant constancy and J2(S2) = −g(S2) property for the S2 part of
Kähler form, and that this does not conform with the very idea of twistor space.

5. One nice implication would be that space-time surfaces would be minimal surfaces apart from 2-
D string world sheet singularities at which there is a transfer of canonical momentum currents
between Kähler and volume degrees of freedom. One can also consider the possibility that
the minimal surfaces correspond to surfaces give as roots of 3 polynomials of hypercomplex
coordinate of M2 and remaining complex coordinates.
Minimal surface property would be direct translation of masslessness and conform with the
twistor view. Singular surfaces would represent analogs of Abelian currents. The universal
dynamics for minimal surfaces would be a counterpart for the quantum criticality. At M8

level the preferred complex plane M2 of complexified octonions would represent the singular
string world sheets and would be forced by number theory.
Masslessness would be realized as generalized holomorphy (allowing hyper-complexity in M2

plane) as proposed in the original twistor approach but replacing holomorphic fields in twistor
space with 6-D twistor spaces realized as holomorphic 6-surfaces.

8.5.3 ZEO and twistorialization as ways to introduce scales in M8 physics

M8 physics as such has no scales. One motivation for ZEO is that it brings in the scales as sizes
of causal diamonds (CDs).
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ZEO generates scales in M8 physics

Scales are certainly present in physics and must be present also in TGD Universe.

1. In TGD Universe CP2 scale plays the role of fundamental length scale, there is also the
length scale defined by cosmological constant and the geometric mean of these two length
scales defining a scale of order 10−4 meters emerging in the earlier picture and suggesting a
biological interpretation.
The fact that conformal inversion mk → R2mk/a2, a2 = mkmk is a conformal transformation
mapping hyperboloids with a ≥ R and a ≤ R to each other, suggests that one can relate CP2

scale and cosmological scale defined by Λ by inversion so that cell length scale would define
one possible radius of cdconf .

2. In fact, if one has R(cdconf ) = x × R(CP2) one obtains by repeated inversions a hierarchy
R(k) = xkR and for x =

√
p one obtains p-adic length scale hierarchy coming as powers of

√
p,

which can be also negative. This suggests a connection with p-adic length scale hypothesis and
connections between long length scale and short length scale physics: they could be related
by inversion. One could perhaps see Universe as a kind of Leibnizian monadic system in
which monads reflect each other with respect to hyperbolic surfaces a = constant. This would
conform with the holography.

3. Without additional assumptions there is a complete scaling invariance at the level of M8.
The scales could come from the choice of 8-D causal diamond CD8 as intersection of 8-D
future and past directed light-cones inducing choice of cd in M4. CD serves as a correlate
for the perceptive field of a conscious entity in TGD inspired theory of consciousness and is
crucial element of zero energy ontology (ZEO) allowing to solve the basic problem of quantum
measurement theory.

Twistorial description of CDs

Could the map of the surfaces of 4-surfaces of M8 to cdconf × CP2 by a modification of M8 −H
correspondence allow to describe these scales? If so, compactification via twistorialization and
M8 − H correspondence would be the manner to describe these scales as something emergent
rather than fundamental.

1. The simplest option is that the scale of cdconf corresponds to that of CD8 and CD4. One
should also understand what CP2 scale corresponds. The simplest option is that CP2 scale
defines just length unit since it is difficult to imagine how this scale could appear at M8 level.
cdconf scale squared would be multiple or CP2 scale squared, say prime multiple of it, and
assignable to ramified primes of extension of rationals. Inversions would produce further scales.
Inversion would allow kind of hologram like representation of physics in long length scales in
arbitrary short length scales and vice versa.

2. The compactness of cdconf corresponds to periodic time assignable to over-critical cosmologies
starting with big bang and ending with big crunch. Also CD brings in mind over-critical
cosmology, and one can argue that the dynamics at the level of cdconf reflects the dynamics
of ZEO at the level of M8.

Modification of H and M8 −H correspondence

It is often said that the metric of M4
conf is defined only modulo conformal scaling factor. This would

reflect projectivity. One can however endow projective space CP3 with a metric with isometry
group SU(2, 2) and the fixing of the metric is like gauge choice by choosing representative in
the projective equivalence class. Thus CP3 with signature (3,-3) might perhaps define geometric
twistor space with base cdconf rather than M4

conf very much like the twistor space T (CP2) = F =

SU(3)/U(1)× U(1) at the level. Second projection would be to M4 and map twistor sphere to a
point of M4. The latter bundle structure would be singular since for points of M4 with light-like
separation the twistor spheres have a common point: this is an essential feature in the construction
of twistor amplitudes.

New picture requires a modification of the view about H and about M8−H correspondence.

1. H would be replaced with cdconf × CP2 and the corresponding twistor space with CP3 × F .
M8 − H duality involves the decomposition M2 ⊂ M4 ⊂ M8 = M4 × CP2, where M4 is
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quaternionic sub-space containing preferred place M2. The tangent or normal space of X4

would be characterized by a point of CP2 and would be mapped to a point of CP2 and the
point of CP2 - or rather point plus the space S2 or light-like vectors characterizing the choices
of M2 - would mapped to the twistor sphere S2 of CP3 by the standard formulas.
S2(cdconf ) would correspond to the choices of the direction of preferred octonionic imaginary
unit fixing M2 as quantization axis of spin and S2(CP2) would correspond to the choice of
isospin quantization axis: the quantization axis for color hyperspin would be fixed by the choice
of quaternionic M4 ⊂M8. Hence one would have a nice information theoretic interpretation.

2. The M4 point mapped to twistor sphere S2(CP3) would be projected to a point of cdconf
and define M8 − H correspondence at the level of M4. This would define compactification
and associate two scales with it. Only the ratio R(cdconf )/R(CP2) matters by the scaling
invariance at M8 level and one can just fixe the scale assignable to T (CP2) and call it CP2

length scale.

One should have a concrete construction for the hyperbolic variants of CPn.

1. One can represent Minkowski space and its variants with varying signatures as sub-spaces of
complexified quaternions, and it would seem that the structure of sub-space must be lifted to
the level of the twistor space. One could imagine variants of projective spaces CPn, n = 2, 3
as and HPn, n = 2, 3. They would be obtained by multiplying imaginary quaternionic unit Ik
with the imaginary unit i commuting with quaternionic units. If the quaternions λ involved
with the projectivization (q1, ..., qn) ≡ λ(q1, ..., qn) are ordinary quaternions, the multiplication
respects the signature of the subspace. By non-commutativity of quaternions one can talk
about left- and right projective spaces.

2. One would have extremely close correspondence between M4 and CP2 degrees of freedom
reflecting the M8 −H correspondence. The projection CP3 → CP2 for E4 would be replaced
with the projection for the hyperbolic analogs of these spaces in the case of M4. The twistor
space of M4 identified as hyperbolic variant of CP3 would give hyperbolic variant of CP2 as
conformally compactified cd. The flag manifold F = SU(3)/U(1) × U(1) as twistor space of
CP2 would also give CP2 as base space.

The general solution of field equations at the level of T (H) would correspond to holomorphy
in general sense for the 6-surfaces defined by 3 vanishing conditions for holomorphic functions - 6
real conditions. Effectively this would mean the knowledge of the exact solutions of field equations
also at the level of H: TGD would be an integrable theory. Scattering amplitudes would in turn
constructible from these solutions using ordinary partial differential equations [L81].

1. The first condition would identify the complex coordinates of S2(cdconf ) and S2(CP2): here
one cannot exclude relative rotation represented as a holomorphic transformation but for
R(cdconf )� R(CP2) the effect of the rotation is small.

2. Besides this there would be vanishing conditions for 2 holomorphic polynomials. The coordi-
nate pairs corresponding to M2 ⊂M4 would correspond to hypercomplex behavior with hyper
complex coordinate u = ±t− z. t and z could be assigned with U(1) fibers of Hopf fibrations
SU(2)→ S2 .

3. The octonionic polynomial P (o) of degree n = heff/h0 with rational coefficients fixes the
extension of rationals and since the algebraic extension should be same at both sides, the
polynomials in twistor space should have same degree. This would give enormous boos con-
cerning the understanding of the proposed cancellation of fermionic Wick contractions in SUSY
scattering amplitudes forced by number theoretic vision [L81].

Possible problems related to the signatures

The different signatures for the metrics of the twistor spheres of cdconf and CP2 can pose technical
problems.

1. Twistor lift would replace X4 with 6-D twistor space X6 represented as a 6-surface in T (M4)×
T (CP2). X6 is defined by dimensional reduction in which the twistor spheres S2(cdconf )
and S2(CP2) are identified and define the twistor sphere S2(X4) of X6 serving as a fiber
whereas space-time surface X4 serves as a base. The simplest identification is as (θ, φ)S2(M4) =
(θ, φ)S2(CP2): the same can be done for the complex coordinates zS2(M4

conf ) = zS2(CP2))). An
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open question is whether a Möbius transformation could relate the complex coordinates. The
metrics of the spheres are of opposite sign and differ only by the scaling factors R2(cdconf )
and R2(CP2).

2. For cdconf option the signatures of the 2 twistor spheres would be opposite (time-like for
cdconf ). For R(cdconf )/R(CP2) = 1. J2 = −g is the only consistent option unless the signature
of space is not totally positive or negative and implies that the Kähler forms of the two twistor
spheres differ by i. The magnetic contribution from S2(X4) would give rise to an infinite value
of cosmological constant proportional to 1/

√
g2, which would diverge R(cdconf )/R(CP2) = 1.

There is however no need to assume this condition as in the original approach.

8.5.4 Hierarchy of length scale dependent cosmological constants in
twistorial description

At the level of M8 the hierarchy of CDs defines a hierarchy of length scales and must correspond
to a hierarchy of length scale dependent cosmological constants. Even fundamental scales would
emerge.

1. If one has R(cdconf )/R(CP2) >> 1 as the idea about macroscopic cdconf would suggest, the
contribution of S2(cdconf ) to the cosmological constant dominates and the relative rotation of
metrics and Kähler form cannot affect the outcome considerably. Therefore different mecha-
nism producing the hierarchy of cosmological constants is needed and the freedom to choose
rather freely the ratio R(cdconf )/R(CP2) would provide the mechanism. What looked like a
weakness would become a strength.

2. S2(cdconf would have time-like metric and could have large scale. Is this really accept-
able? Dimensional reduction essential for the twistor induction however makes S2(cdconf )
non-dynamical so that time-likeness would not be visible even for large radii of S2(cdconf )
expected if the size of cdconf can be even macroscopic. The corresponding contribution to
the action as cosmological constant has the sign of magnetic action and also Kähler magnetic
energy is positive. If the scales are identical so that twistor spheres have same radius, the con-
tributions to the induced metric cancel each other and the twistor space becomes metrically
4-D.

3. At the limit R(cdconf )→ RCP2) cosmological constant coming from magnetic energy density
diverges for J2 = −G option since it is proportional to 1/

√
g2. Hence the scaling factors must

be different. The interpretation is that cosmological constant has arbitrarily large values near
CP2 length scale. Note however that time dependence is replaced with scale dependence and
space-time sheets with different scales have only wormhole contacts.

It would seem that this approach could produce the nice results of the earlier approach.
The view about how the hierarchy of cosmological constants emerges would change but the idea
about reducing coupling constant evolution to that for cosmological constant would survive. The
interpretation would be in terms of the breaking of scale invariance manifesting as the scales of CDs
defining the scales for the twistor spaces involved. New insights about p-adic coupling constant
evolution emerge and one finds a new “must” for ZEO. H = M4 × CP2 picture would emerge
as an approximation when cdconf is replaced with its tangent space M4. The consideration of
the quaternionic generalization of twistor space suggests natural identification of the conformally
compactified twistor space as being obtained from CP2 by making second complex coordinate
hyperbolic. This need not conform with the identification as U(2).

8.6 How to generalize twistor Grassmannian approach in
TGD framework?

One should be able to generalize twistor Grassmannian approach in TGD framework. The basic
modification is replacement of 4-D light-like momenta with their 8-D counterparts. The octonionic
interpretation encourages the idea that twistor approach could generalize to 8-D context. Higher-
dimensional generalizations of twistors have been proposed but the basic problem is that the index
raising and lifting operations for twistors do not generalize (see http://tinyurl.com/y24lkwce).

http://tinyurl.com/y24lkwce
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1. For octonionic twistors as pairs of quaternionic twistors index raising would not be lost working
for MT option and light-like M8 momenta can be regarded sums of M4

T and E4 parts as also
twistors. Quaternionic twistor components do not commute and this is essential for incidence
relation requiring also the possibility to raise or lower the indices of twistors. Ordinary complex
twistor Grassmannians would be replaced with their quaternionic countparts. The twistor
space as a generalization of CP3 would be 3-D quaternionic projective space T (M8) = HP3

with Minkowskian signature (6,6) of metric and having real dimension 12 as one might expect.
Another option realizing non-commutativity could be based on the notion of quantum twistor
to be also discussed.

2. Second approach would rely on the identification of M4 × CP2 twistor space as a Cartesian
product of twistor spaces of M4 and CP2. For this symmetries are not broken, M4

L ⊂ M8

depends on the state and is chosen so that the projection of M8 momentum is light-like so
that ordinary twistors and CP2 twistors should be enough. M8−H relates varying M4

L based
and M4

T based descriptions.

3. The identification of the twistor space of M4 as T (M4) = M4×S2 can be motivated by octo-
nionic considerations but might be criticized as non-standard one. The fact that quaternionic
twistor space HP3 looks natural for M8 forces to ask whether T (M4) = CP3 endowed with
metric having signature (3,3) could work in the case of M4. In the sequel also a vision based on
the identification T (M4) = CP3 endowed with metric having signature (3,3) will be discussed.

8.6.1 Twistor lift of TGD at classical level

In TGD framework twistor structure is generalized [K100, K87, K13, L64]. The inspiration for
TGD approach to twistorialization has come from the work of Nima Arkani-Hamed and colleagues
[B25, B17, B18, B21, B43, B26, B12]. The new element is the formulation of twistor lift also at the
level of classical dynamics rather than for the scattering amplitudes only [K100, K13, K87, L64].

1. The 4-D light-like momenta in ordinary twistor approach are replaced by 8-D light-like mo-
menta so that massive particles in 4-D sense become possible. Twistor lift of TGD takes
places also at the space-time level and is geometric counterpart for the Penrose’s replace-
ment of massless fields with twistors. Roughly, space-time surfaces are replaced with their
6-D twistor spaces represented as 6-surfaces. Space-time surfaces as preferred extremals are
minimal surfaces with 2-D string world sheets as singularities. This is the geometric man-
ner to express masslessness. X4 is simultaneously also extremal of 4-D Kähler action outside
singularities: this realizes preferred extremal property.

2. One can say that twistor structure of X4 is induced from the twistor structure of H = M4 ×
CP2, whose twistor space T (H) is the Cartesian product of geometric twistor space T (M4) =
M4×CP1 and T (CP2) = SU(3)/U(1)×U(1). The twistor space of M4 assigned to momenta
is usually taken as a variant of CP3 with metric having Minkowski signature and both CP1

fibrations appear in the more precise definition of T (M4). Double fibration [B42] (see http://
tinyurl.com/yb4bt74l) means that one has fibration from M4×CP1 - the trivial CP1 bundle
defining the geometric twistor space to the twistors space identified as complex projective space
defining conformal compactification of M4. Double fibration is essential in the twistorialization
of TGD [L30].

3. The basic objects in the twistor lift of classical TGD are 6-D surfaces in T (H) having the
structure of twistor space in the sense that they are CP1 bundles having X4 as base space.
Dimensional reduction to CP1 bundle effectively eliminates the dynamics in CP1 degrees of
freedom and its only remnant is the value of cosmological constant appearing as coefficient of
volume term of the dimensionally reduced action containing also 4-D Kähler action. Cosmo-
logical term depends on p-adic length scales and has a discrete spectrum [L64, L63].

CP1 has also an interpretation as a projective space constructed from 2-D complex spinors.
Could the replacement of these 2-spinors with their quantum counterparts defining in turn quan-
tum CP1 realize finite quantum measurement resolution in M4 degrees of freedom? Projective
invariance for the complex 2-spinors would mean that one indeed has effectively CP1.

http://tinyurl.com/yb4bt74l
http://tinyurl.com/yb4bt74l
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8.6.2 Octonionic twistors or quantum twistors as twistor description of
massive particles

For M4
T option the particles are massive and the one encounters the problem whether and how to

generalize the ordinary twistor description.

8.6.3 Basic facts about twistors and bi-spinors

It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate of λ

and having opposite chirality (see http://tinyurl.com/y6bnznyn).

1. When λ is scaled by a complex number λ̃ suffers an opposite scaling. The bi-spinors allow the
definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′ λ̃
a′ µ̃b

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (8.6.1)

2. Spinor indices are lowered and raised using antisymmetric tensors εαβ and εα̇β̇ . If the particle
has spin one can assign it a positive or negative helicity h = ±1. Positive helicity can be
represented by introducing artitrary negative (positive) helicity bispinor µa (µa′) not parallel
to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (8.6.2)

In the case of momentum twistors the µ part is determined by different criterion to be discussed
later.

3. What makes 4-D twistors unique is the existence of the index raising and lifting operations
using ε tensors. In higher dimensions they do not exist and this causes difficulties. For
octonionic twistors with quaternionic components possibly only in D = 8 the situation changes.

To get a very rough idea about twistor Grassmannian approach idea, consider tree am-
plitudes of N = 4 SUSY as example and it is convenient to drop the group theory factor
Tr(T1T2 · · ·Tn). The starting point is the observation that tree amplitude for which more than
n − 2 gluons have the same helicity vanish. MHV amplitudes have exactly n − 2 gluons of same
helicity- taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(8.6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].
An essential point in what follows is that the amplitudes are expressible in terms of the

antisymmetric bi-linears 〈λi, λj〉 making sense also for octotwistors and identifiable as quaternions
rather than octonions.

M8 −H duality and two alternative twistorializations of TGD

M8 −H duality suggests two alternative twistorializations of TGD.

1. The first approach would be in terms of M8 twistors suggested by quaternionic light-lineness of
8-momenta. M8 twistors would be Cartesian products of M4 and E4 twistors. One can imag-
ine a straightforward generalization of twistor scattering amplitudes in terms of generalized
Grassmannian approach replacing complex Grassmannian with quaternionic Grassmannian,
which is a mathematically well-defined notion.

http://tinyurl.com/y6bnznyn
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2. Second approach would rely on M4 × CP2 twistors, which are products of M4 twistors and
CP2 twistors: this description works nicely at classical space-time level but at the level of
momentum space the problem is how to describe massivation of M4 momenta using twistors.

Why the components of twistors must be non-commutative?

How to modify the 4-D twistor description of light-like 4-momenta so that it applies to massive
4-momenta?

1. Twistor consists of a pair (µα̇, λ
α) of bi-spinors in conjugate representations of SU(2). One

can start from the 4-D incidence relations for twistors

µα̇ = pαα̇λ
α .

Here pαα̇ denotes the representation of four-momentum pkσk. The antisymmetric permutation
symbols εαβ and its dotted version define antisymmetric “inner product” in twistor space. By
taking the inner product of µ with itself, one obtains the commutation relation µ1µ2−µ2µ1 = 0,
which is consistent with right-hand side for massless particles with pkp

k = 0.

2. In TGD framework particles are massless only in 8-D sense so that the right hand side in the
contraction is in general non-vanishing. In massive case one can replace four-momentum with
unit vector. This requires

〈µ1, µ2〉 = µ1µ2 − µ2µ1 6= 0 .

The components of 2-spinor become non-commutative.

This raises two questions.

1. Could the replacement of complex twistors by quaternionic twistors make them non-commutative
and allow massive states?

2. Could non-commutative quantum twistors solve the problem caused by the light-likeness of
momenta allowing 4-D twistor description?

Octotwistors or quantum twistors?

One should be able to generalize twistor amplitudes and twistor Grassmannian approach to TGD
framework, where particles are massless in 8-D sense and massive in 4-D sense. Could twistors be
replaced by octonionic or quantum twistors.

1. One can express mass squared as a product of commutators of components of the twistors λ
and λ̃, which is essentially the conjugate of λ:

p · p = 〈λ, λ〉
[
λ̃, λ̃

]
. (8.6.4)

This operator should be non-vanishing for non-vanishing mass squared. Both terms in the
product vanish unless commutativity fails so that mass vanishes. The commutators should
have the quantum state as its eigenstate.

2. Also 4-momentum components should have well-defined values. Four-momentum has expres-
sion paa

′
= λaλ̃a

′
in massless case. This expression should generalized to massive case as such.

Eigenvalue condition and reality of the momentum components requires that the components
paa

′
are commuting Hermitian operators.

In twistor Grassmannian approach complex but light-like momenta are possible as analogs of
virtual momenta. Also in TGD framework the complexity of Kähler coupling strength allows
to consider complex momenta. For twistor lift they however differ from real momenta only by
a phase factor associated with the 1/αK associated with 6-D Kähler action.
Remark: I have considered also the possibility that states are eigenstates only for the longi-
tudinal M2 projection of 4-momentum with quark model of hadrons serving as a motivation.

(a) Could this equation be obtained in massive case by regarding λa and λ̃a
′

as commuting
octo-spinors and their complex conjugates? Octotwistors would naturally emerge in the
description at embedding space level. I have already earlier considered the notion of
octotwistor [K95] [L46]).
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(b) Or could it be obtained for quantum bi-spinors having same states as eigenstates. Could
quantum twistors as generalization of the ordinary twistors correspond to the reduction of
the description from the level of M8 or H to at space-time level so that one would have
4-D twistors and massive particles with 4-momentum identifiable as Noether charge for
the action principle determining preferred extremals? I have considered also the notion of
quantum spinor earlier [K43, K67, K62, K4, K110].

3. In the case of quantum twistors the generalization of the product of the quantities 〈λi, λi+1〉
appearing in the formula should give rise to c-number in the case of quantum spinors. Can
one require that the quantities 〈λi, λi+1〉 or even 〈λi, λj〉 are c-numbers simultaneously? This
would also require that 〈λ, λ〉 is non-vanishing c-number in massive case: also incidence relation
suggest this condition. Could one think λ as an operator such that 〈λ, λ〉 has eigenvalue
spectrum corresponding to the quantities 〈λi, λi+1〉 appearing in the scattering amplitude?

8.6.4 The description for M4
T option using octo-twistors?

For option I with massive M4
T projection of 8-momentum one could imagine twistorial description

by using M8 twistors as products of M4
T and E4 twistors, and a rather straightforward generaliza-

tion of standard twistor Grassmann approach can be considered.

Could twistor Grassmannians be replaced with their quaternionic variants?

The first guess would simply replace Gr(k, n) with Gr(2k, 2n) 4-D twistors 8-D twistors. From
twistor amplitudes with quaternionic M8-momenta one could construct physical amplitudes by
going from 8-momentum basis to the 4-momentum- basis with wave functions in irreps of SO(3).
Life is however not so simple.

1. The notion of ordinary twistor involves in an essential manner Pauli matrices σi satisfying the
well-known anti-commutation relations. They should be generalized. In fact, σ0 and

√
−1σi

can be regarded as a matrix representation for quaternionic units. They should have analogs
in 8-D case.
Octonionic units iei indeed provide this analog of sigma matrices. Octonionic units for the com-
plexification of octonions allow to define incidence relation and representation of 8-momenta
in terms of octo-spinors. They do not however allow matrix representation whereas time-
like octonions allow interpretation as quaternion in suitable bases and thus matrix represen-
tation. Index raising operation is essential for twistors and makes dimension D = 4 very
special. For näıve generalizations of twistors to higher dimensions this operation is lost (see
http://tinyurl.com/y24lkwce).

2. Could one avoid multiplication of more than two octo-twistors in Grassmann amplitudes lead-
ing to difficulties with associativity. An important observation is that in the expressions for
the twistorial scattering amplitudes only products 〈λi, λj〉 or [λ̃i, λ̃i+1] but not both occur.
These products are associative even if the spinors are replaced by quaternionic spinors.
These operations are antisymmetric in the arguments, which suggests cross product for quater-
nions giving rise to imaginary quaternion so that the product of objects would give rise to a
product of imaginary quaternions. This might be a problem since a large number of terms in
the product would approach to zero for random imaginary quaternions.
An ad hoc guess would be that scattering probability is proportional to the product of am-
plitude as product 〈λi, λj〉 and its “hermitian conjugate” with the conjugates [λ̃i, λ̃i+1] in the
reverse order (this does not affect the outcome) so that the result would be real. Scattering
amplitude would be more like quaternion valued operator. Could one have a formulation of
quantum theory or at least TGD view about quantum theory allowing this?

3. If ordinary massless 4-momenta correspond to quaternionic sigma matrices, twistors can be
regarded as pairs of 2-spinors in matrix representation. Octonionic 8-momenta should cor-
respond to pairs of 4-spinors. As already noticed, octonions do not however allow matrix
representation! Octonions for a fixed decomposition M8 = M4 × E4 can be however decom-
posed to linear combination of two quaternions just like complex numbers to a combination of
real numbers. These quaternions would have matrix representation and quaternionic analogs
of twistor pair (µ, λ̃). One could perhaps formulate the generalization of twistor Grassmann

http://tinyurl.com/y24lkwce
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amplitudes using these pairs. This would suggest replacement of complex bi-spinors with
complexified quaternions in the ordinary formalism. This might allow to solve problems with
associativity if only 〈λi, λj〉 or [λ̃i, λ̃i+1] appear in the amplitudes.

4. The argument in the momentum conserving delta function δ(λiλ̃i) should be real so that the
conjugation with respect to i would not change the argument and non-commutativity would
not be problem. In twistor Grassmann amplitudes the argument C · Z of delta momentum
conserving function is linear in the components of complex twistor Z. If complex twistor is
replaced with quaternionic twistor, the Grassmannian coordinates C in delta functions δ(C ·Z)
must be replaced with quaternionic one.

The replacement of complex Grassmannians GrC(k, n) with quaternionic Grassmannians
GrH(k, n) is therefore highly suggestive. Quaternionic Grassmannians (see http://tinyurl.com/

y23jsffn) are quotients of symplectic Lie groups GrH(k, n) = Un(H)/(Ur(H)×Un−r(H)) and thus
well-defined. In the description using GlH(k, n) matrices the matrix elements would be quaternions
and k × k minors would be quaternionic determinants.

Remark: Higher-D projective spaces of octonions do not exist so that in this sense dimen-
sion D = 8 for embedding space would be maximal.

Twistor space of M8 as quaternionic projective space HP3?

The simplest Grassmannian corresponds to twistor space and one can look what one obtains in
this case. One can also try to understand how to cope with the problems caused by Minkowskian
signature.

1. In previous section it was found that the modification of H to H = cdconf × CP2 with
cdconf = CP2,h identifiable as CP2 with Minkowskian signature of metric is strongly suggestive.

2. For E8 quaternionic twistor space as analog of CP3 would be its quaternionic variant HP3

with expected dimension D = 16− 4 = 12. Twistor sphere would be replaced with its quater-
nionic counterpart SU(2)H/U(1)H having dimension 4 as expected. CD8,conf as conformally
compactified CD8 must be 8-D. The space HP2 has dimension 8 and is analog of CP2 appear-
ing as analog of base space of CP3 identified as conformally compactified 4-D causal diamond
cdconf . The quaternionic analogy of M4

conf = U(2) identified as conformally compactified M4

would be U(2)H having dimension D = 10 rather than 8.
HP3 and HP2 might work for E8 but it seems that the 4-D analog of twistor sphere should
have signature (2,-2) whereas base space should have signature (1,-7). Some kind of hyperbolic
analogs of these spaces obtained by replacing quaternions with their hypercomplex variant
seem to be needed. The same receipe in the twistorialization of M4 would give cdconf as
analog of CP2 with second complex coordinate made hyperbolic. I have already considered
the construction of hyperbolic analogs of CP2 and CP3 as projective spaces. These results
apply to HP2 and HP3.

3. What about octonions? Could one define octonionic projective plane OP2 and its hyperbolic
variants corresponding to various sub-spaces of M8? Euclidian OP2 known as Cayley plane
exists as discovered by Ruth Moufang in 1933. Octonionic higher-D projective spaces and
Grassmannians do not however exist so that one cannot assign OP3 as twistor spaces.

Can one obtain scattering amplitudes as quaternionic analogs of residue integrals?

Can one obtain complex valued scattering amplitudes (i commuting with octonionic units) in this
framework?

1. The residue integral over quaternionic C-coordinates should make sense, and pick up the poles
as vanishing points of minors. The outcome of repeated residue integrations should give a sum
over poles with complex residues.

2. Residue calculus requires analyticity. The problem is that quaternion analyticity based on a
generalization of Cauchy-Riemann equations allows only linear functions. One could define
quaternion (and octonion) analyticity in restricted sense using powers series with real coeffi-
cients (or in extension involving i commuting with octonion units). The quaternion/octonion
analytic functions with real coefficients are closed with respect to sum and product. I have
used this definition in the proposed construction of algebraic dynamics for in X4 ⊂M8 [L46].

http://tinyurl.com/y23jsffn
http://tinyurl.com/y23jsffn
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3. Could one define the residue integral purely algebraically? Could complexity of the coefficients
(i) force complex outcome: if pole q0 is not quaternionically real the function would not allow
decompose to f(q)/(q − q0) with f allowing similar Taylor series at pole. If so, then the
formulas of Grassmannian formalism could generalize more or less as such at M8 level and one
could map the predictions to predictions of M4×CP2 approach by analog of Fourier transform
transforming these quantum state basis to each other.

This option looks rather interesting and involves the key number theoretic aspects of TGD
in a crucial manner.

8.6.5 Do super-twistors make sense at the level of M8?

By M8 −H duality [L46] there are two levels involved: M8 and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M8 level?

1. At the level ofM8 the high uniqueness and linearity of octonion coordinates makes the notion of
super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet 80), octonionic
spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8−1) would for triplet
related by triality. A possible problem is caused by the presence of separately conserved B
and L. Together with fermion number conservation this would require N = 4 or even N = 4
SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quaternionic
spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained as
generalization of these.

The progress in the understanding of the TGD version of SUSY [L81] led to a dramatic
progress in the understanding of super-twistors.

1. In non-twistorial description using space-time surfaces and Dirac spinors in H, embedding
space coordinates are replaced with super-coordinates and spinors with super-spinors. Theta
parameters are replaced with quark creation and annihilation operators. Super-coordinate is
a super-polynomial consisting of monomials with vanishing total quark number and appearing
in pairs of monomial and its conjugate to guarantee hermiticity.
Dirac spinor is a polynomial consisting of powers of quark creation operators multiplied by
monomials similar to those appearing in the super-coordinate. Anti-leptons are identified as
spartners ofquarks identified as local 3-quark states. The multi-spinors appearing in the expan-
sions describe as such local many-quark-antiquark states so that super-symmetrization means
also second quantization. Fermionic and bosonic states assignable to H-geometry interact since
super-Dirac action contains induced metric and couplings to induced gauge potentials.

2. The same recipe works at the level of twistor space. One introduces twistor super-coordinates
analogous to super-coordinates of H and M8. The super YM field of N = 4 SUSY is replaced
with super-Dirac spinor in twistor space. The spin degrees of freedom associated with twistor
spheres S2 would bring in 2 additional spin-like degrees of freedom.
The most plausible option is that the new spin degrees are frozen just like the geometric S2

degrees of freedom. The freezing of bosonic degrees of freedom is implied by the construction of
twistor space of X4 by dimensional reduction as a 6-D surface in the product of twistor spaces
of M4 and CP2. Chirality conditions would allow only single spin state for both spheres.

3. Number theoretical vision implies that the number of Wick contractions of quarks and anti-
quarks cannot be larger than the degree of the octonionic polynomial, which in turn should be
same as that of the polynomials of twistor space giving rise to the twistor space of space-time
surface as 6-surface. The resulting conditions correspond to conserved currents identifiable as
Noether currents assignable to symmetries.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix
elements of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to theta parameters associated with the super coordinates C as rows of
super G(k, n) matrix.
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2. The delta function δ(C,Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting on
integrand already expanded in Taylor series in theta parameters. The integration over the theta
parameters using the standard rules gives the amplitudes associated with different powers of
theta parameters associated with Z and from this expression one can pick up the scattering
amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one
is dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L46]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M8 −H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding
of what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the
standard twistor space CP3 is a more natural identification than the earlier M4×S2 also in TGD
framework but with a scale corresponding to the scale of CD at the level of M8 so that one obtains
a scale hierarchy of twistor spaces. Twistor space has besides the projection to M4 also a bundle
projection to the hyperbolic variant CP2,h of CP2 so that a remarkable analogy between M4 and
CP2 emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kähler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M8 allows analog of twistor space as quaternionic Grassmannian HP3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L81] leads to the identi-
fication of the super-counterparts of M8, H and of twistor spaces modifying dramatically the
physical interpretation of SUSY. Super-spinors in twistor space would provide the description
of quantum states. Super-Grassmannians would be involved with the construction of scattering
amplitudes. Quaternionic super Grassmannians would be involved with M8 description.

2. In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are local 3-
quark composites identifiable as spartners of quarks. Gauge bosons, Higgs and graviton would
be also spartners and assignable to super-coordinates of embedding space expressible as super-
polynomials of quark oscillator operators. Super-symmetrization means also quantization of
fermions allowing local many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking as
Wheeler might put it.

Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors [L81] suggests a straightforward formula-
tion of the super variant of twistor lift . One should only replace the super-embedding space and
super-spinors with super-twistor space and corresponding super-spinors and formulate the theory
using 6-D super-Kähler action and super-Dirac equation and the same general prescription for
constructing S-matrix. Dimensional reduction should give essentially the 4-D theory apart from
the variation of the radius of the twistor space predicting variation of cosmological constant. The
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size scale of CD would correspond to the size scale of the twistor space for M4 and for CP2 the
size scale would serve as unit and would not vary.

The first step is the construction of ordinary variant of Kähler action and modified Dirac
action for 6-D surfaces in 12-D twistor space.

1. Replace the spinors ofH with the spinors of 12-D twistor space and assume only quark chirality.
By the bundle property of the twistor space one can express the spinors as tensor products
of spinors of the twistor spaces T (M4) and T (CP2). One can express the spinors of T (M4)
tensor products of spinors of M4 - and S2 spinors locally and spinors of T (CP2) as tensor
products of CP2 - and S2 spinors locally. Chirality conditions should reduce the number of
2 spin components for both T (M4) and T (CP2) to one so that there are no additional spin
degrees of freedom.
The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S2 spinors covariantly constant in S2 degrees
of freedom.

2. Define the spinor structure of 12-D twistor space, define induced spinor structure at 6-D
surfaces defining the twistor space of space-time surface. Define the twistor counterpart of the
analog of modified Dirac action using same general formulas as in case of H.

Construct next the super-variant of this structure.

1. Introduce second quark oscillator operators labelled by the points of cognitive representation in
12-D twistor space effectively replacing 6-D surface with its discretization and having quantized
quark field q as its continuum counterpart. Replace the coordinates of the 12-D twistor space
with super coordinates hs expressed in terms of quark and anti-quark oscillator operators
labelled by points of cognitive representation, and having interpretation as quantized quark
field q restricted to the points of representation.

2. Express 6-D Kähler action and Dirac action density in terms of super-coordinates hs. The local
monomials of q appear in hs and therefore also in the expansion of super-variants of modified
gamma matrices defined by 6-D ähler action as contractions of canonical momentum currents
of the action density LK with the gamma matrices of 12-D twistor space. In super-Kähler
action also the local composites of q giving rise to currents formed from the local composites of
3-quarks and antiquarks and having interpretation as leptons and anti-leptons occur - leptons
would be therefore spartners of squarks.

3. Perform super-expansion also for the induced spinor field qs in terms of monomials of q. qs(q)
obeys super-Dirac equation non-linear in q. But also q should satisfy super-Dirac action as
an analog of quantized quark field and non-linearity indeed forces also q to have has super-
expansion. Thus both quark field q and super-quark field qs both satisfy super-Dirac equation.
The only possibility is qs = q stating fixed point property under q → qs having interpretation in
terms of quantum criticality fixing the values of the coefficients of various terms in qs and in the
super-coordinate hs having interpretation as coupling constants. One has quantum criticality
and discrete coupling constant evolution with respect to extension of rationals characterizing
adelic physics.

4. Super-Dirac action vanishes for its solutions and the exponent of super-action reduces to
exponent of super-Kähler action, whose matrix elements between positive and negative energy
parts of zero energy states give S-matrix elements.
Super-Dirac action has however an important function: the derivatives of quark currents
appearing in the super-Kähler action can be transformed to a linear strictly local action of
super spinor connection (∂α → Aα,s effectively). Without this lattice discretization would be
needed and cognitive representation would not be enough.

To sum up, the super variants of modified gamma matrices of the 6-surface would satisfy the
condition Dα,sΓ

α
s = 0 expressing preferred extremal property and guaranteeing super-hermicity of

Ds. qs would obey super-Dirac equation Dsqs = 0. The self-referential identification q = qs would
express quantum criticality of TGD.
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8.7 Could one describe massive particles using 4-D quantum
twistors?

The quaternionic generalization of twistors looks almost must. But before this I considered also
the possibility that ordinary twistors could be generalized to quantum twistors to describe particle
massivation. Quantum twistors could provide space-time level description, which requires 4-D
twistors, which cannot be ordinary M4 twistors. Also the classical 4-momenta, which by QCC
would be equal to M8 momenta, are in general massive so that the ordinary twistor approach
cannot work. One cannot of course exclude the possibility that octo-twistors are enough or that
M8
L description is equivalent with space-time description using quantum twistors.

8.7.1 How to define quantum Grassmannian?

The approach to twistor amplitude relies on twistor Grassmann approach [B19, B15, B14, B23,
B25, B12] (see http://tinyurl.com/yxllwcsn). This approach should be replaced by replacing
Grassmannian GR(K,N) = Gl(n,C)/Gl(n−m,C)×Gl(m,C) with quantum Grassmannian.

näıve approach to the definition of quantum Grassmannian

Quantum Grassmannian is a notion studied in mathematics and the approach of [A64] (see http:

//tinyurl.com/y5q6kv6b) looks reasonably comprehensible even for physicist. I have already
earlier tried to understand quantum algebras and their possible role in TGD [K15]. It is however
better to start as ignorant physicist and proceed by trial and error and find whether mathematicians
have ended up with something similar.

1. Twistor Grassmannian scattering amplitudes involving k negative helicity gluons involve prod-
uct of k × k minors of an k × n matrix C taken in cyclic order. C defines k × n coordinates
for Grassmannian Gr(k, n) of which part is redundant by the analogs of gauge symmetries
Gl(n−m,C)×Gl(m,C). Here n is the number of external gluons and k the number of nega-
tive helicity gluons. The k×k determinants taken in cyclic order appear in the integrand over
Grassmannian. Also the quantum variants of these determinants and integral over quantum
Grassmannian should be well-defined and residue calculus gives hopes for achieving this.

2. One should define quantum Grassmannian as algebra according to my physicist’s understand-
ing algebra can be defined by starting from a free algebra generated by a set of elements -
now the matrix elements of quantum matrix. One poses on these elements relations to get the
algebra considered. What could these conditions be in the recent case.

3. A natural condition is that the definition allows induction in the sense that its restriction to
quantum sub-matrices is consistent with the general definition of k× n quantum matrices. In
particular, one can identify the columns and rows of quantum matrices as instances of quantum
vectors.

4. How to generalize from 2× 2 case to k × n case? The commutation relations for neighboring
elements of rows and columns are fixed by induction. In 4 × 4 corresponding to M4 twistors
one would obtain for (a1, ..., a4). aiai+1 = qai+1ai cyclically (k = 1 follows k = 4).
What about commutations of ai and ai+k, k > 1. Is there need to say anything about these
commutators? In twistor Grassmann approach only connected k × k minors in cyclic order
appear. Without additional relations the algebra might be too large. One could argue that
the simplest option is that one has aiai+k = qai+kai for k odd aiai+k = q−1ai+kai for k even.
This is required from the consistency with cyclicity. These conditions would allow to define
also sub-determinants, which do not correspond to connected k × k squares by moving the
elements to a a connected patch by permutations of rows and columns.

5. What about elements along diagonal? The induction from 2×2 would require the commutativ-
ity of elements along right-left diagonals. Only commutativity of the elements along left-right
diagonal be modified. Or is the commutativity lost only along directions parallel to left-right
diagonal? The problem is that the left-right and right-left directions are transformed to each
other in odd permutations. This would suggest that only even permutations are allowed in
the definition of determinant

http://tinyurl.com/yxllwcsn
http://tinyurl.com/y5q6kv6b
http://tinyurl.com/y5q6kv6b
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6. Could one proceed inductively and require that one obtains the algebra for 2× 2 matrices for
all 2× 2 minors? Does this apply to all 2× 2 minors or only to connected 2× 2 minors with
cyclic ordering of rows and columns so that top and bottom row are nearest neighbors as also
right and left column. Also in the definition of 3×3 determinant only the connected developed
along the top row or left column only 2 × 2 determinants involving nearest neighbor matrix
elements appear. This generalizes to k × k case.

It is time to check how wrong the näıve intuition has been. Consider 2 × 2 matrices as
simple example. In this case this gives only 1 condition (ad− bc = −da+ cb) corresponding to the
permutation of rows or columns. Stronger condition suggested by higher-D case would be ad = da
and bc = cb. The definition of 2× 2 in [A64] however gives for quantum 2-matrices (a, b; c, d) the
conditions

ac = qca , bd = qda ,
ab = qba , cd = qdc ,
bc = cb , ad− da = (q − q−1)bc .

(8.7.1)

The commutativity along left-right diagonal is however lost for q 6= 1 so that quantum determinant
depends on what row or column is used to expand it. The modification of the commutation relations
along rows and columns is what one might expect and wants in order to achieve non-commutativity
of twistor components making possible massivation in M4 sense.

The limit q → 1 corresponds to non-trivial algebra in general and would correspond to β = 4
for inclusions of HFFs expected to give representations of Kac-Moody algebras. At this limit only
massless particles in 4-D sense are allowed. This suggests that the reduction of Kac-Moody algebras
to quantum groups corresponds to symmetry breaking associated with massivation in 4-D sense.

Mathematical definition of quantum Grassmannian

It would seem that the proposed approach is reasonable. The article [A84] (see http://tinyurl.

com/yycflgrd) proposing a definition of quantum determinant explains also the basic interpreta-
tion of what the non-commutativity of elements of quantum matrices does mean.

1. The first observation is that the commutation of the elements of quantum matrix corresponds
to braiding rather than permutation and this operation is represented by R-matrix. The
formula for the action of braiding is

Rabcdt
c
et
d
f = tadt

b
cR

cd
ef . (8.7.2)

Here R-matrix is a solution of Yang-Baxter equaion and characterizes completely the commu-
tation relations between the elements of quantum matrix. The action of braiding is obtained
by applying the inverse of R-matrix from left to the equation. By iterating the braidings of
nearest neighbors one can deduce what happens in the braiding exchanging quantum matrix
elements which are not nearest neighbors. What is nice that the R-matrix would fix the
quantum algebra, in particular quantum Grassmannian completely.

2. In the article the notion of quantum determinant is discussed and usually the definition of
quantum determinant involves also the introduction of metric gab allowing the raising of the
indices of the permutation symbol. One obtains formulas relating metric and R-matrix and
restricting the choice of the metric. Note however that if ordinary permutation symbol is used
there is no need to introduce the metric.

The definition quantum Grassmannian proposed does not involve hermitian conjugates of
the matrices involved. One can define the elements of Grassmannian and Grassmannian residue
integrals without reference to complex conjugation: could one do without hermitian conjugates?
On the other hand, Grassmannians have complex structure and Kähler structure: could this require
hermitian conjugates and commutation relations for these?

8.7.2 Two views about quantum determinant

If one wants to define quantum matrices in Gr(k, n) so that quantal twistor-Grassmann amplitudes
make sense, the first challenge is to generalize the notion of k × k determinant.

One can consider two approaches concerning the definition of quantum determinant.

http://tinyurl.com/yycflgrd
http://tinyurl.com/yycflgrd
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1. The first guess is that determinant should not depend on the ordering of rows or columns
apart from the standard sign factor. This option fails unless one modifies the definition of
permutation symbol.

2. The alternative view is that permutation symbol is ordinary and there is dependence on the
row or column with respect to which one develops. This dependence would however disappear
in the scattering amplitudes. If the poles and corresponding residues associated with the
k × k-minors of the twistor amplitude remain invariant under the permutation, this is not a
problem. In other words, the scattering amplitudes are invariant under braid group. This is
what twistor Grassmann approach implies and also TGD predict.

For the first option quantum determinant would be braiding invariant. The standard defini-
tion of quantum determinant is discussed in detail in [A84] (see http://tinyurl.com/yycflgrd).

1. The commutation of the elements of quantum matrix corresponds to braiding rather than
permutation and as found, this operation is represented by R-matrix.

2. Quantum determinant would change only by sign under the braidings of neighboring rows and
columns. The braiding for the elements of quantum matrix would compensate the braiding
for quantum permutation symbol. Permutation symbol is assumed to be q-antisymmetric
under braiding of any adjacent indices. This requires that permutation ik ↔ ik+1 regarded as
braiding gives a contraction of quantum permutation symbol εi1,...1k with Rijikik+1

plus scaling
by some normalization factor λ besides the change of sign.

εa1...akak+1...an = −λεa1...ij...anR
ji
akak+1

. (8.7.3)

The value of λ can be calculated.

3. The calculation however leads to the result that quantum determinant D satisfies D2 = 1! If
the result generalizes for sub-determinants defined by k × k-minors (, which need not be the
case) would have determinants satisfying D2 = 1, and the idea about vanishing of k× k-minor
essential for getting non-trivial twistor scattering amplitude as residue would not make sense.

It seems that the braiding invariant definition of quantum determinant, which of course
involves technical assumptions) is too restrictive. Does this mean that the usual definition requiring
development with respect to preferred row is the physically acceptable option? This makes sense
if only the integral but not integrand is invariant under braidings. Braiding symmetry would be
analogous to gauge invariance.

8.7.3 How to understand the Grassmannian integrals defining the scat-
tering amplitudes?

The beauty of the twistor Grassmannian approach is that the residue integrals over quantum
Gr(k, n) would reduce to sum over poles (or possibly integrals over higher-D poles). Could residue
calculus provide a manner to integrate q-number valued functions of q-numbers? What would be
the minimal assumptions allowing to obtain scattering amplitudes as c-numbers?

Consider first what the integrand to be replaced with its quantum version looks like.

1. Twistor scattering amplitudes involve also momentum conserving delta function expressible
as δ(λaλ̃

a). This sum and - as it seems - also the summands should be c-numbers - in other
words one has eigenstates of the operators defining the summands.

2. By introducing Grassmannian space Gr(k, n) with coordinates Cα,i (see http://tinyurl.

com/yxllwcsn), one can linearize δ(λaλ̃
a) to a product of delta functions δ(C · Z) = δ(C ·

λ̃)× δ(C⊥ ·λ) (I have not written the delta function is Grassmann parameters related to super
coordinates). Z is the n-vector formed by the twistors associated with incoming particles.
The 4× k components of Cα,kZ

k should be c-numbers at least when they vanish. One should
define quantum twistors and quantum Grassmannian and pose the constraints on the poles.

How to achieve the goal? Before proceeding it is good to recall the notion of non-commutative
geometry (see http://tinyurl.com/yxrcr8xv). Ordinary Riemann geometry can be obtained
from exterior algebra bundle, call it E. The Hilbert space of square integrable sections in E carries
a representation of the space of continuous functions C(M) by multiplication operators. Besides
this there is unbounded differential operator D, which so called signature operator and defined in

http://tinyurl.com/yycflgrd
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxllwcsn
http://tinyurl.com/yxrcr8xv
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terms of exterior derivative and its dual: D = d+d∗. This spectral triple of algebra, Hilbert space,
and operator D allows to deduce the Riemann geometry.

The dream is that one could assign to non-commutative algebras non-commutative spaces
using this spectral triple. The standard q-p quantization is example of this: one obtains now
Lagrange manifolds as ordinary commutative manifolds.

Consider now the situation in the case of quantum Grassmannian.

1. In the recent case the points defining the poles of the function - it might be that the even-
tual poles are not a set of discrete points but a higher-dimensional object - would form the
commutative part of non-commutative quantum space. In this space the product of quantum
minors would become ordinary number as also the argument C ·Z of the delta function. This
commutative sub-space would correspond to a space in which maximum number of minors
vanish and residues reduce to c-numbers.
Thus poles of the integrand of twistor amplitude would correspond to eigenstates for some
k × k minors of Grassmannian with a vanishing eigenvalue. The residue at the pole at given
step in the recursion pole by pole need not be c-number but the further residue integrals should
eventually lead to a c-number or c-number valued integrand.

2. The most general option would be that the conditions hold true only in the sense that some
k× k minors for k ≥ 2 are c-numbers and have a vanishing eigenvalue but that smaller minors
need not have this property. Also Cα,kZ

k should be c-numbers and vanish. Residue calculus
would give rise to lower-D integrals in step-wise manner.
The simplest and most general option is that one can speak only about eigenvalues of k × k
minors. At pole it is enough to have one minor for which eigenvalue vanishes whereas other
minors could remain quantal. In the final reduction the product of all non-vanishing k × k
minors appearing in cyclic order in the integrand should have a well-defined c-number as
eigenvalue. Does this allow the appearance of only cyclic minors.
A stronger condition would be that all non-vanishing minors reduce to their eigenvalues. Could
it be that only the n cyclic minors can commute simultaneously and serve as analogs of q-
coordinates in phase space? The complex dimension of GC(n, k) is d = (n− k)k. If the space
spaced by minors corresponds to Lagrangian manifold with real dimension not larger than d,
one has k ≤ d = (n − k)k. This gives k ≤ n/2(1 +

√
1− 2/n) For k = 2 this gives k ≤ n/2.

For n → ∞ one has k ≤ n/2 + 1. For k > n/2 one can change the roles of positive and
negative helicities. It has been found that in certain sense the Grassmannian contributing to
the twistor amplitude is positive.
The notion of positivity found to characterize the part of Grassmannian contributing to the
residue integral and also the minors and the argument of delta function [B22](see http://

tinyurl.com/yd9tf2ya) would suggest that it is also real sub-space in some sense and this
finding supports this picture.
The delta function constraint forcing C · Z to zero must also make sense. C · Z defines k × 6
matrix and also now one must consider eigenvalues of C · Z. Positivity suggest reality also
now. Z adds 4×n degrees of freedom and the number 6×k of additional conditions is smaller
than 4× n. 6k ≤ 4× n combined with k ≤ n/2 gives k ≤ n/2 so that the conditions seems to
be consistent.

3. The c-number property for the cyclic minors could define the analog of Lagrangian manifold
for the phase space or Kähler manifold. One can of course ask, whether Kähler structure of
Gr(k, n) could generalize to quantum context and give the integration region as a sub-manifold
of Lagrangian manifold of Gr(k, n) and whether the twistor amplitudes could reduce to integral
over sub-manifold of Lagrangian manifold of ordinary Gr(k, n).

To sum up, I have hitherto thought that TGD allows to get rid of the idea of quantization of
coordinates. Now I have encountered this idea from totally unexpected perspective in an attempt
to understand how 8-D masslessness and its twistor description could relate to 4-D one. Grass-
mannians are however very simple and symmetric objects and have natural coordinates as k × n
matrices interpretable as quantum matrices. The notion of quantum group could find very concrete
application as a solution to the basic problem of the standard twistor approach. Therefore one
can consider the possibility that they have quantum counterparts and at least the residue integrals
reducing to c-numbers make sense for quantum Grassmannians in algebraic sense.

http://tinyurl.com/yd9tf2ya
http://tinyurl.com/yd9tf2ya


Chapter 9

The Recent View about SUSY in
TGD Universe

What SUSY is in TGD framework is a longstanding question, which found a rather convincing
answer rather recently. In twistor Grassmannian approach to N = 4 SYM [B25, B17, B18, B21,
B43, B26, B12] twistors are replaced with supertwistors and the extreme elegance of the description
of various helicity states using twistor space wave functions suggests that super-twistors are realized
both at the level of M8 geometry and momentum space.

In TGD framework M8 − H duality allows to geometrize the notion of super-twistor in
the sense that at the level of M8 different components of super-field correspond to components
of super-octonion each of which corresponds to a space-time surfaces satisfying minimal surface
equations with string world sheets as singularities - this is geometric counterpart for masslessness.

9.0.1 New view about SUSY

The progress in understanding of M8 −H duality [L76] throws also light to the problem whether
SUSY is realized in TGD [L81] and what SUSY breaking cold mean. It is now rather clear that
sparticles are predicted and SUSY remains exact but that p-adic thermodynamics causes thermal
massivation: unlike Higgs mechanism, this massivation mechanism is universal and has nothing to
do with dynamics. This is due to the fact that zero energy states are superpositions of states with
different masses. The selection of p-adic prime characterizing the sparticle causes the mass splitting
between members of super-multiplets although the mass formula is same for all of them. Super-
octonion components of polynomials have different orders so that also the extension of rational
assignable to them is different and therefore also the ramified primes so that p-adic prime as one
them can be different for the members of SUSY multiplet and mass splitting is obtained.

The question how to realize super-field formalism at the level of H = M4 × CP2 led to
a dramatic progress in the identification of elementary particles and SUSY dynamics. The most
surprising outcome was the possibility to interpret leptons and corresponding neutrinos as local
3-quark composites with quantum numbers of anti-proton and anti-neutron. Leptons belong to
the same super-multiplet as quarks and are antiparticles of neutron and proton as far quantum
numbers are consided. One implication is the understanding of matter-antimatter asymmetry.
Also bosons can be interpreted as local composites of quark and anti-quark.

Hadrons and perhaps also hadronic gluons would still correspond to the analog of monopole
phase in QFTs. Homology charge could appear as a space-time correlate for color at space-time
level and explain color confinement. Also color octet variants of weak bosons, Higgs, and Higgs
like particle and the predicted new pseudo-scalar are predicted. They could explain the successes
of conserved vector current hypothesis (CVC) and partially conserved axial current hypothesis
(PCAC).

One ends up with an improved understanding of quantum criticality and the relation between
its descriptions at M8 level and H-level. Polynomials describing a hierarchy of dark matters
describe also a hierarchy of criticalities and one can identify inclusion hierarchies as sub-hierarchies
formed by functional composition of polynomials: the criticality is criticality for the polynomials
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interpreted as p-adic polynomials in O(p) = 0 approximation meaning the presence of multiple
roots in this approximation.

9.0.2 Connection of SUSY and second quantization

The linear combinations monomials of theta parameters appearing in super-fields are replaced
in case of hermitian H super coordinates consisting of combinations of monomials with vanish-
ing quark number. For super-spinors of H the monomials carry odd quark number with quark
number 1. Monomials of theta parameters are replaced by local monomials of quark oscillator
operators labelled besides spin and weak isospin also by points of cognitive representation with
embedding space coordinates in an extension of rationals defining the adele. Discretization al-
lows anti-commutators which are Kronecker deltas rather than delta functions. If continuum limit
makes sense, normal ordering must be assumed to avoid delta functions at zero coming from the
contractions. The monomials (not only the coefficients appearing in them) are solved from gener-
alized classical field equations and are linearly related to the monomials at boundary of CD playing
the role of quantum fields and classical field equations determine the analogs of propagators.

The Wick contractions of quark-antiquark monomials appearing in the expansion of super-
coordinate of H could define the analog of radiative corrections in discrete approach. M8 − H
duality and number theoretic vision require that the number of non-vanishing Wick contractions
is finite. The number of contractions is bounded by the finite number of points in cognitive
representation and increases with the degree of the octonionic polynomial and gives rise to a
discrete coupling constant evolution parameterized by the extensions of rationals. The polynomial
composition hierarchies correspond to inclusion hierarchies for isomorphic sub-algebras of super-
symplectic algebra having interpretation in terms of inclusions of hyper-finite factors of type II1.

Quark oscillator operators in cognitive representation correspond to quark field q. Only
terms with quark number 1 appear in q and leptons emerge in Kähler action as local 3-quark
composites. Internal consistency requires that q must be the super-spinor field satisfying super
Dirac equation. This leads to a self-referential condition qs = q identifying q and its super-
counterpart qs. Also super-coordinate hs must satisfy analogous condition (hs)s = hs, where
hs → (hs)s means replacement of h in the argument of hs with hs.

The conditions have an interpretation in terms of a fixed point of iteration and expression
of quantum criticality. The coefficients of various terms in qs and hs are analogous to coupling
constants can be fixed from this condition so that one obtains discrete number theoretical coupling
constant evolution. The basic equations are quantum criticality condition hs = (hs)s, q = qs,
Dα,sΓ

α
s = 0 coming from Kähler action, and the super-Dirac equation Dsq = 0.

9.0.3 Proposal for S-matrix

One also ends up to the first completely concrete proposal for how to construct S-matrix directly
from the solutions of super-Dirac equations and super-field equations for space-time super-surfaces.

1. The idea inspired by WKB approximation is that the exponent of the super variant of Kähler
function including also super-variant of Dirac action defines S-matrix elements as its matrix
elements between the positive and negative energy parts of the zero energy states formed from
the corresponding vacua at the two boundaries of CD annihilated by annihilation operators
and resp. creation operators. The states would be created by the monomials appearing in the
super-coordinates and super-spinor.

2. Super-Dirac equation implies that super-Dirac action vanishes on-mass-shell. The proposed
construction however allows to get also scattering amplitudes between all possible states us-
ing the exponential of super-Kähler action. Super-Dirac equation however makes possible to
express derivatives of the quark oscillator operators (values of quark field at points of cogni-
tive representation) so that one can use only the points of cognitive representation without
introducing lattice discretization. Discrete coupling constant evolution follows from the fact
that the contractions of oscillator operators occur at the boundary of CD and their number is
limited by the finite number of points of cognitive representation.

3. S-matrix is trivial unless CD contains the images of 6-D analogs of branes as universal special
solutions of the algebraic equations determining space-time surfaces at the level of M8. 4-D
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space-time surfaces representing particle orbits meet at the partonic 2-surfaces associated with
the 3-D surfaces at t = rn hyper-surfaces of M4. The values of t = rn correspond to the roots
of the real polynomial with rational coefficients determining the space-time surface. These
transitions are analogs of weak measurements, and in TGD theory of consciousness they give
rise to the experience flow of time and can be said to represent ”very special moments” in the
life of self [L73].

4. The creation and annihilation operators at vertices associated with the monomials would be
connected to the points assignable to cognitive representations at opposite boundaries of CD
and also to partonic 2-surfaces in the interior of CD possibly accompanied by sub-CDs. This
would give analogs of twistor Grassmannian diagrams containing finite number of partonic
2-surfaces as topological vertices containing in turn finite number ordinary vertices defined by
the monomials. The diagrams would be completely classical objects in accordance with the
fact that quantum TGD is completely classical theory apart from state function reduction.

5. This view allows also a formulation of continuum theory since the monomials appearing in the
action density in the interior of CD are linear superposition of the monomials at the points of
boundary of CD involving 3-D integral so that contractions of oscillator operators only reduce
one integration without introducing divergence. One can also normal order the monomials at
boundary of CD serving as initial values. If preferred extremals are analogs of Bohr orbits,
one can express extremals using either boundary as the seat of initial data.

9.1 How to formulate SUSY at the level of H = M 4 × CP2?

In the following I will represent the recent trial for constructing SUSY at the level of H = M4×CP2.
The first trial replaced theta parameters of SUSY with quark oscillator operators labelled by spin
and isospin and had rather obvious shortcomings: in particular, one did not obtain many-quark
states with large quark numbers. The second trial allows quark oscillator operators to have as
labels also the points of space-time surface in cognitive representation and thus having coordinates
of H belonging to an extension of rationals defining the adele [?]

9.1.1 First trial

If SUSY is realized at the level of M8, it should have a formulation also at the level of H. The basic
elements of the first trial form part of also second trial. The basic modification made in the second
trial is that finite number of theta parameters replaced with the fermionic oscillator operators
labelled by the points of cognitive representations so that they are analogous to fermion fields in
lattice, and only local composites of the oscillator operators appear in the super coordinates and
super-spinors. This means that SUSY is essential element of the second quantization of fermions
in TGD.

1. M8 − H duality is non-local and means that the dynamics at the level of H is not strictly
local but dictated by partial differential equations for super-fields having interpretation as
describing purely local many-fermion states made of fundamental fermions with quantum
numbers of leptons and quarks (quarks do not possess color as spin like quantum number) ad
their antiparticles.

2. Classical field equations and modified Dirac equation must result from this picture. Induction
procedure for the spinors of H must generalize so that spinors are replaced by super-spinors
Ψs having multi-spinors as components multiplying monomials of theta parameters θ. The
determinant of metric and modified gamma matrices depend on embedding space coordinates
h replaced with super coordinates hs so that monomials of θ appear in two different ways.
Hermiticity requires that sums of monomial and its hermitian conjugate appear in hs. Mono-
mials must also have vanishing fermion numbers. Otherwise one can obtain fermionic states
propagating like bosons. For Dirac action one must assume that Ψs involves only odd mono-
mials of θ with quark number 1 involving monomials appearing in hs to get only states with
quark number 1 and correct kind of propagators.

3. One Taylor expands both bosonic action density (6-D Kähler action dimensionally reducing
to 4-D Kähler action plus volume term) and Super-Dirac action with respect to the super-
coordinates hs. In Super-Dirac action one has also the expansion of super-spinor in odd
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monomials with total quark number 1. The coefficients of the monomials of θ:s are obtained
are partial derivatives of the action. Since the number of θ parameters is finite and corresponds
to the number of spin-weak-isopin states of quarks and leptons, the number of terms is finite
if the θ parameters anti-commute to zero. If not, one can get an infinite number of terms
from the Taylor series for the action to the coefficient given monomial. Number theoretical
considerations do not favor this and there should exist a cancellation mechanism for the ra-
diative corrections coming from fermionic Wick contractions if thetas correspond to fermionic
oscillator operators as it seems to be.

4. One can interpret the superspace as the exterior algebra of the spinors of H. This reminds of
the result that the sections of the exterior algebra of Riemann manifold codes for the Riemann
geometry (see http://tinyurl.com/yxrcr8xv). This generalizes the observation that one can
hear the shape of a drum since the sound spectrum is determined by its frequency spectrum
defined by Laplacian.
Super-fields define a Clifford algebra generated by θ parameters as a kind of square root of
exterior algebra which corresponds to the Clifford algebra of gamma matrices. Maybe this
algebra could code also for the spinor structure of embedding space or even that of space-time
surface so that the super-fields could be seen as carriers of geometric information about space-
time surface as a preferred extremal. In 8-D case there is also SO(1, 8) triality suggesting
that corresponding three Clifford algebras correspond to exterior algebra fermionic and anti-
fermionic algebras.

What about the situation at the level of M8?

1. At M8 level the components of super-octonion correspond to various derivatives of the basic
polynomial P (t) so that space-time geometry correlates with the quantum numbers assignable
to super-octonion components - this is in accordance with QCC (quantum-classical correspon-
dence). This is highly desirable at the level of H too.
Could the space-time surface in M8 be same for super-field components with degree d <
dmax in some special cases? The polynomial associated with super octonion components are
determined by the derivatives of the basic polynomial P (t) with order determined by the degree
of the super-monomial. If they have decomposition P (t) = P k1 (t), the monomials with degree
d < k the roots corresponding to the roots P1(t) co-incide. Besides this there are additional
roots of drP1/dt

r for super-octonion component with r θ parameters.
A possible interpretation could be as quantum criticality in which there is no SUSY breaking
for components having d < k (masses in p-adic thermodynamics could be the same since
the extension defined by P1 and corresponding ramified primes would be same). This would
conform with the general vision about quantum criticality.

2. Usual super-field formalism involves Grassmann integration over θ parameters to give the ac-
tion. M8 formalism does not involve the θ integral at all. Should this be the case also at
the level of H? This would guarantee that different components of H- coordinates as super-
field would give rise to different space-time surface and QCC would be realized. θ integration
produces SUSY invariants naturally involved with the definition of vertices involving compo-
nents of super-fields. Also vertices involving fermionic and bosonic states emerge since bosonic
super-field components appear in super-coordinates in super-Dirac action.

This approach does not say anything about second quantization. There is a strong temp-
tation to replace the theta parameters with fermionic oscillator operators. One cannot however
obtain second quantization of fermions in this manner since the maximal quark number (and lep-
ton number if leptons are present as fundamental fermions) of the states is 4. To achieve second
quantization, one must replace the theta parameters with fermionic oscillator operators labelled
besides spin and weak isospin by the coordinates of points of 3-surface, most naturally the points
belonging to a cognitive representation characterizing space-time surface for given extension of
rationals.

9.1.2 Second trial

I have already earlier considered a proposal for how SUSY could be realized in TGD framework.
As it often happens, the original proposal was not quite correct. The following discussion gives
a formulation solving the problems of the first proposal and suggests a concrete formulas for the

http://tinyurl.com/yxrcr8xv
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scattering amplitudes in ZEO based on super-counterparts of preferred extremals. In the sequel
I will talk about super Kähler function as functional of 3-surfaces and - super Kähler function
action. By holography allowing to identify 3-surfaces with corresponding space-time surfaces as
analogs of Bohr orbits, these notions have the same meaning.

Could the exponent of super-Kähler function as vacuum functional define S-matrix
as its matrix elements

Consider first the key ideas - some of them new - formulated as questions.

1. Could one see SUSY in TGD sense as a counterpart for the quantization in the sense of QFT
so that oscillator operators replace theta parameters and would become fermionic oscillator
operators labelled by spin and electroweak spin - as proposed originally - and by selected
points of 3-surface of light-cone boundary with embedding space coordinates in extension of
rationals? One would have analog of fermion field in lattice identified as a number theoretic
cognitive representation for given extension of rationals. The new thing would be allowance
of local composites of oscillator operators having interpretation in terms of analogs for the
components of super-field.
SUSY in TGD sense would be realized by allowing local composites of oscillator operators
containing 4+4 quark oscillator operators at most. At continuum limit normal ordering would
produce delta functions at origin unless one assumes normal ordering from beginning. For
cognitive representations one would have only Kronecker deltas and one can consider the
possibility that normal ordering is not present. The vanishing of normal ordering terms above
some number of them suggested to be the dimension for the extension of rationals would give
rise to a discrete coupling constant evolution due to the contractions of fermionic oscillator
operators.

2. What is dynamical in the superpositions of oscillator operator monomials? Are the coefficients
dynamical? Or are the oscillator operators themselves dynamical - this would mean a QFT
type reduction to single particle level? The latter option seems to be correct. Oscillator
operators are labelled by points of cognitive representation and in continuum case define an
analog of quantum spinor field, call it q. This suggests that this field satisfies the super counter
part of modified Dirac equation and must involve also super part formed from the monomials
of q and q. This however requires the replacement of q with qs in super-Dirac operator and
super-coordinates hs and one ends up with an iteration q → qs → ...
The only solution to the paradoxical situation is that one has self-referential equation q = qs
having interpretation in terms of quantum criticality fixing the coefficients of terms in q =
qs. Analogous condition hs = (hs)s must be satisfied by hs under substitution hs → (hs)s.
These conditions fix coefficients of terms in H super-coordinate hs and qs interpreted as
coupling constants so that quantum criticality implying a discrete coupling constant evolution
as function of extension of rationals follows. Also super-Dirac equation Dsqs = 0 and field
equations Ds,αΓα,s = 0 for Kähler action guaranteeing hermiticity are satisfied.

3. Could one interpret the time reversal operation taking creation- and annihilation operators
to each other as time reflection permuting the points at the opposite boundaries of CD? The
positive resp. negative energy parts of zero energy states would be created by creation resp.
annihilation operators from respective vacuums assigned to the opposite boundaries of CD.

4. Could one regard preferred extremal regarded as 4-surface in super embedding space param-
eterized by the hermitian embedding coordinates plus the coefficients of the monomials of
quarks and antiquarks with vanishing quark number, whose time evolution follows from di-
mensionally reduced 6-D super-Kähler action? Could one assume similar interpretation for
super spinors consisting of monomials with total quark number equal to 1 and appearing in
super-Dirac action?

5. In WKB approximation the exponent of action defines wave function. In QFTs path integral
is defined by an exponent of action and scattering operator can be formally defined as action
exponential. Could the matrix elements for the exponent of the super counterpart of Kähler
function plus super Dirac action between states at opposite boundaries of CD between positive
and negative energy parts of zero energy states define S-matrix? Could the positive and
negative energy parts of zero energy states be identified as many particles states formed from
the monomials associated with embedding space super-coordinates and super-spinors?
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6. Could the construction of S-matrix elements as matrix elements of super-action exponential
reduce to classical theory? Super-field monomials in the interior of CD would be linear super-
positions of super-field monomials at boundary of CD. Note that oscillator operator monomials
rather than their coefficients would be the basic entities and the dynamics would reduce to that
for oscillator operators as in QFTs. The analogs of propagators would relate the monomials
to those at boundary ly to the monomials at the boundary of CD, and would be determined
by classical field equations so that in this sense everything would be classical. Note however
that the fixed point condition q = qs and super counterpart of modified Dirac equation are
non-linear.
Vertices would be defined by monomials appearing in super-coordinate and super-spinor field
appearing in terms of those at boundary of CD. If two vertices at interior points x and y of CD
are connected there is line leading from x to a point z at boundary of CD and back to y and
one would have sum over points z in cognitive representation. This applies also to self energy
corrections with x = y. At the possibly existing continuum limit integral would smoothen the
delta function singularities and in presence of normal ordering at continuum would eliminate
them.
In the expressions for the elements of S-matrix annihilation operators appearing in the mono-
mials would be connected to the passive boundary P of CD and creation operators to the
active boundary. If no partonic 2-surfaces appear as topological vertices in the interior of CD,
this would give trivial S-matrix!
M8 −H duality however predicts the existence of brane like entities as universal 6-D surfaces
as solutions of equations determining space-time surfaces. Their M4 projection is t = rn
hyperplane, where rn corresponds to a root of a real polynomial with algebraic coefficients
giving rise to octonion polynomial, and is mapped to similar surface in H. 4-D space-time
surfaces representing incoming and outgoing lines would meet along their ends at these partonic
2-surfaces.
Partonic 2-surfaces at these hyper-surfaces would contain ordinary vertices as points in cog-
nitive representation. Given vertex would have at most 4+4 incoming and outgoing lines
assignable to the monomial defining the vertex. This picture resembles strongly the picture
suggested by twistor Grassmannian approach. In particular the number of vertices is finite
and their seems to be no superposition over different diagrams. In this proposal, the lines con-
necting vertices would correspond to 1-D singularities of the space-time surfaces as minimal
surfaces in H. Also stringy singularities can be considered but also these should be discretized.
By fixing the set of monomials possibly defining orthonormal state basis at both boundaries
one would obtain given S-matrix element. S-matrix elements would be matrix elements of the
super-action exponential between states formed by monomials of quark oscillator operators.
Also entanglement between the monomials defining initial and finals states can be allowed.
Note that this in principle allows also initial and final states not expressible using monomials
but that monomials are natural building bricks as analogs of field operators in QFTs.

7. The monomials associated with embedding space coordinates are embedding space vectors
constructible from Dirac currents (left- or right-handed) with oscillator operators replacing
the induced spinor field and its conjugate. The proposed rules for constructing S-matrix
would give also scattering amplitudes with odd quark number at boundaries of CD. Could
the super counterpart of the bosonic action (super Kähler function) be all that is needed to
construct the S-matrix?
In fact, classically Dirac action vanishes on mass shell: if this is true also for super-Dirac action
then the addition of Dirac action would not be needed. The super-Taylor expansion of super-
Kähler action gives rise to the analogs of perturbation theoretic interaction terms so that one
has perturbation theory without perturbation theory as Wheeler might state it. The detailed
study of the structure of the monomials appearing in the super-Kähler action shows that they
have interpretation as currents assignable to gauge bosons and scalar and pseudo-scalar Higgs.
Super Dirac action is however needed. Super-Dirac equation for q and Dα,sΓ

α
s = 0 allow to

reduce ordinary divergences ∂αj
α of fermionic currents appearing in super-Kähler action to

commutators [Aα,sj
α]. Therefore no information about q at nearby points is needed and one

avoids lattice discretization: cognitive representation is enough.

8. Topological vertices represent discontinuities of the space-time surface bringing strongly in
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mind the non-determinism of quantum measurement, and one can ask whether the 3-branes
and associated partonic 2-surfaces. Could the state function reductions analogous to weak
measurements correspond to these discontinuities? Ordinary state function reductions would
change the arrow of time and the roles of active and passive boundaries of CD [L69]. In TGD
inspired theory of consciousness these time values would correspond to ”very special moments”
in the life of self [L73].

9. The unitarity of S-matrix can be understood from the structure of the exponent of Kähler
action. The exponent decomposes to a sum of real and purely imaginary parts. The exponent
of the hermitian imaginary part is a unitary operator for a given space-time surface. Real
exponent containing also radiative corrections from the normal ordering gives exponent of
Kähler function as vacuum functional in WCW (sum in the case of cognitive representations)
and by choosing the normalization factor of the state appropriately one obtains unitary S-
matrix.

9.1.3 More explicit picture

The following sketch tries to make the picture of the second trial more explicit.

1. The construction of S-matrix should reduce to super-geometry coded by super Kähler function
determined by the 6-D Kähler action for twistor lift by dimensional reduction. This might
be possible since zero energy states have vanishing total conserved charges and exponent of
super-Kähler function has matrix elements only between states at opposite boundaries of CD
having same total charges.

2. Construction should reduce to preferred extremals and their super-deformations determined
by variational principle with boundary conditions. The boundary values of super-deformations
at either boundary could be also interpreted as initial values for preferred extremals analogous
to Bohr orbits. The expectations for the super action with fixed initial values between positive
and negative energy parts would give the scattering amplitudes assignable to a given space-
time surface. There would be functional integral over space-time surfaces using exponent of
Kähler function as weight. In number theoretic vision this would reduce to sum over preferred
extremals labelled by cognitive representations serving as WCW coordinates.

3. Number theoretic vision suggests a discretization in terms of cognitive representation consist-
ing of points with coordinates in extension of rationals defining the adele. This representation
could be associated with the boundaries of CD and possibly with M4 time=constant hy-
perplanes assignable with the universal special solutions in M8. At the partonic 2-surfaces
associated with these hyper-planes 4-D extremals would meet along their ends: topological
particle vertices would be in question. Is string world sheets and partonic 2-surfaces corre-
spond to singularities, the boundaries of strings world sheets as intersections of the string
world sheets and orbits of partonic 2-surfaces should represent fermion lines.

4. Creation operators would be assigned with the passive boundary of CD - call it P - and annihi-
lation operators as their conjugates would act as creation operators at the opposite boundary,
active boundary - call it A. Time reversal symmetry of CD suggests that annihilation operator
as conjugate of creation operator labelled by the a point of boundary of CD corresponds to
the same point in common coordinates for light-cone boundary. This would conform also with
the basic character of the half-algebras associated with super-symplectic symmetries.
The original proposal was that oscillator operators have only spin and electroweak spin as
indices but the standard view about spin and statistics requires that also the points of the
3-surface must label them. Also the fact that the total quark number can be larger than 4 of
course requires this too. Algebraically the only difference with respect to this proposal is that
one allows also the points of 3-surface at the boundary of CD as labels.

5. Number theoretical vision requires that only points of 3-surface having embedding space co-
ordinates in the extension of rationals defining the adelic physics are allowed. In the generic
case the number of points in the cognitive representation would be finite and would increase
with the dimension of extension so that at the limit of algebraic numbers they form a dense
set of 3-surface.
Since action has infinite expansion in powers of super coordinates the contractions of oscillator
operators would give rise to a renormalization of the coefficients of the monomials and of
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classical action. For cognitive representations one would avoid normal ordering problems sine
the number of contractions is limited by the number of points in cognitive representation. This
would give rise to discrete coupling constant evolution as function of the extension of rationals.

6. In continuum theory all points of 3-D boundary would label quark oscillator operators and one
must normal order the oscillator operators in given local monomial. Also now the idea about
connecting creation and annihilation operators to opposite boundaries of CD would allow to
get rid of infinities due to contractions.

The action exponential would lead to a rather concrete proposal for the coefficients of the
monomials appearing in super-fields.

1. The deformations of embedding space coordinates would be expressible as WCW-local su-
perpositions of isometry generators or as WCW-global superpositions of Hamiltonian currents
contracted with the coordinate deformations. The latter would conform with super-symplectic
symmetries of WCW. CP2 Hamiltonian currents would give color quantum numbers. S2

Hamiltonian currents would be also present. One could see space-time local Kac-Moody sym-
metries assignable to light-like partonic orbits and string world sheets as a dual representations
at space-time level of symplectic symmetries at embedding space level.

2. Spinor modes would be expressible as superpositions of embedding space spinor modes having
expansion as super-Taylor series at the boundaries of CD. This would give spin and electroweak
quantum numbers.

Does one really obtain description of gauge bosons and gravitons by using the exponent?

1. Could the coefficients of super-monomials at boundary of CD allow interpretation in terms
of gauge bosons? These entities could have well-defined quantum numbers so that this might
be possible. Quark spin and isospin would represent additional spin degrees of freedom. The
Hamiltonians of H of CP2 expressible for given 3-surface as local superpositions of SU(3)
Killing vector fields would represent color degrees of freedom.
For string world sheets one would naturally have transversal M4 super-coordinates and CP2

super-coordinates as analogs of fields. Could this allow to get gauge bosons as excitations of
strings as in string theories.

2. Gauge bosons could be also bi-local composites of fermion and anti-fermion at opposite bound-
aries of wormhole contact or at opposite wormhole contacts of wormhole flux tube. Gravitons
could be 4-local composites. Baryons and mesons could be this kind of non-local composites.
One can consider also the analog of monopole phase of QFTs in which particles would be
multilocal composites.

3. The bosonic action is for induced metric and induced Kähler form. QFT wisdom would
suggest that their super-analogs could correspond to external particles. One could indeed
take the induced gauge potentials or -fields at boundary and form their contractions with
Killing vectors of isometries to obtain general coordinate invariant quantities and form their
super-analogs as normal ordered local composites. One can consider the same idea for induced
gravitational field or its deviation from Minkowski metric.
Formally this would correspond to an addition to the action exponential of perturbative terms
of type jA appearing in QFTs representing coupling to external currents and take the limit
j → 0. In QFT picture this works since various gauge fields are functionally independent
but in TGD framework this is not the case. Second problem is to to construct a complete
orthonormalized set of states in this manner. Therefore it seems this description can make
sense only at QFT limit of TGD.

Dimensionally reduced 6-D Kähler action as an analog of SYM action

The 6-D dimensionally reduced Kähler action reduces to a sum of 4-D Kähler action and volume
term and will be simply referred to as Kähler action. The super variant of this action is obtained
by replacing embedding space coordinates with their super counterparts. Super-Kähler action is
analogous to pure SYM action.

1. Space-time would be super-surface in super counterpart of H = M4×CP2 with coordinates hk

having super components proportional to multi-spinors multiplying the monomials of oscillator
operators. The ocillator operator monomials rather than only the multi-spinor coefficients of
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the oscillator monomials transforming like vectors of H are regarded as analogs of quantum
fields expressible by classical field equations as linear superpositions of their values at the
boundary of CD for preferred extremals. The dynamics of monomials would reduce to that for
oscillator operators labelled by points of cognitive representation and having interpretation as
restriction of quantized quark field satisfying super-Dirac equation and the quantum criticality
condition q = qs.

2. Fermionic creation operators and annihilation operators labelled not only by spin and weak
isospin as in the original proposal but also by the finite number of points of the cognitive
representation. Therefore oscillator operators are analogous to the values of fermion field in
discretization obeying super variant of modified Dirac equation. Both leptonic and quark like
oscillator operators corresponding to two different H-chiralities and having different couplings
to Kähler gauge potential could be present but octonionic triality allows only quarks. The
vacuum expectation value of the action action exponentials contains only monomials with
vanishing B (and L if leptons are present as fundamental fields). The matrix elements between
positive and negative energy parts of zero energy states gives S-matrix.
Real super-coordinates can be assumed to be hermitian and thus contain only sums of monomi-
als and their conjugates having vanishing fermion numbers. This guarantees super-symmetrization
respecting bosonic statistics at the level of propagators since all kinetic terms involve two co-
variant derivatives - one can indeed transform ordinary derivatives of monomials coming from
the Taylor expansion to covariant derivatives involving also the coupling to Kähler form since
the total Kähler charge of terms vanishes.

The lack of anti-commutativity of fermionic oscillator operators implies the presence of terms
resulting in contractions.

1. The super-Taylors series would involve a finite number of partial derivatives of action. Wick
contractions of oscillator operators would give rise to an infinite number of terms in continuum
case. The appearance of infinite Taylor series defining the coefficients of super-polynomial
is however troublesome from the point of view of number theoretic vision since there is no
guarantee that the coefficients are rational functions. The finite number of points in the
cognitive representation implying finite number of oscillator operators however allows only
finite number of terms in the super-Taylor expansion.
The monomials appearing in action in the interior of CD can be expressed as linear superpo-
sitions of those at boundary also in continuum case. Therefore each monomial is 3-D integral
over the monomials at the boundary of CD. As a consequence, the contractions giving delta
functions only eliminate one integration but do not give rise to infinities. A general solution
to the divergence problems emerges.
This is actually nothing new: one of the key ideas behind the notion of WCW is that path
integral over space-time surfaces is replaced by a functional integral over 3-surfaces in WCW
holographically equivalent with preferred extremals as analogs of Bohr orbits. The non-locality
of the theory due to the replacement of point-like particles with 3-surfaces would solve the
divergence problems.

An interesting possibility in line with the speculations of Nima-Arkani Hamed and others
is that the action defining space-time as a 4-surface of embedding space could emerge from the
anti-commutators of the oscillator operator monomials as radiative corrections so that the bosonic
action would vanish when the super-part of hs vanishes.

Super-Dirac action

Before doing anything one can recall what happens in the case of modified Dirac action.

1. One has separate modified Dirac actions ΨDΨ, D = ΓαDα for quarks and leptons (later it will
be found that modified Dirac action for quarks might be enough) and the covariant derivatives
differ since there is a coupling to n-ple of included Kähler potential. For leptons one has
n = −3 and for quarks n = 1. This guarantees that em charges come out correctly. This
coupling appears in the covariant derivative Dα of fermionic super field.

2. One obtains modified Dirac equations for quarks and leptons by variation with respect to
spinors. The variation with respect to the embedding space coordinates gives quantized ver-
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sions of classical conservation laws with respect to isometries. One also obtains and infinite
number of super-currents as contractions of modes of the modified Dirac operator with Ψ.

3. Classical field equations for the space-time surface emerge as a consistency condition guaran-
teeing that the modified Dirac operator is hermitian: canonical momentum currents of classical
action must be conserved and define conserved quantum when contracted with Killing vectors
of isometries. Quantum-classical correspondence (QQC) requires than for Cartan algebra of
symmetry algebra the classical Noether charges are same as the fermionic Noether charges.
It turns out that the super-symmetrization of modified Dirac equation gives only fermions and
they fermionic superpartners in this manner if one requires that propagators are consistent
with statistics.

Consider first the situation without the quantum criticality condition q = qs = Ψs. H coor-
dinates are super-symmetrized and induced spinor field becomes a super-spinor Ψs = ΨNON (q, q)
with ΨN depending on hs (summation over N is understood).

1. As in the case of bosonic action the vacuum expectation value gives modified Dirac action
conserving fermion numbers but one could assume that the monomials in the leptonic (quark)
modified Dirac action have either non-vanishing L (B) and vanishing B (L). It seems that the
lepton (baryon -) number of monomials can vary from 1 to maximum value. A more restrictive
condition would be that the value is 1 for all terms.

2. Super-Dirac spinor is expanded in monomials ON (q, q) of q and its conjugate q, whose anti-
commutator is non-trivial. One can equally well talk about quark like oscillator operators. The
sum Ψ = ΨNON defining super-spinor field. The multi-spinors ΨN are functions of space-time
coordinates, which are ordinary numbers. Quark oscillator operators are same as appearing
in the embedding space super-coordinates. Only monomials ON having total quark number
equal to 1 are allowed. Super-spinor field however contains terms involving quark pairs giving
rise to spartners of multiquark states with fixed quark number. The conjugate of super-spinor
is defined in an obvious manner.

3. The metric determinant and modified gamma matrices appearing in the Dirac action are
expanded as Taylor series in hermitian super-coordinate hs + hs with h = hNON . This as as
in the case of bosonic action.
There are also couplings to gauge potentials defined by the spinor connection of CP2 and the
expansion of them with respect to the embedding space coordinates gives at the first step rise
covariant derivatives of gauge potentials giving spinor curvature. At next steps one obtains
covariant derivatives of spinor curvature, which however vanish so that the number of terms
coming from the dependence of spinor connection on CP2 coordinates is expected to be finite.
Constant curvature property of CP2 is therefore be essential (not that also M4 would have
covariantly constant spinor curvature in twistor lift and give rise to CP breaking).
The super-coordinate expansion of the metric determinant

√
g and modified gamma matrices

Γα and covariant derivatives Dα involving dependence on H coordinates give additional mono-
mials of q parameters appear as hermitian monomials. Classical field equations correspond to
DαΓα = 0 guaranteeing the hermiticity of D = ΓαDα.

4. When super-coordinates of H are replaced with ordinary embedding space coordinates the only

Wick contractions are between ON and O
N

in the vacuum expectation of Dirac action, and
the action reduces to super-Dirac action with components satisfying modified Dirac equation.
Propagator is Dirac propagator for all terms and the presence of only odd components in
Ψ with quark number 1 and even components in hs guarantees that Fermi statistics is not
violated at the level of propagators. The dependence on hs induces coupling between different
components of the super-spinor. The components of super-spinor are interpreted as second
quantized objects.

5. The terms in the action would typically involve n-tuples of partial derivatives Lk1α1...kn1αn

defined earlier for L =
√
g coming from super-Taylor expansions. Similar derivatives come

from the modified gamma matrices Γα.
Also now one obtains loops from the self contractions in the terms coming from the expression
of action and gamma matrices. These terms should vanish and as already found this would
requires vanishing of currents perhaps identifiable as Noether currents of symmetries. This
guarantees that the Taylor expansion contains only finite number of terms as required by
number theoretic vision.
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The multi-fermion vertices defined by the action would be non-trivial but involve always
contraction of all fermion indices between monomials formed from oscillator operators in Ψ and
their conjugates in Ψ if the loop contractions sum up to zero. One could interpret these super-
symmetric vertices as a redistribution of fermions of a local many-fermion state between external
local many-fermion states particles represented by the monomials appearing in the vertices. The
fermions making the initial state would be same as in final state and all distributions of fermion
number between sfermion lines would be allowed. The action obtained by contraction would has
SUSY as symmetry but the propagation of different sfermions is fermionic and does not look like
that for ordinary spartners.

The quantum criticality condition q = qs makes the situation non-linear and should fix the
coefficients of various terms in super-Taylor expansions as fixed point values of coupling constants.

Could super-Kähler action alone give fermionic scattering amplitudes?

The concrete study of the super-counterpart of Kähler action led to a realization of an astonishing
possibility: super-Kähler action alone could give also fermionic scattering amplitudes.

1. In principle this is possible if in S-marix one has contractions of quark creation operator and
annihilation operator appearing in quark-antiquark bilinear with different partonic 2-surfaces.
This would give fermionic line connecting the points of the cognitive representation at the
boundary of CD with points at partonic 2-surfaces in t = rn hyper-planes in the interior of
CD or at the opposite boundary of CD.
As a matter of fact, this must be the case if the exponent for the sum of super-Kähler and
super-Dirac action gives the scattering amplitudes as its matrix elements! The reason is that
super-Dirac action vanishes or its solutions.
The super-Dirac equation must be however present and corresponding variational principle
must be satisfied. The hermiticity of the modified Dirac operator requires the vanishing of the
covariant derivatives of the modified gamma matrices meaning that bosonic field equations are
satisfied. This must be true also for the super variants of the modified gamma matrices.
If super-Dirac equation is satisfied, the action of modified Dirac operator without connec-
tion (ordinary rather than covariant derivative) terms on the discretized quark fields can be
expressed in terms of spinor connection as Γα − s∂αΨ = ΓαsAα,sΨ and there is no need for
explicit information about the behavior of quark field in the nearby points so that cognitive
representation is enough. Otherwise one must have the usual lattice type discretization.

2. The super expansion of super-Kähler action contains only ordinary derivatives of 4-currents
defined by quark bi-linears. If the quark field operators with continuous arguments are behind
those with discretized arguments and satisfy modified Dirac equation, one can transform the
action on quark and antiquark fields to a multiplication with induced gauge potential. This
gives nothing but the coupling terms to the gauge potentials in the standard perturbation
theory, where one assumes free solutions of Dirac action as approximate solutions. One there-
fore obtains on mass shell variant of the perturbation theory! Perturbation theory without
perturbation theory, might Wheeler say. Or more concretely: the fact that one can treat
super-coordinates only perturbatively.

3. The natural guess is that all terms in the expansion of super-Kähler can be transformed
to interaction terms and super-Kähler action gives the analog of perturbation theory as a
discretized version. The leptonic terms associated with (3, 3) term in super-Kähler action
should transfrom to the analog of interaction terms for leptonic Dirac action. Whether Kähler
gauge potential and spinor connection are developed in super-Taylor series in ordinary manner
or remains an open questions.

9.1.4 What super-Dirac equation could mean and does one need super-
Dirac action at all?

What does super-Dirac equation actually mean? Super Dirac action vanishes on mass shell and
super-Kähler action would give all scattering amplitudes. Are super-Dirac action and super-spinor
field needed at all? Should one interpret the oscillator operators defining analog of quark field q
as the super-Dirac field Ψs as conceptual economy suggests. But doesn’t this imply q = qs?
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One can consider 3 options as an attempt to answer these questions. Options I and II are
not promising. Option III leads to very nice concrete realization of quantum criticality.

Option I: No super-Dirac action and constant oscillator operators

1. If oscillator operators can be regarded as constant, the super Taylor expansion for super Kähler
action would give ordinary divergences of the fermionic currents and the action of derivative
would be on modified gamma matrices and charge matrix A commutator of [Aα,Γ

αQ] and
the outcome would be non-vanishing so that one would obtain the coupling terms also now.
Could the commutator [Aα,Γ

α] be interpreted in terms of gravitational interaction and the
commutator [Aα, Q] as electro-weak interaction? In any case, there would be no need for
super-Dirac action!

2. There is however an objection. Quark oscillator operators are labelled by the points of cognitive
representation and in continuum case they are analogous to the values of quantized spinor field.
Should one identify this spinor field with super-spinor field and solve it using a generalization
of modified Dirac equation to super-Dirac equation? Can one argue that oscillator operators
labelled by points represent superpositions of constant oscillator operators involving integration
over 3-D surface at light-cone boundary and are indeed constant?

This option does not look promising.

Option II: q satisfies ordinary Dirac equation

1. Could one assume that the solution q0 of ordinary Dirac equation defines the solution to be
used as q in the super-Kähler action. The coupling terms of super-Kähler action obtained
using D0q0 = 0 would be proportional to the classical spinor connection. Classical Kähler
action does not involve gauge potentials so that internal consistency would not be lost at
this level. The super-variant of Kähler action however involves derivatives of the analogs of
fermion currents and there transformation to purely local objects requires the introduction
of electroweak gauge potentials so that the symmetry between super-Kähler and super-Dirac
would be lost.

2. This would save from developing gauge potentials Ak to super Taylor series - as found this
would give only 2 terms by the covariant constancy of spinor curvature. The divergence would
reduce to a term involving only a commutator [Aalpha, Q], where Aα is purely classical. If Q
is Kähler charge, this commutator would vanish, which looks strange since electroweak hyper-
charge is proportional to QK . This could be seen as a failure. If Kähler gauge potential is
replaced with its super-variant Aα + Jαlδh

l
s the commutator is non-vanishing as it should be.

3. Leptons would not appear in q = q0 but since the exponent of super-Kähler action would
define the scattering amplitudes by the vanishing of (super-)Dirac action, one could say that
leptons emerge as 3-quark composites. SUSY would be dynamical after all!

Mathematically this option looks awkward and must be dropped from consideration.

Option III: q is a solution of super-Dirac equation

It is best to start from an objection.

1. Assume that q is given Super-Dirac equation

Ds(q)q = 0 .

This non-linear equation involves powers of q and its conjugate. The problem is that super-
Dirac equation is non-linear in q and there are actually 7 separate equations for the part of q
with quark number one. 7 equations is too much. The only manner to solve the problem is to
replace q with qs to get Dsqs = 0. But this would require replacing q with qs in Ds(q) and it
would seem that one has an infinite recursion.

2. Could q be self-referential in the sense that one has

qs = q . (9.1.1)
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q would be invariant under iteration q → qs. This would give excellent hopes of fixing q
uniquely. This allows also physical interpretation. The fixed points of iteration give typically
fractals and quantum criticality means indeed fractality. This condition could therefore realize
quantum criticality, and would give hopes about unique solution for q = qs for given extension
of rationals.
Also hs should satisfy similar self-referentiality condition expressing quantum criticality:

hs = (hs)s . (9.1.2)

The general ansatz for hs involves analogs of electroweak vector currents formed from quark
field and lepton field as its local composites. qs has analogous structure. The currents con-
tracted with the Hamiltonian vector fields of symplectic transformations of light-cone boundary
appear in the Minkowski salars and have some coefficients having an interpretation as coupling
constants. q = qs condition defining quantum criticality would fix the values of these coupling
parameters for given extension of rationals and would realize discrete coupling constant evo-
lution.
The general ansatz for hks involves analogs of electroweak vector currents formed from quark
field and lepton field as its local composites. qs has analogous structure. The currents con-
tracted with the Hamiltonian vector fields of symplectic transformations of light-cone boundary
appear in the Minkowski salars and have some coefficients having an interpretation as coupling
constants. q = qs condition defining quantum criticality would fix the values of these coupling
parameters for given extension of rationals and would realize discrete coupling constant evo-
lution.

3. Many consciousness theorists love the idea of self-referentiality described by Douglas Hofstadter
in fascinating manner in his book ”Gödel, Escher, Bach”. They might get enthusiastic about
the näıve identification of qs and hs with field of consciousness. In TGD inspired theory
of consciousness the self-referentiality of consciousness is understood in different manner but
q = qs and hs = (hs)s as quantum correlated for the self-referentiality is certainly a fascinating
possibility.

Consider now a more detailed picture.

1. What does one really mean with qs? qs could contain parts with quark number 1 and 3 but a
very natural requirement is that it has well-defined fermion number and thus has only a part
with quark number 1. The part with quark number 3 is not needed since super-Kähler action
would contain it: leptons would emerge as local 3-quark composites from super-Kähler action.

2. Super-Dirac equation would be given by

Ds(q)q = 0 ,

Ds(q) = Γα,s(q)Dα,s(q) . (9.1.3)

Ds(q) is super-Dirac operator and

Γαs = Tαks γk (9.1.4)

are super counterparts of the modified gamma matrices Γα = Tαkγk defined by the contractions
of canonical momentum currents of Kähler action with the gamma matrices γk of H:

Tαk =
∂LK

∂(∂αhk)
. (9.1.5)

One would have γk,s = γk by covariant constancy. LK denotes Kähler action density, which is
sum of 4-D Kähler action and volume term. The field equations of super Kähler action give

Dα,sΓ
α
s = 0 (9.1.6)

guaranteeing the hermiticity of the super Dirac operator.

3. The basic equations would thus reduce to

q = qs ,

Dα,sΓ
α
s = 0 ,

Ds(q)q = 0 . (9.1.7)
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In the continuum case one could think of solving the field equations iteratively.

1. One would first by solve q = q0 for classical modified Dirac operator D(h0) defined by the
ordinary coordinates h0 of H. Next one would solve q1 = q0 + ∆q1 for the super version
D1 = D(q0). This would allow to solve next iterate h1 = h0 + ∆h1 using D(q1). One could
continue this process in the hope that the iteration converges. At each step one have group of
equations Dnqn = 0 for qn and for hn+1.

2. An objection is that the iteration could lead outside the extension of rationals if it involves
infinite number of iterates. This could occur for space-time surface itself if the normal ordering
terms affect the classical action and force to modify the preferred extremal and also cognitive
representation at each step. Remaining inside the extension of rationals could also mean that
the coefficients of the monomials at points of cognitive representation belong to the extension.
It is not of course completely clear whether these equations make sense in the interior of
CD or can be solved unlike the lowest equation. It however seems that for each independent
monomial mn the equation would be of form D0mn = ... so that other terms would define kind
of sources term and the equation super-Dirac equation could be written as non-linear equation
D0q = −∆D(q)q.

3. Each order of bosonic monomials would give its own group of equations making sense also for
the cognitive representations and the same would be true for quark monomials and monomials
of different orders would be coupled but different quark numbers in q (quarks and leptons)
would decouple. These equations are analogous to those appearing in QFT in a gauge theory
involving gauge fields and fermion fields.

For cognitive representations the situation is much simpler.

1. All that is needed is the transformation of the ordinary divergences of fermionic currents
to a form in which derivative ∂α is replaced with the linear action of super-gauge potential
Aα,s. Therefore there is no need to solve the non-linear modified Dirac equation in this case
and it would become necessary only at the continuum limit. The full solution of non-linear
super-Dirac equation would be necessary only in the continuum theory.

2. Could one think that q has vanishing derivatives at the points of cognitive representation:
∂αq = 0 implying ΓαAαq = 0 If the condition holds true then q would be effectively constant
for cognitive representations and the situation would effectively reduce to that for option I. This
condition is is diffeo-invariant but not gauge invariant. If the points of cognitive representation
correspond to singularities of the space-time surface at which several roots of the octonionic
polynomial co-incide, the tangent space at the level of M8 parameterized by a point of CP2

is not unique and the singular point is mapped to several points in H, and the conditions
∂αq = 0 would make sense at the level of M8 at least.

3. If one assumes that the quarks correspond to singular points defined by intersections of roots
also in the continuum case, one obtains discretization also in this case irrespective of whether
one assumes ∂αq = 0 at singularities. Allowing analytic functions with rational Taylor coeffi-
cients one obtains also now roots which can be however transcendental and one can identify
intersections of roots in the similar manner.

To sum up, there are many uncertainties involved but to my opinion the most satisfactory
option is Option III. If one assumes that condition at continuum case, one would obtain also now
the discretization.

What information is needed to solve the scattering amplitudes?

One can look the situation also from a more practical point of view. Are there any hopes of actually
calculating something? Is it possible to have the information needed?

1. The condition that super-Dirac equation is satisfied would remove the need to have a lattice and
cognitive representation would be enough. If the condition ∂αq = 0 holds true, the situation
simplifies even more but this condition is not essential. The condition that the points of the
cognitive representation assignable to quark oscillator operators correspond to singularities of
space-time surface at which several space-time sheets intersect, would make the identification
of these points of cognitive representation easier. Note that the notion of singular point makes
sense also at the continuum limit giving cognitive representation even in this case in terms of
possibly transcendental roots of octonion analytic functions.
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If the singular points correspond to solution to 4 polynomial conditions on octonionic polyno-
mials besides the 4 conditions giving rise to the space-time surfaces. The intersections for two
branches representing two roots of polynomial equation for space-time surface indeed involve
4 additional polynomial conditions so that the points would have coordinates in an extension
of rationals, which is however larger than for the roots t = rn. One could of course consider
an additional condition requiring that the points belong to the extension defined by rn but
this seems un-necessary.
The octonionic coordinates used at M8-side are unique apart from a translation of real coordi-
nate and value of the radial light-like coordinate t = rn corresponds to a root of the polynomial
defining the octonionic polynomial as its algebraic continuation. At this plane the space-time
surfaces corresponding to polynomials defining external particles as space-time surfaces would
intersect at partonic 2-surfaces containing the shared singular points defined as intersections.

2. The identification of cognitive representations goes beyond the recent knowhow in algebraic
geometry. I have considered this problem in [L79] in light of some recent number theoretic
ideas. If the preferred extremals are images of octonionic polynomial surfaces and M8 − H
duality the situation improves, and one might hope of having explicit representation of the
images surfaces in H-side as minimal surfaces defined by polynomials.

9.1.5 About super-Taylor expansion of super-Kähler and super-Dirac
actions

The study of the details of of the general vision reveals several new rather elegant features and
clarifies the connections with QFT picture.

About the structure of bosonic and fermionic monomials

The super part of the embedding space coordinates is H-vector and this allows to pose strong
conditions on the form of the monomials.

1. One can construct the simplest monomials as bilinears of quarks and anti-quarks. Since os-
cillator operators are analogs of quark fields, one can construct analogs of left- and right-
handed electroweak currents q(1± γ5)γkQq involving charge matrix Q naturally assignable to
electroweak interactions. The charge matrices Q should reflect the structure of CP2 spinor
connection so that analogs of electroweak currents would be in question. One can multiply
the objects Hamiltonians HAA of the isometries and even symplectic transformations at the
boundary of CD.

2. One can obtain higher monomials of q and q by multiplying these vectorial currents by bi-
linears, which are scalars and pseudo-scalars obtained by contracting some symmetry related
vector field jkA of H with gamma matrices of H to give q(1± γ5)jkAQγkq giving rise to analogs
of scalar and pseudoscalar Higgs. The Killing vector fields of isometries of H and symplectic
vector fields assignable to the Hamiltonians of δCD × CP2 are a natural choice for jkA.
One can construct also scalar currents for which gamma matrices contract with gradient of
Hamiltonian to give q(1± γ5)γk∂kHAQγkq as kind of duals of symplectic currents. These do
not define symplectic transformations.
These vector fields make sense at the boundaries of CD and this is enough (they could make
sense also at shifted boundaries) since the field equations would allow to express monomials as
linear superpositions of the monomials at boundary of CD. Oscillator would always be assigned
with the boundaries of CD.

3. If the spin of graviton is assigned with spinor indices, the vector nature of the monomials
excludes the analog of graviton. One can however consider also the possibility that the second
spin index of graviton like state corresponds to the Hamilton of a symplectic isometry of S2:
for small enough size scales of CD this angular momentum would look like spin. In CP2 degrees
this would give rise to an analog of gluon. Also gluon with spin zero would be obtained.
An alternative option is to assume that graviton corresponds to a non-local state with vectorial
excitations at opposite throats of wormhole contact or at different wormhole contacts of closed
flux tube. All these states are in principle possible and the question is which of them correspond
to ordinary gravitons.
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The super counterpart of Dirac spinor consists of odd monomials of quark spinor. Well-
defined fermion number allows only monomials with quark number 1 and with definite H-chirality.
Quark spinors allow leptons like stats as local 3-quark composites appearing in the super-Kähler
action determining the scattering amplitudes since super-Dirac action vanishes at mass shell.

1. In the bosonic case one has vectorial entities and now it is natural to require that one has an
object transforming like spinor of H. This poses strong conditions on the monomials since one
should have spin 1/2-isospin 1/2 representation.

2. The lowest monomial correponds to quark-antiquark current. What about leptonic analog.
The number of oscillator operators at given point is 4+4=8. Leptonic part of super-Kähler
action must have 3+3 indices. Therefore also leptonic bilinear seems to be possible and pairs
of quarks and lepton like states are possible.
Intuitively it is clear that leptonic term exists and corresponds to an entity completely anti-
symmetric in spin-isospin index pairs (s3, i3) of quark spinors. The construction of baryons
without color symmetry indeed gives proton and neutron. In order to obtain ∆ resonance from
u and d quarks, one must have color degrees of freedom and perform anti-symmetrization in
these.
The general condition is that the tensor product of 3 8-D spin representation of SO(1, 7)
contains 8-D representation in its decomposition. The existence of lepton representation is
clear from the fact that the completely antisymmetric representation formed from 4 quarks
is SO(1, 7) singlet and is product of lepton representation with 3 fold tensor product which
must therefore contain spin-isospin 4-plet . The coupling to Kähler gauge potential would
correspond to leptonic coupling, which is 3 times the quark coupling.

3. Quarks and lepton monomials have also satellites obtained by adding scalars and pseudo-
scalars constructible as quark-anti-quark bi-linears in the manner already discussed. The
interpretation as analogs of Higgs fields might make sense.

Normal ordering terms from contractions of oscillator operators

Normal ordering terms from contractions of oscillator operators is a potential problem. In the
discretization based on cognitive representations this problem disappears.

1. Contraction terms could induce discrete coupling constant evolution by renormalizing the local
monomials. Infinite number these terms would spoil number theoretical vision since a sum
over infinite number of terms in general leads outside the extension of rationals involved. If
the number of contractions is finite, there are no problems. This is the case in the number
theoretical vision since contraction involves always a pair of points. If the rule for construction
of S-matrix holds true these points are at opposite boundaries of CD. In the general case they
can be at the same boundary. The number of contracted points cannot be larger than the
number of points in cognitive representation, which is finite in the generic situation.
This would give discrete coupling constant evolution as function of extension of rationals
since the contractions renormalize the coefficients of the 4+4 terms in the local composites of
oscillator operators. The original proposal that additional symmetries are needed to obtain
discrete coupling constant evolution is not needed.

2. One could argue that algebraic numbers as a limit for extension is enough to get the continuum
limit since the points of cognitive representation would be dense subset of 3-surface. For
continuum theory 3-D delta functions would replace Kronecker deltas in anti-commutators
implying in ordinary QFT divergences coming as powers of 3-D delta function at zero.
In the proposed vision one can allow contractions even in the continuum case. The monomials
in the interior are linear multilocal composites of those at either boundary of CD involving 3-D
integration over boundary points. Contractions associated with two monomials in the interior
means an appearance of delta function cancelling the second integration so that there is no
divergence.

About the super-Taylor expansions of spinor connection and -curvature

There are also questions related to the details of the expansion of of spinor connection and -
curvature in powers of monomials of quark oscillator operators.
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1. The rule is that one develops Kähler function as Taylor series with argument shifted by super-
part of the super-coordinate. This involves expansion in powers of coordinate gradients and
also the expansion of Kähler gauge potential. In the case of modified Dirac action one must
expand also the spinor connection of CP2.
A potential problem is that the Taylor expansions of Kähler gauge potential and spinor con-
nection have infinite number of terms. Since the monomials in the interior can be expressed
linearly in terms of those at boundary of CD by classical field equations, number theoretic
discretization based on cognitive representation implies that only a finite number of terms are
obtained by using normal ordering and the fact that the number of oscillator operators at
same point is 4+4=8. Normal ordering terms would represent radiative corrections giving rise
to renormalization depending on the extension of rationals.

2. Is this enough or should one modify the Taylor expansion of Kähler gauge potential A? The
idea that Akdh

k is the basic entity suggests that one must form super Taylor series for both Ak
and dhk. This would give Akdh

k → Ak∂kδh
k +Al∂(δh

l))dhk. By performing an infinitesimal

super gauge transformation Al → Al + ∂l(Alδh
k) one obtains Ak → Ak + Jkl∆h

k
s , where ∆hks

denotes super part of super-coordinate. The next term would vanish by covariant constancy
of Jkl.
The same trick could be applied to spinor connection and since also spinor curvature is covari-
antly constant, one would obtain only 2 terms in the expansion also in the continuum case.
This provides an additional reason for why S (= CP2) must be constant curvature space.
This applies also to M4: in fact, twistor approach strongly suggests that also M4 has the
analog of covariantly constant Kähler form. This conforms with the breakdown of Poincare
symmetry at M8 level forced by the selection of the octonion structure. Poincare invariance
is gained by integrating over the moduli space of octonion structures in the construction of
scattering amplitudes. What is remarkable that one could use the irreps of Lorentz group
at boundaries of CD, which for obvious reasons are much more natural than than those of
Poincare group.

3. In the case of embedding metric the same trick would give only the c-number term and only
the gradients of embedding space coordinates would contribute to the super counterpart of
the induced metric. In this case general gauge super-coordinate transformation would allow
to treat the components of metric as constants.

What is the role of super-symplectic algebra?

This picture is not the whole story yet. Super-symplectic approach predicts that the super-
symplectic algebra (SSA) generated essentially by the Hamiltonians of S2 × CP2 assignable to
the representations of SO(3)× SU(3) localized with the respect to the light-like radial coordinate
of light-cone boundary characterize the states besides electro-weak quantum numbers. Color quan-
tum numbers would correspond to Hamiltonians in octet representation. This would predict huge
number of additional states.

There are however gauge conditions stating that sub-algebra of SSA having radial conformal
weights coming as n-ples of SSA and isomorphic to SSA and its commutator with SSA annihilate
physical states. This reduces the degrees of freedom considerably but the number of symplectic
Hamiltonians is still infinite: measurement resolution very probably makes this number to finite.

9.2 Other aspects of SUSY according to TGD

In this section other aspects of SUSY according to the present proposal are discussed.

9.2.1 M8 −H duality and SUSY

M8 −H duality and heff/h0 = n hypothesis pose strong constraints on SUSY in TGD sense.

1. heff/h0 = n interpreted as dimension of extension of rationals gives constraints. Galois exten-
sions are defined by irreducible monic polynomials P (t) extended to octonionic polynomials,
whose roots correspond to 4-D space-surfaces and in special case 6-spheres at 7-D light-cones
of M8 taking the role of branes.
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The condition that the roots of extension defined by Q are preserved for larger extension P ◦Q
is satisfied if P has zero as root:

P (0) = 0 .

This simple observation is of crucial importance, and suggests an evolutionary hierarchy P ◦
Q with simplest possible polynomials Q at the bottom of the hierarchy are very naturally
assignable to elementary particles. These polynomials have degree two and are of form Q =
x2 ± n. Discriminant equals to D = 2n and has the prime factors of n as divisors defining
ramified primes identified as p-adic primes assignable to particles.
Remark: Also polynomials P (t) = t − c are in principle possible. The corresponding space-
time surfaces at the level of H would be M4 and CP2 and they are extremals of Kähler action
but do not have particle interpretation.
It turns out the normal ordering of oscillator operators renormalizes the coefficients of P .
In particular P can be shifted by a constant term and this deforms the roots of the real
polynomial. Also the action principle to be discussed allows RE(P ) = c and IM(P ) = c
surfaces as solutions.

2. The key idea is that the powers on of octonion are associative. If the coefficients of P (o)
are real or possibly even complex rationals m+ in commuting with octonions, associativity is
not lost. Octonion o would be replaced by super-octions os with (possibly complex-) rational
coefficients. os is octonion shifted by oscillator operator polynomial analogous to a real number.
The conjugate octonion o would be treated analogously. Associativity would be preserved.

3. One could assign oscillator operators to both leptons and quarks but the option identifying lep-
tons as local 3-quark local composites and in this sense spartners of quarks allows only baryon
number zero composites of quarks and anti-quarks to appear in the octonionic polynomial,
which is also hermitian. This would conform with SO(1, 7) triality.
Remark: Anti-leptons are spartners of quarks in the sense of being their local composites
but not in the sense that they would appear as local composites in qs. Leptonic currents can
appear in super-Kähler action so that anti-leptons are spartners of quarks in this sense.
Oscillator operators would transform like components of 8-D spinor resp. its conjugate and
have interpretation as quark resp. anti-quark like spinors. SO(1, 7) triality allows only leptonic
or quark-like spinors and quark-like spinors are the only physical choice. Also the super-quark
qs which must satisfy self-referential condition qs = q must have components behaving like
8−D spinors with quark number 1. os should satisfy analogous condition os = (os)s.

4. Super-polynomial Ps(o) would be defined by super-analytic continuation as P (os) by Taylor
expanding it with respect to the super-part of os. The outcome is super-polynomial with coef-
ficients of oscillator operator monomials containing k quark-antiquark pairs given by ordinary
octonionic polynomials Pn−k(o). Each Pn−k(o) obtained by algebraically continuing the k:th
derivative of the real polynomial P (t) would define 4-surface by requiring that the imaginary or
real part of Pn−k(o) (in quaternionic sense) vanishes or is constant. Normal ordering of oscil-
lator operators renormalizes the coefficients of Pn−k. The interpretation would be as radiative
corrections.
Octonionic super-polynomials obtained from octonionic polynomials of degree n as super-
Taylor series decompose to a sum of products of octonionic polynomials Pk(o) with degree
k = n−d with oscillator operator monomials consisting of d quark-antiquark pairs. If the degree
n of the octonionic polynomial is smaller than the maximal number N = 4 of oscillator operator
pairs in super-polynomial, only a fraction of spartners are possible. SUSY is realized only
partially and one can say that part of spartners are absent at the lowest levels of evolutionary
hierarchy. At the lowest level of hierarchy corresponding to n = 2 only fermions (quarks)
would be present as local states and would form non-local states such as baryons and mesons.
Gauge bosons and Higgs like state would be bi-local states and graviton 4-local state.
Remark: Gauge bosons and Higgs like states as local fermion-anti-fermion composites at
level n = 2× 2. For the option involving only quarks (color is not spin like quantum number).
Note that the value of n0 = 3 × 2 = 6 in h = n0 × h0 suggested by the findings of Randel
Mills [L31, L60] would allow the known elementary particles.

5. The geometric description of SUSY would be in terms of super-octonions and polynomials
and the components of SUSY multiplet would correspond to components of a real polynomial
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continued to that of super-octonion and would in general give rise to minimal space-time
surfaces as their roots: one space-time sheet for each component of the super-polynomial.
The components would have different degrees so that the minimal extensions defined by the
roots would be different. Therefore also the p-adic primes characterizing corresponding par-
ticles could be different as ramified primes of extension and in p-adic mass calculations this
would mean different p-adic mass scales and breaking of SUSY although the mass formulas
would be same for the members of SUSY multiplet. The remaining question is how the ramified
prime defining the p-adic prime is selected. The components of super-polynomial would have
different degrees so that the extensions defined by the roots would be different. Therefore
also the p-adic primes characterizing corresponding particles would be different as ramified
primes of extension and in p-adic mass calculations this would mean different p-adic mass
scales and breaking of SUSY although the mass formulas would be same for the members of
SUSY multiplet. The remaining question is how the ramified prime defining the p-adic prime
is selected.

9.2.2 Can one construct S-matrix at the level of M8 using exponent of
super-action?

The construction of S-matrix in H picture in terms of exponential of action defining Kähler function
of WCW forces to ask whether M8 really is an alternative picture as the term “duality” would
suggest or is it only part of a description necessitating both M8 and H. If the duality holds true
in strict sense the proposed construction of S-matrix at the level of H should make sense also at
the level of M8. Is this possible at all or could it be that S-matrix emerges the level of H and that
M8 level provides only a tool to describe preferred extremals in H by using what I have called M8

duality? In the sequel I will look what one obtains if the duality holds true in strict sense.

1. The original idea was to identify space-time-surfaces in M8 as roots of polynomial equations
generalizing ordinary polynomial conditions. Could this makes sense also when octonions are
replaced by super-octonions and what super-octonions and quark oscillator operators could
mean?

2. The oscillator operators are interpreted as a discretized version of second quantized quark field
q allowing local composites of q defining analogs of SUSY multiplets. One can indeed define
second quantization for cognitive representations also now. Quark oscillator operators would
be analogs of complex coefficients commuting with octonionic units (i =

√
−1 commute with

them). The gamma matrices appearing in the quark-antiquark bi-linears would be ordinary
gamma matrices of M8.
Remark: I have also considered the possibility that M8 spinors correspond to octonionic
spinors with octonionic units defining sigma matrices.

3. One could define simplest contribution the octonionic super-coordinate os as sum of M8 octo-
nion and super-part defined as contraction of 8-component quark current qγkq with contracted
with octonionic units ek to give ∆os = qγkQqek. Charge matrices Q are linear combinations
of sigma matrices of M8 in the currents. Gamma matrices should be ordinary gamma matrices
and q would transform like ordinary M8 spinor. The entity os = o+ ∆os would replace octo-
nionic coordinate o in polynomial equations expressing the vanishing of the real or imaginary
part (in quaternionic sense) for P (0s).
The contractions of Killing vector fields of translations with gamma matrices would give scalars
jkγk giving in turn scalars S = qjkγkQq and these could be used to build higher monomials.
Octonion analyticity in the proposed sense does not allow to use Killing vector fields of rotations
and symplectic currents. On the other hand, for cognitive representations these vector fields
are restricted to single point of cognitive representation: could this mean that one can allow
also the more general scalars.
Leptons should emerge from os. This is the case if one allows also higher monomials in os.
Also leptonic tri-linears and their conjugate could be built and these would give leptonic
bi-linears LγkQL. Therefore all (covariantly) constant contributions to super-octonion are
possible. The coefficients of various monomials in os would be derivatives of polynomial P
since they are obtained as super-Taylor series and the coefficients of these polynomials would
have interpretation as coupling constants.
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4. At the level of H one can construct much larger number of monomials of quark oscillator
operators transforming like vector in H. The scalars and pseudo-scalars constructed from the
Killing vector fields and symplectic currents can be used to build higher monomials. At the
level of H the super-symplectic Hamiltonian currents except those associated with isometries
could however annihilate physical states.
The quark currents defined by symplectic isometries are however not constant so that there
seems to be a slight inconsistency. Could one assume that also color isometries at the level
of H annihilate states quite generally as also S2 isometries associated with the “heavenly”
sphere S2 in the decomposition δM4

+ = S2 × R+? Or can one argue that the restriction to
translations is enough because one considers only points of cognitive representation?

5. What about quantum super-spinors qs (analog of quantized quark field). q would be ordi-
nary rather than octonionic spinor. qs would be constructed using q and the scalars already
discussed. These monomials would carry information about couplings constants. If they are
identifiable as the spinors appearing in os, one must have q = qs realizing quantum criticality
in quark sector. This would pose strong conditions on the coefficients of the monomials ap-
pearing in q interpreted as coupling constants. The conditions would depend on the extension
of rationals defined by the polynomia P (o).
The discretization by cognitive representations at the level of H is made possible by super-
Dirac equation. At M8 level there is no need to get rid of partial derivatives acting on currents
and super-Dirac equation is not needed.

6. The polynomial equations are purely local algebraic equations and the notions of propagation
and boundary value problem do not make sense at the level of M8. M8 −H correspondence
should lead to the emergence of these notions by mapping surfaces to minimal surfaces natural
by quantum criticality. Octonion analyticity and associativity of tangent or normal space
inducing dynamics should induce M8 analog of propagation.

Could one imagine a counterpart for the action exponential and a construction of S-matrix
similar to that in the case of H?

1. The action principle should be purely local involving no derivatives of the super-octonionic
polynomial P (os). It should produce RE(P ) = 0 and IM(P ) = 0 as solutions. One might
allow also solution RE(P ) = c, where c is rational number. This would shift of the real
polynomial continued algebraically to octonionic polynomial modifying the roots. One should
obtain also 6-spheres as universal solutions and identifiable as subsets of 7-D light cones. Now
one would have IM(P ) = 0, RE(P ) = c modifying the roots t = rn defining hyper-surfaces in
M4.

2. Action should be sum over contributions over the points of cognitive representation, perhaps
identifiable as the set of singular points at which two roots co-incide.

(a) Could one minimize the action with respect to the components of RE(P ) or IM(P )? If
this were the case one obtains one would have either RE(P ) = 0 or IM(P ) = 0. Surfaces
with associative tangent and normal space should have different action and this does not
look nice.

(b) Could one require stationarity of the action with respect to the small deformations of the
points of cognitive representation so that they would represent local extrema of action
density? These points indeed change, when the polynomial is modified. Since only the
deformations of these points are the visible trace of variation for cognitive representations,
one could require that the value of action is stationary against these variations rather
than variations of the values of RE(P ) and or IM(P ). This would give rise a condition
involving derivatives of RE(P ) and IM(P ) at singular points with respect to space-time
components of octonion. This option will be considered in the sequel.

3. The action density should be finite, and allow both solution types. One can imagine two
options.
Option I: If one requires that the action density is dimensionless, the simplest guess for the
“action density” L is

L =
(RE, IM)

[(RE,RE) + (IM, IM)]
,
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where one has RE ≡ RE(P (o)) and IM ≡ IM(P (o)) and the inner product is quaternionic
inner product. The problem is that denominator gives infinite series giving rise to infinite
number of normal ordering terms which may lead out of extension. For exceptional solutions
RE = 0, IM = 0 the denominator also diverges.
Option II: The alternative avoiding these problems is analogous to the action density of
completely local free field theory given by

L = K(RE, IM) . (9.2.1)

K is constant with dimensions of inverse length squared and should relate to the CP2 length
squared. This is not dimensionless but can remain bounded if the quantity (RE, IM) remains
bounded for large values of (RE,RE) + (IM, IM).

4. For Option I L is a generalization of conformally invariant action from 2-D complex case, in
which L reduces to L = w1w2/(w

2
1 +w2

2) = sin(φ)cos(φ), w1 = Re(w(z)),w2 = Im(w(z)). (φ)
is the conformally invariant direction angle associated with w.
The variation of 2-D action with respect to position of the point of cognitive representation
gives

[(∂uw1w2 + w1∂uw2)(w2
1 + w2

2) + w1w2(w1∂uw1 + w2∂uw2)]

(w2
1 + w2

2)2
, u ∈ {x, y} .

The general solutions are wi = ci 6= 0, where ci are constant rational numbers.
The criticality of the action density (maybe it could be seen as a manifestation of quantum
criticality) is essential and means that the graph of L as function of w1 and w2 is analogous
to saddle w1w2/((w

2
1 + w2

2). The condition that L is well-defined requires c1 6= 0. c1 could in
principle depend on point of cognitive representation. Option II gives the same equations in
complex case.

5. For Option II one obtains 8 equations in the octonionic case and the outcome is that the
derivatives of RE or IM or both with respect to components of o vanish. One can have
RE(P (o)) = c1 6= 0 or IM(P (o)) = c2 6= 0, where ci is rational. Both conditions are true
for the special 6-D solution at 7-D light-cone boundary. Also now both options give the same
equations.

What about the super variant of the variational principle?

1. Super-Taylor expansion must be carried out and normal ordering reduces the action to 5
independent terms according to the number k ∈ {0, ..., 4} of quark pairs involved. It seems
that only Option II is free of number theoretical problems due to normal ordering. Also in
this case one has renormalization corrections to various terms in RE and IM . Inner product
does not however give rise to additional terms. The degree of the polynomial Pn−k(os) is equal
to n− k and decreases as the degree h of the monomial increases and normal ordering terms
are present.

2. One can decompose action action density as L =
∑
Lk corresponding to different numbers k

of quark pairs. The stationarity conditions hold true for the polynomial coefficient Pn−k(o) of
each oscillator operator monomial appearing in RE and IM . One has both RE(Pn−k) = ck 6=
and IM(Pn−k) = ck 6= 0 options. Both conditions are true for the special solutions. Without
further conditions the option can depend on k and on the point of cognitive representation.
ck 6= 0 for some values of k guarantees that L to be non-vanishing so that the exponential of
S can define a non-trivial S-matrix.
Since an approximation of continuous case should be in question, the options should be same
all points of the cognitive representation. In the lowest order approximation one obtains
k = 0 solution obtained without super-symmetry. Normal ordering terms however modify the
coefficients of P (o) so that this solution is not exact.

3. Each monomial Pn−k(o) defines its own space-time surface and conditions should hold true
independently for each super-component Lk. Second option would be to consider vacuum
expectation value of the action in which case one would have only single surface.

4. One would have purely local free field theory and the construction of S-matrix would be
extremely simple. One could introduce CDs and the identification of hermitian conjugates of
fermionic oscillator operators labelled by points at given boundary of CD as creation operators
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at time reflected points at opposite boundary. If one can talk about sub-CDs assignable to
partonic 2-surfaces in M8 picture one obtains similar identification for them. Also leptons
would emerge from S-matrix.

To sum up, the second trial has a generalization although octonionic picture allows only the
Killing vectors of translations of E8 in the construction of os and qs. The action principle replaces
the earlier ansatz with solution in which one has roots of polynomials of RE(P ) and IM(P ) shifted
by rational number. Also a renormalization of P takes place.

9.2.3 How the earlier vision about coupling constant evolution would
be modified?

In [L71, L63] I have considered a vision about coupling constant evolution assuming twistor space
T (M4) = M4 × S2. In this model the interference of the Kähler form made possible by the same
signature of S2(M4) and S2(CP2) gives rise to a length scale dependent cosmological constant
appearing defining the running mass squared scale of coupling constant evolution.

For T (M4) identified as CP3(3, h) the signatures of twistor spheres are opposite and Kähler
forms differ by factor i (imaginary unit commuting with octonion units) so that the induced
Kähler forms do not interfere anymore. The evolution of cosmological constant must come from
the evolution of the ratio of the radii of twistor spaces (twistor spheres). This forces to modify the
earlier picture.

1. M8−H duality has two alternative forms with H = CP2,h×CP2 or H = M4×CP2 depending
on whether one projects the twistor spheres of CP3,h to CP2,h or M4. Let us denote the twistor
space SU(3)/U(1)× U(1) of CP2 by F .

2. The key idea is that the p-adic length scale hierarchy for the size of 8-D CDs and their 4-D
counterparts is mapped to a corresponding hierarchy for the sizes of twistor spaces CP3,h

assignable to M4 by M8−H-duality. By scaling invariance broken only by discrete size scales
of CDs one can take the size scale of CP2 as a unit so that r = R2(S2(CP3,h)/R(S2(F ))
becomes an evolution parameter.
Coupling constant evolution must correspond to a variation for the ratio of r = R2(S2(CP3,h)/R(S2(F ))
and a reduction to p-adic length scale evolution is expected. A simple argument shows that Λ is
inversely proportional to constant magnetic energy assignable to S2(X4) divided by 1/

√
g2(S2)

in dimensional reduction needed to induce twistor structure. Thus one has Λ ∝ 1/r2 ∝ 1/L2
p.

Preferred p-adic primes would be identified as ramified primes of extension of rationals defining
the adele so that coupling constant evolution would reduce to number theory.

3. The induced metric would vanish for R(S2(CP3,h) = R(S2(F )). Λ would be infinite at this
limit so that one must have R(S2(CP3,h) 6= R(S2(F )). The most natural assumption is that
one R(S2(CP3,h) > R(S2(F )) but one cannot exclude the alternative option. Λ behaves like
1/L2

p. Inversions of CDs with respect to the values of the cosmological time parameter a = Lp
would produce hierarchies of length scales, in particular p-adic length scales coming as powers
of
√
p. CP2 scale and the scale assignable to cosmological constant could be seen as inversions

of each other with respect to a scale which is of order 10−4 meters defined by the density of
dark energy in the recent Universe and thus biological length scale.

4. The original model for the length scale evolution of coupling parameters [L71] would reduce
to that along paths at S2(CP2) and would depend on the ends points of the path only. This
picture survives as such. Also in the modified picture the zeros of Riemann zeta could naturally
correspond to the quantum critical points as fixed points of evolution defining the coupling
constants for a given extension of rationals.
Space-time surfaces the level of M8 would be determined by octonionic polynomials determined
by real polynomials with rational coefficients. The non-critical values of couplings might
correspond to the values of the couplings for space-time surfaces associated with octonion
analytic functions determined by real analytic functions with rational Taylor coefficients.

9.2.4 How is the p-adic mass scale determined?

p-Adic prime identified as a ramified prime of extension of rationals is assumed to determine the p-
adic mass scale. There are however several ramified primes and somehow the quantum numbers of
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particle should dictate with ramified prime is chosen. There are two options to consider depending
on whether both the extension and ramified prime are same for all spartners Option 1) or whether
spartners can have different ramified primes (Option 2)). There also options depending on whether
both leptons and quarks appear in their own super-Dirac actions (Option a) or whether only
quarks appear in super-Dirac action (Option b implied by quark number conservation) . Call the
4 composite options Option 1a), 2a), 1b), 2b) respectively.

1. Consider first Options 1a) and 1b). The ramified prime is same for all states corresponding
to the same degree of θ monomial and thus same value of F + F . At the lowest k = 2 level
containing only fermions as local states the p-adic thermal masses of quarks and leptons are
same for Option 1a) at least for single generation and for all generations if Q2 does not depend
on the genus g of the partonic 2-surface. For Option 1b) the masses would not be same
for leptons and quarks since they would correspond to different degrees of super-octonionic
polymials. For both options would have n = n(g).

2. For Option 2 ramified prime depends on the state of the SUSY multiplet. This would require
that for fermions with k = 2 the integer n in Q2(x) = x2 ± n has the p-adic primes assignable
to leptons and quarks as factors.
There are 6 different quarks and 6 different leptons with different p-adic mass scales. For
Option 2a) n should have 12 prime factors which are near to power of 2. For leptons the factors
correspond to Mersenne primes Mk, k ∈ {107, 127} and Gaussian Mersenne k = 113. Gaussian
Mersenne is complex integer. TGD requires complexification of octonions with imaginary unit
i commuting with octonionic units so that also Gaussian primes are possible. This would
resolve the question whether P (t) can have complex coefficients m+ in.
For option 2b) quarks and leptons as local proton and neutron would have different extensions
since the polynomials would be different. The p-adic primes for 6 quark states quarks would
depend on genus. The value of n need not depend on genus g since the ramified primes p
depends on g: p = p(g).
Since the polynomials describing higher levels of the dark hierarchy would be composites P ◦Q2

with P (0) = 0, Q2 would be a really fundamental polynomial in TGD Universe. For Option
2b) it would be associated with quarks and would code for the elementary particles physics.
The higher levels such as leptons would represent dark matter levels.

3. The crucial test is whether the mass scales of gauge bosons can be understood. If one assumes
additivity of p-adic mass squares so that the masses for 2-local bosons would be p-adically
sums of mass squared at the “ends” of the flux tube. If the discriminant D = 2n of Q2 contains
high enough number of factors this is possible. The value of the factor p for photon would be
rather larger from the limits on photon mass. For graviton the value p would be even larger.

To sum up, the vision about dark phases suggests that the monopole phase is possible
already for the minimal value n = 2 involving only fundamental quarks for Option 2b), which
is the simplest one and could solve the probelm of matter antimatter asymmetry. Bosons and
leptons as purely local composites of quarks are possible for n = 6. Rather remarkably, also
empirical constraints [L31, L60] led to the conclusion h = 6h0. The condition is actually weaker:
h/h0 mod 6 = 0.

9.2.5 Super counterpart for the twistor lift of TGD

Twistor lift of TGD is now relatively well understood. I have made somewhat adhoc attempts to
construct TGD analog of the Grassmannian approach so super-twistors. The proposed formalism
for constructing scattering amplitudes seems to generalize as such to the twistor lift of TGD.

Could twistor Grassmannian approach make sense in TGD?

By M8 −H duality [L46] there are two levels involved: M8 and H. These levels are encountered
both at the space-time level and momentum space level. Do super-octonions and super-twistors
make sense at M8 level?

1. At the level ofM8 the high uniqueness and linearity of octonion coordinates makes the notion of
super-octonion natural. By SO(8) triality octonionic coordinates (bosonic octet 80), octonionic
spinors (fermionic octet 81), and their conjugates (anti-fermionic octet 8−1) would for triplet
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related by triality. A possible problem is caused by the presence of separately conserved B
and L. Together with fermion number conservation this would require N = 4 or even N = 4
SUSY, which is indeed the simplest and most beautiful SUSY.

2. At the level of the 8-D momentum space octonionic twistors would be pairs of two quaternionic
spinors as a generalization of ordinary twistors. Super octo-twistors would be obtained as
generalization of these.

Also Grassmannian is replaced with super-Grassmannian and super-coordinates as matrix
elements of super matrices are introduced.

1. The integrand of the Grassmannian integral defining the amplitude can be expanded in Taylor
series with respect to θ parameters associated with the super coordinates C as rows of super
G(k, n) matrix.

2. The delta function δ(C,Z) factorizing into a product of delta functions is also expanded in
Taylor series to get derivatives of delta function in which only coordinates appear. By partial
integration the derivatives acting on delta function are transformed to derivatives acting on
integrand already expanded in Taylor series in θ parameters. The integration over the θ
parameters using the standard rules gives the amplitudes associated with different powers
of θ parameters associated with Z and from this expression one can pick up the scattering
amplitudes for various helicities of external particles.

The super-Grassmannian formalism is extremely beautiful but one must remember that one
is dealing with quantum field theory. It is not at all clear whether this kind of formalism generalizes
to TGD framework, where particle are 3-surfaces [L46]. The notion of cognitive representation ef-
fectively reducing 3-surfaces to a set of point-like particles strongly suggests that the generalization
exists.

The progress in understanding of M8 −H duality throws also light to the problem whether
SUSY is realized in TGD and what SUSY breaking does mean. It seems now clear that sparticles
are predicted and SUSY remains in the simplest scenario exact but that p-adic thermodynamics
causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and
has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions
of states with different masses. The selection of p-adic prime characterizing the sparticle causes
the mass splitting between members of super-multiplets although the mass formula is same for all
of them.

The increased undestanding of what twistorialization leads to an improved understanding of
what twistor space in TGD could be. It turns out that the hyperbolic variant CP3,h of the standard
twistor space CP3 is a more natural identification than the earlier M4×S2 also in TGD framework
but with a scale corresponding to the scale of CD at the level of M8 so that one obtains a scale
hierarchy of twistor spaces [L88]. Twistor space has besides the projection to M4 also a bundle
projection to the hyperbolic variant CP2,h of CP2 so that a remarkable analogy between M4 and
CP2 emerges. One can formulate super-twistor approach to TGD using the same formalism as will
be discussed in this article for the formulation at the level of H. This requires introducing besides
6-D Kähler action and its super-variant also spinors and their super-variants in super-twistor space.
The two formulations are equivalent apart from the hierarchy of scales for the twistor space. Also
M8 allows analog of twistor space as quaternionic Grassmannian HP3 with signature (6,6). What
about super- variant of twistor lift of TGD? consider first the situation before the twistorialization.

1. The parallel progress in the understanding SUSY in TGD framework [L81] leads to the identi-
fication of the super-counterparts of M8, H and of twistor spaces modifying dramatically the
physical interpretation of SUSY. Super-spinors in twistor space would provide the description
of quantum states. Super-Grassmannians would be involved with the construction of scattering
amplitudes. Quaternionic super Grassmannians would be involved with M8 description.

2. In fermionic sector only quarks are allowed by SO(1, 7) triality and that anti-leptons are local
3-quark composites of quarks. Gauge bosons, Higgs and graviton would be also spartners and
assignable to super-coordinates of embedding space expressible as super-polynomials of quark
oscillator operators. Super-symmetrization means also quantization of fermions allowing local
many-quark states.

3. SUSY breaking would be caused by the same universal mechanism as ordinary massivation
of massless states. The mass formulas would be supersymmetric but the choice of p-adic
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prime identifiable as ramified prime of extension of rationals would depend on the state of
super-multiplet. ZEO would make possible symmetry breaking without symmetry breaking as
Wheeler might put it.

Super-counterpart of twistor lift using the proposed formalism

The construction of super-coordinates and super-spinors suggests a straightforward twistorializa-
tion. One would only replace the super-embedding space and super-spinors with super-twistor
space and corresponding super-spinors. Dimensional reduction should give essentially the 4-D the-
ory apart from the variation of the radius of the twistor space predicting variation of cosmological
constant. The size scale of CD would correspond to the size scale of the twistor space for M4 and
for CP2 the size scale would serve as unit and would not vary.

1. Replace the coordinates of twistor space with superspinors expressed in terms of quark and
anti-quark spinors lifted to the corresponding spinors of twistor space. Express 6-D Kähler
action in terms of super-coordinates.

2. Replace H-spinors with the spinors of 12-D twistor space and assume only quark chirality.
By the bundle property of the twistor space one can express the spinors as tensor products
of spinors of the twistor spaces T (M4) and T (CP2). One can express the spinors of T (M4)
tensor products of spinors of M4 - and S2 spinors locally and spinors of T (CP2) as tensor
products of CP2 - and S2 spinors locally. Chirality conditions should reduce the number of
2 spin components for both T (M4) and T (CP2) to one so that there are no additional spin
degrees of freedom.
The dimensional reduction can be generalized by identifying the two S2 fibers for the preferred
extremals so that one obtains induced twistor structure. In spinorial sector the dimensional
reduction must identify spinorial degrees of freedom of the two S2s by the proposed chirality
conditions also make them non-dynamical. The S2 spinors covariantly constant in S2 degrees
of freedom.
Define the twistor counterpart of the analog of modified Dirac action using same general
formulas as in case of H.

3. Identify super spinors as sum of odd monomials of theta parameters with quark number 1
identified as oscillator operators. Identify super-Dirac action for twistor space by replacing
T (H) coordinates with their super variants and Dirac spinors with their super variants.

9.3 Are quarks enough to explain elementary particle spec-
trum?

TGD based SUSY involves super-spinors and super-coordinates. Suppose that one has a cognitive
representation defined by the points of space-time surface with coordinates in an extension of
rationals defining adele and belonging to the partonic 2-surfaces defined by the intersections of
6-D roots of octonionic polynomials with 4-D roots. This representation has H counterpart.

Cognitive representation gives rise to a tensor product of these algebras and the oscillator
operators define a discretized version of fermionic oscillator operator algebra of quantum field
theories. One would have interpretation as many-fermion states but the local many-fermion states
would have particle interpretation. This would replace fermions of the earlier identification of
elementary particles with SUSY multiplets in the proposed sense. This brings in large number
of new particles. One can however ask whether the return to the original picture in which single
partonic 2-surface corresponds to elementary particle could be possible. Certainly it would simplify
the picture dramatically.

Could this picture explain elementary particle spectrum and how it would modify the recent
picture?: these are the questions.

9.3.1 Attempt to gain bird’s eye of view

Rather general arguments suggest that SYM action plus Super-Dirac action could explain ele-
mentary particle spectrum. Some general observations help to get a bird’s eye of view about the
situation.
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1. The antisymmetric tensor products for fermions and anti-fermions produce states with same
spectrum of electro-weak quantum numbers irrespectively of whether the fermion and anti-
fermion are at same point or at different points. Which option is correct or are these options
correspond analogous to two different phases of lattice gauge theory in which nodes resp. links
determine the states? Only multi-local states containing fermions with identical spin and weak
isospin at different points are not possible as local states.
There is no point in denying the existence of either kind of states. What suggests itself is
the generalization of electric-magnetic duality relating perturbative Coulomb phase in which
ordinary particles dominate and the non-perturbative phase in which magnetic monopoles
dominate. I have considered what I have called weak form of electic-magnetic duality already
earlier [K113] but as a kind of self-duality stating that for homologically charged partonic
2-surfaces electric and magnetic fluxes are identical. The new picture would conform with the
view of ordinary QFT about this duality.

2. The basic distinction between TGD and standard model is that color is not spin-like quantum
number but represented as color partial waves basically reducing to the spinor harmonics plus
super-symplectic generators carrying color quantum numbers. Spinor harmonics as such have
non-physical correlation between color and electro-weak quantum numbers [K60] although
quarks and leptons correspond to triality t = 1 and triality t = 0 states.

3. It turns out that one could understand quarks, leptons, and electro-weak gauge bosons and
their spartners as states involving only single partonic 2-surface [K28]: this would give essen-
tially the original topological model for family replication in which partonic 2-surfaces were
identified as boundary components of 3-surface. In principle one can allow also quarks and glu-
ons with unit charge matrix with color partial waves defining Lie-algebra generator as bosonic
states. Could these states correspond to free partons for which perturbative QCD applies at
high energies?
Also color octet partial waves of electro-weak bosons and Higgs and the predicted additional
pseudo-scalar - something totally new - are possible as both local and bi-local states. There
would be no mixing of U(1)Y state and neutral SU(2)w states for color octet gluon. In this
sense electro-weak symmetry breaking would be absent.

4. Electro-weak group as holonomy group of CP2 can be mapped to the Cartan group of color
group, and electro-weak and color quantum numbers would relate like spin and angular mo-
mentum to each other. This encourages to think that there are deep connections between
electro-weak physics and color physics, which have remained hidden in standard model.
The conserved vector current hypothesis (CVC) and partially conserved axial current hypoth-
esis (PCAC) of hadron physics suggests a strong connection between color physics and electro-
weak physics. There is also evidence for so called X bosons with mass 16.7 MeV [C39] [L32]
suggesting in TGD framework that weak physics could have fractally scaled down copy in
hadronic and even nuclear scales.
Could ordinary gluons be responsible for CVC whereas colored variants of weak bosons and
Higgs/pseudo-scalar Higgs would be responsible for PCAC? Usually strong force in hadronic
sense is assigned with pion exchange. This approach does not work perturbatively. Could
one assign strong force with the exchange of pseudo-scalar, and colored variants of gluons,
pseudo-scalar, and Higgs?

5. Hitherto it has been assumed that homology charges (Kähler magnetic charges) characterize
flux tubes connecting the two wormhole throats associated with the monopole flux of elemen-
tary particle. Could one understand the bi-local or multi-local objects of this kind as exotic
phase analogous to magnetic monopole dominated phase of gauge theories as dual of Coulomb
phase?
Hadrons would certainly be excellent candidates for monopole dominated phase. Gluons would
be pairs of quarks associated with homologically charged partonic 2-surfaces with opposite
homology charges. Gluons would literally serve as “glue” in the spirit of lattice QCD. Gluons
and hadrons would be multi-local states made from quarks and gluons as homologically trivial
configurations with vanishing total homology charge.

6. Is there a correlation between color hyper-charge and homology charge forcing quarks and
gluons to be always in this phase and forcing leptons to be homologically neutral? This could
provide topological realization of color confinement. The simplest option is that valence quarks
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have homology charges 2,−1,−1 summing up to zero. This was one of the first ideas in TGD
about 38 years ago.
One can also imagine that the homological quark charges (3,−2,−1) summing up to zero
define a classical correlate for the color triplet of quarks, a realization of Fermi statistics,
and allow to understand color confinement topologically. The color partial waves in H would
emerge at the embedding space level and characterize the ground states of super-symplectic
representations. Color triplets of quarks and antiquarks could thus correspond to homology
charges (3,−2,−1) and (−3, 2, 1) and neutral gluons could be superpositions of pairs of form
(q,−q), q = 3,−1,−1. Charged gluons as flux tubes would not be possible in the confined
phase.

7. Is monopole phase possible also for leptons as general QFT wisdom suggests? For instance,
could Cooper pairs could be flux tubes having members of Cooper pair - say electrons - at its
ends and photons in this phase be superposition of fermion and anti-fermion at the ends of
the flux tube and monopole confinement would make the length of flux tube short and photon
massive in superconducting phase.

9.3.2 Comparing the new and older picture about elementary particles

The speculative view held hitherto about elementary particles in TGD Universe correspond to the
TGD analog of the magnetic monopole dominated phase of QFTs. This view is considerably more
complicated than the new view and involves unproven assumptions.

1. Identification of elementary particles
Old picture: Ordinary bosons (and also fermions) are identified as multilocal many-fermion
states. The fermions and anti-fermions would reside at different throats of the 2 wormhole
contacts associated with a closed monopole flux tube associated with the elementary particle
and going through wormhole contact to second space-time sheet. All elementary particles are
analogous to hadron-like entities involving closed monopole flux tubes.
One can raise objections against this idea. Leptons are known to be very point-like. One must
also assume that the topologies of monopole throats are same for given genus in order that
p-adic mass calculations make sense. The assumption that quarks correspond to monopole
pairs makes things unnecessarily complex: it would would be enough to assume that they
correspond to partonic 2-surfaces with monopole charge at the ”ends” of flux tubes at given
space-time sheet.
One must assume that the genus of the 4 throats is same for known elementary particles: this
assumption looks rather natural but can be criticized. The correlations forced by preferred
extremal property should of course force the genera of wormhole throats to be identical.
New picture: Elementary fermions would be partonic 2-surfaces. Leptons would have van-
ishing homology charge. Elementary bosons could be simply pairs of fermion anti-fermion
located at the opposite ends of flux tubes. This would dramatically simplify the topological
description of particle reactions. In the case of quarks however the homological space-time
correlate of color confinement is attractive and would force monopole flux tubes. It turns out
that this picture corresponds to the simplest level in the heff = nh0 hierarchy. One could also
see leptons and quarks as analogs of perturbative and non-perturbative monopole dominated
phases of gauge theories.
Flux tubes could allow to understand phases like super-conductivity involving massivation
of photons (Meissner effect). For instance, Cooper pairs could correspond closed flux tubes
involving charged fermions at their ”ends”. In high Tc super-conductivity Cooper pairs in
this sense would be formed at higher critical temperature and at lower critical temperature
they would form quantum coherent phase [K80, K81]. Flux tube picture could also allow to
understand strongly interacting phases of electrons.

2. Electroweak massivation
Old picture: Electro-weak massivation has been assumed to involve screening of electro-
weak isospin by a neutrino pair at the second wormhole contact. The screening is not actually
necessary in p-adic thermodynamics in its recent form since the thermal massivation is due to
the mixing of different mass eigenstates.
New picture: There is no need to add pairs of right- and left-handed neutrino to screen the
weak charges in the scale of flux tube.
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3. Identification of vertices
Old picture: In old picture one could do almost without vertices: in the simplest proposal
particle reactions would correspond to re-arrangements of fermions and antifermions so that
fermion and antifermion number would be conserved separately. Therefore one needs an analog
of vertex in which partonic 2-surface turns back in time in order to describe creation of particle
pairs and emission of bosons identified as fermion-antifermion pairs.
New picture: In vertices fermions and antifermions assignable to super spinor component
would be redistributed between different orbits of partonic 2-surfaces meeting along their ends
at the 6-D braney object in M8 picture or turn backwards in time - the interpretation for
this might be in terms of interaction with classical induce gauge field. What is new are the
new vertices corresponding to the monomials of oscillator operators in the super-spinor. The
original identification of particles (given up later) as single partonic 2-surface predicts genus-
generation correspondence without additional assumptions. Both old and new picture predict
also higher gauge boson genera for which some evidence exists: TGD predictions for the masses
are correct [K64].

9.3.3 Are quarks enough as fundamental fermions?

For the first option - call it Option a) - quarks and leptons would define their own super-spinors.
Whether only quark or lepton-like spinors are enough remains still an open question.

1. I have also considered the possibility that quarks are actually anti-leptons carrying homology
charge and have anomalous em charge equal to −1/3 units. One might perhaps say that
quarks are kind of anyonic states [K77]. It is however difficult to understand how the coupling
to Kähler form could be dynamical and have values n = −3 and n = 1 for homologically
neutral and charged states respectively. This would mean that only lepton like θ parameters
appear in super-coordinates and only leptonic Dirac action is needed.

2. For this option proton would be bound state of homologically charged leptons. This in principle
allows decays of type p→ e+... and p→ e+ + e+ + ν requiring that the 3 partonic 2-surfaces
fused with non-trivial homology charges fuse to single homologically trivial 2-surface. This
form of proton instability would be different from that of GUTs. The topology changing
process is expected to be slow. Is the introduction of two super-octonionic θ parameters
natural assignable to B and L or is single parameter enough?

3. The coupling to Kähler form is not explicitly visible on the bosonic action but is visible in
modified Dirac action. Could leptonic modified Dirac action transform to quark type modified
Dirac action? This does not seem plausible.

The super-Dirac action for quarks however suggests another option, call it Option b). Lep-
tons could be local 3-quark states.

1. Could one identify leptons as local 3 quark composites - essentially anti-baryons as far as
quantum numbers are considered - but with different p-adic scale and emerging from the
super-Dirac action for quarks as purely local states with super-degree d = 3? Could one
imagine totally new approach to the matter antimatter asymmetry?
Leptons would be purely local 3-quark composites and baryons non-local 3-quark composites
so that charge neutrality alone would would guarantee matter-antimatter symmetry at fun-
damental level. Anti-quark matter would slightly prefer to be purely local and quark matter
3-local. The small CP violation due to the M4 part of Kähler action forced by twistor lift
should explain this asymmetry.
Leptons and anti-leptons would drop from thermal equilibrium with quarks at some stage
in very early cosmology. The reason would be the slowness of the reactions producing local
3-quark composites from quarks. This slowness is required also by the stability of proton.
Opposite matter anti-matter asymmetries at the level of both leptons and quarks would have
been generated at this stage by CP violation and would have become visible after annihilation.

2. The local baryons would have much simpler spectrum and would correspond for given genus
g (lepton generation) to the baryons formed from u and d quarks having however no color.
There would be no counterparts for higher quarks. This would suggests that (L, νL) could be
local analog of (p, n).
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For ordinary baryons statistics is a problem and this led to the introduction of quark color
absent for local states. The isospin structure of the local analogs of p and n is not a problem.
In uud (udd) type states allowed by statistics the spins of the u (d) quarks must have opposite
spin. The analogs of ∆ resonances are not possible so that one would obtain only the analogs
of p and n!

3. The widely different mass scales for leptons and quarks would be due to locality making possible
different ramified primes for the extension of rationals. The widely differing p-adic length
scales of leptons and neutrinos could be undersood if the ramified prime for given extension
can be different for the particles super-multiplets with same degree of octonionic polynomial.
This could be caused by electroweak symmetry breaking. The vanishing electroweak quantum
numbers of right-handed neutrino implies a dynamics in sharp contrast with that of neutron,
whose dynamics would be dictated by non-locality.
Also local pions are possible. The lepto-pions of lepto-hadron hypothesis [K104] could corre-
spond to either local pions or to pion-like bound states of lepton and anti-leptons. There is
evidence also for the muon- and tau-pions.

4. This idea might provide a mathematically extremely attractive solution to the matter anti-
matter asymmetry: matter and antimatter would be staring us directly into eyes. The alter-
native TGD inspired solution would be that small CP breaking would induce opposite matter-
antimatter asymmetries inside long cosmic strings and in their exteriors so that annihilation
period would lead to the observed asymmetry.

The decay p→ e++X could in principle take place and also the reverse decay e+ → p+X can
be considered in higher energy collisions of electron. The life-time for the decay modes predicted
by GUTs is extremely long - longer than 1.67 × 1034 years (see http://tinyurl.com/nqco2j7).
This fact provides a killer test for the proposal.

One should estimate the life-time of proton in number theoretic approach. The correspond-
ing SUSY vertex corresponds to a Wick contraction involving 4 terms in super-Dirac action: the
trilinear term for quarks and 3 linear terms.

1. The vertex would associated with a partonic 2-surface at which 3 incoming quark space-time
sheets and outgoing electron space-time sheet meet. At quark level the vertex means an
emanation of 3 quark lines from single 3-quark line at a point of partonic 2-surface in the
intersection of the ends of 4 space-time surfaces with 6-sphere t = rn defining a universal root
of octononic polynomial P (o). t is M4 time coordinate [L76]. The vertex itself does not seem
to be small.

2. A fusion of 3 homologically non-trivial partonic 2-surfaces to single partonic 2-surface with
trivial homology charge cannot occur since partonic 2-surfaces with different homology charge
cannot co-incide.
The reaction p → e+ + .. can occur only if the quark-like partonic 2-surface fuse first to
single homologically trivial partonic 2-surface: this would correspond to de-confinement phase
transition for quarks. After that the 3 quark lines would fuse to single e+ line.

(a) To gain some intuition consider two oppositely oriented circles around a puncture of a
plane with opposite homology charges. The circles can reconnect to homologically trivial
circle. Instead of circles one would now have 3 homologically trivial quark-like 2-surfaces
at three light-like boundaries between Minkowskian and Euclidian regions of the space-
time surface representing proton. First 2 quark-like 2-surfaces would touch and develop a
wormhole contact connecting them. After that the resulting di-quark 2-surface and third
quark 2-surface would fuse. The 3 quarks would be now analogous to de-confined quarks.

(b) At the next step the 3 separate quark lines would fuse to single one. This process must
occur in single step since di-quark cannot correspond to single point because the Dirac
super-polynomial is odd in oscillator operators and has quark number 1. The fusion point
would correspond to 3 degenerate roots of the octonionic polynomial associated with the
partonic 2-surface. This partonic 2-surface would be associated with t = rn hyperplane of
M4 and it would become leptonic 3-surface.

(c) 3 4-D sheets defined by the roots of the octonionic polynomial should meet at the vertex
assignable to t = rn hyper-plane. This gives 2 additional conditions besides the conditions
defining space-time sheets. This for both the protonic and positronic space-time sheets.

http://tinyurl.com/nqco2j7
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One would have double quantum criticality. The tip of a cusp catastrophe serves as an
analog. Since the coefficients of the octonionic polynomial are rational numbers, it might be
possible to estimate the probability for this to occur: the probability could be proportional
to the ratio N2/N0 of the number N2 of doubly critical points to the number N0 of all
points with coordinates in the extension. This could make the process very rare.

It must be however emphasized that also the option in which also leptons are fundamental
fermions cannot be excluded.

9.3.4 What bosons the super counterpart of bosonic action predicts?

It has been already noticed that the spectra of fermion-antifermion states are identical for local
and bi-local states if one assumes that the wave function in the relative coordinate of fermion and
anti-fermion is symmetric. This does not yet imply that the particle spectrum is realistic in the
case of the bosonic action.

The situation is simplified considerably by the facts that color is not spin-like quantum
number but analogous to momentum and can therefore be forgotten, family replication can be
explained topologically, and depending B and L are separately conserved for Option a) but for
Option b) L reduces to B since leptons would be local 3-quark composites. Let us restrict first the
considered to Option b).

1. What kind of spectrum would be predicted? Consider first quark Clifford algebra formed by
the oscillator operators defining the spartners of quark without any conditions on total quark
number of the monomial Forgetting color, one has 8 states coming from left and right handed
weak doublet and their anti-doublets. The numbers of elements N(k) in Clifford algebra with
given quark number B = k = N(q)−N(q) is given by N(k) =

∑
0 ≤ q ≤ 4− kB(4, q + k)×

B(4, q) in terms of binomial coefficients.
For B = 0 one obtains N(0) =

∑
0 ≤ q ≤ 4B(4, q)2 = 70 states. The states corresponding to

the same degree of oscillator operator polynomial and therefore having fixed q+q = B+B have
same masses. For q − q = 0 bosonic state having q = q = 0 with fixed k one has q + q = 4 + k
so that one has N(k) = B(4, k)2 (N(k) states with same mass even after p-adic massivation).
The numbers N(k) are (1, 42 = 16, 62 = 36, 42 = 16, 1).

2. The number of qq type states in super-Kähler action is 16. If one considers super-symmetrization
of the bosonic action, these states would correspond to bosons. Could these states allow an
interpretation in terms of the known gauge bosons and Higgs? Weak bosons correspond to
4 helicity doublets giving 8 states. Higgs doublet corresponds to doublet and its conjugate.
There is also a pseudo-scalar doublet and its conjugate.
Gluon cannot belong to this set of states, which actually conforms with the fact that gluon
corresponds to CP2 isometries rather than holonomies and gluon corresponds to CP2 partial
wave since color is not spin-like quantum number. Known particle would give 8+2+2=12 states
and pseudo-scalar doublets the remaining 4. This kind of pseudo-scalar states are predicted
both as local and the bi-local states. As already explained, one can however also understand
gluons in this picture as octet color partial waves. Also color octet variants of SU(2)w weak
bosons are predicted.

3. There are actually some indications for a Higgs like state with mass 96 GeV (see http:

//tinyurl.com/yxnmy8c7) . Could this be the pseudo-scalar state. Higgs mass 125 GeV is
very nearly the minimal mass for k = 89. The minimal mass for k = 90 would be 88 GeV
so that the interpretation as pseudo-scalar with k = 90 might make sense. The proposal that
gluons could have also weak counterparts suggests that also the pseudo-scalar could have this
kind of counterpart. The scaling of the mass of the Higgs like state with k = 90 to k = 112
(k = 113 corresponds to nuclear p-adic scale) would give mass m(107) = 37.5 MeV. Kh.U.
Abraamyan et al have found evidence for pion like boson with mass 38 MeV [C11, C12, C27]
(see http://tinyurl.com/y7zer8dw).

4. For Option b) only monomials with N(q)−N(q) = k = 1 are allowed in qs and leptons would
be local 3-quark states and currents formed from them would appear in super-Kähler action.
One would obtain N(k = 1) =

∑
0 ≤ q ≤ 3B(4, q + 1)×B(4, q) = 56 statesi quark multiplet.

There would be no doubling gauge bosons since only one H-chirality would be present. The

http://tinyurl.com/yxnmy8c7
http://tinyurl.com/yxnmy8c7
http://tinyurl.com/y7zer8dw
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observed bosons would be basically superpositions of quark-anti-quark pairs - either local or
non-local.

Option b) involving only quarks as fundamental fermions does not predict unobserved gauge
bosons whereas Option a) involving both leptons and quarks as fundamental fermions does so.

1. For Option a) taking into account quarks and restricting to electro-weak bosonic states to those
with (B = L = 0) leads to a doubling of bosonic states at k = 2 level. The couplings of gauge
bosons require that the states are superpositions of quark and lepton pairs with coefficients
proportional to the coupling parameters. There are two orthogonal superpositions of quark
and lepton pairs having orthogonal charge matrices with inner product defined by trace for
the product. Ordinary gauge bosons correspond to the first combination.
The orthogonality of charge matrices gives a condition on them. The charged matrices having
vanishing trace can be chosen that they have opposite signs for opposite H-chiralities. For
charge matrices involving unit matrix one must have charge matrices proportional to (-3,1)
for (L,q) one must have (1,3) for second state. For gluons there is no condition if one treats
color octet as Lie algebra generator with vanishing trace. The problem is that there is no
experimental evidence for these bosons.

2. For Option b) leptons would be local 3-quark states and spartners of quarks. There would be
no doubling gauge bosons since only one H-chirality would be present. The observed bosons
would be basically superpositions of quark-anti-quark pairs - either local or non-local.

3. Option b) predicts that given quark with given isospin and M4 helicity L or R), say uL,
has 5 spartners with same quantum numbers given by uLuRuL, uLdRdL, uLdLdR; uRdLdL;
and dLdRuL. These 6 states cannot correspond to quark families and SUSY breaking due to
the possibility of having different p-adic scale (ramified prime) making the mass scale of the
spartners large is suggestive.

There would be two phases of matter corresponding to local and bi-local states (baryons
would be 3-local states).

1. For both phases electro-weak bosons and also gluons with electro-weak charge matrix 1 to
bosonic super action as states involving only single partonic 2-surface. As already mentioned,
also color counterparts of SU(2)w bosons are possible. Also graviton could correspond to
spartner for bosonic super-action. This would give essentially the original model for family
replication. 2-surfaces would be homologically trivial in this phase analogous to Coulomb
phase.

2. In the dual phase the bi-local states would correspond to non-vanishing homology charges for
quarks at least. In this phase one should assign also to leptons 2 wormhole contacts. In super-
conducting phase it could the second electron of Cooper pair. Massive photons in this phase
would consist of homologically charged fermion pairs. Lepton could also involve screening
lepton-neutrino pair at second wormhole contact.

The universality of gauge boson couplings provides a test for the model.

1. In bi-local model gauge bosons would correspond to representations of a dynamical symmetry
group SU(3)g associated with the 3 genera [K28]. Bosons would correspond to octet and
singlet representations and one expects that the 3 color neutral states are light. This would
give 3 gauge boson generations. Only the couplings of the singlet representation of SU(3)g
would be universal and higher generations would break universality both for both gluons and
electro-weak bosons. There is evidence the breaking of universality as also for second and
third generation of some weak bosons and the mass scales assigned with Mersenne primes
above M89 are correct [K64].

2. If also fermions correspond to closed flux tubes with 2 wormhole contacts, the fermion boson
couplings would correspond to the gluing of two closed flux tube strings along their both
“ends” defined by wormhole contacts. A pair of 3-vertices for Feynman diagrams would be in
question. If fermions are associated with single wormhole contact, its is not so easy to imagine
how the closed bosonic flux tube could transform to single wormhole contact in the process.
The wormhole contacts that meet and have opposite fermion numbers should disappear. This
is allowed in the scenario involving 6-branes if the magnetic flux is trivial as it must be. For
quarks and gluons the homology charges must be opposite if wormhole contact is to disappear.
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3. If gauge bosons correspond to local fermion pairs, the most natural boson states have fixed
value of g apart from topological mixing giving rise to CKM mixing just like fermions and
universality is not natural. One can of course assume topological mixing guaranteeing it.
Ordinary gauge bosons should be totally de-localized in the space of 3 lowest genera [K28]
(analogous to constant plane waves) in order to have universality. The vertices could be
understood as a fusion of partonic 2-surfaces. One should however understand why the mixing
is so different for fermions and bosons. SUSY would suggest identical mixings.

The simplest model corresponds to quarks as fundamental fermions. Leptons and various
bosons would be local composites in perturbative phase. In monopole dominate phase hadronic
quarks would have homology charges and gluons would be pairs of quark and anti-quark at opposite
throats of closed monopole flux tube. Basically particle reaction vertices would correspond to gluing
of 3-surfaces along partonic 2-surfaces at 3-spheres defining t = rn hyperplanes of M4.

9.4 Is it possible to have leptons as (effectively) local 3-
quark composites?

The idea about leptons as composites of 3 quarks is strongly suggested by the mathematical
structure of TGD. In [L81] a proposal that leptons are local composites of quarks. In [L111, L99,
L100] a more general idea that leptons look like local composites of quarks in scale longer than
CP2 scale defining the scale of partonic 2-surface assignable to the particle.

A strong mathematical motivation for the proposal is that quark oscillator operators are
enough to construct the gamma matrices of the ”world of classical worlds” (WCW) and leptonic
oscillator operators corresponding to opposite chirality for H = M4 × CP2 spinors are somehow
superfluous.

The proposal has profound consequences. One might say that SUSY in the TGD sense has
been below our nose for more than a century. The proposal could also solve matter-antimatter
asymmetry since the twistor-lift of TGD predicts the analog of Kähler structure for Minkowski
space and a small CP breaking, which could make possible a cosmological evolution in which
quarks prefer to form baryons and antiquarks to form leptons.

The objection against the proposal is that the leptonic analog of ∆ might emerge. One
must explain why this state is at least experimentally absent. In [L81] I did not develop a detailed
argument for the intuition that one indeed avoids the leptonic analog of ∆. In this article the
construction of leptons as effectively local 3 quark states allowing effective description in terms of
the modes of leptonic spinor field in H = M4×CP2 having H-chirality opposite to quark spinors
is discussed in detail.

9.4.1 Some background

Some background is necessary.

1. In TGD color is not spin-like quantum number but corresponds to color partial waves in
CP2 for H-spinors describing fundamental fermions distinguished from fermions as elementary
particles.
Different chiralities of H-spinors were identified in the original model as leptons and quarks.
If quarks couple to n = 1 Kähler gauge potential of CP2 and leptons to its n = 3 multiple, ew
quantum numbers of quarks and leptons come out correctly and lepton and quark numbers
are separately conserved.

2. Few years ago emerged the idea that fundamental leptons to be distinguished from physical
leptons are bound states of 3-quarks. They could be either local composites or look like local
composites in scales larger than CP2 size scale assignable to partonic 2-surface associated with
the lepton.

3. The spin, ew quantum numbers associated with SU(2)L×U(1)R are additive and these quan-
tum numbers should come out correctly for states with leptonic spin and ew numbers.
Fundamental leptons/quarks are not color singlets/triplets although have vanishing trial-
ity. The color quantum numbers also correlate with ew quantum numbers and M4 helic-
ity/handedness. Only the right-handed neutrino νR is a color singlet. The mass squared values
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of the resulting states deducible from the massless Dirac equation in H are non-vanishing since
CP2 partial waves carry mass of order CP2 mass.
The application of color octet generators of super-symplectic algebra (SSA) of super-Kac-
Moody algebra (SKMA) with non-vanishing conformal weight contributing to mass squared
can guarantee that color quantum numbers are those of physical leptons and quarks. In p-adic
mass calculations one must assume negative half-integer valued ground state conformal weight
hvac < 0.

There are two challenges.

1. One must construct leptons as local of the effectively local 3-quark composites. The challenge
is to prove that the resulting states with spin and ew quantum numbers possess the color
quantum numbers of fundamental leptons.

2. A priori one cannot exclude leptonic analog of ∆ resonance obtained in the quark model of
baryons as states for which the wave functions in spin and ew spin degrees of freedom are
completely symmetric. The color wave function would be indeed completely antisymmetric
also for the leptonic ∆. The challenge is to explain why they do not exist or are not observed.

9.4.2 Color representations and masses for quarks and leptons as modes
of M4 × CP2 spinor field

It would be also highly desirable to obtain for the masses of 3-quark states the same expressions as
embedding space Dirac operator predicts for leptonic masses. The masses depend on ew spin but
are same for right and left-handed modes except in the case of right-handed neutrino. This could
fixes the value of hvac for leptons if it is assumed to be representable as 3-quark state. Empirical
data are consistent with its absence from the spectrum.

The color representations associated with quark and lepton modes of M4×CP2 spinor fields
were originally discussed by Hawking and Pope [A56] and are considered from TGD point of view
in [K60].

Consider first quarks. For UR the representations (p+ 1, p) with triality 1 are obtained and
p = 0 corresponds to color triplet 3. For DR the representations (p, p+ 2) are obtained and color
triplet is missing from the spectrum (p = 0corresponds to 6̄). The representations and masses are
the same for the left handed representations in both cases since the left handed modes are obtained
by applying CP2 Dirac operator to the right-handed modes.

The CP2 contributions to the quark masses are given by the formula

m2(U, p) =
m2

1

3

[
p2 + 3p+ 2

]
, p ≥ 0 ,

m2(D, p) =
m2

1

3

[
p2 + 4p+ 4

]
=
m2

1

3
(p+ 2)2 , p ≥ 0 ,

m2
1 ≡ 2Λ . (9.4.1)

Here Λ is cosmoloigal constant characterizing the CP2 metric. The mass squared splitting between
U and D type states is given by

∆m2(D,U) = m2(D, p)−m2(U, p) =
m2

1

3
(p+ 2) . (9.4.2)

Consider next leptons. Right handed neutrino νR corresponds to (p, p) states with p ≥ 0
with mass spectrum

m2(ν) =
m2

1

3

[
p2 + 2p

]
, p ≥ 0 .

(9.4.3)

Charged handed charged leptons L correspond to (p, p+ 3) states with mass spectrum
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m2(L) =
m2

1

3

[
p2 + 5p+ 6

]
, p ≥ 0 . (9.4.4)

(p, p+3) instead of (p, p) reflects the fact that leptons couple to 3-multiple of Kähler gauge potential.
Right-handed neutrino has however vanishing total coupling.

Left handed solutions are obtained by operating with CP2 Dirac operator on right handed
solutions with one exception: the action of the Dirac operator on the covariantly constant right
handed neutrino ((p, p) = (0, 0) state) annihilates it.

The mass splitting between charged leptons and neutrinos is given by

∆m2(L, ν) = m2(L, p)−m2(ν, p) = m2
1(p+ 2) = 3∆m2(D,U) , (9.4.5)

and is 3 times larger than the corresponding mass splitting. The mass splitting for leptons as states
of type UUD and UDD is however different. If mass squared is additive as assumed in p-adic mass
calculations one has ∆m2(UDD,UUD) = ∆m2(D,U). The condition that the mass splitting for
lepton states is the same as predicted by the identification as 3-quark states requires that the scale
factor m2

1 for 3 quarks states is 3 times larger than for quarks:

m2
1(L) = 3m2

1(q) . (9.4.6)

9.4.3 Additivity of mass squared for quarks does not give masses of
lepton modes

It would be natural that the same values for the leptons as 3-quark composites are same as for
leptons as fundamental fermions. It is interesting to see whether the additivity of the mass squared
values conforms with this hypothesis.

The sums of mass squared values for UUD (charged lepton) and UDD (neutrino) type states
are given by

m2(UUD) = 2m(U)2 +m(D)2 = 3p2 + 10p+ 8 ,

m2(UDD) = 2m(D)2 +m(U)2 = 3p2 + 11p+ 10 .

(9.4.7)

These mass squared values are not consistent with the values proportional to the mass squared
values proportional to p2 + 5p+ 6 for L and to p(p+ 2) for neutrinos. Covariantly constant right
handed neutrino is not possible as a 3-quark state and this conforms with empirical facts.

The working hypothesis that mass squared is additive can be of course given up and a more
general condition could be formulated in terms of four-momenta:

p1(U) + p2(U) + p(D))2

= 2m(U)2 +m(D)2 + 2
∑

[p1(U) · p2(U) + (p1(U) + p2(U)) · p(D)] = km(L)2 ,

(p(U) + p1(D) + p2(D))2

= m(U)2 + 2m(D)2 + 2
∑

[p1(D) · p2(D) + (p1(D) + p2(D)) · p(U)] = km(ν)2 .

(9.4.8)

k is proportionality constant. These condition give single constraint in the 9-dimensional 3-fold
Cartesian power of 3-D mass shells. The constraint is rather mild.
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9.4.4 Can one obtain observed leptons and avoid leptonic ∆?

The antisymmetry of the wave function under exchange of quark states gives a strong constraint
and fixes the allowed states. Does one obtain states with the quantum numbers of observed leptons
as color singlets, and can one avoid the leptonic analogue of ∆?

1. For ordinary leptons complete color antisymmetry would require a complete symmetry under
permutations of spin-ew quantum numbers: there are four states altogether. Antisymmetriza-
tion would be completely analogous to that occurring for baryons as 3-quark states and would
require that fundamental leptons are antisymmetric color singlets.

2. The standard quark model picture natural for strong isospin does not conform with spin-ew
symmetries and the resulting states need not allow an interpretation as effective modes of
fundamental leptonic spinors. For SU(2)L × U(1)R the situation changes since right-handed
helicities are SU(2)L singlets. The states of form ULDRUR (LR) and DLDRUR (νR) could
correspond to right-handed leptons and states of form ULDRUR (LL) and DLDRUR (νL) to
left-handed leptons.

3. The manipulation of Yang Tableaux (https://cutt.ly/Ik9SGuU) allow to see when a color
singlet is contained in all 3-fold tensor products - that is 3⊗ 3× 3, 3× 3× 6 , 3× 6× 6, and
6× 6× 6 - formed from the representations 3 and 6.
One has 3⊗3 = 3+6 and 6⊗6 = 6+151 +152. Both 3⊗3 = 1⊕2×8⊕10 and 6⊗6 = 1⊕8⊕27
contain singlet and octet.
Therefore both 3 ⊗ 3 × 3 (UUU) and 6 × 6 × 6 (DDD) contain 1 and 8. 3 ⊗ 3 ⊗ 6 (UUD
corresponding to charged lepton) contains 6⊗6 and therefore both 1 and 8. However, 3⊗6⊗6
(neutrino as UDD) contains neither singlet nor octet.

4. The singlet contained in 6⊗6 should be also antisymmetric under the permutations of the color
partial waves of quarks in 6. The singlet state has representation of the form BKLMA

KALAM ,
where AK = AKrsq

rqs is the representation of 6 in terms of color triplet qi. The tensor GKLM
should be antisymmetric. Since the singlet comes from Yang diagram as a vertical column,
which corresponds to an anti-symmetric representation of S3t, it seems that it is indeed
antisymmetric.
If this is the case, UUU and DDD singlets are indeed antisymmetric with respect to the

exchange of quarks, and the state in spin-ew degrees of freedom can be totally symmetric.

5. As found, 6⊗3×3) (charged lepton as UUD) contains both 1 and 8 and 1 is antisymmetric as
a full vertical column in the Yang diagram. If charged lepton corresponds to 1 it is analogous
to proton in these degrees of freedom.
6⊗6×3) (neutrino as DDU) contains neither 1 nor 8. In both cases an entanglement between
color and spin-ew degrees of freedom is implied.
Remark: Baryonic quarks reside at distinct partonic 2-surfaces and allow separate color
neutralization by SSA or SKMA generators and are color triplets so that the standard picture
about color confinement prevails in the baryonic sector.

6. If the 3-quark state is not a color octet, the operators needed to cancel the negative conformal
weight must consist of at least two SSA or SKMA operators, which are color octets. UUD
contains 8 and 1 but UDD does not. For neutrinos which cannot be color octets or singlets,
at least 2 color octet generators are required to neutralize the color. For color singlet charged
lepton this is not needed since p-adic thermodynamics allows a massless ground state. The
difference charged leptons and neutrinos might relate to the fact that the long p-adic length
scales for neutrinos are so long as compared to those for charged leptons.
As has become clear, the neutral ∆ type state UDD is not possible since color singlet and
octet are not allowed and the neutralization of the negative conformal weight using at least
two color generators as in the case of neutrino. Also for other components of ∆ color
singlet-ness requires at least two generators whereas octet requires only one generator. For
color octets a complete symmetry in spin-ew degrees of freedom is not possible.

The conclusion is that charged lepton and charged components of ∆ allow for color sin-
glet completely symmetric wave function in spin-ew degrees of freedom unentangled from color.
Neutrino and neutral ∆ require entanglement between color and spin-ew degrees of freedom.

https://cutt.ly/Ik9SGuU
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9.4.5 Are both quarks and leptons or only quarks fundamental fermions?

One of the longstanding open problems of TGD has been which of the following options is the
correct one.

1. Quarks and leptons are fundamental fermions having opposite H-chiralities. This predicts
separate conservation of baryon and lepton numbers in accordance with observations.

2. Leptons correspond to bound states of 3 quarks in CP2 scale. This option is simple but an
obvious objection is that they are expected to have mass of order CP2 mass. Baryons could
decay to 3 leptons. Also GUTs have this problem. This scenario also allows the existence of
exotic leptons as analogs of Delta resonances for baryons.

I haven’t been able to answer this question yet and several arguments supporting the quarks
+ leptons option have emerged.

Consider first what is known.

1. Color is real and baryons are color singlets like leptons.

2. In QCD, it is assumed that quarks are color triplets and that color does not correlate with
electroweak quantum numbers, but this is only an assumption of QCD. Because of quark
confinement, we cannot be sure of this.

The TGD picture has two deviations from the QCD picture, which could also cause problems.

1. The fundamental difference is that color and electroweak quantum numbers are correlated
for the spinor harmonics of H in both the leptonic and quark sector. In QCD, they are not
assumed to be correlated. Both u and d quarks are assumed to be color triplets in QCD, and
charged lepton L and νL are color singlets.

(a) Could the QCD picture be wrong? If so, the quark confinement model should be gen-
eralized. Color confinement would still apply, but now the color singlet baryons would
not be made up of color triplet quark states, but would be more general irreducible rep-
resentations of the color group. This is possible in principle, but I haven’t checked the
details.

(b) Or can one assume, as I have indeed done, that the accompanying color-Kac Moody algebra
allows the construction of ”observed” quarks as color triplet states. In the case of leptons,
one would get color singlets. I have regarded this as obvious. One should carefully check
out which option works or whether both might work.

2. The second problem concerns the identification of leptons. Are they fundamental fermions
with opposite H-chirality as compared to quarks or are they composites of three antiquarks
in the CP2 scale (wormhole contact). In this case, the proton would not be completely stable
since it could decay into three antileptons.

(a) If leptons are fundamental, color singlet states must be obtained using color-Kac-Moody.
It must be admitted that I am not absolutely sure that this is the case.

(b) If leptons are states of three antiquarks, then first of all, other electroweak multiplets than
spin and isospin doublets are predicted. There are 2 spin-isospin doublets (spin and isospin
1/2) and 1 spin-isospin quartets (spin and isospin 3/2). This is a potential problem. Only
one duplicate has been detected.

(c) Limitations are brought by the antisymmetrization due to Fermi statistics, which drops
a large number of states from consideration. In addition, masses are very sensitive to
quantum numbers, so it will probably happen that the mass scale is the CP2 mass scale
for the majority of states, perhaps precisely for the unwanted states.

It is good to start by taking a closer look at the tensor product of the irreducible represen-
tations (irreps) of the color group [K60].

1. The irreps are labeled by two integers (n1, n2) by the maximal values of color isospin and
hypercharge. The integer pairs (n1, n2) are not additive in the tensor product, which splits
into a direct sum of irreducible representations. There is however a representation for which the
weights are obtained as the sum of the integer pairs (n1, n2) for the representations appearing
in the tensor product.
Rotation group presentations simplified example. We get the impulse moment j1+j2, ...|j1−j2|.
Further, three quarks make a singlet.
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2. On basis of the triality symmetry, one expects that, by adding Kac-Moody octet gluons, the
states corresponding to (p,p+3)-type and (p,p)-type representations can be converted to each
other and even the conversion to color singlet (0,0) is possible. This is the previous assumption
that I took for granted and there is no need to give it up.

Let’s look at quarks and baryons first.

1. U type spinor harmonics correspond to (p+1,p) type color multiplets, while D type spinor
harmonics correspond to (p,p+2) type representations. From these, quark triplets can be ob-
tained by adding Kac-Moody gluons and the QCD picture would emerge. But is this necessary?
Could one think of using only quark spinor harmonics?

2. The three-quark state UUD corresponds to irreducible representations in the decomposed
tensor product. The maximum weight pair is (3p+2,3p+2) if p is the same for all quarks,
while UDD with this assumption corresponds to the maximum weights (3p+1,3p+1+3). The
value of p may depend on the quark, but even then we get (P,P) and (P,P+3) as maximal
weight pairs. UUU and DDD states can also be viewed.
Besides these, there are other pairs with the same triallity and an interesting question is
whether color singlets can be obtained without adding gluons. This would change the QCD
picture because the fundamental quarks would no longer be color triplets and the color would
depend on the weak isospin.

3. The tensor product of a (p,p+3)-type representation and (possibly more) gluon octets yields
also (p,p)-type representations. In particular, it should be possible to get (0,0) type represen-
tation.

Consider next the identification of leptons.

1. For leptons, neutrino nuLcorrespondstoa(p, p)−typerepresentationandchargedleptonLtoa(p+
3, p)− typerepresentation.

2. Could the charged antilepton correspond to a representation of the type UDD and antineutrino to
a representation of the type UUD?
Here comes the cold shower! This assumption is inconsistent with charge additivity! UDD is
neutral and corresponds to (p,p+3) rather than (p,p). You would expect the charge to be 1 if the
correspondence for color and electroweak quantum numbers is the same as for the lepton + quark
option!
UUD corresponds to (p,p) rather than (p,p+3) and the charge is 1. You would expect it to be
zero. Lepton charges cannot be obtained correctly by adding charge +1 or -1 to the system.
In other words, the 3-quark state does not behave for its quantum numbers like a lepton, i.e. an
opposite spinor with H-chirality as a spinor harmonic.
Therefore bound states of quarks cannot be approximated in terms of spinor modes of H for
purely group-theoretic reasons. The reason might be that leptonic and quark spinors correspond
to opposite H-chiralities. Of course, it could be argued that since the physical leptons are color
singlets, this kind of option could be imagined. Aesthetically it is an unsatisfactory option.

To sum up, the answers to the questions posed above would therefore be the following:

1. Quark spinor harmonics can be converted into color triplets by adding gluons to the state
(Kac-Moody). Even if this is not done, states built from three non-singlet quarks can be
converted into singlets by adding gluons.

2. The states of the fundamental leptons can be converted into color singlets by adding Kac-
Moody gluons. Therefore the original scenario, where the baryon and lepton numbers are
preserved separately, is group-theoretically consistent.

3. Building of analogs of leptonic spinor harmonics from antiquarks is not possible since the
correlation between color and electroweak quantum numbers is not correct. I should have
noticed this a long time ago, but I didn’t. In any case, there are also other arguments that
support the lepton + quark option. For example, symplectic resp. conformal symmetry
representations could involve only quarks resp. leptons.
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9.5 Appendix: Still about the topology of elementary par-
ticles and hadrons

In its recent form TGD allows several options for the model of elementary particles [L81]. I wrote
this piece of text because I got worried about details of the definition of wormhole contact appearing
as basic building brick of elementary particle.

1. Wormhole contacts in 4-D sense (having Euclidian signature of induced metric) modellable
as deformed pieces of CP2 type extremals connecting Minkowskian space-time sheets (repre-
sentable as graphs of a map M4 → CP2) are identified basic building bricks of elementary
particles. 3-D light-like orbits of 2-D wormhole throats- partonic 2-surfaces - at which the
signature of induced metric changes from Euclidian to Minkowskian - partonic orbits - are as-
sumed to be carriers of elementary particle quantum numbers localized at points representing
intersections of fermionics string world sheets with the partonic 2-surfaces.

2. One can identify simplest wormhole contact as topological sum: two surfaces touch each
other. Remove 3-D regions from both space-time sheets and connecting the topologically
identical boundaries with a cylinder X2 × D1, where X2 has the topology of the boundary
characterized by genus. The assumption that X2 is boundary requires that its projection to
CP2 is homologically trivial.
This is not consistent with the assumption that the flux tube carries monopole flux. These
wormhole contacts are unstable and must be distinguished from wormhole contacts mediating
monopole flux. I have not however defined the notion precisely enough.

3. One can consider two situations in which homologically non-trivial wormhole contact appears.
Option I: Assume that the 3-D time=constant sections of two Minkowskian space-time sheets
are glued together along their boundaries to form a closed 2-sheeted surface and the throats
of wormhole contact - partonic 2-surfaces - serve as magnetic charges creating opposite fluxes.
One can say that the two throats have opposite homology charges and therefore form a ho-
mologically trivial 2-surface to which one can glue the wormhole contact along its boundaries.
The flux at sheet B could be seen as return flux from sheet A and the throat could be seen as
very short monopole flux tube.
Option II: Assume no gluing along boundaries for the 3-D time=constant sections of two
Minkowskian space-time sheets. In this case one must assume at least two wormhole contacts
to get vanishing homology charges at both sheets. At both space-time sheets the throats of
the contacts with opposite homology charges would be connected by monopole fluxes flowing
through the wormhole contacts identifiable as a very short monopole flux tube. This makes
sese also for the Option I and might be required since is not clear whether space-time having
boundaries carrying monopole flux can be glued together.
Remark: One can also consider the light-like orbit of partonic 2-surface connecting its ends
(the minimal distance between partonic 2-surfaces vanishes). The homology charges of ends
are opposite in ZEO.

The proper identification of the model of elementary particles remains still open [L81] [K64].
What relevance do these two options this picture have to the model of elementary particles?

1. For Option I leptons and gauge bosons could be identified as single wormhole contact carrying
non-trivial homology flux. The size scale of the closed space-time sheet would correspond
to the Compton wavelength of the particle. This model is the simplest one at the level of
scattering diagrams and was re-considered in [L81].
Even Euclidian regions of single space-time sheet with vanishing homology charge can be
considered as a model for leptons and gauge bosons. In this case it is however not clear how to
understand how the size scale of the particle as Compton length could be understood at space-
time level. This model was one of the first models. I have also considered the identification of
the particle as boundary component of Minkowskian space-time surface.

2. Option II was assumed in the model following the original model for leptons and gauge bosons.
It was also proposed that electroweak confinement as dual description of massivation takes
place in the sense that the weak charges associated with the two wormhole contacts cancel
each other. The size scale of flux tube at given sheet would correspond to the Compton length
assignable to the particle. In this case scattering amplitudes are more complex topologically.
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What about baryons?

1. The simplest model assumes that quarks do not differ from leptons and gauge bosons in any
manner. The contribution of the quarks to masses of hadrons is very small fraction of total
mass, which suggests that color flux tubes carrying also homology charge are present and give
the dominating contribution.
One can also consider a structure formed by color magnetic monopole flux tubes carrying most
of the hadron mass with Minkowskian signature carrying flux of 2 units branching to two flux
tubes carrying 1 unit each. The flux tubes would have length given by hadronic p-adic length
scale. The ends of flux tubes would be wormhole throats connected by wormhole contacts to
the mirror image of this structure. One can say that homology charges 2,-1,-1 assignable to
the throats of single space-time sheet sum up to zero. This brings in mind color hypercharge.
Could color confinement have vanishing of homology charge as classical space-time correlate?

2. In this article I have considered two alternative identification of leptons. Leptons and quarks
could correspond to the different chiralities ofM4×CP2 spinors and lepton and baryon numbers
would be separately conserved. For second option leptons would b local 3-quark composites
and therefore analogous to spartners of quarks: this option is possible only in TGD framework
and the reason is that color is not spin-like quantum number in TGD framework. Baryon and
lepton numbers would not be separately conserved.
One can ask what could be the simplest mechanism inducing the decay of baryon as 3-quark
composite involving only 3 wormhole contacts and giving lepton as a local 3-quark composite
plus something. Wormhole throats of 3 quarks carrying the quark quantum numbers should
fuse together to form a leptonic wormhole throat, and the 3 quark lines representing boundaries
of string world sheets should fuse to single line. If the sum of quark homology charges is
vanishing, lepton must have a vanishing homology charge unless the reaction involves also a
step taking care of the conservation of homology charge as a decay of the resulting wormhole
contact with vanishing monopole flux to two wormhole contacts with opposite monopole fluxes.
Already the first step of the decay process is quite complex, and one can hope that the rate
for the reaction is slow enough.



Chapter 10

Zero energy ontology, hierarchy of
Planck constants, and Kähler
metric replacing unitary S-matrix:
three pillars of new quantum
theory

10.1 Introduction

I have worked with the problem of understanding the construction of scattering amplitudes in
the framework provided by Topological Geometrodynamics (TGD) for about four decades. It
soon became clear that the näıve generalization of the path integral approach to a path integral
over space-time surfaces did not work because of the horrible non-linearities involved. Around
1985 I started to work with the notion that I later called the ”world of classical worlds” (WCW).
Eventually I apprehended that the realization of general coordinate invariance (GCI) forces to
assign to a 3-surface possibly unique space-time surface (X4) at which the general coordinate
transformations act [K52, K31]. Holography would reduce to GCI. The intuitive expectation is that
either space-like 3-surfaces or light-like partonic orbits defining boundaries between Minkowskian
and Euclidian space-time regions should be enough to determine X4 as an analog of Bohr orbit.
This leads to strong form of holography (SH) stating that data at partonic 2-surfaces and string
world sheets code for X4.

It should be possible to geometrize the entire quantum physics in terms of WCW geometry
and associated spinor structure identifying WCW spinors as fermionic Fock states. A geometriza-
tion of the hermitian conjugation essential in quantum theory is needed. This fixed the WCW
geometry to be Kähler geometry determined by Kähler function and defining Kähler form pro-
viding a realization of the imaginary unit as an antisymmetric tensor [K52]. The existence of
Riemann connection fixes the Kähler geometry uniquely already in the case of loop spaces [A44]:
maximal isometry group is required. In TGD framework it would correspond supersymplectic
transformations of δM4

± × CP2, where δM4
±,denotes future or past light-cone [K31].

Classical physics becomes an exact part of quantum physics if the space-time surfaces are
preferred extremals for some action and therefore analogous to Bohr orbits. Spinor fields should
obey the modified Dirac equation (MDE). Modified Dirac action (MDA) is determined by the
bosonic action via supersymmetry condition. Kähler function identified as the action for the
preferred extremal associated with the 3-surface defines in complex coordinates the Kähler metric
and Kähler form via its second derivatives of type (1, 1).

The natural looking identification of the action was as Kähler action - a non-linear gen-
eralization of Maxwell action replacing Maxwell field and metric with induced Kähler form and
metric. It possessed a huge vacuum degeneracy interpreted as spin glass degeneracy and for a long
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time I looked this feature as something positive despite the fact that the WCW metric becomes
degenerate at the vacuum extremals and classical determinism is lost. The addition of volume
term having interpretation in terms of cosmological constant would have been a possible cure but
would have broken conformal invariance bringing in an ad hoc dimensional coupling.

Decades later the proposal for a twistor lift of TGD led to the identification of fundamental
action as an analog of Kähler action for 6-D twistor spaces having X4 as base space and S2 as
fiber [L88]. The induction of the twistor structure from that for the 6+6-D product of twistor
spaces of M4 and CP2 (these spaces are the only 4-spaces allowing twistor space with Kähler
structure [A57] so that TGD is unique) to the 6-surface forces a dimensional reduction reducing
6-D Kähler action to a sum of 4-D Kähler action and volume them. The counterpart of the
cosmological constant emerges dynamically. Λ depends on the p-adic length scale characterizing
space-time surfaces and approaches to zero in long length scales [L88].

The ontology of standard quantum theory in which 3-D t = constant slice of space-time
contains the quantum states, does not fit nicely with TGD framework. Space-time surfaces in
1-1 correspondence with 3-surfaces are more natural objects to consider. This conforms also with
the notion of holography implied by GCI: actually SH is highly suggestive and means that 2-D
data at partonic 2-surfaces and string world sheets determined the X4 as a preferred extremal. In
particular, various anomalies suggest that the arrow of time need not be fixed.

Eventually this led to zero energy ontology (ZEO) [L80] in which quantum states are essen-
tially superpositions of preferred extremals inside causal diamond (CD): space-time surfaces have
ends at the boundaries of CD and these pairs of 3-surfaces or equivalently the 4-surfaces are the
basic objects. CDs form a hierarchy: there are CDs with CDs and CDs can also intersect. They
would form an analog of atlas of coordinate charts. Each CD would serve as a correlate for a
conscious entity so that the charts can be said to be conscious.

ZEO leads to a quantum measurement theory and allows avoiding the basic problems of the
standard quantum measurement theory. Zero energy states correspond to state pairs at opposite
boundaries of CD or equivalently, superpositions of deterministic time evolutions. In state function
reduction (SFR) as a superposition of classical deterministic time evolutions is replaced with a new
one.

”Big” and ”small” state function reduction - BSFR and SSFR - are the basic notions. In
SSFRs as analogs of ”weak” measurements following a unitary time evolution, the size of CD
increases in statistical sense. The members of the state pairs associated with the passive boundary
of CD do not change during SSFRs: this gives rise to the analog of Zeno effect. The active
boundary and the states at it change. Active boundary also shifts farther from the passive one.
BSFRs correspond to ordinary state function reductions and in BSFRs the arrow of time changes.
One could speak of a death of a conscious entity in universal sense and reincarnation with an
opposite arrow of time. For instance, the findings of Minev et al [L69] provide support for the time
reversal [L69].

10.1.1 How to construct the TGD counterpart of unitary S-matrix?

The concrete construction of scattering amplitudes remained a challenge from very beginning.
During years I have proposed several proposals and many important aspects of the problem are
understood but simple rules are still lacking.

1. The time evolutions assignable to SSFRs should be describable by a unitary S-matrix or its
analog.

2. The counterpart of S-matrix should have the huge super-symplectic algebra (SSA) and Kac-
Moody algebras related to isometries of H as symmetries. These symmetries, extended further
to Yangian symmetries and quantum groups with both algebra and co-algebra structure, are
expected to be a key element in the construction of the counterpart of S-matrix. In particular,
product and co-product in the super-symplectic algebra define excellent candidates for vertices.
What has been missing was a concrete guiding principle.

3. Feynman (or twistor) diagrammatics should generalize. Point-like particles are replaced with
3-surfaces and topologically incoming and outgoing many-particle states correspond to disjoint
unions of 3-surfaces at the boundaries of CD. The first guess is that the vertices correspond
to 3-surfaces at which 4-D lines of the analog of Feynman diagram meet. SH and M8 − H
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duality [L76] however suggest that the lines of the diagrams should correspond to 3-D light-like
orbits of partonic 2-surfaces defining boundaries between space-time regions with Euclidian
and Minkowskian signature of the induced metric. Also string world sheets connecting them
and also serving as carriers of information in SH should be considered. The 1-D light-like
intersections of strings world sheets with partonic orbits would define carriers of fermion num-
ber.

4. The identification of fermionic anti-commutation relations was a longstanding challenge. It
turned out that the induction of second quantized free fermion fields from H to X4 fixes the
anti-commutations of the induced spinor fields and allows to calculate fermionic propagators.
Therefore quantum algebra would give what is needed to calculate scattering amplitudes:
the interaction vertices assignable to partonic 2-surfaces and fermionic propagators would
result from the induction procedure. 8-D fermions have however 7-D delta functions as anti-
commutators and normal ordering of fermions can produce divergences already at the level of
the MDA.
The problem disappears if the MDA is made bilocal [L104]: in this article a more detailed
discussion is given and leads to a rather detailed picture about MDA.

5. M8 − H duality [L76, L47, L48, L49] allows to concretize this picture. One can regard X4

either as a surface in the complexified M8 or in H. M8−H duality maps space-time surfaces
from M8 to H. Space-time surfaces in the complexified M8 correspond to algebraic 4-surfaces
determined by real polynomials with real (rational if one requires p-adicization) coefficients.
Also rational and even analytic functions can be considered, in which case polynomials could
be seen as approximations. The roots of the real polynomial dictate the space-time surfaces
as quaternionic/associative 4-surfaces in complexified octonionic M8. Holography becomes
discrete.
The algebraic equations defining space-time surfaces also have special solutions, in particular 6-
spheres. These analogs of 6-branes have as M4 projections in both M8 and H = M4×CP2t =
rn hyperplanes, where rn corresponds to a root of a real polynomial defining X4 in complexified
M8 The interpretation of these hyper-planes is in TGD inspired consciousness is as ”very
special moments in the life of self”.
The solutions of the analog of Dirac equation in M8 as algebraic equation [L105] are localized
to 3-D light-like surfaces and mapped to light-like 3-surfaces in H identifiable as orbits of
partonic 2-surfaces. Partonic 2-surfaces serving as vertices of topological analogs of Feynman
diagrams would reside at the above described t = rn hyperplanes of H = M4×CP2. Scattering
amplitudes would have partonic 2-surfaces as vertices and their 3-D light-like orbits as lines.
The intersections of string world sheets with the partonic orbits would be 1-D lines and could
be interpreted as fermion lines so that also the point particle description would be part of the
picture.
CDs inside CD would define the regions inside which particle reactions occur and this suggests a
fractal hierarchy of CDs within CDs as a counterpart for the hierarchy of radiative corrections.

What is still missing is the general principle allowing a bird’s eye of view about the coun-
terpart of S-matrix. Wheeler was the first to introduce the notion of unitary S-matrix, which
generalizes probability conservation to an infinite number of conditions. Could one challenge the
unitary principle and consider something else instead of it?

1. Unitary time evolution is natural in non-relativistic quantum mechanics but is already prob-
lematic in quantum field theory (QFT), in particular in twistor Grassmannian approach [B24].
The idea about the reduction of physics to Kähler geometry inspires the question whether
Kähler geometry of WCW could provide a general principle for the construction of the scat-
tering amplitudes and perhaps even an explicit formulas for them.
Kähler metric defines a complex inner product. Complex inner products also define scattering
amplitudes. Usually metric is regarded as defining length and angle measurements. Could
the Kähler metric of state space code the counterpart of S-matrix and even unitary S-matrix?
Also the Kähler metric satisfies conditions analogous to unitarity conditions.
An amazingly simple argument demonstrates that one could construct scattering probabilities
from the matrix elements of Kähler metric and assign to the Kähler metric the analog of a uni-
tary S-matrix by assuming that some additional conditions guaranteeing that the probabilities
are real and non-negative are satisfied.
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(a) If the probabilities are identified as the real parts of complex analogs pci,j = gi,jg
j,i of prob-

abilities, it is enough to require Re(pci,j) ≥ 0. The complex analogs of ipci,j) would define
the analog of Teichmueller matrix [A33, A51, A42] (https://en.wikipedia.org/wiki/
Teichm\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{u\global\

mathchardef\accent@spacefactor\spacefactor}\let\begingroup\endgroup\relax\let\

ignorespaces\relax\accent127u\egroup\spacefactor\accent@spacefactorller_space)
for which imaginary parts of matrix elements are non-negative. Teichmueller space pa-
rameterizes the complex structures of Riemann surface: could the allowed WCW Kähler
metrics - or rather the associated complex probability matrices - correspond to complex
structures for some space? By SH, the most natural candidate would be Cartesian product
of Teichmueller spaces of partonic 2 surfaces with punctures and string world sheets.

(b) By positing the condition that gi,j and gj,i have opposite phases, one can assign to Kähler
metric a unitary S-matrix but this does not seem to be necessary. The experience with
loop spaces suggests that for infinite-D Hilbert spaces the existence of non-flat Kähler
metric requires a maximal group of isometries. Hence one expects that the counterpart of
S-matrix is highly unique. These solutions would be special case of Teichmueller solutions:
Teichmueller matrix would be purely imaginary. The condition looks too restrictive. For
instance, for torus, this would correspond to a metric conformally equivalent with a flat
metric.

2. This inspires the idea that quantum physics could be geometrized by the same way as Einstein
geometrized gravitation. Take a flat Hilbert space bundle (in the case of TGD) and replace its
flat Kähler metric both base space and fiber with a non-flat Kähler metric. The replacement
of flat metric with a curved one would lead from a non-interacting quantum theory to an
interacting one. Quantum theory would be gravitation at the level of this Hilbert bundle!
This replacement is completely universal.
In the TGD framework the world of classical worlds (WCW) has Kähler geometry allowing
spinor structure. WCW spinors correspond to Fock states for second quantized spinors at X4

and induced from second quantized spinors of the embedding space. Scattering amplitudes
would be determined by the Kähler metric for the Hilbert space bundle of WCW spinor fields
realized in ZEO and satisfying Teichmueller condition guaranteeing non-negative probabilities.
WCW geometry is also characterized by zero modes corresponding to non-complex coordinates
for WCW giving no contribution to WCW metric. This is self-evident from SH. The zero modes
would be in 1-1 correspondence with Teichmueller parameters and WCW Kähler metrics.
Equivalence Principle (EP) generalizes to level of WCW and its spinor bundle. In ZEO one
can assign also to the Kähler space of zero energy states spinor structure and this suggests an
infinite hierarchy of second quantizations starting from space-time level, continuing at the level
of WCW, and continuing further at the level of the space of zero energy states. This would
give a possible interpretation for an old idea about infinite primes as an infinite hierarchy of
second quantizations of an arithmetic QFT [K94].

There is also challenge of constructing the Kähler metric and associated spinor structure for
the spinor bundle of WCW. This would mean a specification of the analogs of Feynman rules so
that instead of two problems one would have only one problem.

1. WCW gamma matrices can be identified as superpositions of fermionic oscillator operators
associated with quark spinors [L81]. One can consider two approaches to the quantization
of these spinors: one studies induced spinor fields obeying MDE and quantizes this or one
generalizes the induction of spinors from H to the induction of second quantized spinor fields
in H: this would mean simply projecting the spinor fields to X4. The latter option is extremely
simple. It seems possible to avoid divergence problems if the anti-commutators are assigned
to different 3-surfaces at different boundaries of CD. This would allow the identification of the
Dirac propagator. As a matter of fact, the two approaches are equivalent.

2. WCW gamma matrices would allow the identification as super generators of SSA identified as
contractions of gamma matrices SSA with Killing vectors. Quantum states would be created
by bosonic and fermionic SSA generators.

3. I have proposed a further supersymmetrization of both H coordinates and spinors by replacing
them with expansions in powers of local composites of oscillator operators for quarks and
antiquarks [L81]. This however requires Kronecker delta type anti-commutators natural for
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cognitive representations defining unique discretization of X4: this allows to avoid normal
ordering divergences. Induction of the H spinor fields would lead to 8-D delta function type
divergences. This suggests that local composites are not quite local but states consisting
of quarks and antiquarks at opposite throats of wormhole contacts identifiable as partonic
2-surfaces. One would obtain leptons as 3-quark states with quarks at the same partonic
2-surface but not at the same point anymore as in the proposal of [L81].

4. The matrix elements of the Kähler metric of WCW Hilbert bundle correspond to scatter-
ing amplitudes analogous to Feynman diagrams. What are the Feynman rules? Partonic two
surfaces and their orbits correspond to vertices and propagators topologically. The TGD coun-
terpart for FFB vertex would correspond to a bosonic wormhole contact with a fermion and
antifermion at opposite wormhole throats and representing SCA generator which decomposes
to two partonic 2-surfaces carrying fermions at opposite throats representing fermionic SCA
generators. This allows avoiding of normal ordering divergences.
The vertex would correspond to a product or co-product, which can be said to be time reversals
of each other. The structure constants of SCA extended to quantum algebra would fix the
vertices and thus the analogs of Feynman diagrams completely. Their number is presumably
finite for a X4 with fixed 3-surfaces at its ends and summation over Feynman diagrams would
correspond to integration in WCW.

Before discussing them current proposal in detail, the complementary way to overview TGD
as either WCW geometry or as number theory are discussed below. Readers might skip these
sections at their first reading and choose to read the section discussing the basic idea in more
detail.

In the sequel the basic idea about representation of scattering amplitudes as elements of
Kähler metric satisfying what I call ”Teichmueller condition”, is discussed in TGD framework.

The detailed formulation allows a formulation of conditions for the cancellation of normal
ordering divergences and also other divergences. The induction of the second quantized free spinor
field from H to space-time surface fixes the propagators at the space-time level. If the creation
and annihilation operators are at different space-time sheets - say at throats of wormhole contacts,
divergences are avoided. ZEO suggests an alternative but not exclusive option that the annihila-
tion operators correspond to creation operators for conjugated Dirac vacuum associated with the
opposite half-cone of CD or sub-CD.

The fact that the Dirac propagators for massive particles in the TGD sense reduce in a good
approximation to massless propagators when the propagation takes place along light-like distances,
allows to considerable insight to why physical particles are so light although the spinor harmonics
for CP2 correspond to CP2 mass scale.

Of course, one must not forget that this proposal is only an interesting thought game. It is
quite possible that zero energy ontology allows to define a natural way a unitary S-matrix or a more
general isometric map between the states spaces associated with the extensions of rationals with
different algebraic dimensions assignable naturally to to space-time regions inside causal diamonds.
The huge symmetries of WCW generalized to Yangian symmetries could lead to a unique S-matrix
and number theoretic conditions pose extremely powerful constraints. In [L133], a proposal along
these lines was developed 3 years after writing this.

10.2 Physics as geometry

One can end up with TGD in two ways (see Fig. 10.2). Either as a solution of energy problem
of GRT realizing Einstein’s dream about geometrization of classical physicsor as a generalization
of hadronic string model or of superstring theory [B32]. In case of hadronic string model the
generalization of string to 3-surface would allow to get rid of spontaneous compactification and the
landscape catastrophe implied by it.

At fundamental level TGD could be seen as a hybrid of GRT and SRT: the notion of force
does not disappear and can be defined as rate for an exchange of conserved quantity which can be
Poincare or color charge. This connection with Newtonian limit is more clear than in GRT, where
the conservation laws are lost.
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Figure 10.1: TGD is based on two complementary visions: physcs as geometry and physics as
number theory.

10.2.1 Classical physics as sub-manifold geometry

The new elements are many-sheeted space-time topologically non-trivial in all scales, and topolog-
ical field quantization implying that physical systems have field identity, field body, in particular
magnetic body (MB) central in applications [L14, L13] (see Fig. 10.3).

Induction procedure

One ends up to a geometrization of gravitational field and gauge fields of the standard model as
induced fields. Induction means induction of bundle structure is in question. Parallel translation
at X4 is carried out by using spinor connection of H and distances are measured using the metric
of H. The components of induced gauge potentials and metric are projections to X4. Color gauge
potentials are identified as projections of Killing vector fields of CP2 and one can define for them
gauge algebra structure. The components of the induced color field are proportional to HAJ , where
HA is the Hamiltonian of color isometry and J induced Kähler form. For details see [L15] or the
material at my homepage.

The induction of spinor structure allows to avoid the problems related to the definition
of spinor structure for general 4-geometry encountered in GRT. For the induced spinor structure
induction means projection of gamma matrices toX4. The definition of gamma matrices is modified
when classical action defining the space-time dynamics contains besides volume term also Kähler
action with the projection of CP2 Kähler form defining the analog of Maxwell field. Modified
gamma matrices are contractions Tαkγk of the embedding space gamma matrices γk with canonical
momentum currents Tαk associated with the action: this is required by the hermiticity of the
modified Dirac action and means existence of infinite number of super currents labelled by the
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Figure 10.2: The problems leading to TGD as their solution.

modes of the modified Dirac action.

Spacetime is topologically complex

Locally the theory is extremely simple: by GCI there are only 4 field-like variables corresponding to
a suitable identification of embedding space coordinates as space-time coordinates. The possibility
to choose the coordinates in this manner means enormous simplification since the problems caused
by GCI in GRT disappear. It is however obvious that 4 field-like variables does not conform with
standard model and GRT. This simplicity is compensated by topological complexity in all scales
implied by the many-sheeted space-time. The QFT-GRT limit explained in introduction gives the
space-time of gauge theories and GRT.

Geometrically the QFT limit for space-time surfaces having 4-DM4 projection is obtained by
replacing the sheets of many-sheeted space-time with slightly curved region of M4 and identifying
gauge potentials and gravitational field (deviation of the metric from M4 metric) as superpositions
of induced fields at various space-time sheets. Einstein’s equations hold true as a remnant of the
Poincare invariance.

The presence of space-time regions withM4 projection of dimensionD < 4 must be described
at QFT limit as particle- or string-like entities. Particle-like entities correspond to CP2 type
extremals having Euclidian signature of induced metric and light-like M4 projection. 3-D light-like
surfaces serve as boundaries between them and Minkowskian space-time regions: the identification
is as partonic orbits carrying fermion number serving as building bricks of elementary particles
[L57].

The topology of partonic 2-surface is characterized by its genus (number of handless attached
to sphere) and is propose to explain family replication for fermions. Also for bosons 3 families are
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Figure 10.3: Questions about classical TGD.

predicted. The existence of 3 light fermion families is understood in terms of the fact that only
3 lowest genera have global Z2 as conformal symmetry making possible bound state of 2 handles.
For the higher genera handles would behave like particles and mass spectrum would be continuum.

Cosmic strings are fundamental objects of this kind and appear as two different species.
Those carrying monopole flux mean deviation from Maxwell’s theory. They are unstable against
perturbations making their M4 projection 4-D and transforming them to magnetic flux tubes
playing a key role in TGD inspired cosmology.

Twistor lift

One could end up with the twistor lift of TGD from problems of twistor Grassmannian approach
originally due to Penrose [B40] and developed to a powerful computational tool in N = 4 SYM
[B20, B14, B27, B11, B21].

Twistor lift of TGD [L33, L96, L97] generalizes the ordinary twistor approach [L65, L66]
(see Fig. 10.4). The 4-D masslessness implying problems in twistor approach is replaced with
8-D masslessness so that masses can be non-vanishing in 4-D sense.

The basic recipe is simple: replaced fields with surfaces. Twistors as field configurations are
replaced with 6-D surfaces in the 12-D product T (M4)×T (CP2) of 6-D twistor spaces T (M4) and
T (CP2) having the structure of S2 bundle and analogous to twistor space T (X4). Bundle structure
requires dimensional reduction. The induction of twistor structure allows to avoid the problems
with the non-existence of twistor structure for arbitrary 4-geometry encountered in GRT.

The pleasant surprise is that twistor space has Kähler structure only for M4 and CP2 [A57]:
this had been discovered already when started to develop TGD! Since Kähler structure is necessary
for the twistor lift of TGD, TGD is unique. One outcome is length scale dependent cosmological
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constant Λ assignable to any system - even hadron - taking a central role in the theory. At long
length scales Λ approaches zero and this solves the basic problem associated with it. At this limit
action reduces to Kähler action, which for a long time was the proposal for the variational principle.

Figure 10.4: Twistor lift

10.2.2 Quantum physics as WCW geometry

WCW as an analog of Wheeler’s superspace

Quantum TGD replaces Wheeler’s superspace of 3-geometries with the “World of Classical Worlds”
(WCW) as the space of 3-surfaces (see Fig. 10.5). The holography forced by general coordinate
invariance (GCI) implies their 1-1 correspondence with space-time surfaces identified as preferred
extremals (PEs) of the basic variational principle analogous to Bohr orbits. Classical physics
becomes an exact part of quantum physics [L18, L17]. Einstein’s geometrization of classical physics
extends to that of quantum physics.

The geometry of infinite-D WCW (see Fig. 10.5) and physics is highly unique from its mere
existence requiring maximal group of isometries: a result proved by Freed for loop spaces [A44].
The group of WCW isometries is identified as the group of symplectic (contact) transformations
of δM3

+×CP2 having the light-like radial coordinate in the role of complex variable z in conformal
field theories

Remark: The geometric properties of boundary of 4-D light-cone are unique by its metric
2-dimensionality. In particular, the ordinary 2-D conformal symmetries involving local scaling of
the radial light-like coordinate give rise to isometries).

The assumption that space-time surfaces as preferred extremals (PEs) are fundamental
entities leads to zero energy ontology (ZEO) in which quantum superpositions of pairs (X3

1 , X
3
2 ) of
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Figure 10.5: Geometrization of quantum physics in terms of WCW

3-surfaces at opposite boundaries of causal diamond (CD) and connected by PE represent quantum
states [L115]. This leads to a solution of the basic problem of quantum measurement theory due
to the conflict between the determinism of field equations and non-determinism of state function
reduction (SFR) and quantum measurement theory extends to a theory of consciousness bringing
observer a part of the physisal system.

Quantum states are identified as modes of classical WCW spinor fields so that apart from
quantum jump the theory is formally classical. WCW spinor structure involves complexified gamma
matrices expressible as superpositions of second quantized oscillator operators of the induced spinor
fields at space-time so that a geometrization of fermionic statistics is achieved [L26, L98, L104].
The simplest formulation assumes only quark spinors and would predict that lepton are local
composites of 3 quarks.

10.2.3 Super-symplectic group as isometries of WCW

The work of Freed related to the geometrization of loop spaces [A44] demonstrated that the Kähler
metric allows awell-defined Riemann connection onlyif it has a maximal group of isometries. This
fixes the metric completely. The natural conjecture isthat this is true also in 3-D case and that the
group consists of symplectic (contact) transformations at δM4

± ×CP2. Here δM4
± is future/past

directed lightcone boundary containing the ”upper”/”lower” boundary of a causal diamond of
M4.

WCW allows as infinitesimal isometries huge super-symplectic algebra (SSA) [K52, K31]
acting on space-like 3-surfaces at the ends of space-time surfaces inside causal diamond (CD) and
also generalization of Kac-Moody and conformal symmetries acting on the 3-D light-like orbits
of partonic 2-surfaces (partonic super-conformal algebra (PSCA)). These symmetry algebras have
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a fractal structure containing a hierarchy of sub-algebras isomorphic to the full algebra. Even
ordinary conformal algebras with non-negative conformal weights have similar fractal structure as
also Yangian. In fact, quantum algebras are formulated in terms of these half algebras.

The proposal is that physical states are annihilated by a sub-algebra SSAn of SSA (with
non-negative conformal weights), n = 1, 2, ..., with conformal weights coming as n-multiples of
those for SSA and thus isomorphic to the entire SSA, and by the commutator [SSAn, SSA].
What remains seems to be a finite-D Kac-Moody algebra as an effective “coset” algebra obtained.
Note that the resulting analog of a normal sub-group could actually be a quantum group.s There
is a direct analogy with the decomposition of the Galois group Gal to a product of sub-group and
normal subgroup H. If the normal subgroup H acts trivially on the representation of Gal reduces
to that of the group Gal/H. Now one works at Lie algebra level: Gal is replaced with SSA and H
with its sub-algebra with conformal weights multiples of those for SSA. These two hierarchies of
subgroups could correspond to each other and to the hierarchy of inclusions of hyperfinite factors
of type II1 (HFFs) [K112, K43]. These conditions would guarantee preferred extremal property of
the space-time surface and holography or even its strong form.

Holography from GCI

Gravitational holography has been one of the dominating themes in recent day theoretical physics.
It was originally proposed by Susskind [B36], and formulated by Maldacena as AdS/CFT corre-
spondence [B34]. One application is by Preskill et al to quantum error correcting codes [B29].

By holography implied by GCI the basic variational problem can be seen either as boundary
value problem with 3-surfaces at opposite boundaries of CD or as initial value problem caused by
PE property. Ordinary 3-D holography is thus forced by general coordinate invariance (GCI) and
loosely states that the data at 3-surface at either boundary of CD allows to determine X4 ⊂ H. In
ZEO 3-surfaces correspond to pairs of 3-surfaces with members at the opposite light-like boundaries
of causal diamond (CD) and are analogous to initial and final states of deterministic time evolution
as Bohr orbit.

Holography poses additional strong conditions on X4.

1. The conjecture is that these conditions state the vanishing of super-symplectic Noether charges
for a sub-algebra of super-symplectic algebra SSAn with radial conformal weights coming as n-
multiples of those for the entire algebra SSA and its commutator [SSAn, SSSA] with the entire
algebra: these conditions generalize super conformal conditions and one obtains a hierarchy of
realizations. An open question is whether this hierarchy corresponds to the hierarchy of EQs
with n identifiable as dimension of the extension.

2. Second conjecture is that PEs are extremals of both the volume term and Kähler action
term of the action resulting by dimensional reduction making possible the induction of twistor
structure from the product of twistor spaces of M4 and CP2 to 6-D S2 bundle over X4 defining
the analog of twistor space. These twistor spaces must have Kähler structure since action for
6-D surfaces is Kähler action - it exists only in these two cases [A57] so that TGD is unique.

Strong form of holography

Strong form of holography (SH) is a strengthening of 3-D holography. Strong form of GCI requires
that one can use either the data associated

1. either with light-like 3-surfaces defining partonic orbits as surfaces at which signature of the
induced metric changes from Euclidian to Minkowskian,

2. or the space-like 3-surfaces at the ends of CD to determine X4 as PE (in case that it exists),

This suggests that the data at the intersections of these 2-surfaces defined by partonic 2-surfaces
might be enough for holography. A slightly weaker form of SH is that also string world sheets
intersecting partonic orbits along their 1-D boundaries is needed and this form seems more realistic.

SH allows to weaken the strong form of M8 − H duality [L91] mapping X4 ⊂ M8 to
X4 ⊂ H = M4 × CP2 that it allows to map only certain 2-D sub-manifolds X2 ⊂ X4 ⊂ M8: SH
allows to determine X4 ⊂ H from this 2-D data.
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Further generalizations

This picture about WCW is not general enough.

1. M8 − H duality [L91] suggests that the notion of WCW applies also M8 picture. The pa-
rameters of polynomials defining X4 ⊂ M8 are assumed to be rational. The points of M8

counterpart of WCW have the rational coefficients of these polynomials as coordinates so that
WCW should be discrete in real topology. This should be the case also for H counterpart of
WCW. Could one see real and p-adic variants of WCW as completions of this discrete WCW.

2. Adelic physics inspires the question whether p-adic and adelic variants of WCW make sense or
is it enough to have number theoretically universal cognitive representations to define unique
discretized variants of X4 and correspondingly discretized WCW.

3. For TGD variant of SUSY [L95, L94] super coordinates for H correspond to hermitian local
composites of quark oscillator operators. For super-quarks they correspond to local compo-
nents with fixed quark number. Leptons can be understand as local composites of quarks -
super field components [L104]. SUSY replaces modes of super-field with super-surfaces so that
the components of super-field correspond to sets of disjoint 4-surfaces. This is true also for
the points of super WCW.

10.3 Physics as number theory

Number theoretical vision is second thread of TGD. It decomposes to 3 threads corresponding to
various p-adic physics [L19] fusing to adelic physics [L57], classical number fields [L20], and infinite
primes [L21] (not discussed in the sequel).

10.3.1 p-Adic and adelic physics and extensions of rationals (EQs)

p-Adic number fields would serve as correlates of cognition and imagination (see Fig. 10.6) .
Space-time is replaced with a book like structure having both real and various p-adic space-time
sheets as pages. The outcome is adelic physics as fusion of various p-adic physics [L53, L57] (see
http://tinyurl.com/ycbhse5c). The EQ induces extensions of p-adic numbers fields and of
adele giving rise to a hierarchy of physics having interpretation in terms of evolution induced by
the increase of the complexity of the EQ.

Adelic physics leads also the hierarchy of Planck constants heff/h0 = n with n identified as
dimension of EQ labelling phases of ordinary matter behaving like dark mater, and making possible
quantum coherence in arbitrarily long time scales essential for understanding living matter.

EQs are characterized by discriminant D assignable to a polynomial giving rise to the exten-
sion (for second order polynomials D has expression familiar from school days). Now polynomials
with rationals (equivalently integer) valued coefficients are interesting. The primes dividing the
discriminant are known as ramified primes and they have a property that for p-adic variant of
polynomial degenerate roots appear in O(p) = 0 approximation [L93]. The interpretation could
be in terms of quantum criticality and physically preferred p-adic primes are identified as ramified
primes of extension [L101].

Remark: One can also consider polynomials with algebraic coefficients. The notion of
Galois group make sense also for real coefficients.

The hierarchy of EQs labelling levels of dark matter hierarchy and of hierarchy of adelic
physics follows from M8 −H duality allowing to identify X4 ⊂ M8 as a projection of X4

c ⊂ M8
c

- identified as complexified octonions Oc - and satisfying algebraic equations associated with a
polynomial of degree n.

Real and p-adic physics are strongly correlated and mass calculations represent the most
important application of p-adic physics [K60]. Elementary particles seem to correspond to p-
adic primes near powers 2k (there are also indicatons for powers of 3). Corresponding p-adic
length - and time scales would come as half-octaves of basic scale if all integers k are allowed.
For odd values of k one would have octaves as analog for period doubling. In chaotic systems
also the generalization of period doubling in which prime p = 2 is replaced by some other small
prime appear and there is indeed evidence for powers of p = 3 (period tripling as approach to
chaos) [I10, I11]. Many elementary particles and also hadron physics and electroweak physics seem

http://tinyurl.com/ycbhse5c
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Figure 10.6: p-Adic physics as physics of cognition and imagination.

to correspond to Mersenne primes and Gaussian Mersennes which are maximally near to powers
of 2 and the challenge is to understand this [L34].

10.3.2 Classical number fields

Second aspect of number theoretical vision are classical number fields: reals, complex numbers,
quaternions and octonions and their complexifications by a commuting imaginary unit i (see Fig.
10.7).

Space-time as 4-surface in M8
c = Oc

One can regard real space-time surface X4 ⊂ M8 as a M8−-projection of X4
c ⊂ M8

c = Oc. M
4
c

is identified as complexified quaternions Hc [L91, L101]. The dynamics is purely algebraic and
therefore local.

1. The basic condition is associativity of X4 ⊂ M8 in the sense that either the tangent space
or normal space is associative - that is quaternionic. This would be realized if X4

c as a root
for the quaternion-valued “real” or “imaginary part” for the Oc algebraic continuation of real
analytic function P (x) in octonionic sense. Number theoretical universality requires that the
Taylor coefficients are rational numbers and that only polynomials are considered.
The 4-surfaces with associative normal space could correspond to elementary particle like
entities with Euclidian signature (CP2 type extremals) and those with associative tangent
space to their interaction regions with Minkowskian signature. These two kinds space-time
surfaces could meet along these 6-branes suggesting that interaction vertices are located at
these branes.



456
Chapter 10. Zero energy ontology, hierarchy of Planck constants, and Kähler metric

replacing unitary S-matrix: three pillars of new quantum theory

Figure 10.7: M8 −H duality

2. The conditions allow also exceptional solutions for any polynomial for which both “real” and
“imaginary” parts of the octonionic polynomial vanish. Brane-like solutions correspond to 6-
spheres S6 having t = rn 3-ball B3 of light-cone as M4 projection: here rn is a root of the real
polynomial with rational coefficients and can be also complex - one reason for complexification
by commuting imaginary unit i. For scattering amplitudes the topological vertices as 2-
surfaces would be located at the intersections of X4

c with 6-brane. Also Minkowski space M4

is a universal solution appearing for any polynomial and would provide a universal reference
space-time surface.

3. Polynomials with rational coefficients define EQs and these extensions form a hierarchy realized
at the level of physics as evolutionary hierarchy. Given extension induces extensions of p-adic
number fields and adeles and one obtains a hierarchy of adelic physics. The dimension n
of extension allows interpretation in terms of effective Planck constant heff = n × h0. The
phases of ordinary matter with effective Planck constant heff = nh0 behave like dark matter
and galactic dark matter could correspond to classical energy in TGD sense assignable to
cosmic strings thickened to magnetic flux tubes. It is not completely clear whether number
galactic dark matter must have heff > h. Dark energy in would correspond to the volume
part of the energy of the flux tubes.
There are good arguments in favor of the identification h = 6h0 [?] “Effective” means that the
actual value of Planck constant is h0 but in many-sheeted space-time n counts the number of
symmetry related space-time sheets defining X4 as a covering space locally. Each sheet gives
identical contribution to action and this implies that effective value of Planck constant is nh0.
The ramified primes of extension in turn are identified as preferrred p-adic primes. The moduli
for the time differences |tr − ts| have identification as p-adic time scales assignable to ramified
primes [L101]. For ramified primes the p-adic variants of polynomials have degenerate zeros in
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O(p) = 0 approximation having interpretation in terms of quantum criticality central in TGD
inspired biology.

4. During the preparation of this article I made a trivial but overall important observation.
Standard Minkowski signature emerges as a prediction if conjugation in Oc corresponds to
the conjugation with respect to commuting imaginary unit i rather than octonionic imaginary
units as though earlier. If X4 corresponds to the projection Oc → M8 → M4 with real time
coordinate and imaginary spatial coordinates the metric defined by the octonionic norm is real
and has Minkowskian signature. Hence the notion of Minkowski metric reduces to octonionic
norm for Oc - a purely number theoretic notion.

Figure 10.8: Number theoretic view about evolution

How to realize M8 −H duality?

M8 −H duality (see Fig. 10.7) allows to X4 ⊂ M8 to X4 ⊂ H so that one has two equivalent
descriptions for the space-time surfaces as algebraic surfaces in M8 and as minimal surfaces with 2-
D preferred 2-surfaces defining holography making possible M8−H duality and possibly appearing
as singularities in H. The dynamics of minimal surfaces, which are also extremals of Kähler action,
reduces for known extremals to purely algebraic conditions analogous to holomorphy conditions in
string models and thus involving only gradients of coordinates. This condition should hold generally
and should induce the required huge reduction of degrees of freedom proposed to be realized also
in terms of the vanishing of super-symplectic Noether charges already mentioned [L98].

Twistor lift allows several variants of this basic duality [L96, L97]. M8
H duality predicts that

space-time surfaces form a hierarchy induced by the hierarchy of EQs defining an evolutionary
hierarchy. This forms the basics for the number theoretical vision about TGD.
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As already noticed, X4 ⊂ M8 would satisfy an infinite number of additional conditions
stating vanishing of Noether charges for a sub-algebra SSAn ⊂ SSA of super-symplectic algebra
SSA actings as isometries of WCW.

M8−H duality makes sense under 2 additional assumptions to be considered in the following
more explicitly than in earlier discussions [L91].

1. Associativity condition for tangent-/normal space is the first essential condition for the exis-
tence of M8−H duality and means that tangent - or normal space is associative/quaternionic.

2. Each tangent space of X4 at x must contain a preferred M2
c (x) ⊂ M4

c such that M2
c (x)

define an integrable distribution and therefore complexified string world sheet in M4
c . This

gives similar distribution for their orthogonal complements E2c(x). The string world sheet
like entity defined by this distribution is 2-D surface X2

c ⊂ X4
c in Rc sense. E2

c (x) would
correspond to partonic 2-surface. This condition generalizes for X4 with quaternionic normal
space.

One can imagine two realizations for this condition.

Option I: Global option states that the distributions M2
c (x) and E2

c (x) define a slicing of
X4
c .

Option II: Only discrete set of 2-surfaces satisfying the conditions exist, they are mapped
to H, and strong form of holography (SH) applied in H allows to deduce X4 ⊂ H. This would be
the minimal option.

It seems that only Option II can be realized.

1. The basic observation is that X2
c can be fixed by posing to the non-vanishing Hc-valued part

of octonionic polynomial P condition that the Cc valued “real” or “imaginary” part in Cc
sense for P vanishes. M2

c would be the simplest solution but also more general complex sub-
manifolds X2

c ⊂M4
c are possible. This condition allows only a discrete set of 2-surfaces as its

solutions so that it works only for Option II.
These surfaces would be like the families of curves in complex plane defined by u = 0 an v = 0
curves of analytic function f(z) = u+ iv. One should have family of polynomials differing by
a constant term, which should be real so that v = 0 surfaces would form a discrete set.

2. SH makes possible M8 − H duality assuming that associativity conditions hold true only at
2-surfaces including partonic 2-surfaces or string world sheets or perhaps both. Thus one can
give up the conjecture that the polynomial ansatz implies the additional condition globally.
SH indeed states that PEs are determined by data at 2-D surfaces of X4. Even if the conditions
defining X2

c have only a discrete set of solutions, SH at the level of H could allow to deduce
the PEs from the data provided by the images of these 2-surfaces under M8−H duality. The
existence of M2(x) would be required only at the 2-D surfaces.

3. There is however a delicacy involved: the X2 might be only metrically 2-D but not topo-
logically. The partonic orbits are 3-D light-like surfaces with metric dimension D = 2. The
4-metric degenerates to 2-D metric at them. Therefore their pre-images would be natural
candidates for the singularities at which the dimension of the quaternionic tangent or normal
space reduces to 2 [L92] . If this happens, SH would not be quite so strong as expected. The
study of fermionic variant of M8 −H correspondence indeed leads to this conclusion.

One can generalize the condition selecting X2
c so that it selects 1-D surface inside X2

c .
By assuming that Rc-valued “real” or “imaginary” part of complex part of P at this 2-surface
vanishes. One obtains preferred M1

c or E1
c containing octonionic real and preferred imaginary unit

or distribution of the imaginary unit having interpretation as a complexified string. Together these
kind 1-D surfaces in Rc sense would define local quantization axis of energy and spin. The outcome
would be a realization of the hierarchy Rc → Cc → Hc → Oc realized as surfaces.

What about M8 −H duality in the fermionic sector?

During the preparation of this article I became aware of the fact that the realization M8−H duality
in the fermionic sector has remained poorly understood. This led to a considerable integration of
the ideas about M8 − H duality also in the bosonic sector and the existing phenomenological
picture follows now from M8 −H duality. There are powerful mathematical guidelines available.
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1. Octonionic spinors

By supersymmetry, octonionicity should have also a fermionic counterpart.

1. The interpretation of M8
c as complexified octonions suggests that one should use complexified

octonionic spinors in M8
c . This is also suggested by SO(1,7) triality unique for dimension

d = 8 and stating that the dimensions of vector representation, spinor representation and its
conjugate are same and equal to D = 8. I have already earlier considered the possibility to
interpret M8 spinors as octonionic [L27]. Both octonionic gamma matrices and spinors have
interpretation as octonions and gamma matrices satisfy the usual anti-commutation rules.
The product for gamma matrices and spinors is replaced with the non-associative octonionic
product.

2. Octonionic spinors allow only one M8-chirality, which conforms with the assumption of TGD
inspired SUSY that only quarks are fundamental fermions and leptons are their local compos-
ites [L95, L94].

3. The decomposition of X2 ⊂ X4 ⊂ M8 corresponding to R ⊂ C ⊂ Q ⊂ O should have an
analog for the Oc spinors as a tensor product decomposition. The special feature of dimension
D = 8 is that the dimensions of spinor spaces associated with these factors are indeed 1, 2, 4,
and 8 and correspond to dimensions for the surfaces!
One can define for the octonionic spinors associative/co-associative sub-spaces as quaternionic/co-
quaternionic spinors by posing chirality conditions. For X4 ⊂M8

c one could define the analogs
of projection operators P± = (1± γ5)/2 as projection operators to either factor of the spinor
space as tensor product of spinor space associated with the tangent and normal spaces of X4:
the analog of γ5 would correspond to tangent or normal space depending on whether tangent
or normal space is associative. For the spinors with definite chirality there would be no en-
tanglement between the tensor factors. The condition would generalize the chirality condition
for massless M4 spinors to a condition holding for the local M4 appearing as tangent/normal
space of X4.

4. The chirality condition makes sense also for X2 ⊂ X4 identified as a complex/co-complex
surface of X4. Now γ5 is replaced with γ3 and states that the spinor has well-defined spin
in the direction of axis defined by the decomposition of X2 tangent space to M1 × E1 with
M1 defining real octonion axis and selecting rest frame. Interpretation in terms of quantum
measurement theory is suggestive.

What about the sigma matrices associated with the octonionic gamma matrices? The sur-
prise is that the commutators of M4 sigma matrices and those of E4 sigma matrices close to
the same SO(3) algebra allowing interpretation as representation for quaternionic automorphisms.
Lorentz boosts are represented trivially, which conforms with the fact that octonion structure fixes
unique rest system. Analogous result holds in E4 degrees of freedom. Besides this one has unit
matrix assignable to the generalized spinor structure of CP2 so that also electroweak U(1) factor
is obtained.

One can understand this result by noticing that octonionic spinors correspond to 2 copies
of a tensor products of the spinor doublets associated with spin and weak isospin. One has
2 ⊗ 2 = 3 ⊕ 1 so that one must have 1 ⊕ 3 ⊕ 1 ⊕ 3. The octonionic spinors indeed decompose
like 1 + 1 + 3 + 3 under SU(3) representing automorphisms of the octonions. SO(3) could be
interpreted as SO(3) ⊂ SU(3). SU(3) would be represented as tangent space rotations.

2. Dirac equation as partial differential equation must be replaced by an algebraic equation

Algebraization of the dynamics should be supersymmetric. The modified Dirac equation in
H is linear partial differential equation and should correspond to a linear algebraic equation in
M8.

1. The key observation is that for the ordinary Dirac equation the momentum space variant of
Dirac equation for momentum eigenstates is algebraic! Could the interpretation for M8 −H
duality as an analog of momentum-position duality of wave mechanics considered already
earlier make sense! This could also have something to do with the dual descriptions of twistorial
scattering amplitudes in terms of either twistor and momentum twistors. Already the earlier
work excludes the interpretation of the octonionic coordinate o as 8-momentum. Rather, P (o)
has this interpretation and o corresponds to the embedding space coordinates.



460
Chapter 10. Zero energy ontology, hierarchy of Planck constants, and Kähler metric

replacing unitary S-matrix: three pillars of new quantum theory

2. The first guess for the counterpart of the modified Dirac equation at the level of X4 ⊂ M8

is PΨ = 0, where Ψ is octonionic spinor and the octonionic polynomial P defining X4 can
be seen as a generalization of momentum space Dirac operator with octonion units repre-
senting gamma matrices. If associativity/co-associativity holds true, the equation becomes
quaternionic/co-quaternionic and reduces to the 4-D analog of massless Dirac equation and
of modified Dirac equation in H. Associativity holds true if also Ψ satisfies associativity/co-
associativity condition as proposed above.

3. What about the square of the Dirac operator? There are 3 conjugations involved: quaternionic
conjugation assumed in the earlier work, conjugation with respect to i, and their combination.
The analog of octonionic norm squared defined as the product oco

∗
c with conjugation with

respect to i only, gives Minkowskian metric mklo
kol as its real part. The imaginary part of

the norm squared is vanishing for the projection Oc → M8 → M4 so that time coordinate
is real and spatial coordinates imaginary. Therefore Dirac equation allows solutions only for
the M4 projection X4 and M4 (M8) signature of the metric can be said to be an outcome
of quaternionicity (octonionicity) alone in accordance with the duality between metric and
algebraic pictures.

Both P †P and PP should annihilate Ψ. P †PΨ = 0 gives mklP
kP

l
= 0 as the analog of

vanishing mass squared in M4 signature in both associative and co-associative cases. PPΨ = 0
reduces to PΨ = 0 by masslessness condition. One could perhaps interpret the projection
X4
c →M8 →M4 in terms of Uncertainty Principle.

There is a U(1) symmetry involved: instead of the plane M8 one can choose any plane obtained
by a rotation exp(iφ) from it. Could it realize quark number conservation in the M8 picture?
For P = o having only o = 0 as root Po = 0 reduces to o†o = 0 and o takes the role of
momentum, which is however vanishing. 6-D brane like solutions S6 having t = rn balls
B3 ⊂ CD4 as M4 projections one has P = 0 so that the Dirac equation trivializes and does
not pose conditions on Ψ. o would have interpretation as space-time coordinates and P (o) as
position dependent momentum components P k.
The variation of P at the mass shell of M8

c (to be precise) could be interpreted in terms of
the width of the wave packet associated with a particle. Since the light-like curve at partonic
2-surface for fermion at X3

L is not a geodesic, mass squared in M4 sense is not vanishing.
Could one understand mass squared and the decay width of the particle geometrically? Note
that mass squared is predicted also by p-adic thermodynamics [K60].

4. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−H
duality [L91] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like orbit
of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces as X3
L

gives a very powerful constraint on SH and M8 −H duality.

5. The masslessness condition restricts the spinors at 3-D light-cone boundary in P (M8). M8−H
duality [L91] suggests that this boundary is mapped to X3

L ⊂ H defining the light-like orbit
of the partonic 2-surface in H. The identification of the images of PkP

k = 0 surfaces as X3
L

gives a very powerful constraint on SH and M8 −H duality.

6. The variant Dirac equation would hold true also at 2-surfaces X2 ⊂ X4 and should commute
with the corresponding chirality condition. Now D†DΨ = 0 defines a 2-D variant of mass-
lessness condition with 2-momentum components represented by those of P . 2-D masslessness
locates the spinor to a 1-D curve X1

L. Its H-image would naturally contain the boundary of the
string word sheet at X3

L assumed to carry fermion quantum numbers and also the boundary
of string world sheet at the light-like boundary of CD4. The interior of the string world sheet
in H would not carry an induced spinor field.

7. The general solution for both 4-D and 2-D cases can be written as Ψ = PΨ0, Ψ0 a constant
spinor - this is in a complete analogy with the solution of modified Dirac equation in H. P
depends on position: the WKB approximation using plane waves with position dependent
momentum seems to be nearer to reality than one might expect.

3. The phenomenological picture at H-level follows from the M8-picture

Remarkably, the partly phenomenological picture developed at the level of H is reproduced
at the level of M8. Whether the induced spinor fields in the interior of X4 are present or not, has
been a long standing question since they do not seem to have any role in the physical picture. The
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proposed picture answers this question.

Consider now the explicit realization of M8 −H-duality for fermions.

1. SH and the expected analogy with the bosonic variant of M8 − H duality lead to the first
guess. The spinor modes in X4 ⊂M8 restricted to X2 can be mapped by M8 −H-duality to
those at their images X2 ⊂ H, and define boundary conditions allowing to deduce the solution
of the modified Dirac equation at X4 ⊂ H. X2 would correspond to string world sheets having
boundaries X1

L at X3
L.

The guess is not quite correct. Algebraic Dirac equation requires that the solutions are re-
stricted to the 3-D and 1-D mass shells PkP

k = 0 in M8. This should remain true also in
H and X3

L and their 1-D intersections X1
L with string world sheets remain. Fermions would

live at boundaries. This is just the picture proposed for the TGD counterparts of the twistor
amplitudes and corresponds to that used in the twistor Grassmann approach!
For 2-D case constant octonionic spinors Ψ0 and gamma matrix algebra are equivalent with
the ordinary Weyl spinors and gamma matrix algebra and can be mapped as such to H. This
gives one additional reason for why SH must be involved.

2. At the level of H the first guess is that the modified Dirac equation DΨ = 0 is true for D based
on the modified gamma matrices associated with both volume action and Kähler action. This
would select preferred solutions of modified Dirac equation and conform with the vanishing
of super-symplectic Noether charges for SSAn for the spinor modes. The guess is not quite
correct. The restriction of the induced spinors to X3

L requires that Chern-Simons action at
X3
L defines the modified Drac action.

3. The question has been whether the 2-D modified Dirac action emerges as a singular part of 4-D
modified Dirac action assignable to singular 2-surface or can one assign an independent 2-D
Dirac action assignable to 2-surfaces selected by some other criterion. For singular surfaces
M8 −H duality fails since tangent space would reduce to 2-D space so that only their images
can appear in SH at the level of H.
This supports the view that singular surfaces are actually 3-D mass shells M8 mapped to X3

L

for which 4-D tangent space is 2-D by the vanishing of
√
g4 and light-likeness. String world

sheets would correspond to non-singular X2 ⊂ M8 mapped to H and defining data for SH
and their boundaries X1

L ⊂ X3
L and X1

L ⊂ CD4 would define fermionic variant of SH.

What about the modified Dirac operator D in H?

1. For X3
L modified Dirac equation DΨ = 0 based on 4-D action S containing volume and Kähler

term is problematic since the induced metric fails to have inverse at X3
L. The only possible

action is Chern-Simons action SCS used in topological quantum field theories and now defined
as sum of C-S terms for Kähler actions in M4 and CP2 degrees of freedom. The presence of
M4 part of Kähler form of M8 is forced by the twistor lift, and would give rise to small CP
breaking effects explaining matter antimatter asymmetry [L95, L94]. SC−S could emerge as a
limit of 4-D action.
The modified Dirac operator DC−S uses modified gamma matrices identified as contractions
ΓαCS = Tαkγk, where Tαk = ∂LCS/∂(∂αh

k) are canonical momentum currents for SC−S
defined by a standard formula.

2. CP2 part would give conserved Noether currents for color in and M4 part Poincare quantum
numbers: the apparently small CP breaking term would give masses for quarks and leptons!
The bosonic Noether current JB,A for Killing vector jkA would be proportional to JαB,A = Tαk jAk

and given by JB,A = εαβγ [JβγAk +AβJγk]jkA.
Fermionic Noether current would be JF,A = ΨJαΨ 3-D Riemann spaces allow coordinates in
which the metric tensor is a direct sum of 1-D and 2-D contributions and are analogous to
expectation values of bosonic Noether currents. One can also identify also finite number of
Noether super currents by replacing Ψ or Ψ by its modes.

3. In the case of X3
L the 1-D part light-like part would vanish. If also induced Kähler form

is non-vanishing only in 2-D degrees of freedom, the Noether charge densities J t reduce to
J t = JAkj

k
A, J = εαβγJβγ defining magnetic flux. The modified Dirac operator would reduce

to D = JAkγ
kDt and 3-D solutions would be covariantly constant spinors along the light-like

geodesics parameterized by the points 2-D cross section. One could say that the number of
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solutions is finite and corresponds to covariantly constant modes continued from X1
L to X3

L.
This picture is just what the twistor Grassmannian approach led to [L65, L66].

10.4 Could Kähler metric of state space replace S-matrix?

In the sequel a more detailed view about the reduction of S-matrix to a non-flat Kähler geometry
of Hilbert space consisting of WCW spinor fields is considered. The proposal is novel in the sense
that the state space would codes interactions to its geometry just like space-time geometry codes
gravitational interaction in general relativity.

10.4.1 About WCW spinor fields

Induction of second quantized spinor fields from H

There are two approaches to the quantization of induced spinors at space-time surfaces, and these
approaches are equivalent.

1. Induction means that gamma matrices are determined by Kähler action as analogs for projec-
tions of embedding space gamma matrices and space-time spinor field χ is simply the restriction
of H spinor field Ψ. For a given action determining X4, supersymmetry allows the identifica-
tion of the modified Dirac operator D and finding of the modes of the induced H spinor field as
solutions of the modified Dirac equation (MDE) Dχ = 0. Second quantization would replace
their coefficients with oscillator operators. However, it is not clear what the anti-commutation
relations for the oscillator operators are.

2. One can generalize the classical induction of spinors Ψ to an induction of second quantized
spinor fields in H as a restriction of the second quantized Ψ in H to the X4. One must however
get rid of normal ordering diverges due the fact that the anti-commutators for coinciding points
give 7-D delta functions. One gets rid of them, if the Ψ and Ψ are assigned to disjoin space-
time regions. This leads to bi-local modified Dirac action (MDA), implying automatically the
classical field equations for the action determining D.
What does DΨ = 0 really mean when Ψ is quantum field? One can develop the restrictions of
the c-valued modes of Ψ in terms of modes of χ satisfying Dχ = 0, and obtain an expression
for Ψ at X4 in terms of these modes each satisfying MDE. The operator valued coefficients
of Ψ modes contributing to a given mode of χ would define the corresponding oscillator value
fermionic oscillator operators at X4.
Also the generalizations of the variants of MDE restricted to sub-manifolds of X4 make sense
and are needed. The beauty is that there is no need to introduce spinor fields at lower-D
surfaces as independent dynamical degrees of freedom. For instance, one only a variant of a
modified Dirac action defined by Cherns-Simons analog of Kähler action makes sense at light-
like partonic orbits so that one has an analog of a topological quantum field theory (TQFT).

How to avoid normal ordering divergences from fermionic oscillator operators?

The normal ordering divergences due to the anti-commutators of fermionic fields at the same
point are really serious since induce spinor fields of 8-D H = M4 × CP2 so that normal ordering
singularities are proportional to 7-D delta function δ7(0). They are encountered already for the
ordinary MDA giving rise to bosonic SCA charges as Noether charges, which also are plagued by
these divergences. Normal ordering for the oscillators in the Noether charges associated with MDA
would allow to get rid of the divergences but is a mere trick. The proposal considered in [L104] is
to make MDA bi-local at the space-time level.

Consider the general constraints on bi-locality coming from the cancellation of the normal
ordering divergences.

1. Consider first 4-D variant of MDA. The most general option for MDA is that there is an
integral over the entire X4 for both Ψ and Ψ separately sothat one has 2 4-D integrations.
One obtains potential normal ordering divergences proportional to δ7(0)d8x. If one has two
space-time sheets which in the generic case intersect transversally at discrete set of points,
one obtains a vanishing result. However, the self-pairing of a given space-time sheet gives a
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divergence as a 4-D volume integral of δ3(0). The definition of the self-pairing as a limit of
separate space-time sheets approaching each other to get rid of the divergences looks like a
trick.
This suggests that the pairing can occur only between disjoint space-time regions, most natu-
rally space-time sheets. For instance, parallel space-time sheets with overlapping M4 projec-
tions. Allowing pairing only between disjoint regions eliminates also the divergences associated
with the bosonic Noether charges deduced from MDA and involving 3+4-D integral instead of
3-D integral.
What could be the precise definition for these disjoint regions? M8 −H duality suggests that
they correspond to different roots of the octonionic polynomial defined by real polynomials.
When 2 roots coincide, one obtains a term of type δ7(0)d7x giving a finite result. What if
the number of coinciding roots is higher than 2? This case will be discussed later in number
theoretic context.
What about space-like regions, in particular the wormhole contacts expected to be small
deformations of a warped embedding of CP2 having light-like M4 projection but having same
Kähler metric and Kähler form as CP2 [K10]? There is no pairing with a parallel space-time
sheet now. It seems that the pairing must be between different wormhole contacts. This
pairing could be essential for the understanding of string like entities as paired wormhole
contacts providing a model for elementary particles.

2. For the bilinear MDA, the variation of the 4+4-D modified Dirac action with respect to Ψ and
Ψ yields both the modified Dirac equation DΨ = 0 plus the field equations for the preferred
extremal. This gives the modes of the induced spinor field. In the standard picture the
hermiticity condition for the Dirac action yields the same outcome and has interpretation as
a supersymmetry between classical and fermionic degrees of freedom.

3. Both the phenomenological picture developed during years andM8−H duality strongly suggest
that spinors can be restricted also to lower-D surfaces. For the lower-D variants of MDA the
normal ordering divergences appear already for tranversal intersections. For instance, for 3-
D variant of MDA one has δ7(0)d7x type divergences. The only possible manner to avoid
them is to require that paired regions are disjoint. For the 3-D Chern-Simons-Kähler action
associated with the light-like partonic orbits the paired space-time sheets are very naturally
the opposite wormhole throats so that fermions and antifermions would reside at opposite
wormhole throats.
Physical picture also suggests the assignment of actions to 2-D string world sheets and 1-D
light-boundaries defining their intersections with partonic orbits.

4. Also 6-D brane-like solutions having the topology of S6 and t = rn hyper-plane as intersection
with M4 are of physical interest. Different 4-D space-time surfaces could be glued together
along 3-surfaces or 2-D partonic 2-surfaces at S6. Arguments similar to those already discussed
exclude the pairing of various objects with these 6-branes as also their self-pairing.
Also M4 and CP2 define special solutions to the algebraic equations in M8. MDA reduces to
ordinary massless Dirac equation in M4. In the case of CP2 one has a massless Dirac equation
in CP2 and only the right-handed neutrino νR is possible as a solution. If only quarks are
allowed, this solution is excluded. What happens for the deformations of CP2? Could it
be that quarks cannot reside inside wormhole contacts as 4-D entities? Or could one allow
solutions of DΨ = 0 as analytic functions of CP2 coordinates finite in the region in which they
are defined - wormhole contact does not span the entire CP2?

Cognitive representations provide additional insights to the problem of normal ordering
divergences, and it could be even argued that they are the only possible manner to define scattering
amplitudes as a sequences of improving approximation natural in the approach based on hyper-
finite factors of type II1 (HFFs).

1. For a given extension of rationals determined by the polynomial defining the space-time region
in M8, the space-time surfaces inside CD are replaced with their discretizations consisting
of points of M8 in the extension considered. This surface and cognitive representation are
mapped to H by M8−H correspondence [L76]. For cognitive representations one can perform
discretization by replacing the integrals defining SCA generators with discrete sums over points
of the cognitive representation. This replacement is very natural since in the p-adic context
the counterpart of the Riemann integral does not exist.
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2. The Galois group of extension serves as a symmetry group and one can form analogs of
group algebra elements - wave functions in discrete Galois group - acting on the cognitive
representation and giving rise to discrete representation of quantum states. This state space
has as its dimension the dimension n of the Galois group which for Galois extensions coincides
with the dimension of extension [L36, L109]. This group algebra-like structure can be given
Kähler metric and also spinor structure and this spinor structure could discretize the spinor
structure of WCW if gamma matrices are identified as fermionic oscillator operators.

3. Also now one can avoid divergences if the paired space-time regions, say space-time sheets, in
MDA are disjoint. It can however happen that n separate points at the orbit of the Galois
group approach each other and coincide: this would correspond to the touching of space-time
sheets meaning coinciding roots of the octonionic polynomial. In this situation a subgroup of
the Galois group would leave the intersection point invariant.
The possible normal ordering divergence comes from different pairs of the m points, which
coincide. In 4-D case, the situation corresponds to transversal space-time sheets so that the
divergence vanishes. For lower-dimensional surfaces, say partonic orbits, the intersections do
not occur in the generic situation but if they occur, the divergence is multiplied by a sum
over the values of wave function at coinciding branches and vanishes if the representation is
non-singlet. It would thus seem that the non-singlet character of Galois representations must
be posed as an additional condition.

4. This cancellation mechanism works even without discretization since the notions of Galois
group and its representations make sense for arbitrary polynomial surfaces without a restriction
to rational or algebraic polynomial coefficients so that the cancellation occurs for non-singlet
representations when the space-time sheets intersect.

Are fermions 4-D in H but 3-D in M8?

M8−H duality suggests the restriction of the induced spinor fields to light-like 3-surfaces having 2-
D partonic surfaces as ends. M8−H duality reduces space-time surfaces in M8 to algebraic surfaces
defined by polynomials of real variable. The coefficients can be complex. Concerning p-adicization
real rationals defines the most attractive option. This leads to a picture in which a hierarchy
of extensions of rationals defines evolutionary and cognitive hierarchies. The extensions provide
cognitive representations as unique discretizations of the X4 with embedding space coordinates in
extension of rationals and the one can formulate quantum TGD in finite measurement resolution
at least using these representations.

The fermionic variant of M8−H duality [L105] leads to the conclusion that spinor modes in
M8 are restricted at 3-D light-like surfaces obeying an algebraic equations analogs to the momen-
tum space variant of massless Dirac equation. Are H fermions also always restricted to the 3-D
light-like orbits of the partonic 2-surfaces at which the signature of the induced metric changes?

On the other hand, the picture deduced at the level of H from the cancellation of the normal
ordering divergences allows 4-D fermions, and also implies field equations for X4 itself. Can one say
that free fermions can reside in 4-D space-time but reside only at the 3-D mass shell in momentum
space. M8 − H duality would be analogous to the duality between space-time and momentum
space descriptions of particles.

Even more, string world sheets have light-like boundaries at the parton orbits. Also fermions
in H would be naturally located at string boundaries and behave like point-like particles. One
would obtain a picture resembling that provided by twistor Grassmannian approach. Also the
cancellation of normal ordering divergences supports this picture and leads to a detailed form of
bi-linear modified Dirac action. Also strong form of holography (SH) stating that 2-surfaces carry
all information needed to construct the X4 supports this view. This is actually the same as the
phenomenological picture that has been applied.

M8−H duality predicts also ”very special moments in the life self” to have as correlates 6-
branes with M4 time defining in M8 octonionic real axis (unique rest system) having as values roots
of the polynomial defining the space-time surfaces. These surfaces should contain the partonic 2-
surfaces defining the reaction vertices. If there is a non-determinism associated with these surfaces
it should preserve classical charges and also SSA charge.
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Is the proposed counterpart of QFT supersymmetry only an approximate symmetry?

The proposal for the cancellation of the normal ordering divergences allows overviewing leptons
as three quark composites with 3 quarks at the same wormhole throat. This option is strongly
suggested by the conceptual economy since quarks are enough for WCW spinor structure.

An interesting question is whether TGD allows a counterpart of QFT supersymmetry
(SUSY). This was proposed in [L81]. The idea was that both embedding space coordinates and
spinors can be expanded as polynomials in the local compositesof quark and antiquark oscilla-
tor operators - rather than anticommuting hermitian theta parameters leading to problems with
fermion number conservation - with a well-defined quark number.

The proposal was that leptons are purely local 3-quark-composite analogous to a superpart-
ner of quark: note however that quark superspinor would have quark number one so that precise
spartner interpretation fails. This option and only its slightly local variant is possible only for the
TGD view about color as angular momentum rather than spin-like quantum number.

This proposal was based on discrete cognitive representations as unique discretizations of
the X4 and on the crucial assumption that fermionic oscillator operators obey Kronecker delta
type anticommutations rather than the 8-D anticommutations giving δ7(0) anti-commutator sin-
gularities for the induced second quantized quark field in H. Can the notion of super-field based
on local composites of quarks and antiquarks with a definite fermion number avoid normal order-
ing divergences for the induced anticommutation relations? One can of course think of a normal
ordering of monomials but one expects problems with vertices.

This suggests that the super coordinates of H and superspinors can be only approximate
notions. Superfield components would correspond to states with a fixed quark number but quarks
and antiquarks would reside at opposite wormhole throats rather than forming exactly local com-
posites. Since the throat is expected to have CP2 size, these states would be for all practical
purposes strictly local composites.

10.4.2 Kähler metric as the analog of S-matrix

Kähler metric defines a complex inner product. Complex inner products also define scattering
amplitudes. Usually metric is regarded as defining length and angle measurement. Could the
Kähler metric define unitary S-matrix? Under simple additional conditions this is true!

The analogs of unitarity conditions

The following little arguments show that given Kähler metric defines an analog of unitary S-matrix
giving rise positive transition probabilities, and under additional conditions also a unitary S-matrix
between states with quantum numbers labeling basis of complex vectors or of complexified gamma
matrices. This defines an S-matrix like entity and under some additional conditions even an unitary
S-matrix.

1. The defining conditions for unitary S-matrix and Kähler metric are very similar. S and S†

would correspond to the covariant metric gmn and contravariant metric gmn. Unitary for
S-matrix corresponds to the conditions

SmrS
†
rn = SmrSnr = δm,n .

(there is summation over repeated indices). The rows of S-matrix are orthonormalized. The
definition of the contravariant metriccorresponds the conditions

gmrg
rn = δm,n .

The complex rows of metric tensor and contravariant metric are orthonormalized also now and
rows are orthonormal

2. For S-matrix the probabilities are given by pmn = SmnS
†
nm = SmnSmn∗ and are real and

non-negative and their sum is equal to one. Also for the Kähler metric the complex analogs
of probabilities defined by

pcmn = gmrg
rn
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sum up to unity. Hence the real parts Re(pcmn) of pcmn sum up to unity whereas the imaginary
parts sum up to zero.

3. pcmn are not however automatically real and non-negative and it is not clear how to interpret
complex or even real but negative probabilities physically. One can however pose the positivity
of the real parts of pcmn as an additional condition on the phase factors Umn = exp(Φmn) and
Vmn = exp(Ψmn) associated with gmn = RmnUmn and gnm = SnmVnm. The condition for
positivity is

UmnVnm = cos(Φnm −Ψnm ≥ 0

and is rather mild requiring the angle difference to be in the range (−π/2, π/2). This is
true of the angles are in the range (π/4, π/4). The condition Re(pcmn) ≥ 0 is equivalent
with the condition Im(ipcmn) ≥ 0, and characterizes the coefficients of Teichmueller matrices
[A33, A51, A42] [K28]: the meaning of this condition will be discussed below.

4. Under what conditions pcmn reduce to non-negative real numbers? One can express the prob-
abilities as pmn = gmn × cof(gmn)/det(g). Note that Z = det(g) is constant depending only
on the point of the Kähler manifold. One can express gmn as gmn = AmnUmn and cof(gmn)
as cof(gmn) = BmnVmn. The reality condition implies

Umn = Vmn .

The phases of gmn and cof(gmn) are opposite.
This gives additional conditions. Kähler metric involves Ntot = 2N2 real parameters There are
(N2 − N)/2 elements in say upper diagonal and by hermiticity they are complex conjugates
of the lower diagonal. This is the number Ncond of conditions coming from the reality. There
is also one additional condition due to the fact that the probabilities do not depend on the
normalization of g. The total number of real parameters is

Nparam = Ntot −Ncond − 1 = N(N − 1)− 1 .

For instance, for N ∈ {2, 3, 4} one has Nparam =∈ {1, 5, 11}. Unitary matrix allows Nunit =
N2 real parameters and the ratio Nparam/Nunit = (N(N − 1) − 1)/N2 approaches unity for
large values of N . Note that a unitary matrix with real diagonals has N2 −N parameters so
that the number of parameters is the same as for a hermitian metric with unit determinant.

5. Could one transform the metric defining non-negative probabilities to a unitary matrix by a
suitable scaling? One can indeed define a matrix S as a matrix Smn =

√
AmnBmn/ZUmn. One

has SmnSmn∗ = AmnBmn/Z given also by the product of gmng
nm so that the probabilities

are the same. The unitarity conditions reduce to gmrg
rn = δnm.

In infinite dimensional case problems might be produced by the appearance of the square root
of determinant expected to be infinite. However, also the cofactors are expected to diverge,
and one can express them as partial derivatives of the metric determinant with respect to the
corresponding element of the metric. This is expected to give a finite value for the elements
of the contravariant metric. Note that the ratios of the probabilities do not depend on the
metric determinant.

Can one distinguish between the descriptions based on Kähler metric and S-matrix?

For the Teichmueller option the proposed analog for S-matrix involves imaginary part. Does it
have some physically observable consequences?

Could one imagine a physical situation allowing to test whether the S-matrix description
or its TGD variant is nearer to truth? One can indeed imagine an analog of a Markov process
characterized by a matrix p of transition probabilities pmn at a given step. For a two-step process
the transition matrix would be p2

mn.
In the TGD context one would have pmn = Re(pcmn). What happens in a two-step process?

Should one use use p2
mn or Re((pc)2)mn = Re((pc)2)mn − Im(pc)2

mn? If both options are possible,
what could distinguish physically between them?

Could the correct interpretation be that p2
mn describes the process when the outcome is

measured in both steps, and Re((pc)2)mn the process in which only initial and final states are
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measured? This picture would generalize to n-step processes and predict a deviations from the
ordinary Markov process and perhaps allow to compare the predictions of the TGD view and
standard view and deduce Im(pc).

S-matrix and its Hermitian conjugate correspond in standard physics to situations related
by CPT symmetry defined as the product of charge conjugation C, spatial reflection P and time
reversal T. The transition probabilities would remain invariant in this transformation although
transition amplitudes are replaced with their complex conjugates.

What happens to CPT in TGD framework? In TGD framework CPT induces a hermitian
conjugation gmn → gnm =

10.5 The role of fermions

In this section the role of fermions (quarks as it seems) is discussed in more detail. In particular,
the conditions on the scattering amplitudes from the cancellation of normal ordering divergences
and co-associative octonionic spinors at the level of M8 are discussed. Also the formulation of
scattering amplitudes the level of M8 is briefly considered.

10.5.1 Some observations about Feynman propagator for fundamental
quark field

In the sequel the divergence cancellation mechanism and the properties of Dirac propagator are
discussed in detail. The surprise is that the massive propagators with CP2 mass scale reduce
essentially to massless propagators for light-like separations. This allows understanding of why
quarks can give rise to light elementary particles.

The second quantized free quark field Ψ in H defines fundamental fermions appearing as
a building brick of elementary particles. The Feynman propagator for Ψ appears in the analogs of
Feynman diagrams. Apart from the right handed neutrino (present only as a 3 quark composite at
partonic 2-surface if only quarks are involved) the modes of Ψ are extremely massive. Elementary
particles are light. How can one understand this?

In p-adic thermodynamics the generation of small mass was assumed to involve a
generation of a negative, ”tachyonic”, ground state conformal weight encountered also in string
models. M8 −H correspondence allows a more sophisticated description based on the choice of
M4 ⊂M8 mapped to M4 ⊂ H. By 8-D Lorentz invariance the 4-D mass squared of ground state
massless in 8-D sense, depends on the choice of M4 ⊂ H, and with a proper re-choice of M4 the
particle having large M4 mass becomes massless.

The action of the generators of super-conformal algebra creates states with a well-defined
conformal weight, which are massless for a proper choice of M4 ⊂M8. In p-adic thermodynamics
the choice of M4 ⊂ M8 would correspond to a generation of negative ground state conformal
weight.

The states can however mix slightly with states having higher value of conformal weight, and
since one cannot choose M4 separately for these states, a small mass is generated and described by
p-adic thermodynamics. The classical space-time correlate for the almost masslessness is minimal
surface property, which provides a non-linear geometrization for massless fields as surfaces. The
non-linearity at the classical level leads to a generation of small mass in 4-D sense for which
p-adic thermodynamics provides a model.

The propagators for the fundamental quarks in H correspond to CP2 mass scale. Can this
be consistent with the proposed picture? The following simple observations about the properties
of predicted fermion propagator and anticommutator for the induced spinor fields lead to a result,
which was a surprise to me. The propagators and anti-commutators of massive quarks at light cone
boundary are in excellent approximation massless for light-like distances. This makes it possible
to understand why elementary fermions are light.

This mechanism does not work in QFT defined in M4 since inverse propagator is γkpk+m so
that M4 chiralities mix for massive states. In TGD picture H-chirality is fixed by 8-D masslessnes
and the product of M4 and CP2 chiralities for spinors equals to the H chirality. The inverse
progator is proportional to the operator pkγ +DCP2

, where DCP2 is CP2 part of Dirac operator.
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General form of the Dirac propagator in H

Second quantized quark field Ψ restricted to the space-time surface determines the Feynman
propagator fundamental quark. The propagator can be expressed as a sum of left- and right-
handed propagators as

SF = SF,L + SF,R = DLGF,L +DRGF,R .

Here DL and DR are the left- and right-handed parts of a massless (in 8-D sense) Dirac operator
D in H involving couplings to CP2 spinor connection depending on CP2 chirality in accordance
with electroweak parity breaking. GF,L resp. GF,R is the propagator for a massless (in 8-D sense)
scalar Laplacian in H coupling to the spinor connection assignable to left resp. right handed modes.
GF can be expressed by generalizing the formula from 4-D case

GF,I
∑
n

∫
d4p

1

p2 −M2
n,I

exp(ip · (m1 −m2))Φ∗n,I(s1)Φn,I(s2) .

Here one has I ∈ {L,R} and the mass spectra are different for these modes. Here mi denote
points of M4 and si points of CP2. n, I, I ∈ {L,R}, labels the modes Φn,I of a scalar field in
CP2 associated with right and left handed modes having mass squared Mn,R. Since H-chirality is
fixed to be quark chirality, there is a correlation between M4 - and CP2 chiralities. Apart from
νR all modes are massive (νR is need not be present as a fundamental fermion) and the mass Mn,
which is of order CP2 mass about 10−4 Planck masses, is determined by the CP2 length scale
and depends on CP2 chirality.

GF,I reduces to a superposition over massive propagators with mass Mn,I :

GF,I =
∑
n

GF (m1 −m2|Mn)Φ∗n,I(s1)Φn,I(s2)PI .

Here PI , I ∈ {L,R} is a projector to the left/right handed spinors. One can express SF,I as a sum
of the free M4 part and interaction term proportional to the left - or right-handed part of CP2

spinor connection:

SF,I = D(M4)GF,I +AIGF,I .

AI , I inf{L,R} acts either on s1 or s2 but the outcome should be the same. The first term gives
sum over terms proportional to massive free Dirac propagator in M4 allowing to get a good idea
about the behavior of the propagator.

About the behavior of the quark propagator

The quark propagator reduces to left- and right-handed contributions corresponding to various
mass values Mn,I . To get view about the behaviour of the quark propagator it is useful to study
the behavior of GF (x, y|M) for a given mass as well as the behaviors of free and interacting parts
of SF its free part

From the explicit expression of GF (m1 −m2|Mn) one can deduce the behavior of the cor-
responding contribution to the Feynman propagator. Only νR could give a massless contribu-
tion to the progator. Explicit formula for GF can be found from Wikipedia [A4] (https:
//en.wikipedia.org/wiki/Propagator#Feynman_propagator):

GF (x, y|m) =

{
− 1

4π δ(s) + m
8π
√
s
H

(1)
1 (m

√
s), s ≥ 0

− im
4π2
√
−sK

(1)
1 (m

√
−s), s ≤ 0 .

Here H
(1)
1 (x) is Hankel function of first kind and K

(1)
1 is modified Bessel function [A2](https:

//en.wikipedia.org/wiki/Bessel_function). Note that for massless case the Hankel term van-
ishes.

Consider first Hankel function.

https://en.wikipedia.org/wiki/Propagator#Feynman_propagator
https://en.wikipedia.org/wiki/Propagator#Feynman_propagator
https://en.wikipedia.org/wiki/Bessel_function
https://en.wikipedia.org/wiki/Bessel_function
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1. Hankel function H
(1)
α (x) [A2, A4] obeys the defining formula

H
(1)
α (x) = J−α(x)−exp(iαπi)Jα(x)

isin(απ) .

For integer values of α one has J−n(x) = (−1)nJn(x) so that α = n case gives formally 0/0
and the limit must be obtained using Hospital’s rule.

2. Hankel function H
(1)
1 (x) can be expressed as sum of Bessel functions of first and second kind

H
(1)
1 (x) = J1(x) + iY1(x) .

J1 vanishes at origin whereas Y1 diverges like 1/x at origin.

3. The behaviors of Bessel functions and their variants near origin and asymptotically are easy
to understand by utilizing Schrödinger equation inside a cylinder as a physical analogy. The
asymptotic behaviour of Hankel function for large values of x is

H
(1)
α (x) = 2

πxexp(i(x− 3π/4)) ,

4. The asymptotic behavior of Hankel function implies that the massive Feynman propagator
an oscillatory behavior as a function of m

√
s. Modulus decreases like 1/

√
m
√
s. The

asymptotic behavior for the real and imaginary parts corresponds to that for Bessel functions

of first kind (J1) and second kind (Y1). At origin H
(1)
α (x) diverges like Y1(x) ∼ (x/2)−n

π

near origin. For large values of x K1(x) decreases exponentially like exp(−x)
√
π

2x . At origin
K1(x) diverges.

5. In the recent case the quark propagator would oscillate extremely rapidly leaving only the
δ(s) part so that the propagator behaves like massless propagator!
The localization of quarks to the partonic surfaces with a size scale of CP2 radius implies
that that the oscillation does not lead to a vanishing of the Hankel contribution to the scat-
tering amplitudes. For induced spinor fields in the interior of space-time surfaces destructive
interference is however expected to occur so that behavior is like that for a massless particle.
This should explain why the observed particles are light although the fundamental fermions
are extremely massive. The classical propagation would be essentially along light-like rays.
The long range correlations between quarks would come from the δ(s) part of the propagator,
and would not depend on quark mass so that it would effectively behave like a massless particle.
Also the action of Dirac operator on GF (x, y) in M4 degrees of freedom is that of a massless
Dirac propagator coupling to induced gauge potentials. The quarks inside hadrons and also
elementary particles associated with the wormhole throats of flux tubes could be understood
as quarks at different partonic 2-surfaces at the boundary of CD having light-like distance in
an excellent approximation.

6. The above argument is for the Feynman propagator but should generalize also for anti-
commutator. The anticommutator for Dirac operator D in M4 can be expressed as D∆(x, y),
where D is a scalar field propagator.

∆(x, y|m) ∝

{
m

8π
√
s
H

(1)
1 (m

√
s), s ≥ 0

− m√
−sK

(1)
1 (m

√
−s), s ≤ 0 .

Apart from possible proportionality constants the behavior is very similar to that for Feynman
propagator except that the crucial δ(s) term making possible effectively massless propagation
is absent. At light-cone boundary however

√
s is zero along light rays, and this gives long

range correlations between fermions at different partonic 2-surfaces intersected by light rays
from the origin. Hence one could have a non-vanishing Hermitian inner product for 3-D
states at boundaries of CD.
Rather remarkably, these results provide a justification for twistor-diagrams identified as poly-
gons consisting of light-like segments.

Possible normal ordering divergences

Concerning the cancellation of normal ordering divergences the singularities of the propagators
GF are crucial. The bi-linearity of the modified Dirac action forcing anticommuting quark and
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antiquark oscillator operators at different throats of wormhole contacts but this need not guarantee
the absence of the divergence since the free quark propagator in M4 contains mass independent
δ(s) part plus the divergent part from Hankel function behaving like 1/

√
sm. For the massless

propagator assignable to νR the propagator would reduce to M4 propagator and only the δ(s)
would contribute.

s = 0 condition tells that the distance between fermion and anti-fermion is light-like and is
possible to satisfy at the light-like boundary of CD. Paired quark and antiquark at the wormhole
throats must reside at the same light-like radial ray from the tip of cd (cd corresponds to causal
diamond in M4). Since partonic surfaces are 2-D this condition selects discrete pairs of points at
the pair of the partonic surfaces. The integration over the position of the end of the propagator
line over paired partonic 2-surfaces should smooth out the divergences and yield a finite result.
This would be crucial for having an inner product for states at the boundary of the light-cone.

This applies also to the point pairs at opposite throats of wormhole contact. Time-ordered
product vanishing for t1 = t2 so that the points must have different values of t and this is possible.
The two 2-D integrations are expected to smooth out the singularities and eliminate divergences
also now.

10.6 Conclusions

TGD predicts revolution in quantum theory based on three new principles.

1. ZEO solving the basic paradox of quantum measurement theory. Ordinary (”big”) state func-
tion reduction involves time reversal forcing a generalization of thermodynamics and leading
to a theory of quantum self-organization and self-organized quantum criticality (homeostasis
in living matter).

2. Phases of ordinary matter labelled by effective Planck constant heff = nh0 identified as dark
matter and explaining the coherence of living matter in terms of dark matter at magnetic body
serving as a master, and predicting quantum coherence in all scales at the level of magnetic
bodies. heff/h0 = n has interpretation as the dimension for an extension of rationals and is a
measure of algebraic complexity. Evolution corresponds to the increase of n.
Extensions of rationals are associated with adelic physics providing description of sensory ex-
perience in terms of real physics and of cognition in terms of p-adic physics. Central notion is
cognition representation providing unique discretization of X4 in terms of points with embed-
ding space coordinates in the extension of rationals considered M8 − H duality realizes the
hierarchy of rational extensions and assigns them to polynomials defining space-time regions
at the level of M8 and mapped to minimal surfaces in H by M8−H duality.

3. The replacement of the unitary S-matrix with the Kähler metric of the Kähler space defined
by WCW spinor fields satisfying the analog of unitarity and predicting positive definite transi-
tion probabilities defining matrix in Teichmueller space. Einstein’s geometrization of classical
physics extends to the level of state space, Equivalence Principle generalizes, and interactions
are coded by the geometry of the state space rather than by an ad hoc unitary matrix. Kähler
geometry for the spinor bundle of WCW has Riemann connection only for a maximal group of
isometries identified as super-symplectic transformations (SS). This makes the theory unique
and leads to explicit analogs of Feynman rules and to a proof that theory is free of divergences.

In this work the third principle, which is new, is formulated and some of its consequences
are discussed. The detailed formulation allows understanding of how normal ordering divergences
and other divergences cancel. The key idea is to induce the second quantized free spinor field from
H to space-time surface. This determines the propagators at the space-time level. The condition
that creation and annihilation operators are at different space-time sheets - say at throats of
wormhole contacts is enough. An alternative but not exclusive option suggested by ZEO is that
the annihilation operators correspond to creation operators for conjugated Dirac vacuum associated
with the opposite half-cone of CD or sub-CD.

A further observation is that the Dirac propagators for particles reduce in a good approxi-
mation to massless propagators when the propagation takes place along light-like distances: this
provides a considerable insight to why physical particles are so light although the spinor harmonics
for CP2 correspond to CP2 mass scale.
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Chapter 11

Breakthrough in understanding of
M8 −H duality

11.1 Introduction

M8 − H duality [L76, L73, L74, L105] has become a cornerstone of quantum TGD but several
aspects of this duality are still poorly understood.

11.1.1 Development of the idea about M8 −H duality

A brief summary about the development of the idea is in order.

1. The original version ofM8−H duality assumed that space-time surfaces inM8 can be identified
as associative or co-associative surfaces. If the surface has associative tangent/normal space
and contains a complex co-complex surface, it can be mapped to a 4-surface in M4 × CP2.

2. Later emerged the idea that octonionic analyticity realized in terms of a real polynomials
P algebraically continued to polynomials of complexified octonion might realize the dream
[L47, L48, L49]. The original idea was that the vanishing condition for the real/imaginary
part of P in quaternion sense could give rise to co-assocative/associative sense.
M8 −H duality concretizes number theoretic vision [L53, L52] summarized as adelic physics
fusing ordinary real number based physics for the correlates of sensory experience and various
p-adic physics (p = 2, 3, ...) as physics for the correlates of cognition. The polynomials of
real variable restricted to be rational valued defines an extension or rationals via the roots
of the polynomials and one obtains an evolutionary hierachy associated with these extensions
increasing in algebraic complexity. These extensions induce extensions of p-adic numbers and
the points of space-time surface in M8 with coordinates in the extension of rationals define
cognitive representations as unique discretizations of the space-time surface.

3. The realization of the general coordinate invariance in TGD framework [K52, K31, K85, L112]
[L108] motivated the idea that strong form of holography (SH) in H could allow realizing
M8−H duality by assuming associativity/co-associativity conditions only at 2-D string world
sheet and partonic 2-surfaces and possibly also at their light-like 3-orbits at which the signature
of the induced metric changes from Minkowskian to Euclidian.

11.1.2 Critical re-examination of the notion

In this article M8 −H duality is reconsidered critically.

1. The healthy cold shower was the learning that quaternion (associative) sub-spaces of quater-
nionic spaces are geodesic manifolds [A34]. The distributions of quaternionic normal spaces
are however always integrable. Hence, co-associativity remains the only interesting option.
Also the existence of co-commutative sub-manifolds of space-time surface demanding the ex-
istence of a 2-D integrable sub-distribution of subspaces is possible. This learning experience
motivated a critical examination of the M8 −H duality hypothesis.

472
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2. The basic objection is that for the conjectured associative option, one must assign to each state
of motion of a particle its own octonionic structure since the time axis would correspond to the
octonionic real axis. It was however clear from the beginning that there is an infinite number of
different 4-D planes Oc in which the number theoretical complex valued octonion inner product
reduces to real - the number theoretic counterpart for Riemann metric. In the co-associative
case this is the only option. Also the Minkowski signature for the real projection turns out to
be the only physically acceptable option. The mistake was to assume that Euclidian regions
are co-associative and Minkowskian regions associative: both must be co-associative.

3. The concrete calculation of the octonion polynomial was the most recent step - carried already
earlier [L47, L48, L49] but without realizing the implications of the extremely simple outcome.
The imaginary part of the polynomial is proportional to the imaginary part of octonion itself.
It turned out that the roots P = 0 of the octonion polynomial P are 12-D complex surfaces
in Oc rather than being discrete set of points defined as zeros X = 0, Y = 0 of two complex
functions of 2 complex arguments. The analogs of branes are in question. Already earlier 6-D
real branes assignable to the roots of the real polynomial P at the light-like boundary of 8-D
light-cone were discovered: also their complex continuations are 12-D [L73, L80].

4. P has quaternionic de-composition P = ReQ(P ) + I4ImQ(P ) to real and imaginary parts in
a quaternionic sense. The naive expectation was that the condition X = 0 implies that the
resulting surface is a 4-D complex surface X4

c with a 4-D real projection X4
r , which could be

co-associative.
The expectation was wrong! The equations X = 0 and Y = 0 involve the same(!) complex
argument o2

c as a complex analog for the Lorentz invariant distance squared from the tip of the
light-cone. This implies a cold shower. Without any additional conditions, X = 0 conditions
have as solutions 7-D complex mass shells H7

c determined by the roots of P . The explanation
comes from the symmetries of the octonionic polynomial.
There are solutions X = 0 and Y = 0 only if the two polynomials considered have a common
a2
c as a root! Also now the solutions are complex mass shells H7

c .

5. How could one obtain 4-D surfaces X4
c as sub-manifolds of H7

c ? One should pose a condition
eliminating 4 complex coordinates: after that a projection to M4 would produce a real 4-
surface X4 .
A co-associative X4

c is obtained by acting with a local SU3 transformation g to a co-associative
plane M4 ⊂ M8

c . If the image point g(p) is invariant under U(2), the transformation corre-
sponds to a local CP2 element and the map defines M8−H duality even if the co-associativity
in geometric sense were not satisfied.
The co-associativity of the plane M4 is preserved in the map because G2 acts as an auto-
morphism group of the octonions. If this map also preserves the value of 4-D complex mass
squared, one can require that the intersections of X4

c with H7
c correspond to 3-D complex mass

shells. One obtains holography with mass shells defined by the roots of P giving boundary
data. The condition H images are analogous to Bohr orbits, corresponds to number theoretic
holography.

It this, still speculative, picture is correct, it would fulfil the original dream about solving
classical TGD exactly in terms of roots for real/imaginary parts of octonionic polynomials in M8

and by mapping the resulting space-time surfaces to H by M8 −H duality. In particular, strong
form of holography (SH) would not be needed at the level of H, and would be replaced with a
dramatically stronger number theoretic holography.

Octonionic Dirac equation, which is purely algebraic equation and the counterpart for
ordinary Dirac equation in momentum space, serves as a second source of information.

1. The first implication is that Oc has interpretation as an analog of momentum space for quarks:
this has profound implications concerning the interpretation. The space-time surface in M8

would be analog of Fermi ball. The octonionic Dirac equation reduces to the mass shell
condition m2 = rn, where rn is a root of the polynomial P defining the 4-surface but only in
the co-associative case.

2. Cognitive representations are defined by points of M8 with coordinates having values in the
extensions of rational defined by P and allowing an interpretation as 4-momenta of quarks.
In the generic case the cognitive representations are finite. If the points of M8 correspond to
quark momenta, momentum conservation is therefore expected to make the scattering trivial.



474 Chapter 11. Breakthrough in understanding of M8 −H duality

However, a dramatic implication of the reduction of the co-associativity conditions to the
vanishing of ordinary polynomials Y is that by the Lorentz invariance of roots of P , the 3-D
mass shells ofd M4 have an infinite number of points in a cognitive representation defined by
points with coordinates having values in the extensions of rational defined by P and allowing
an interpretation as 4-momenta. This is what makes interesting scattering amplitudes for
massive quarks possible.

3. What is the situation for the images of M4 points under the effective local CP2 element
defined by local SU(3) element g preserving the mass squared and mapping H3 to g(H3)? If
g is expressible in terms of rational functions with rational coefficients, algebraic points are
mapped to algebraic points. This is true also in the interior of M4.
This would mean a kind of cognitive explosion for massive quark momenta. Without the
symmetry one might have only forward scattering in the interior of X4

r . Note that massless
quarks can however arrive at the boundary of CD which also allows cognitive representation
with an infinite number of points.

4. In the number theoretic approach, kinematics becomes a highly non-trivial part of the scatter-
ing. The physically allowed momenta would naturally correspond to algebraic integers in the
extension E of rationals defined by P . Momentum conservation and on-mass-shell conditions
together with the condition that momenta are algebraic integers in E are rather strong. The
construction of Pythagorean squared generalize to the case of quaternions provides a general
solutions to the conditions: the solutions to the conditions are combinations of momenta which
correspond to squares of quaternions having algebraic integers as components.

5. The original proposal was that local G2,c element g(x) defines a vanishing holomorphic gauge
field and its restriction to string world sheet or partonic 2-surface defines conserved current.
M8−H duality however requires that local SU(3) element with the property that image point
is invariant under U(2) is required by M8 −H duality defines X4 ⊂M8.
In any case, these properties suggest a Yangian symmetry assignable to string world sheets
and partonic 2-surfaces. The representation of Yangian algebra using quark oscillator oper-
ators would allow to construct zero energy states at representing the scattering amplitudes.
The generators of the Yangian algebra have a representation as Hamiltonians which are in
involution. They define conserved charges at the orbits for a Hamiltonian evolution defined
by any combination of these the Hamiltonians. ZEO suggests a concrete representation of this
algebra in terms of quark and antiquark oscillator operators. This algebra extends also to
super-algebra. The co-product of the associated Yangian would give rise to zero energy states
defining as such the scattering amplitudes.

11.1.3 Octonionic Dirac equation

The octonionic Dirac equation allows a second perspective on associativity. Everything is algebraic
at the level of M8 and therefore also the octonionic Dirac equation should be algebraic. The
octonionic Dirac equation is an analog of the momentum space variant of the ordinary Dirac
equation and also this forces the interpretation of M8 as momentum space.

Fermions are massless in the 8-D sense and massive in 4-D sense. This suggests that octo-
nionic Dirac equation reduces to a mass shell condition for massive particle with q · q = m2 = rn,
where q · q is octonionic norm squared for quaternion q defined by the expression of momentum p
as p = I4q, where I4 is octonion unit orthogonal to q. rn represents mass shell as a root of P .

For the co-associative option the co-associative octonion p representing the momentum is
given in terms of quaternion q as p = I4q. One obtains p · p = qq = m2 = rn at the mass shell
defined as a root of P . Note that for M4 subspace the space-like components of p p are proportional
to i and the time-like component is real. All signatures of the number theoretic metric are possible.

For associative option one would obtain qq = m2, which cannot be satisfied: q reduces to a
complex number zx+ Iy and one has analog of equation z2 = z2− y2 + 2Ixy = m2

n, which cannot
be true. Hence co-associativity is forced by the octonionic Dirac equation.

Before continuing, I must apologize for the still fuzzy organization of the material related
to M8 −H duality. The understanding of its details has been a long and tedious process, which
still continues, and there are unavoidably inaccuracies and even logical inconsistencies caused by
the presence of archeological layers present.
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11.2 The situation before the cold shower

The view about M8 −H duality before the cold shower - leading to what I dare to call a break-
through - helps to gain idea about the phenomenological side of M8 − H duality. Most of the
phenomenology survives the transition to a more precise picture. This section is however not
absolutely necessary for what follows it.

11.2.1 Can one deduce the partonic picture from M8 −H duality?

The M8 counterparts for partons and their light like orbits in H can be understood in terms of
octonionic Dirac equation in M8 as an analog for the algebraic variant of ordinary Dirac equation at
the level of momentum space [L105, L104] but what about the identification of partonic 2-surfaces
as interaction vertices at which several partonic orbits meet? Can one deduce the phenomenological
view about elementary particles as pairs of wormhole contacts connected by magnetic flux tubes
from M8−H duality? There is also the question whether partonic orbits correspond to their own
sub-CDs as the fact that their rest systems correspond to different octonionic real axes suggests.

There are also some questions which have become obsolote. For instance: qhy should the
partonic vertices reside at t = rn branes? This became obsolste with the realization that M8 is
analogous to momentum space so that the identification as real octonionic coordinate corresponds
now to a component of 8-momentum identifiable as energy. Furthermore, the assumption the
associativity of the 4-surface in M8 had to be replaced with-co-associtivity and octonionic real
coordinate does not have interpretation as time coordinate is associative surface

M8 −H duality indeed conforms with the phenomenological picture about scattering dia-
grams in terms of partonic orbits [L112, L111] [L111, L112] [L112], and leads to the view about
elementary particles as pairs of Euclidian wormhole contacts associated with flux tubes carrying
monopole flux.

11.2.2 What happens to the ”very special moments in the life of self”?

The original title was ”What happens at the ”very special moments in the life of self?” but it
turned out that ”at” must be replaced with ”to”. The answer to the new question would be ”They
disappear from the glossary”.

The notion of ”very special moments in the life of self” (VPM) [L73, L80] makes sense if
M8 has interpretation as an 8-D space-time. M4 projections of VPMs were originally identified
as hyperplanes t = rn, where t is time coordinate and rn is a root of the real polynomial defining
octonionic polynomial as its algebraic continuation.

The interpretation of M8 as cotangent space of H was considered from the beginning but
would suggest the interpretation of M8 as the analog of momentum space. It is now clear that this
interpretation is probably correct and that M8 − H duality generalizes the momentum-position
duality of wave mechanics. Therefore one should speak of E = rn plane and simply forget the
misleading term VMP. VPMs would correspond to constant values of the M8 energy assignable to
M4 time coordinate.

The identification of space-time surface as co-associative surface with quaternionic normal
space containing integrable distribution of 2-D commutative planes essential for M8 −H duality
is also in conflict with the original interpretation. Also the modification of M8 −H duality in M4

degrees of freedom forced by Uncertainty Principle [L121] has led to the conclusion that VMPs
need not have a well-defined images in H.

11.2.3 What does SH mean and its it really needed?

SH has been assumed hitherto but what is its precise meaning?

1. Hitherto, SH at the level of H is believed to be needed: it assumes that partonic 2-surfaces
and/or string world sheets serve as causal determinants determining X4 via boundary condi-
tions.

(a) The normal or tangent space of X4 at partonic 2-surfaces and possibly also at string world
sheets has been assumed to be associative that is quaternionic. This condition should be
true at the entire X4.
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(b) Tangent or normal space has been assumed to contain preferred M2 which could be re-
placed by an integrable distribution of M2(x) ⊂ M4. At string world sheets only the
tangent space can be associative. At partonic 2-surfaces also normal space could be asso-
ciative. This condition would be true only at string world sheets and partonic 2-surfaces
so that only these can be mapped to H by M8 −H duality and continued to space-time
surfaces as preferred extremals satisfying SH.

The current work demonstrates that although SH could be used at the level of SH, this is not
necessary. Co-associativity together with co-commutativity for string world sheets allows the
mapping of the real space-time surfaces in M8 to H implying exact solvability of the classical
TGD.

11.2.4 Questions related to partonic 2-surfaces

There are several questions related to partonic 2-surfaces.

Q1: What are the M8 pre-images of partons and their light-like partonic orbits in H?
It will be found that the octonionic Dirac equation in M8 implies that octo-spinors are located
to 3-D light-like surfaces Y 3

r - actually light-cone boundary and its 3-D analogs at which
number theoretic norm squared is real and vanishes - or to the intersections of X3

r with the
6-D roots of P in which case Dirac equation trivializes and massive states are allowed. They
are mapped to H by M8 −H duality.
Remark: One can ask whether the same is true in H in the sense that modified Dirac action
would be localized to 3-D light-like orbits and 3-D ends of the space-time surfaces at the
light-like boundaries of CD having space-like induced metric. Modified Dirac action would be
defined by Cherm-Simons term and would force the classical field equations for the bosonic
Chern-Simons term. If the interior part of the modified Dirac action is absent, the bosonic
action is needed to define the space-time surfaces as extremals. They would be minimal
surfaces and universal by their holomorphy and would not depend on coupling parameters
so that very general actions can have them as preferred extremals. This issue remains still
open.
The näıve - and as it turned out, wrong - guess was that the images of the light-like surfaces

should be light-like surfaces in H at the boundaries of Minkowskian and Euclidian regions
(wormhole contacts). In the light-like case Y 3

r corresponds to the light-cone boundary so that
this would be the case. X3

r however turns out to correspond to a hyperboloid in M4 as an
analog of a mass shell and is not identifiable as a partonic orbit.
It turned out that the complex surface X4

c allows real sections in the sense that the number
theoretic complex valued metric defined as a complex continuation of Minkowski norm is real
at 4-D surfaces: call them Z4

r . They are bounded by a 3-D region at Z3
r at which the value of

norm squared vanishes. This surface is an excellent candidate for the pre-image of the light-like
orbit of partonic 2-surface serving as a topological vertex. One has therefore strings worlds
sheets, partonic 2-surfaces and their light-like orbits and they would connect the ”mass shells”
at X4

r . All ingredients for SH would be present.
The intersections of Z3

r with X3
r identifiable as the section of X4

r a = constant hyperboloid
would give rise to partonic 2-surfaces appearing as topological reaction vertices.
The assumption that the 4-D tangent space at these light-like 3-surfaces is co-associative,
would give an additional condition determining the image of this surface in H, so that the
boundary conditions for SH would become stronger. One would have boundary conditions
at light-like partonic orbits. Note that string world sheets are assumed to have light-like
boundaries at partonic orbits.

Q2: Why should partonic 2-surfaces appear as throats of wormhole contact in H? Wormhole
contacts do not appear in M8.

1. In M8 light-like orbits are places where the Minkowskian signature changes to Euclidian.
Does M8−H duality map the images of these coinciding roots for Euclidian and Minkowskian
branches to different throats of the wormhole contact in H so that the intersection would
disappear?

2. This is indeed the case. The intersection of Euclidian and Minkowskian branches defines a
single 3-surface but the tangent and normal spaces of branches are different. Therefore
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their H images under M8 − H duality for the partonic 2-surface are different since normal
spaces correspond to different CP2 coordinates. These images would correspond to the two
throats of wormhole contact so that the H-image by SH is 2-sheeted. One would have
wormhole contacts in H whereas in M8 the wormhole contact would reduce to a single
partonic 2-surface.

3. The wormhole contact in H can have only Euclidian signature of the induced metric. The
reason is that the M4 projections of the partonic surfaces in H are identical so that the points
with same M4 coordinates have different CP2 coordinates and their distance is space-like.

Q3: In H picture the interpretation of space-time surfaces as analogs of Feynman graphs
assumes that several partonic orbits intersect at partonic 2-surfaces. This assumption could be of
course wrong.This raises questions.

What the pre-images of partonic 2-surfaces are in M8? Why should several partonic orbits
meet at a given partonic 2-surface? Is this needed at all?

The space-time surface X4
r associated intersects the surface X6

r associated with different
particle - say with different value of mass along 2-D surface. Could this surface be identified as
partonic 2-surface X2

r ? This occurs symmetrically so that one has a pair of 2-surfaces X2
r . What

does this mean? Could these surface map to the throats of wormhole contact in H?
Why several partonic surfaces would co-incide in topological reaction vertex at the level of

H? At this moment is is not clear whether this is forced by M8 picture.
Octonionic Dirac equation implies that M8 has interpretation as analog of momentum space

so that interaction vertices are replaced by multilocal vertices representing momenta and propaga-
tors become local being in this sense analogous to vertices of QFT. One could of course argue that
without the gluing along ends there would be no interactions since the interactions in X6

r for two
3-surfaces consist in the generic case of a discrete set of points. One could also ask whether the
surfaces Y 3

r associated with the space-time surfaces X4
r associated with incoming particles must

intersect along partonic 2-surface rather than at discrete set of points.
The meeting along ends need not be true at the level of M8 since the momentum space

interpretation would imply that momenta do not differ much so that particles should have identical
masses: for this to make sense one should assume that the exchanged virtual particles are massless.
One other hand, if momenta are light-like for Y 3

r , this might be the case.
Q4: Why two wormhole contacts and monopole flux tubes connecting them at the level of

H? Why monopole flux?

1. The tangent spaces of the light-like orbits have different light-like direction. Intuitively, this
corresponds to different directions of light-like momenta. Momentum conservation requires
more than one partonic orbit changing its direction meeting at partonic 2-surface. By light-
likeness, the minimum is 2 incoming and two outgoing lines giving a 4-vertex. This allows the
basic vertices involving Ψ and Psi at opposite throats of wormhole contacts. Also a higher
number of partonic orbits is possible.

2. A two-sheeted closed monopole flux tube having wormhole contacts as its ”ends” is suggested
by elementary particle phenomenology. Since M8 homology is trivial, there is no monopole
field in M8. If M8−H duality is continuous it maps homologically trivial partonic 2-surfaces to
homologically trivial 2-surfaces in H. This allows the wormhole throats in H to have opposite
homology charges. Since the throats cannot correspond to boundaries there must be second
wormhole contact and closed flux tube.

3. What does the monopole flux for a partonic 2-surface mean at the level of M8? The dis-
tribution of quaternionic 4-D tangent/normal planes containing preferred M2 and associated
with partonic 2-surface in M8 would define a homologically on-trivial 2-surface in CP2. The
situation is analogous to a distribution of tangent planes or equivalently normal vectors in S2.

Q4: What is the precise form of M8 −H duality: does it apply only to partonic 2-surfaces
and string world sheets or to the entire space-time surfaces?

M8−H duality is possible if the X4 in M8 contains also integrable distribution of complex
tangent or normal 2-planes at which 4-D tangent space is quaternionic/associative. String world
sheets and partonic 2-surfaces define these distributions.

The minimum condition allowed by SH in H is that string world sheets and there is a finite
number of partonic 2-surfaces and string world sheets. In this case only these 2-surfaces can be
mapped to H and SH assigns to them a 4-D space-time surface. The original hypothesis was that
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these surfaces define global orthogonal slicings of the X4 so that M8−H duality could be applied
to the entire X4. This condition is probably too strong.

11.3 Challenging M 8 −H duality

M8−H duality involves several alternative options and in the following arguments possibly leading
to a unique choice are discuses.

1. Are both associativity and co-associativity possible or is only either of these options al-
lowed? Is it also possible to pose the condition guaranteeing the existence of 2-D complex
sub-manifolds identifiable as string world sheets necessary to map the entire space-time sur-
face from M8 to H? In other words, is the strong form of holography (SH) needed in M8

and/or H or is it needed at all?

2. The assignment of the space-time surface at the level of M8 to the roots of real or imaginary
part (in quaternionic sense) of octonionic polynomial P defined as an algebraic continuation
of real polynomial is an extremely powerful hypothesis in adelic physics [L52, L53] and would
mean a revolution in biology and consciousness theory.
Does P fix the space-time surface with the properties needed to realize M8 −H duality or is

something more needed? Does the polynomial fix the space-time surface uniquely - one would
have extremely strong number theoretic holography - so that one would have number theoretic
holography with coefficients of a real polynomial determining the space-time surface?

3. M8−H duality involves mapping of M4 ⊂M8 to M4 ⊂ H. Hitherto it has been assumed that
this map is direct identification. The form of map should however depend on the interpretation
of M8. In octonionic Dirac equation M8 coordinates are in the role of momenta [L105]. This
suggests the interpretation of M8 as an analog of 8-D momentum space. If this interpretation
is correct, Uncertainty Principles demands that the map M4 ⊂M8 →M4 ⊂ H is analogous
to inversion mapping large momenta to small distances.

4. Twistor lift of TGD [K100] is an essential part of the TGD picture. Ttwistors and momentum
twistors provide dual approaches to twistor Grassmann amplitudes. Octonionic Dirac equation
suggests that M8 and H are in a similar dual relation. Could M8 − H duality allow a
generalization of twistorial duality to TGD framework?

11.3.1 Explicit form of the octonionic polynomial

What does the identification of the octonionic polynomial P as an octonionic continuation of a
polynomial with real or complexified coefficients imply? In the following I regard M8

c as O8
c and

consider products for complexified octonions.

Remark: In adelic vision the coefficients of P must be rationals (or at most algebraic
numbers in some extension of rationals).

One interesting situation corresponds to the real subspace ofOc spanned by {I0, iIk}, = 1, ..7,
with a number theoretic metric signature (1,−1,−1...,−1) of M8 which is complex valued except at
in various reals subspaces.This subspace is associative. The original proposal was that Minkowskian
space-time regions as projections to this signature are associative whereas Euclidian regions are co-
associative. It however turned out that associative space-time surfaces are physically uninteresting.

The canonical choice (iI0, I1, I2, iI3, I4, iI5, I6, iI7) defining the complexification of the tan-
gent space represents a co-associative sub-space realizing Minkowski signature. It turns out that
both Minkowskian and Euclidian space-time regions must be co-associative .

Surprises

The explicit calculation of the octonionic polynomial yielded a chilling result. If one poses (co-
)associativity conditions as vanishing of the imaginary or real part in quaterionic sense: ImQ(P ) =
0 or ReQ(P ) = 0, the outcome is that the space-time surface is just M4 or E4. Second chilling
result is that quaternionic sub-manifolds are geodesic sub-manifolds. This led to the question how
to modify the (co-)associativity hypothesis.
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The vision has been that space-time surfaces can be identified as roots for the imaginary
(co-associative) part ImQ(O) or real part ImQ(O) of octonionic polynomial using the standard
decomposition (1, e1, e2, e3).

1. The näıve counting of dimensions suggests that one obtains 4-D surfaces. The surprise was
that also 6-D brane like entities located at the boundary of M8 light-cone and with topology of
6-sphere S6 are possible. They correspond to the roots of a real polynomial P (o) for the choice
(1, iI1, ..., iI7). The roots correspond to the values of the real octonion coordinate interpreted
as values of linear M4 time in the proposal considered. Also for the canonical proposal one
obtains a similar result. In Oc they correspond to 12-D complex surfaces X6

c satisfying the
same condition conditions x2

0 + r2 = 0 and P (x0) = 0.

2. There was also another surprise. As already described, the general form for the octonionic poly-
nomial P (o) induced from a real polynomial is extremely simple and reduces to X(t2, r2)I0 +
iY (t2, r2)Im(o). There are only two complex variables t and r2 involved and the solutions
of P = 0 are 12-D complex surfaces X6

c in Oc. Also the special solutions have the same
dimension.

3. In the case of co-associativity 8 conditions are needed for ReQ(P ) = 0: note that X = 0
is required. The naive expectation is that this gives a complex manifold X4

c with 4-D real
projection X4

r as an excellent candidate for a co-associative surface.
The expectation turned out to be wrong: in absence of any additional conditions the solu-
tions are complex 7-dimensional mass shells! This is due to the symmetries of the octonionic
polynomials as algebraic continuation of a real polynomial.

4. The solution of the problem is to change the interpretation completely. One must assign to
the 7-D complex mass shell H7

c a 3-D complex mass shell H3
c .

One can do this by assuming space-time surface is surface intersecting the7-D mass shell
obtained as a deformation of M4

c ⊂ M8
c by acting with local SU(3) gauge transformation

and requiring that the image point is invariant under U(2). If the 4-D complex mass squared
remains invariant in this transformation, X4

c intersects H7
c .

With these assumptions, a local CP2 element defines X4
c and X4

r is obtained as its real pro-
jection in M4. This definition assigns to each point of M4 a point of CP2 so that M8 − H
duality is well-defined.
One obtains holography in which the fixing of 3-D mass shells fixes the 4-surface and also
assigns causal diamond with the pair of mass shells with opposite energies. If the space-time
surface is analog of Bohr orbit, also its preimage under M8 −H duality should be such and
P would determine 4-surface highly uniquely [L123] and one would have number theoretic
holography.

General form of P and of the solutions to P = 0, ReQ(P ) = 0, and ImQ(P ) = 0

It is convenient to introduce complex coordinates for Oc since the formulas obtained allow projec-
tions to various real sections of Oc.

1. To see what happens, one can calculate o2
c . Denote oc by oc = tI0 +oc and the norm squared of

o by r2, where r2 =
∑
o2
k where ok are the complex coordinates of octonion. Number theoretic

norm squared for oc is t2 + r2 and reduces to a real number in the real sections of Oc. For
instance, in the section (I1, iI3, iI5, iI7) the norm squared is −x2

1 + x2
3 + x2

5 + x2
7 and defines

Minkowskian norm squared.
For o2 one has:

o2 = t2 − r2 + 2to ≡ X2 + Y 2 .

For o3 one obtains

o3 = tX2 − o · Y 2 + tY 2 +X2o .

Clearly, ImQ(on) has always the same direction as ImQ(o). Hence one can write in the general
case

on = X + Y o . (11.3.1)
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This trivial result was obtained years ago but its full implications became evident only while
preparing the current article. The point is that the solutions to associativity/co-associativity
conditions by putting Re(Q(P ) = 0 or ImQ(P ) = 0 are trivial: just M4 or E4. What goes
wrong with basic assumptions, will be discussed later.
Remark: In M8 sub-space one has imaginary o is proportional to the commuting imaginary
unit.

2. It is easy to deduce a recursion formula for the coefficients for X and Y for n:th power of oc.
Denote by t the coordinate associated with the real octonion unit (not time coordinate). One
obtains

onc = XnI0 + Yno ,
Xn = tXn−1 − rYn−1 ,
Yn = tYn−1 + rXn−1 .

(11.3.2)

In the co-associative case one has t = 0 or possibly constant t = T (note that in the recent
interpretation t does not have interpretation as time coordinate). The reason is that the
choice of octonionic coordinates is unique apart from translation along the real axis from the
condition that the coefficients of P remain complex numbers in powers of the new variable.

3. The simplest option correspond to t = 0. One can criticize this option since the quaternionicity
of normal space should not be affected if t is constant different from zero. In any case, for
t = 0 the recursion formula gives for the polynomial P (oc) the expression

P (oc) =
∑

(−1)nr2n(p2n−1I0 + p2no) . (11.3.3)

Denoting the even and of odd parts of P by Peven and Podd, the roots rk,odd of X = Re(P (oc))
are roots Podd and roots rk,even of Y = Im(P (oc)) are roots of Peven. Co-associativity gives
roots of X and the roots of P as simultaneous roots of Podd and Peven. The interpretation of
roots is as in general complex mass squared values.
In the general case, the recursion relation would give the solution(

Xn

Yn

)
= An

(
t
r

)
A =

(
t −r
r t

)
(11.3.4)

One can diagonalize the matrix appearing in the iteration by solving the eigenvalues λ± = t±ir
and eigenvectors X± = (±i, 1) and by expressing (X1, Y1) = (t, r) in terms of the eigenvectors
as (t, r) = ((it+ r)X+ + (r − it)X−)/2. This gives(

Xn

Yn

)
=

1

2

(
(t+ ir)ni− (t− ir)ni
(t+ ir)n + (t− ir)n

)
(11.3.5)

This gives

P (oc) = P1I0 + P2o ,
P1(r) =

∑
Xnpnr

2n ,
P2(r) =

∑
Ynpnr

2n .
(11.3.6)

For the restriction to M4
c , r2 reduces to complex 4-D mass squared given by the root rn.

In general case r2 corresponds to complex 8-D mass squared. All possible signatures are
obtained by assuming M8

c coordinates to be either real or imaginary (the number theoretical
norm squared is real with this restriction).

How does one obtain 4-D space-time surfaces?

Contrary to the naive expections, the solutions of the vanishing conditions for the ReQ(P )
(ImQ(P )) (real (imaginary) part in quaternionic sense) are 7-D complex mass shells r2 = rn,1 as
roots of P1(r) = 0 or r2 = rn,2 of P2(r) = 0 rather than 4-D complex surfaces (for a detailed
discussion see [K23]) A solution of both conditions requires that P1 and P2 have a common root
but the solution remains a 7-D complex mass shell! This was one of the many cold showers during
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the development of the ideas about M8 −H duality! It seems that the adopted interpretation is
somehow badly wrong. Here zero energy ontology (ZEO) and holography come to the rescue.

1. Could the roots of P1 or P2 define only complex mass shells of the 4-D complex momentum
space identifiable as M4

c ? ZEO inspires the question whether a proper interpretation of mass
shells could be as pre-images of boundaries of cd:s (intersections of future and past directed
light-cones) as pairs of mass shells with opposite energies. If this is the case, the challenge
would be to understand how X4

c is determined if P does not determine it.
Here holography, considered already earlier, suggests itself: the complex 3-D mass shells

belonging to X4
c would only define the 3-D boundary conditions for holography and the real

mass shells would be mapped to the boundaries of cds. This holography can be restricted to
X4
R. Bohr orbit property at the level of H suggests that the polynomial P defines the 4-surface

more or less uniquely.

2. Let us take the holographic interpretation as a starting point. In order to obtain an X4
c mass

shell from a complex 7-D light-cone, 4 complex degrees of freedom must be eliminated.
M8 −H duality requires that X4

c allows M4
c coordinates.

Note that if one has X4
c = M4

c , the solution is trivial since the normal space is the same for all
points and the H image under M8−H duality has constant CP2 = SU(3)/U(2) coordinates.
X4
c should have interpretation as a non-trivial deformation of M4

c in M8.

3. By M8−H duality, the normal spaces should be labelled by CP2 = SU(3)/U(2) coordinates.
M8−H duality suggests that the image g(p) of a momentum p ∈M4

c is determined essentially
by a point s(p) of the coset space SU(3)/U(2). This is achieved if M4

c is deformed by a local
SU(3) transformation p→ g(p) in such a way that each image point is invariant under U(2)
and the mass value remains the same: g(p)2 = p2 so that the point represents a root of P1 or
P2.
Remark: I have earlier considered the possibility of G2 and even G2,c local gauge transfor-
mation. It however seems that that local SU(3) transformation is the only possibility since
G2 and G2,c would not respect M8 − H duality. One can also argue that only real SU(3)
maps the real and imaginary parts of the normal space in the same manner: this is indeed an
essential element of M8 −H duality.

4. This option defines automatically M8−H duality and also defines causal diamonds as images
of mass shells m2 = rn. The real mass shells in H correspond to the real parts of rn. The local
SU(3) transformation g would have interpretation as an analog of a color gauge field. Since the
H image depends on g, it does not correspond physically to a local gauge transformation but
is more akin to an element of Kac-Moody algebra or Yangian algebra which is in well-defined
half-algebra of Kac-Moody with non-negative conformal weights.

The following summarizes the still somewhat puzzling situation as it is now.

1. The most elegant interpretation achieved hitherto is that the polynomial P defines only the
mass shells so that mass quantization would reduce to number theory. Amusingly, I started to
think about particle physics with a short lived idea that the d’Alembert equation for a scalar
field could somehow give the mass spectrum of elementary particles so that the issue comes
full circle!

2. Holography assigns to the complex mass shells complex 4-surfaces for which M8 −H duality
is well-defined even if these surfaces would fail to be 4-D co-associative. These surfaces are
expected to be highly non-unique unless holography makes them unique. The Bohr orbit
property of their images in H indeed suggests this apart from a finite non-determinism [L123].
Bohr orbit property could therefore mean extremely powerful number theoretical duality for
which the roots of the polynomial determine the space-time surface almost uniquely. SU(3) as
color symmetry emerges at the level of M8. By M8 −H duality, the mass shells are mapped
to the boundaries of CDs in H.

3. Do we really know that X4
r co-associative and has distribution of 2-D commuting subspaces of

normal space making possible M8 −H duality? The intuitive expectation is that the answer
is affirmative [A34]. In any case, M8 −H duality is well-defined even without this condition.
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4. The special solutions to P = 0, discovered already earlier, are restricted to the boundary of
CD8 and correspond to the values of energy (rather than mass or mass squared) coming as
roots of the real polynomial P . These mass values are mapped by inversion to ”very special
moments in the life of self” (a misleading term) at the level of H as special values of light-cone
proper time rather than linear Minkowski time as in the earlier interpretation [L73]. The new
picture is Lorenz invariant.

Octonionic Dirac equation as analog of momentum space variant of ordinary Dirac equation
forces the interpretation of M8 as an analog of momentum space and Uncertainty Principle forces
to modify the map M4 ⊂ M8 → M4 ⊂ H from identification to inversion. The equations for
ReQ(P ) = 0 reduce to simultaneous roots of the real polynomials defined by the odd and even
parts of P having interpretation as complex values of mass squared mapped to light-cone proper
time constant surfaces in H. This leads to the idea that the formulation of scattering amplitudes
at M8 levels provides the counterpart of momentum space description of scattering whereas the
formulation at the level of H provides the counterpart of space-time description.

This picture combined with zero energy ontology (ZEO) leads also to a view about quantum
TGD at the level of M8. Local SU(3) element has properties suggesting a Yangian symmetry
assignable to string world sheets and possibly also partonic 2-surfaces. The representation of Yan-
gian algebra using quark oscillator operators would allow to construct zero energy states at repre-
senting the scattering amplitudes. The physically allowed momenta would naturally correspond
to algebraic integers in the extension of rationals defined by P . The co-associative space-time sur-
faces (unlike generic ones) allow infinite-cognitive representations making possible the realization
of momentum conservation and on-mass-shell conditions.

11.3.2 The input from octonionic Dirac equation

The octonionic Dirac equation allows a second perspective on associativity. Everything is algebraic
at the level of M8 and therefore also the octonionic Dirac equation should be algebraic. The
octonionic Dirac equation is an analog of the momentum space variant of ordinary Dirac equation
and also this forces the interpretation of M8 as momentum space.

Fermions are massless in the 8-D sense and massive in 4-D sense. This suggests that octo-
nionic Dirac equation reduces to a mass shell condition for massive particle with q · q = m2 = rn,
where q · q is octonionic norm squared for quaternion q defined by the expression of momentum p
as p = I4q, where I4 is octonion unit orthogonal to q. rn represents mass shell as a root of P .

For the co-associative option the co-associative octonion p representing the momentum is
given in terms of quaternion q as p = I4q. One obtains p · p = qq = m2 = rn at the mass shell
defined as a root of P . Note that for M4 subspace the space-like components of p p are proportional
to i and the time-like component is real. All signatures of the number theoretic metric are possible.

For associative option one would obtain qq = m2, which cannot be satisfied: q reduces to a
complex number zx+ Iy and one has analog of equation z2 = z2− y2 + 2Ixy = m2

n, which cannot
be true. Hence co-associativity is forced by the octonionic Dirac equation.

One of the big surprises was that the cognitive representations for both light-like boundary
and X4

r are not generic meaning that they would consist of a finite set of points but infinite due to
the Lorentz symmetry: a kind of cognitive explosion would happen by the Lorentz symmetry. The
natural assumption is that for a suitable momentum unit, physical momenta satisfying mass shell
conditions are algebraic integers in the extension of rationals defined by P . Periodic boundary
conditions in turn suggest that for the physical states the total momenta are ordinary integers and
this leads to Galois confinement as a universal mechanism for the formation of bound states.

Hamilton-Jacobi structure and Kähler structure of M4 ⊂ H and their counterparts in
M4 ⊂M8

The Kähler structure of M4 ⊂ H, forced by the twistor lift of TGD, has deep physical implications
and seems to be necessary. It implies that for Dirac equation in H, modes are eigenstates of only
the longitudinal momentum and in the 2 transversal degrees of freedom one has essentially har-
monic oscillator states [L121, L119], that is Gaussians determined by the 2 longitudinal momentum
components. For real longitudinal momentum the exponents of Gaussians are purely imaginary
or purely real.
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The longitudinal momentum space M2 ⊂ M4 and its orthogonal complement E2 is in a
preferred role in gauge theories, string models, and TGD. The localization of this decomposition
leads to the notion of Hamilton-Jacobi (HJ) structure of M4 and the natural question is how
this relates to Kähler structures of M4. At the level of H spinors fields only the Kähler structure
corresponding to constant decomposition M2⊕E2 seems to make sense and this raises the question
how the H-J structure and Kähler structure relate. TGD suggests the existence of two geometric
structure in M4: HJ structure and Kähler structure. It has remained unclear whether HJ structure
and Kähler structure with covariantly constant self-dual Kähler form are equivalent notions or
whether there several H-J structures accompaning the Kähler structure.

In the following I argue that H-J structures correspond to different choices of symplectic
coordinates for M4 and that the properties of X4 ⊂ H determined bt M−H duality make it
natural to to choose particular symplectic coordinates for M4.

Consider first what H-J structure and Kähler structure could mean in H.

1. The H-J structure of M4 ⊂ H would correspond to an integrable distribution of 2-D
Minkowskian sub-spaces of M4 defining a distribution of string world sheets X2(x) and
orthogonal distribution of partonic 2-surfaces Y 2(x). Could this decomposition correspond
to self-dual covariantly Kähler form in M4?
What do we mean with covariant constancy now? Does it mean a separate covariant constancy
for the choices of M2(x) and Y 2(x) or only of their sum, which in Minkowski coordinates
could correspond to a constant electric and magnetic fields orthogonal to each other?

2. The non-constant choice of M2(x) (E2(x)) cannot be covariantly constant. One can
write J(M4) = J(M2(x))⊕ J(E2(x) corresponding to decomposition to electric and magnetic
parts. Constancy of J(M2(x) would require that the gradient of J(M2(x) is compensated
by the gradient of an antisymmetric tensor with square equal to the projector to M2(x). Same
condition holds true for J(E2(x)). The gradient of the antisymmetric tensor would be parallel
to itself implying that the tensor is constant.

3. H-J structure can only correspond to a transformation acting on J but leaving Jkldm
kdml

invariant. One should find analogs of local gauge transformations leaving J invariant. In
the case of CP2, these correspond to symplectic transformations and now one has a general-
ization of the notion. The M4 analog of the symplectic group would parameterize various
decompositions of J(M4).
Physically the symplectic transformations define local choices of 2-D space E2(x) of transver-
sal polarization directions and longitudinal momentum space M2 emerging in the construction
of extremals of Kähler action.

4. For the simplest Kähler form for M4 ⊂ H, this decomposition in Minkowski coordinates would
be constant: orthogonal constant electric and magnetic fields. This Kähler form extends to
its number theoretical analog in M8. The local SU(3) element g would deform M4 to
g(M4) and define an element of local CP2 defining M8 −H duality. g should correspond to
a symplectic transformation of M4.

Consider next the number theoretic counterparts of H-J- and Kähler structures of M4 ⊂ H
in M4 ⊂M8.

1. In M4 coordinates H-J structure would correspond to a constant M2 × E2 decomposition.
In M4 coordinates Kähler structure would correspond to constant E and B orthogonal to
each other. Symplectic transformations give various representations of this structure as H-J
structures.

2. The number theoretic analog of H-J structure makes sense also for X4 ⊂ M8 as obtained
from the distribution of quaternionic normal spaces containing 2-D commutative sub-space
at each point by multiplying then by local unit I4(x) orthogonal to the quaternionic units
{1, I1 = I2 = I3} with respect to octonionic inner product. There is a hierarchy of CDs and
the choices of these structures would be naturally parameterized by G2.
This would give rise to a number theoretically defined slicing of X4

c ⊂ M8
c by complexified

string world sheets X2
c and partonic 2-surfaces Y 2

c orthogonal with respect to the octonionic
inner product for complexified octonions.

3. In M8 −H duality defined by g(p) ⊂ SU(3) assigns a point of CP2 to a given point of M4.
g(p) maps the number theoretic H-J to H-J in M4 ⊂M8. The space-time surface itself - that
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is g(p) - defines these symplectic coordinates and the local SU(3) element g would naturally
define this symplectic transformation.

4. For X4 ⊂ M8 g reduces to a constant color rotation satisfying the condition that the image
point is U(2) invariant. Unit element is the most natural option. This would mean that g is
constant at the mass and energy shells corresponding to the roots of P and the mass shell is
a mass shell of M4 rather than some deformed mass shell associated with images under g(p).
This alone does not yet guarantee that the 4-D tangent space corresponds to M4. The
additional physically very natural condition on g is that the 4-D momentum space at these
mass shells is the same. M8 − H duality maps these mass shells to the boundaries of these
cd:s in M4 (CD= cd × CP2). This conforms with the identification of zero energy states as
pairs of 3-D states at the boundaries of CD.

This generalizes the original intuitive but wrong interpretation of the roots rn of P as ”very
special moments in the life of self” [L73].

1. Since the roots correspond to mass squared values, they are mapped to the boundaries of cd
with size L = ~eff/m by M8 −H duality in M4 degrees of freedom. During the sequence of
SSFRs the passive boundary of CD remains does not shift only changes in size, and states
at it remain unaffected. Active boundary is shifted due to scaling of cd.
The hyperplane at which upper and lower half-cones of CD meet, is shifted to the direction of
geometric future. This defines a geometric correlate for the flow of experienced time.

2. A natural proposal is that the moments for SSFRs have as geometric correlates the roots of P
defined as intersections of geodesic lines with the direction of 4-momentum p from the tip of
CD to its opposite boundary (here one can also consider the possibility that the geodesic lines
start from the center of cd ). Also energy shells as roots E = rn of P are predicted. They
decompose to a set of mass shells mn.,k with the same E = rn : similar interpretation applies
to them.

3. What makes these moments very special is that the mass and energy shells correspond to
surfaces in M4 defining the Lorentz quantum numbers. SSFRs correspond to quantum mea-
surements in this basis and are not possible without this condition. At X4 ⊂ M8 the mass
squared would remain constant but the local momentum frame would vary. This is analogous
to the conservation of momentum squared in general relativistic kinematics of point particle
involving however the loss of momentum conservation.

4. These conditions, together with the assumption that g is a rational function with real coeffi-
cients, strongly suggest what I have referred to as preferred extremal property, Bohr orbitology,
strong form of holography, and number theoretical holography.

In principle, by a suitable choice of M4 one can make the momentum of the system light-like:
the light-like 8-momentum would be parallel to M4. I have asked whether this could be behind the
fact that elementary particles are in a good approximation massless and whether the small mass
of elementary particles is due to the presence of states with different mass squares in the zero state
allowed by Lorentz invariance.

The recent understanding of the nature of right-handed neutrinos based on M4 Kähler
structure [L119] makes this mechanism un-necessary but poses the question about the mechanism
choosing some particular M4. The conditions that g(p) leaves mass shells and their 4-D tangent
spaces invariant provides this kind of mechanism. Holography would be forced by the condition
that the 4-D tangent space is same for all mass shels representing inverse images for very special
moments of time.

What about string world sheets and partonic 2-surfaces?

One can apply the above arguments also to the identification of 2-D string world sheets and
partonic 2-surfaces.

1. One has two kinds of solutions: M2 and 3-D surfaces of X4 as analogs of 6-brane. The
interpretation for 3-D resp. 2-D branes as a light-like 3-surface associated with the octonionic
Dirac equation representing mass shell condition resp. string world sheet is attractive.

2. M2 would be replaced with an integrable distribution of M2(x) in local tangent space M4(x).
The space for the choices of M2(x) would be S3 corresponding to the selection of a preferred
quaternion imaginary unit equal to the choices of preferred octonion imaginary unit.
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The choices of the preferred complex subspace M2(x) at a given point would be characterized
by its normal vector and parameterized by sphere S2: the interpretation as a quantization
axis of angular momentum is suggestive. One would have space S3 × S2. Also now the
integrability conditions deA = 0 would hold true.

3. String world sheets could be regarded as analogs of superstrings connecting 3-D brane like
entities defined by the light-like partonic orbits. The partonic 2-surfaces at the ends of
light-like orbits defining also vertices could correspond to the 3-surfaces at which quaternionic
4-surfaces intersect 6-branes.

11.3.3 Is (co-)associativity possible?

The number theoretic vision relying on the assumption that space-time surfaces are 8-D complex
4-surfaces in o8

c determined as algebraic surfaces for octonionic continuations of real polynomials,
which for adelic physics would have coefficients which are rational or belong to an extension of
rationals. The projections to subspaces Re8 of o8

c defined as space for which given coordinate is
purely real or imaginary so that complexified octonionic norm is real would give rise to real 4-D
space-time surfaces. M8−H duality would map these surfaces to geometric objects in M4×CP2.
This vision involves several poorly understood aspects and it is good to start by analyzing them.

Challenging the notions of associativity and co-associativity

Consider first the notions of associativity resp. co-associativity equivalent with quaternionicity
resp. co-quaternionicity. The original hope was that both options are possible for surfaces of real
sub-spaces of Oc (”real” means here that complexified octonionic metric is real).

1. The original idea was that the associativity of the tangent space or normal space of a real space-
time surfaceX4 reduces the classical physics at the level ofM8 to associativity. Associativity/co-
associativity of the space-time surface states that at each point of the tangent-/normal space
of the real space-time surface in O is quaternionic. The notion generalizes also to X4

c ⊂ O8
c .

(Co-)associativity makes sense also for the real subspaces space of O with Minkowskian signa-
ture.

2. It has been however unclear whether (co-)associativity is possible. The cold shower came as I
learned that associativity allows only for geodesic sub-manifolds of quaternionic spaces about
which octonions provide an example [A34]. The good news was that the distribution of co-
associative tangent spaces always defines an integrable distribution in the sense that one can
find sub-manifold for which the associative normal space at a given point has tangent space
as an orthogonal complement. Should the number theoretic dynamics rely on co-associativity
rather than associativity?

3. Minkowskian space-time regions have been assumed to be associative and to correspond to
the projection to the standard choice for basis as {1, iI1, iI2, iI3}. The octonionic units
{1, I1, I2, I3} define quaternionic units and associative subspace and their products with unit
I4 define the orthogonal co-associative subspace as {I4, I5 = I4I1, I6 = I4I2, I7 = I4I3}. This
result forces either to weaken the notion of associativity or to consider alternative identifica-
tions of Minkowskian regions, which can be co-associative: fortunately, there exists a large
number of candidates.

The article [A34] indeed kills the idea about the associativity of the space-time surface. The
article starts from a rather disappointing observation that associative sub-manifolds are geodesic
sub-manifolds and therefore trivial. Co-associative quaternion sub-manifolds are however possible.
With a motivation coming from this observation, the article discusses what the author calls RC
quaternionic sub-manifolds of quaternion manifolds. For a quaternion manifold the tangent space
allows a realization of quaternionic units as antisymmetric tensors. These manifolds are constant
curvature spaces and typically homogeneous spaces.

1. Quaternion sub-manifold allows a 4-D integrable distribution of quaternion units. The normal
complement of this distribution is expressible in terms of the second fundamental form and the
condition that it is trivial implies that the second fundamental form is vanishing so that one has
a geodesic submanifold. Quaternionic sub-manifolds are thus too trivial to be interesting. As
a diametric opposite, one can also define totally real submanifolds for which the normal space
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contains a distribution of quaternion units. In this case the distribution is always integrable.
This case is much more interesting from the TGD point of view.

2. Author introduces the notion of CR quaternion sub-manifold N ⊂M , where M is quaternion
manifold with constant sectional curvatures. N has quaternion distribution D in its tangent
spaces if the action of quaternion units takes D to itself. D⊥ is the co-quaternionic orthogonal
complement D in the normal space N . D would take also D⊥ to itself. D⊥ can be expressed
in terms of the components of the second fundamental form and vanishes for quaternion sub-
manifolds.

3. Author deduces results about CR quaternion sub-manifolds, which are very interesting from
the TGD point of view.

(a) Sub-manifold is CR quaternion sub-manifold only if the curvature tensor of RM of the em-
bedding space satisfies RM (D,D,D⊥, D ) = 0. The condition is trivial if the quaternion
manifold is flat. In the case of octonions this would be the case.

(b) D is integrable only if the second fundamental form restricted to it vanishes meaning
that one has a geodesic manifold. Totally real distribution D⊥ is always integrable to a
co-associative surface.

(c) If D⊥ integrates to a minimal surface then N itself is a minimal surface.

Could one consider RC quaternion sub-manifolds in TGD framework? Both octonions and
their complexifixation can be regarded as quaternionic spaces. Consider the real case.

1. If the entire D is quaternionic then N is a geodesic sub-manifold. This would leave only E4

and its Minkowskian variants with various signatures. One could have however 4-D totally
real (co-associative) space-time surfaces. Simple arguments will show that the intersections
of the conjectured quaternionic and co-quaternionic 4-surfaces have 2- and 3-D intersections
with 6-branes.
Should one replace associative space-time surfaces with CR sub-manifolds with d ≤ 3 integrable
distribution D whereas the co-quaternionic surfaces would be completely real having 4-D
integrable D⊥? Could one have 4-D co-associative surfaces for which D⊥ integrates to n ≥ 1-
dimensional minimal surface (geodesic line) and the X4 itself is a minimal surface?
Partially associative CR manifold do not allow M8H duality. Only co-associative surfaces
allow it and also their signature must be Minkowskian: the original idea [L76, L47, L48, L49]
about Euclidian (Minkowskian) signature for co-associative (associative) surfaces was wrong.

2. The integrable 2-D sub-distributions D defining a distribution of normal planes could define
foliations of the X4 by 2-D surfaces. What springs to mind is foliations by string world sheets
and partonic 2 surfaces orthogonal to them and light-like 3-surfaces and strings transversal to
them. This expectation is realized.

How to identify the Minkowskian sub-space of Oc?

There are several identifications of subspaces of Oc with Minkowskian signature. What is the
correct choice has been far from obvious. Here symmetries come in rescue.

1. Any subspace ofOc with 3 (1) imaginary coordinates and 1 (3) real coordinates has Minkowskian
signature in octonionic norm algebraically continued to Oc (complex valued continuation of
real octonion norm instead of real valued Hilbert space norm for Oc). Minkowskian regions
should have local tangent space basis consisting of octonion units which in the canonical
case would be {I1, iI3, iI5, iI7}, where i is commutative imaginary unit. This particular ba-
sis is co-associative having whereas its complement {iI0, I2, I4, I6} is associative and has also
Minkowskian signature.

2. The size of the isometry group of the subspace of M8
c depends on whether the tangent basis

contains real octonion unit 1 or not. The isometry group for the basis containing I0 is SO(3)
acting as automorphisms of quaternions and SO(k, 3 − k) when 3 − k units are proportional
to i. The reason is that G2 (and its complexification G2,c) and its subgroups do not affect
I0. For the tangent spaces built from 4 imaginary units Ik and iIl the isometry group is
SO(k, 4− k) ⊂ G2,c.
The choice therefore allows larger isometry groups and also co-associativity is possible for a
suitable choice of the basis. The choice {I1, iI3, iI5, iI7} is a representative example, which
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will be called canonical basis. For these options the isometry group is the desired SO(1, 3) as
an algebraic continuation of SO(4) ⊂ G2 acting in {I1, I3, I5, I7}, to SO(1, 3) ⊂ G2,c.
Also Minkowskian signature - for instance for the original canonical choice {I0, iI1, iI2, iI3} -
can have only SO(k, 3−k) as isometries. This is the basic objection against the original choice
{I0, iI1, iI2, iI3}. This identification would force the realization of SO(1, 3) as a subgroup of
SO(1, 7). Different states of motion for a particle require different octonion structure with
different direction of the octonion real axis in M8. The introduction of the notion of moduli
space for octonion structures does not look elegant. For the option {I1, iI3, iI5, iI7} only a
single octonion structure is needed and G2,c contains SO(1, 3).
Note that also the signatures (4, 0), (0, 4) and (2, 2) are possible and the challenge is to un-
derstand why only the signature (1,3) is realized physically.

Co-associative option is definitely the only physical alternative. The original proposal for
the interpretation of the Minkowski space in terms of an associative real sub-space of M4 had a
serious problem. Since time axis was identified as octonionic real axis, one had to assign different
octonion structure to particles with non-parallel moment: SO(1, 7) would relate these structures:
how to glue the space-time surfaces with different octonion structures together was the problem.
This problem disappears now. One can simply assign to particles with different state of motion
real space-time surface defined related to each other by a transformation in SO(1, 3) ⊂ G2,c.

The condition that M8 −H duality makes sense

The condition that M8 −H duality makes sense poses strong conditions on the choice of the real
sub-space of M8

c .

1. The condition that tangent space of Oc has a complexified basis allowing a decomposition to
representations of SU(3) ⊂ G2 is essential for the map to M8 → H although it is not enough.
The standard representation of this kind has basis {±iI0 + I1} behaving like SU(3) singlets
{I2 + εiI3, I4 + εiI5, εI6 ± iI7} behaves like SU(3) triplet 3 for ε = 1 and its conjugate 3 for
ε = −1. G2,c provides new choices of the tangent space basis consistent with this choice.
SU(3) leaves the direction I1 unaffected but more general transformations act as Lorentz
transformation changing its direction but not leaving the M4 plane. Even more general G2,c

transformations changing M4 itself are in principle possible.
Interestingly, for the canonical choice the co-associative choice has SO(1, 3) as isometry group
whereas the complementary choice failing to be associative correspond to a smaller isometry
group SO(3). The choice with M4 signature and co-associativity would provide the high-
est symmetries. For the real projections with signature (2, 2) neither consistent with color
structure, neither full associativity nor co-associativity is possible.

2. The second essential prerequisite of M8 − H duality is that the tangent space is not only
(co-)associative but contains also (co-)complex - and thus (co-)commutative - plane. A more
general assumption would be that a co-associative space-time surface contains an integrable
distribution of planes M2(x), which could as a special case reduce to M2.
The proposal has been that this integrable distribution of M2(x) could correspond to string
sheets and possibly also integrable orthogonal distribution of their co-complex orthogonal
complements as tangent spaces of partonic 2-surfaces defining a slicings of the space-time
surface. It is now clear that this dream cannot be realized since the space-time surface cannot
be even associative unless it is just E4 or its Minkowskian variants.

3. As already noticed, any distribution of the associative normal spaces integrates to a co-
associative space-time surface. Could the normal spaces also contain an integrable distribution
of co-complex planes defined by octonionic real unit 1 and real unit Ik(x), most naturally I1 in
the canonical example? This would give co-commutative string world sheet. Commutativity
would be realized at the 2-D level and associativity at space-time level. The signature of this
plane could be Minkowskian or Euclidian. For the canonical example {I1, iI3, iI5, iI7} the 2-D
complex plane in quaternionic sense would correspond to (a×1,+n2I2 +n4I6 +n6I6, where the
unit vector ni has real components and one has a = 1 or a = i is forced by the complexification
as in the canonical example.
Since the distribution of normal planes integrates to a 4-surface, one expects that its sub-
distribution consting of commutative planes integrates to 2-D surface inside space-time surface
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and defines the counterpart of string worlds sheet. Also its normal complement could integrate
to a counterpart of partonic 2-surface and a slicing of space-time surface by these surfaces would
be obtained.

4. The simplest option is that the commutative space does not depend on position at X4. This
means a choice of a fixed octonionic imaginary unit, most naturally I1 for the canonical
option. This would make SU(3) and its sub-group U(2) independent of position. In this case
the identification of the point of CP2 = SU(3)/U(2) labelling the normal space at a given
point is unique.
For a position dependent choice SU(3)(x) it is not clear how to make the specification of
U(2)(x) unique: it would seem that one must specify a unique element of G2(x) relating
SU(3)(x) to a choice at special point x0 and defining the conjugation of both SU(3)(x) and
U(2)(x). Otherwise one can have problems. This would also mean a unique choice for the
direction of time axis in O and fixing of SO(1, 3) as a subgroup of G2,c. Also this distribution
of associative normal spaces is integrable. Physically this option is attractive but an open
question is whether it is consistent with the identification of space-time surfaces as roots
ReQ(P ) = 0 of P .

Co-associativity from octonion analyticity or/and from G2 holography?

Candidates for co-associative space-time surfaces X4
r are defined as restrictions X4

r for the roots
X4
c of the octonionic polynomials such that the Oc coordinates in the complement of a real co-

associative sub-space of Oc vanish or are constant. Could the surfaces X4
r or even X4

c be co-
associative?

1. X4
r is analogous to the image of real or imaginary axis under a holomorphic map and defines a

curve in complex plane preserving angles. The tangent vectors of X4
r and X4

c involve gradients
of all coordinates of Oc and are expressible in terms of all octonionic unit vectors. It is not
obvious that their products would belong to the normal space of X4

r a strong condition would
be that this is the case for X4

c .

2. Could octonion analyticity in the proposed sense guarantee this? The products of octonion
units also in the tangent space of the image would be orthogonal to the tangent space. Ordinary
complex functions preserve angles, in particular, the angle between x- and y-axis is preserved
since the images of coordinate curves are orthogonal. Octonion analyticity would preserve the
orthogonality between tangent space vectors and their products.

3. This idea could be killed if one could apply the same approach to associative case but this is not
possible! The point is that when the real tangent space of Oc contains the real octonion unit,
the candidate for the 4-D space-time surface is a complex surface X2

c . The number theoretic
metric is real only for 2-D X2

r so that one obtains string theory with co-associativity replaced
with co-commutativity and M4 × CP2 with M2 × S2. One could of course ask whether this
option could be regarded as a ”sub-theory” of the full theory.

My luck was that I did not realize the meaning of the difference between the two cases first
and realized that one can imagine an alternative approach.

1. G2 as an automorphism group of octonions preserves co-associativity. Could the image of a
co-associative sub-space of Oc defined by an octonion analytic map be regarded as an image
under a local G2 gauge transformation. SU(3) ⊂ G2 is an especially interesting subgroup
since it could have a physical interpretation as a color gauge group. This would also give a
direct connection with M8 − H duality since SU(3) corresponds to the gauge group of the
color gauge field in H.

2. One can counter-argue that an analog of pure gauge field configuration is in question at the
level of M8. But is a pure gauge configuration for G2,c a pure gauge configuration for G2?
The point is that the G2,c connection g−1∂µg trivial for G2,c contains by non-linearity cross
terms from g2g, c = g2,1 + ig2,2, which are of type Re = X[g2,1, g2,1] − X[g2,2, g2,2] = 0 and
Im = iZ[g2,1, g2,2] = 0. If one puts g2,2 contributions to zero, one obtains Re = X[g2,1, g2,1],
which does not vanish so that SU(3) gauge field is non-trivial.

3. X4
r could be also obtained as a map of the co-associative M4 plane by a local G2,c element.

It will turn out that G2,c could give rise to the speculated Yangian symmetry [L42] at string
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world sheets analogous to Kac-Moody symmetry and gauge symmetry and crucial for the
construction of scattering amplitudes in M8.

4. The decomposition of the co-associative real plane of Oc should contain a preferred complex
plane for M8 − H duality to make sense. G2,c transformation should trivially preserve this
property so that SH would not be necessary at H side anymore.

There is a strong motivation to guess that the two options are equivalent so that G2,c

holography would be equivalent with octonion analyticity. The original dream was that octonion
analyticity would realize both associative and co-associative dynamics but was exaggeration!

Does one obtain partonic 2-surfaces and strings at boundaries of ∆CD8?

It is interesting to look for the dimensions of the intersections of the light-like branes at the
boundary of CD8 giving rise to the boundary of CD4 in M4 to see whether it gives justification for
the existing phenomenological picture involving light-like orbits of partonic 2-surfaces connected
by string world sheets.

1. Complex light-cone boundary has dimension D = 14. P = 0 as an additional condition at
δCD8 gives 2 complex conditions and defines a 10-D surface having 5-D real projections.

2. The condition ImQ(P ) = 0 gives 8 conditions and gives a 2-D complex surface with 1-D real
projection. The condition ReQ(P ) = 0 gives 3 complex conditions since X = 0 is already
satisfied and the solution is a 4-D surface having 2-D real projection. Could the interpretation
be in terms of the intersection of the orbit of a light-like partonic surface with the boundary
of CD8?

3. Associativity is however not a working option. If only co-associative Minkowskian surfaces al-
lowing mapping toH without SH are present then only 4-D space-time surfaces with Minkowskian
signature, only partonic 2-surfaces and their light-like orbits would emerge from co-associativity.
This option would not allow string world sheets for which there is a strong intuitive support.
What could a co-complex 2-surface of a co-associative manifold mean? In the co-associative
case the products of octonion imaginary units are in the normal space of space-time surface.
Could co-complex surface X2

c ⊂ X4
c be defined by an integrable co-complex sub-distribution

of co-associative distribution. The 4-D distribution of normal planes is always integrable.
Could the 2-D sub-distributions of co-associative distribution integrate trivially and define
slicings by string world sheets or partonic 2-surfaces. Could the distribution of string distri-
butions and its orthogonal complement be both integrable and provide orthogonal slicings by
string world sheets and partonic 2-surfaces? String world sheets with Minkowskian signature
should intersect the partonic orbits with Euclidian signature along light-like lines. This brings
in mind the orthogonal grid of flow lines defined by the Re(f) = 0 and Im(f) = 0 lines of an
analytic function in plane.

4. In this picture the partonic 2-surfaces associated with light-like 3-surface would be physically
unique and could serve as boundary values for the distributions of partonic 2-surfaces. But
what about string world sheets connecting them? Why would some string world sheets be
exceptional? String world sheets would have a light-like curve as an intersection with the
partonic orbit but this is not enough.
Could the physically special string world sheets connect two partonic surfaces? Could the
string associated with a generic string world sheet be like a flow line in a hydrodynamic flow
past an obstacle - the partonic 2-surface? The string as a flowline would go around the obstacle
along either side but there would be one line which ends up to the object.

Interactions would correspond geometrically to the intersections of co-associative space-
time surfaces X4

r associated with particles and corresponding to different real sub-spaces of Oc
related by Lorentz boost in SO(1, 3) ⊂ G2,c. In the generic case the intersection would be
discrete. In the case that X and Y have a common root the real surfaces X4

r ⊂ X6
r associated

with quarks and depending on their state of motion would reside inside the same 6-D surface
X6
r and have a 2-D surface X2

r as intersection. Could this surface be interpreted as a partonic
2-surface? One must however bear in mind that partonic 2-surfaces as topological vertices are
assumed to be non-generic in the sense that the light-like partonic orbits meet at them. At the
level of H, the intersections would be partonic 2-surfaces X2 at which the four 3-D partonic
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orbits would meet along their ends. Does this hold true at the level of M8? Or can it hold true
even at the level H?

The simplest situation corresponds to 4 external quarks. There are 6 different intersections.
Not all of them are realized since a given quark can belong only to a single intersection. One must
have two disjoint pairs -say 12 and 34. Most naturally positive resp. negative energy quarks
form a pair. These pairs are located in different half-cones. The intersections would give two
partonic 2-surfaces and this situation would be generic. This suggests a modification of the
description of particle reaction in M8 . M8 −H duality suggests a similar description in H.

What could be the counterparts of wormhole contacts at the level of M8?

The experience with H, in particular the presence of extremals with Euclidian signature of the
induced metric and identified as building bricks of elementary particles, suggest that also the light-
like 3-surfaces in M8

c could have a continuation with an Euclidian signature of the number theoretic
metric with norm having real values only for the projections to planes allowing real coordinates.

The earlier picture has been that the wormhole contacts as CP2 type extremals correspond
to co-associative regions and their exteriors to associative regions. If one wants M8 −H duality
in strong form and thus without need for SH, one should assume that both these regions are
co-associative.

1. The simplest option is that the real Minkowskian time coordinate becomes imaginary. Instead
of the canonical (I1, iI3, iI5, iI7) the basis would be (iI1, iI3, iI5, iI7) having Euclidian signature
and SO(4) as isometry group. The signature would naturally change at light-like 3-surface the
time coordinate along light-like curves becomes zero - proper time for photon vanishes - and
can ransforms continuously from real to imaginary.

2. Wormhole contacts in H behave like pairs of magnetic monopoles with monopole charges at
throats. If one does not allow point-like singularity, the monopole flux must go to a parallel
Minkowskian space-time sheet through the opposite wormhole throat. Wormhole contact with
effective magnetic charge would correspond in M8

c to a distribution of normal 4-planes at the
partonic 2-surfaces analogous to the radial magnetic field of monopole at a sphere surrounding
it. To avoid singularity of the distribution, there must be another light-like 3-surface M8 such
that its partonic throat has a topologically similar distribution of normal planes.

In the case of X3
c dimension does not allow co-quaternion structure: could they allow 4-D

co-associative sub-manifolds? It will be found that this option is not included since co-associative
tangent space distributions in a quaternion manifold (now O) are always integrable.

11.3.4 Octonionic Dirac equation and co-associativity

Also the role of associativity concerning octonionic Dirac equation in M8 must be understood.
It is found that co-associativity allows very elegant formulation and suggests the identification
of the points appearing as the ends of quark propagator lines in H as points of boundary of CD
representing light-like momenta of quarks. Partonic vertices would involve sub-CDs and momentum
conservation would have purely geometric meaning bringing strongly in mind twistor Grassmannian
approach [B23, B21, ?]. I have discussed the twistor lift of TGD replacing twistors as fields with
surfaces in twistor space having induced twistor structure in [K100, K87, L64] [L87, L88].

Octonionic Dirac equation

The following arguments lead to the understanding of co-associativity in the case of octonion
spinors. The constant spinor basis includes all spinors but the gamma matrices appearing in the
octonionic Dirac equation correspond to co-associative octonion units.

1. At the level of Oc the idea about massless Dirac equation as partial differential equation does
not make sense. Dirac equation must be algebraic and the obvious idea is that it corresponds to
the on mass shell condition for a mode of ordinary Dirac equation with well-define momentum:
pkγkΨ = 0 satisfying pkpk = 0. This suggests that octonionic polynomial P defines the
counterpart of pkγk so that gamma matrices γk would be represented as octonion components.
Does this make sense?
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2. Can one construct octonionic counterparts of gamma matrices? The imaginary octonion units
Ik indeed define the analogs of gamma matrices as γk ≡ iIk satisfying the conditions {γk, γl} =
2δkl defining Euclidian gamma matrices. The problem is that one has I0Ilk+ IkI0 = 2Ik. One
manner to solve the problem would be to consider tensor products I0σ3 and Ikσ2 where σ3

and sigma2 are Pauli’s sigma matrices with anti-commutation relations {σi, σj} = δi,j . Note
that Ik do not allow a matrix representation.
Co-associativity condition suggests an alternative solution. The restriction of momenta to
be co-associative and therefore vanishing component p0 as octonion, would selects a sub-
space spanned by say the canonical choice {I2, iI3, iI5, iI7} satisfying the anticommutation
relations of Minkowskian gamma matrices. Octonion units do not allow a matrix representation
because they are not associative. The products for a co-associative subset of octonion units are
however associative (a(bc) = (ab)c so that they can be mapped to standard gamma matrices
in Minkowski space. Co-associativity would allow the representation of 4-D gamma matrices
as a maximal associative subset of octonion units.

3. What about octonionic spinors. The modes of the ordinary Dirac equation with a well-defined
momentum are obtained by applying the Dirac operator to an orthogonal basis of constant
spinors ui to give Ψ = pkγkui. Now the counterparts of constant spinors ui would naturally
be octonion units {I0, Ik}: this would give the needed number 8 of real spinor components as
one has for quark spinors.
Dirac equation reduces to light-likeness conditions pkpk = 0 and pk must be chosen to be real
- if pk are complex, the real and imaginary parts of momentum are parallel. One would obtain
an entire 3-D mass shell of solution and a single mode of Dirac equation would correspond to
a point of this mass shell.
Remark: Octonionic Dirac equation is associative since one has a product of form (pkγk)2ui
and octonion products of type x2y are associative.

4. pk would correspond to the restriction of P (oc) to M4 as sub-space of octonions. Since co-
associativity implies P (oc) = Y (oc)oc restricted to counterpart of M4 (say subspace spanned
by {I2, iI3, iI5, iI7}), Dirac equation reduces to the condition okok = 0 in M4 defining a
light-cone of M4. This light-cone is mapped to a curved light-like 3-surface X3 in oc as
oc → P (oc) = Y oc. M

8−H duality maps points of space-time surface on M8 H and therefore
the light-cone of M4 corresponds to either light-like boundary of CD. It seems that the image
of X3 in H has M4 projection to the light-like boundary of CD.
Co-associative space-time surfaces have 3-D intersections X3 with the surface P = 0: the
conjecture is that X3 corresponds to a light-like orbit of partonic 2-surfaces in H at which the
induced metric signature changes. At X3 one has besides X = 0 also Y = 0 so that octonionic
Dirac equation P (oc)Ψ = P kIkΨ = Y pkIkΨ = 0 is trivially satisfied for all momenta pk = ok

defined by the M4 projections of points of X3 and one would have P k = Y pk = 0 so that the
identification of P k as 4-momentum would not allow to assign non-vanishing momenta to X3.
The direction of pk is constrained only by the condition of belonging to X3 and the momentum
would be in general time-like since X3 is inside future light-cone.
Y = 0 condition conforms with the proposal that X3 defines a boundary of Minkowskian and
Euclidian region: Euclidian mass shell condition for real P k requires P k = 0. The general
complex solution to P 2 = 0 condition is P = P1 + iP2 with P 2

1 = P 2
2 .

A single mode of Dirac equation with a well-defined value of pk as the analog of 4-momentum
would correspond to a selection of single time-like point at X3 or light-like point at the light-like
boundary of CD. X3 intersects light-cone boundary as part of boundary of 7-D light-cone. The
picture about scattering amplitudes - consistent with the view about cognitive representations as a
unique discretization of space-time surface - is that quarks are located at discrete points of partonic
2-surfaces representing the ends of fermionic propagator lines in H and that one can assign to them
light-like momenta.

Challenging the form of M8 −H duality for the map M4 ⊂M8 to M4 ⊂ H

The assumption that the map M4 ⊂M8 to M4 ⊂ H in M8 −H duality is a simple identification
map has not been challenged hitherto.

1. Octonionic Dirac equation forces the identification of M8 as analog of 8-D momentum space
and the earlier simple identification is in conflict with Uncertainty Principle. Inversion al-
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lowed by conformal invariance is highly suggestive: what comes first in mind is a map
mk → ~effmk/mkmk.
At the light-cone boundary the map is ill-defined. Here on must take as coordinate the linear
time coordinate m0 or equivalently radial coordinate rM = m0. In this case the map would
be of fporm t→ ~eff/m0: m0 has interpretation as energy of massless particle.
The map would give a surprisingly precise mathematical realization for the intuitive arguments
assigning to mass a length scale by Uncertainty Principle.

2. Additional constraints on M8−H duality in M4 degrees of freedom comes from the following
argument. The two half-cones of CD contain space-time surfaces in M8 as roots of polynomials
P1(o) and P2(2T − o) which need not be identical. The simplest solution is P2(o) = P1(2T −
o): the space-time surfaces at half-cones would be mirror images of each other. This gives
P1(T, ImR(o)) = P1(T −ImR(o)) Since P1 depends on t2−o2 only, the condition is identically
satisfied for both options.
There are two options for the identification of the coordinate t.
Option a): t is identified as octonionic real coordinate oR identified and also time coordinate
as in the original option. In the recent option octonion oR would correspond to the
Euclidian analog of time coordinate. The breaking of symmetry from SO(4) to SO(3)
would distinguish t as a Newtonian time.
At the level of M8, The M4 projection of CD8 is a union of future and past directed light-
cones with a common tip rather than CD4. Both incoming and outgoing momenta have the
same origin automatically. This identification is the natural one at the level of M8.
Option b): t is identified as a Minkowski time coordinate associated with the imaginary
unit I1 in the canonical decomposition {I1, iI3, iI5, iI7}. The half-cone at o = 0 would be
shifted to O = (0, 2T, 0...0) and reverted. M4 projection would give CD4 so that this
option is consistent with ZEO. This option is natural at the level of Hbut not at the level of
M8.
If Option a) is realized at the level of M8 and Option b) at the level of H, as seems
natural, a time translation m0 → m0 + 2T of the past directed light-cone in M4 ⊂ H is
required in order to to give upper half-cone of CD4.

3. The map of the momenta to embedding space points does not prevent the interpretation of the
points of M8 as momenta also at the level of H since this information is not lost. One cannot
identify pk as such as four-momentum neither at the level of M8 nor H as suggested by the
näıve identification of the Cartesian factors M4 for M8 and H. This problem is circumvented
by a conjugation in M8

c changing the sign of 3-momentum. The light-like momenta along
the light-cone boundary are non-physical but transform to light-like momenta arriving into
light-cone as the physical intuition requires.
Therefore the map would have in the interior of light-cone roughly the above form but there
is still a question about the precise form of the map. Does one perform inversion for the
M4 projection or does one take M4 projection for the inversion of complex octonion. The
inversion of M4 projection seems to be the more plausible option. Denoting by P (oc) the real
M4 projection of X4 point one therefore has:

P (oc)→ ~eff
P (oc)

P (oc) · P (oc)
. (11.3.7)

Note that the conjugation changes the direction of 3-momentum.
At the light-cone boundary the inversion is ill-defined but Uncertainty Principle comes in
rescue, and one can invert the M4 time coordinate:

Re(m0) = t→ ~eff
1

t
. (11.3.8)

A couple of remarks are in order.

1. The presence of ~eff instead of ~ is required by the vision about dark matter. The value of
~eff/h0 is given by the dimension of extension of rationals identifiable as the degree of P .

2. The image points pk in H would naturally correspond to the ends of the propagator lines in
the space-time representation of scattering amplitudes.

The information about momenta is not lost in the map. What could be the interpretation
of the momenta pk at the level of H?



11.4. How to achieve periodic dynamics at the level of M4 × CP2? 493

1. Super-symplectic generators at the partonic vertices in H do not involve momenta as labels.
The modes of the embedding space spinor field assignable to the ground states of super-
symplectic representations at the boundaries of CD have 4-momentum and color as labels.
The identification of pk as this momentum label would provide a connection with the classical
picture about scattering events.
At the partonic 2-surfaces appearing as vertices, one would have a sum over the ground states
(spinor harmonics). This would give integral over momenta but M8 −H duality and number
theoretic discretization would select a finite subset and the momentum integral would reduce
to a discrete sum. The number of M8 points with coordinates in a given extension of rationals
is indeed finite.

2. M4 ⊂ M8 could be interpreted as the space of 4-momenta labeling the spinor harmonics of
M8. Same would apply at the level of H: spinor harmonics would correspond to the ground
states of super-symplectic representations.

3. The interpretation of the points of M4
c as complex 4-momenta inspires the question whether

the interpretation of the imaginary part of the momentum squared in terms of decay decay
width so that M8 picture would code even information about the dynamics of the particles.

11.4 How to achieve periodic dynamics at the level of M 4×
CP2?

Assuming M8 −H duality, how could one achieve typical periodic dynamics at the level of H - at
least effectively?

It seems that one cannot have an ”easy” solution to the problem?

1. Irreducible polynomials which are products of monomials corresponding to roots rn which are
in good approximation evenly spaced rn = r0 + nr1∆rn would give ”very special moments in
the life of self” as values of M4 time which are evenly spaced [L76, L73]. This could give rise
to an effective periodicity but it would be at the level of M8, not H, where it is required.

2. Is it enough that the periodic functions are only associated with the spinor harmonics of H
involved with the construction of scattering amplitudes in H [L111]? For the modified Dirac
equation [K113] the periodic behavior is possible. Note also that the induced spinors defining
ground states of super-symplectic representations are restrictions of second quantized spinors
of H proportional to plane waves in M4. These solutions do not guarantee quantum classical
correspondence.

11.4.1 The unique aspects of Neper number and number theoretical
universality of Fourier analysis

Could one assume more general functions than polynomials at the level of H? Discrete Fourier basis
is certainly an excellent candidate in this respect but does it allow number theoretical universality?

1. Discrete Fourier analysis involves in the Euclidian geometry periodic functions exp(2πx), n
integer and in hyperbolic geometry exponential functions exp(kx).
Roots of unity exp(i2π/n) allow to generalize Fourier analysis. The p-adic variants of exp(ix)
exist for rational values of x = k2π/n for n = K if exp(i2π/K) belongs to the extension of
rationals. x = k = 2pi/n does not exist as a p-adic number but exp(x) = exp(i2π/n) can exist
as phase replacing x as coordinate in extension of p-adics. One can therefore define Fourier
basis {exp(inx)|n ∈ Z} which exist at discrete set of rational points x = k/n
Neper number e is also p-adically exceptional in that ep exists as a p-adic number for all primes
p. One has a hierarchy of finite-D extensions of p-adic numbers spanned by the roots e1/n.
Finiteness of cognition might allow them. Hyperbolic functions exp(nx), n = 1, 2... would
have values in extension of p-adic number field containing exp(1/N) in a discrete set of points
{x = k/N |k ∈ Z}.

2. (Complex) rationality guarantees number theoretical universality and is natural since CP2

geometry is complex. This would correspond to the replacement x → exp(ix) or x → exp(x)
for powers xn. The change of the signature by replacing real coordinate x with ix would
automatically induce this change.
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3. Exponential functions are in a preferred position also group theoretically. Exponential map
maps g → exp(itg) the points of Lie algebra to the points of the Lie group so that the
tangent space of the Lie algebra defines local coordinates for the Lie group. One can say that
tangent space is mapped to space itself. M4 defines an Abelian group and the exponential
map would mean replacing of the M4 coordinates with their exponential, which are p-adically
more natural. Ordinary Minkowski coordinates have both signs so that they would correspond
to the Lie algebra level.

4. CP2 is a coset space and its points are obtained as selected points of SU(3) using exponenti-
ation of a commutative subalgebra t in the decomposition g = h + t + t in the Lie-algebra of
SU(3). One could interpret the CP2 points as exponentials and the emergence of exponential
basis as a basis satisfying number theoretical universality.

11.4.2 Are CP2 coordinates as functions of M4 coordinates expressible
as Fourier expansion

Exponential basis is not natural at the level of M8. Exponential functions belong to dynamics,
not algebraic geometry, and the level H represents dynamics.

It is the dependence of CP2 coordinates on M4 coordinates, where the periodicity is needed.
The map of the tangent spaces of X4 ⊂ M8 to points of CP2 is slightly local since it depends on
the first derivatives crucial for dynamics. Could this bring in dynamics and exponential functions
at the level of H?

These observations inspire the working hypothesis that CP2 points as functions of M4

coordinates are expressible as polynomials of hyperbolic and trigonometric exponentials of M4

coordinates.
Consider now the situation in more detail.

1. The basis for roots of e would be characterized by integer K in e1/K . This brings in a
new parameter characterizing the extension of rationals inducing finite extensions of p-adic
numbers. K is analogous to the dimension of extension of rationals: the p-adic extension has
dimension d = Kp depending on the p-adic prime explicitly.

2. If CD size T is given, e−T/K defines temporal and spatial resolution in H. K or possibly Kp
could naturally correspond to the gravitational Planck constant [L59] [K12] [E18] K = ngr =
~gr/h0.

3. In [L113] many-sheetedness with respect to CP2 was proposed to correspond to flux tubebun-
dles in M4 forming quantum coherent structures. A given CP2 point corresponds to several
M4 points with the same tangent space and their number would correspond to the number of
the flux tubes in the bundle.
Does the number of these points relate to K or Kp? p-Adic extension would have finite
dimension d = Kp. Could d = Kp be analogous to a degree of polynomial defining the
dimension of extension of rationals? Could this be true in p-adic length scale resolution
O(p2) = 0 The number of points would be Kp and very large. For electron one has p =
M127 = 2127 − 1.

4. The dimension nA Abelian extension associated with EQ would naturally satisfy nA = K
since the trigonometric and hyperbolic exponentials are obtained from each other by replacing
a real coordinate with an imaginary one.

5. There would be two effective Planck constants. heff = nh0 would be defined by the degree n
of the polynomial P defining X4 ⊂M8. ~gr = ngrh0 would define infra-red cutoff in M4 as the
size scale of CD in H = M4 × CP2. n resp. ngr = Kp would characterize many-sheetedness
in M4 resp. CP2 degrees of freedom.

11.4.3 Connection with cognitive measurements as analogs of particle
reactions

There is an interesting connection to the notion of cognitive measurement [L113, L114, L118].

1. The dimension n of the extension of rationals as the degree of the polynomial P = Pn1
◦Pn2

◦...
is the product of degrees of degrees ni: n =

∏
i ni and one has a hierarchy of Galois groups Gi
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associated with Pni ◦.... Gi+1 is a normal subgroup of Gi so that the coset space Hi = Gi/Gi+1

is a group of order ni. The groups Hi are simple and do not have this kind of decomposition:
simple finite groups appearing as building bricks of finite groups are classified. Simple groups
are primes for finite groups.

2. The wave function in group algebra L(G) of Galois group G of P has a representation as an
entangled state in the product of simple group algebras L(Hi). Since the Galois groups act
on the space-time surfaces in M8 they do so also in H. One obtains wave functions in the
space of space-time surfaces. G has decomposition to a product (not Cartesian in general) of
simple groups. In the same manner, L(G) has a representation of entangled states assignable
to L(Hi) [L113, L118].

This picture leads to a model of analysis as a cognitive process identified as a cascade of
”small state function reductions” (SSFRs) analogous to ”weak” measurements.

1. Cognitive measurement would reduce the entanglement between L(H1) and L(H2), the be-
tween L(H2) and L(H3) and so on. The outcome would be an unentangled product of wave
functions in L(Hi) in the product L(H1)×L(H2)× .... This cascade of cognitive measurements
has an interpretation as a quantum correlate for analysis as factorization of a Galois group to
its prime factors. Similar interpretation applies in M4 degrees of freedom.

2. This decomposition could correspond to a replacement of P with a product
∏
i Pi of polyno-

mials with degrees n = n1n2..., which is irreducible and defines a union of separate surfaces
without any correlations. This process is indeed analogous to analysis.

3. The analysis cannot occur for simple Galois groups associated with extensions having no
decomposition to simpler extensions. They could be regarded as correlates for irreducible
primal ideas. In Eastern philosophies the notion of state empty of thoughts could correspondto
these cognitive states in which SSFRs cannot occur.

4. An analogous process should make sense also in the gravitational sector and would mean
the splitting of K = nA appearing as a factor ngr = Kp to prime factors so that the sizes
of CDs involved with the resulting structure would be reduced. This process would reduce
to a simultaneous measurement cascade in hyperbolic and trigonometric Abelian extensions.
The IR cutoffs having interpretation as coherence lengths would decrease in the process as
expected. Nature would be performing ordinary prime factorization in the gravitational degrees
of freedom.

Cognitive process would also have a geometric description.

1. For the algebraic EQs, the geometric description would be as a decay of n-sheeted 4-surface
with respect to M4 to a union of ni-sheeted 4-surfaces by SSFRs. This would take place for
flux tubes mediating all kinds of interactions.
In gravitational degrees of freedom, that is for trascendental EQs, the states with ngr = Kp
having bundles of Kp flux tubes would deca to flux tubes bundles of ngr,i = Kip, where Ki is a
prime dividing K. The quantity log(K) would be conserved in the process and is analogous to
the corresponding conserved quantity in arithmetic quantum field theories (QFTs) and relates
to the notion of infinite prime inspired by TGD [K94].

2. This picture leads to ask whether one could speak of cognitive analogs of particle reactions
representing interactions of ”thought bubbles” i.e. space-time surfaces as correlates of cogni-
tion. The incoming and outgoing states would correspond to a Cartesian product of simple
subgroups: G =

∏×
i Hi. In this composition the order of factors does not matter and the sit-

uation is analogous to a many particle system without interactions. The non-commutativity
in general case leads to ask whether quantum groups might provide a natural description of
the situation.

3. Interestingly, Equivalence Principle is consistent with the splitting of gravitational flux tube
structures to smaller ones since gravitational binding energies given by Bohr model in 1/r
gravitational potential do not depend on the value of ~gr if given by Nottale formula ~gr =
GMm/v0 [L122]. The interpretation would be in terms of spontaneous quantum decoherence
taking place as a decay of gravitational flux tube bundles as the distance from the source
increases.
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11.4.4 Still some questions about M8 −H duality

There are still on questions to be answered.

1. The map pk → mk = ~effpk/p · p defining M8 −H duality is consistent with Uncertainty
Principle but this is not quite enough. Momenta in M8 should correspond to plane waves in
H.
Should one demand that the momentum eigenstate as a point of cognitive representation
associated with X4 ⊂ M8 carrying quark number should correspond to a plane wave with
momentum at the level of H = M4×CP2? This does not make sense since X4 ⊂ CD contains
a large number of momenta assignable to fundamental fermions and one does not know which
of them to select.

2. One can however weaken the condition by assigning to CD a 4-momentum, call it P . Could
one identify P as

(a) the total momentum assignable to either half-cone of CD

(b) or the sum of the total momenta assignable to the half-cones?

The first option does not seem to be realistic. The problem with the latter option is that
the sum of total momenta is assumed to vanish in ZEO. One would have automatically zero
momentum planewave. What goes wrong?

1. Momentum conservation for a single CD is an ad hoc assumption in conflict with Uncertainty
Principle, and does not follow from Poincare invariance. However, the sum of momenta
vanishes for non-vanishing planewave when defined in the entire M4 as in QFT, not for
planewaves inside finite CDs. Number theoretic discretization allows vanishing in finite vol-
umes but this involves finite measurement resolution.

2. Zero energy states represent scattering amplitudes and at the limit of infinite size for the
large CD zero energy state is proportional to momentum conserving delta function just as
S-matrix elements are in QFT. If the planewave is restricted within a large CD defining the
measurement volume of observer, four-momentum is conserved in resolution defined by the
large CD in accordance with Uncertainty Principle.

3. Note that the momenta of fundamental fermions inside half-cones of CD in H should be
determined at the level of H by the state of a super-symplectic representation as a sum of the
momenta of fundamental fermions assignable to discrete images of momenta in X4 ⊂ H.

M8 −H-duality as a generalized Fourier transform

This picture provides an interpretation for M8−H duality as a generalization of Fourier transform.

1. The map would be essentially Fourier transform mapping momenta of zero energy as points of
X4 ⊂ CD ⊂M8 to plane waves in H with position interpreted as position of CD in H. CD
and the superposition of space-time surfaces inside it would generalize the ordinary Fourier
transform . A wave function localized to a point would be replaced with a superposition
of space-time surfaces inside the CD having interpretation as a perceptive field of a conscious
entity.

2. M8 − H duality would realize momentum-position duality of wave mechanics. In QFT this
duality is lost since space-time coordinates become parameters and quantum fields replace
position and momentum as fundamental observables. Momentum-position duality would
have much deeper content than believed since its realization in TGD would bring number
theory to physics.

How to describe interactions of CDs?

Any quantum coherent system corresponds to a CD. How can one describe the interactions of
CDs? The overlap of CDs is a natural candidate for the interaction region.

1. CD represents the perceptive field of a conscious entity and CDs form a kind of conscious atlas
for M8 and H. CDs can have CDs within CDs and CDs can also intersect. CDs can have
shared sub-CDs identifiable as shared mental images.

2. The intuitive guess is that the interactions occur only when the CDs intersect. A milder
assumption is that interactions are observed only when CDs intersect.
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3. How to describe the interactions between overlapping CDs? The fact the quark fields are
induced from second quantized spinor fields in in H resp. M8 solves this problem. At the
level of H, the propagators between the points of space-time surfaces belonging to different
CDs are well defined and the systems associated with overlapping CDs have well-defined quark
interactions in the intersection region. At the level of M8 the momenta as discrete quark
carrying points in the intersection of CDs can interact.

Zero energy states as scattering amplitudes and subjective time evolution as sequence
of SSFRs

This is not yet the whole story. Zero energy states code for the ordinary time evolution in the QFT
sense described by the S-matrix. What about subjective time evolution defined by a sequence of
”small” state function reductions (SSFRs) as analogs of ”weak” measurements followed now and
then by BSFRs? How does the subjective time evolution fit with the QFT picture in which single
particle zero energy states are planewaves associated with a fixed CD.

1. The size of CD increases at least in statistical sense during the sequence of SSFRs. This
increase cannot correspond to M4 time translation in the sense of QFTs. Single unitary
step followed by SSFR can be identified as a scaling of CD leaving the passive boundary
of the CD invariant. One can assume a formation of an intermediate state which is quantum
superposition over different size scales of CD: SSFR means localization selecting single size for
CD. The subjective time evolution would correspond to a sequence of scalings of CD.

2. The view about subjective time evolution conforms with the picture of string models in which
the Lorentz invariant scaling generator L0 takes the role of Hamiltonian identifiable in terms
of mass squared operator allowing to overcome the problems with Poincare invariance. This
view about subjective time evolution also conforms with super-symplectic and Kac-Moody
symmetries of TGD.
One could perhaps say that the Minkowski time T as distance between the tips of CDs corre-
sponds to exponentiated scaling: T = exp(L0t). If t has constant ticks, the ticks of T increase
exponentially.

The precise dynamics of the unitary time evolutions preceding SSFRs has remained open.

1. The intuitive picture that the scalings of CDs gradually reveal the entire 4-surface determined
by polynomial P in M8: the roots of P as ”very special moments in the life of self” would
correspond to the values of time coordinate for which SSFRs occur as one new root emerges.
These moments as roots of the polynomial defining the space-time surface would correspond
to scalings of the size of both half-cones for which the space-time surfaces are mirror images.
Only the upper half-cone would be dynamical in the sense that mental images as sub-CDs
appear at ”geometric now” and drift to the geometric future.

2. The scaling for the size of CD does not affect the momenta associated with fermions at the
points of cognitive representation in X4 ⊂ M8 so that the scaling is not a genuine scaling of
M4 coordinates which does not commute with momenta. Also the fact that L0 for super
symplectic representations corresponds to mass squared operator means that it commutes with
Poincare algebra so that M4 scaling cannot be in question.

3. The Hamiltonian defining the time evolution preceding SSFR could correspond to an ex-
ponentiation of the sum of the generators L0 for super-symplectic and super-Kac Moody
representations and the parameter t in exponential corresponds to the scaling of CD assignable
to the replaced of root rn with root rn+1 as value of M4 linear time (or energy in M8). L0

has a natural representation at light cone boundaries of CD as scalings of light-like radial
coordinate.

4. Does the unitary evolution create a superposition over all over all scalings of CD and does
SSFR measure the scale parameter and select just a single CD?
Or does the time evolution correspond to scaling? Is it perhaps determined by the increase of
CD from the size determined by the root rn as ”geometric now” to the root rn+1 so that one
would have a complete analogy with Hamiltonian evolution? The scaling would be the ratio
rn+1/rn which is an algebraic number.
Hamiltonian time evolution is certainly the simplest option and predicts a fixed arrow of time
during SSFR sequence. L0 identifiable essentially as a mass squared operator acts like
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conjugate for the logarithm of the logarithm of light-cone proper time for a given half-cone.
One can assume that L0 as the sum of generators associated with upper and lower half-cones
if the fixed state at the lower half-cone is eigenstate of L0.

How does this picture relate to p-adic thermodynamics in which thermodynamics isdeter-
mined by partition function which would in real sector be regarded as a vacuum expectation
value of an exponential exp(iL0t) of a Hamiltonian for imaginary time t = iβ β = 1/T defined
by temperature. L0 is proportional to mass squared operator.

1. In p-adic thermodynamics temperature T is dimensionless parameter and β = 1/T is integer
valued. The partition function as exponential exp(−H/T ) is replaced with pβL0), β = n,
which has the desired behavior if L0 has integer spectrum. The exponential form eL0/TR),
βR = nlog(p) equivalent in the real sector does not make sense p-adically since the p-adic
exponential function has p-adic norm 1 if it exists p-adically.

2. The time evolution operator exp(−iL0t) for SSFRs (t would be the scaling parameter) makes
sense for the extensions of p-adic numbers if the phase factors for eigenstates are roots of
unity belonging to the extension. t = 2πk/n since L0 has integer spectrum. SSFRs would
define a clock. The scaling exp(t) = exp(2πk/n) is however not consistent with the scaling
by rn−1/rn.
Both the temperature and scaling parameter for time evolution by SSFRs would be quantized
by number theoretical universality. p-Adic thermodynamics could have its origins in the
subjective time evolution by SSFRs.

3. In the standard thermodynamics it is possible to unify temperature and time by introducing
a complex time variable τ = t + iβ, where β = 1/T is inverse temperature. For the space-
time surface in complexified M8, M4 time is complex and the real projection defines the
4-surface mapped to H. Could thermodynamics correspond to the imaginary part of the time
coordinate?
Could one unify thermodynamics and quantum theory as I have indeed proposed: this pro-
posal states that quantum TGD can be seen as a ”complex square root” of thermodynam-
ics. The exponentials U = exp(τL0/2) would define this complex square root and thermo-
dynamical partition function would be given by UU† = exp(−βL0).

11.5 Can one construct scattering amplitudes also at the
level of M 8?

M8 −H duality suggests that the construction is possible both at the level of H and M8. These
pictures would be based on differential geometry on one hand and algebraic geometry and number
theory on the other hand. The challenge is to understand their relationship.

11.5.1 Intuitive picture

H picture is phenomenological but rather detailed and M8 picture should be its pre-image under
M8 −H duality. The following general questions can be raised.

1. Can one construct the counterparts of the scattering amplitudes also at the level of M8?

2. Can one use M8 −H duality to map scattering diagrams in M8 to the level of H?

Consider first the notions of CD and sub-CD.

1. The intuitive picture is that at the level of H that one must surround partonic vertices with
sub-CDs, and assign the external light-like momenta with the ends of propagator lines from
the boundaries of CD and other sub-CDs. The incoming momenta pk would be assigned to
the boundary of sub-CD.

2. What about the situation in M8? Sub-CDs must have different origin in the general case since
the momentum spectrum would be shifted. Therefore the sub-CDs have the same tip - either
upper or lower tip, and have as their boundary part of either boundary of CD. A hierarchy of
CDs associated with the same upper or lower tip is suggestive and the finite maximal size of
CD in H gives IR cutoff and the finite maximal size of CD in M8 gives UV cutoff.



11.5. Can one construct scattering amplitudes also at the level of M8? 499

3. Momentum conservation at the vertices in M8 could decompose the diagram to sub-diagrams
for which the momentum conservation is satisfied. On the basis of QFT experience, one
expects that there are some minimal diagrams from which one can construct the diagram: in
the TGD framework this diagram would describe 4-quark scattering. The condition that the
momenta belong to the extension of rationals gives extremely strong constraints and it is not
clear that one obtains any solutions to the conditions unless one poses some conditions on the
polynomials assigned with the two boundaries of CD.
The two half-cones (HCs) of CD contain space-time surfaces in M8 as roots of polynomi-
als P1(o) and P2(2T − o) which need not be identical. The simplest solution is P2(o) =
P1(2T − o): the space-time surfaces at HCs would be mirror images of each other. This gives
P1(T, ImR(o)) = P1(T −ImR(o)) Since P1 depends on t2−r2 only, the condition is identically
satisfied for both options.
There are two options for the identification of the coordinate t.
Option (a): t is identified as octonionic real coordinate oR identified and also time
coordinate as in the original option. In the recent option octonion oR would correspond
to the Euclidian analog of time coordinate. The breaking of symmetry from SO(4) to
SO(3) would distinguish t as a Newtonian time. The M4 projection of CD8 gives a union
of future and past directed light-cones with a common tip rather than CD4 in M4 at the
level of M8 . Both incoming and outgoing momenta have the same origin automatically. This
identification seems to be the natural one at the level of M8.
Option (b): t is identified as a Minkowski time coordinate associated with the imaginary
unit I1 in the canonical decomposition {I1, iI3, iI5, iI7}. The HC at o = 0 would be shifted
to O = (0, 2T, 0...0) and reverted. M4 projection would give CD4 so that this option is
consistent with ZEO. This option is natural at the level of Hbut not at the level of M8.
If Option (a) is realized at the level of M8 and Option b) at the level of H, as seems
natural, a time translation of the past directed light-cone by T in M4 ⊂ H is required
to give CD4. The momentum spectra of the two HCs differ only by sign and at least a
scattering diagram in which all points are involved is possible. In fact all the pairs of subsets
with opposite momenta are allowed. These however correspond to a trivial scattering. The
decomposition to say 4-vertices with common points involving momentum space propagator
suggests a decomposition into sub-CDs. The smaller the sub-CDs at the tips of the CD, the
smaller the momenta are and the better is the IR resolution.

4. The proposal has been that one has a hierarchy of discrete size scales for the CDs. Momentum
conservation gives a constraint on the positions of quarks at the ends of propagator lines in
M8 mapped to a constraint for their images in H: the sum of image points in H is however
not vanishing since inversion is not a linear map.

5. QFT intuition would suggest that at the level of M8 the scattering diagrams decompose to sub-
diagrams for which momentum conservation is separately satisfied. If two such sub-diagrams
A and B have common momenta, they correspond to internal lines of the diagram involving
local propagator Dp, whose non-local counterpart at the level of H connects the image point
to corresponding point of all copies of B.
The usual integral over the endpoint of the propagator line D(x, y) at space-time level should
correspond to a sum in which the H image of B is shifted in M4. Introduction of a large
number of copies of H image of the sub-diagram looks however extremely ugly and challenges
the idea of starting from the QFT picture.
What comes in mind is that all momenta allowed by cognitive representation and summing up
to zero define the scattering amplitude as a kind of super-vertex and that Yanigian approach
allows this construction.

11.5.2 How do the algebraic geometry in M8 and the sub-manifold ge-
ometry in H relate?

Space-time surfaces in H have also Euclidian regions - in particular wormhole contacts - with
induced metric having Euclidian signature due to the large CP2 contribution to the induced metric.
They are separated from Minkowskian regions by a light-like 3-surfaces identifiable as partonic
orbits at which the induced metric becomes degenerate.
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1. The possible M8 counterparts of these regions are expected to have Euclidian signature of
the number theoretic metric defined by complexified octonion inner product, which must be
real in these regions so that the coordinates for the canonical basis {I1, iI3, iI5, iI7} are either
imaginary or real. This allows several signatures.

2. The first guess is that the energy p0 assignable to I1 becomes imaginary. This gives tachyonic
p2. The second guess is that all components of 3-momentum {iI3, iI5, iI7} become imaginary
meaning that the length of 3-momentum becomes imaginary.

3. One cannot exclude the other signatures, for instance the situation in which 1 or 2 compo-
nents of the 3-momentum become imaginary. Hence the transition could occur in 3 steps as
(1,−1,−1−, 1)→ (1, 1,−1,−1)→ (1, 1, 1,−1)→ (1, 1, 1, 1). The values of p2 ≡ Re(p2

c) would
be non-negative and also their images in M4 ⊂ H would be inside future light-cone. This could
relate to the fact that all these signatures are possible inthe twistor Grassmannian approach.

4. These regions belong to the complex mass shell p2
c = rn = m2

0 = rn appearing as a root to the
co-associativity condition X = 0. This gives the conditions

Re(pc) · Im(p2
c) = Im(rn) ,

Re(p2
c) ≡ p2 = Im(p2

c) +m2
n ,

m2
n ≡ Re(rn) ≥ 0 .

(11.5.1)

Consider first the case (1, 1, 1, 1).

1. The components of pc are either real or imaginary. Using the canonical basis {I1, iI3, iI5, iI7}
the components of pc are real in the Minkowskian region and imaginary in the totally time-
like Euclidian region. One has for the totally time-like momentum p = (p0, iIm(p3)) in the
canonical basis.
This would give

Re(p2
c) ≡ p2 = p2

0 = −Im(p3)2 +m2
n . (11.5.2)

The number theoretic metric is Euclidian and totally time-like but one has p2 ≥ 0 in the range
[m2

0, 0]. This region is a natural counterpart for an Euclidian space-time region in H. The
region p2 ≥ m2

0 has Minkowskian signature and counterpart for Minkowskian regions in H.
The region 0 ≤ p2 < m2

0 is a natural candidate for an Euclidian region in M4.
Remark: A possible objection is that Euclidian regions in Oc are totally time-like and totally
space-like in H.

2. The image of these regions under the map Re(pk) → Mk under inversion plus octonionic

conjugation defined as pk → ~effpk/p2 (to be discussed in more detail in the sequel) consists
of points Mk in the future light-cone of M4 ⊂ H. The image of the real Euclidian region of
Oc with p2 ∈ [0,m2

0) is mapped to the region MkMk < ~2
eff/m

2
0 of M4 ⊂ H.

3. The contribution of CP2 metric to the induced metric is space-like so that it can become
Euclidian. This would naturally occur in the image of a totally time-like Euclidian region and
this region would correspond to small scales MkMk < ~2

eff/m
2
0. The change of the signature

should take place at the orbits of partonic 2-surfaces and the argument does not say anything
about this. The boundary of between the two regions corresponds to momenta p = (p0, 0)
which is is a time-like line perhaps identifiable as the analog of the light-like geodesic defining
theM4 projection of CP2 type extremal, which is an idealized solution to actual field equations.

This transition does not explain the M8 counterpart of the 3-D light-like partonic orbit to
which the light-light geodesic thickens in the real situation?

The above argument works also for the other signatures of co-associative real sub-spaces
and provides additional insights. Besides the Minkowskian signature, 3 different situations with
signatures (1, 1, 1, 1), (1,−1, 1, 1), and (1,−1 − 1, 1) with non-space-like momentum squared are
possible.

The following formulas list the signatures, the expressions of real momentum squared, and
dimension D of the transition transition Im(p2

c) = 0 as generalization of partonic orbit and the
possible identification of the transition region.
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Signature p2, D
(+,−,−,+) : (p0)2 − (p1)2 − (p2)2 = −Im(p3)2 +m2

n 3 ,
Identification partonic orbit .

Signature p2 D
(+,−,+,+) : (p0)2 − (p1)2 = −Im(p2)2 − Im(p3)2 +m2

n , 2 ,
Identification string world sheet .

Signature p2 D
(+,+,+,+) : (p0)2 = −Im(p1)2 − Im(p2)2 − Im(p3)2 +m2

n , 1 .
Identification string boundary .

(11.5.3)

Since the map of the co-associative normal space to CP2 does not depend on the signature, M8−H
duality is well defined for all these signatures. One can ask whether a single transition creates
partonic orbit, two transitions a string world sheet and 3 transitions ends of string world sheet
inside partonic orbit or even outside it.

11.5.3 Quantization of octonionic spinors

There are questions related to the quantization of octonionic spinors.

1. Co-associative gamma matrices identified as octonion units are associative with respect to their
octonionic product so that matrix representation is possible. Do second quantized octonionic
spinors in M8 make sense? Is it enough to second quantize them in M4 as induced octonionic
spinors? Are the anti-commutators of oscillator operators Kronecker deltas or delta functions
in which case divergence difficulties might be encountered? This is not needed since the
momentum space propagators can be identified as those for E8

c restricted to X4
r as a subspace

with real octonion norm.
The propagators are just massless Dirac propagators for the choice of M4 for which light-like
M8 momentum reduces to M4 momentum. Could one formulate the scattering amplitudes
using only massless inverse propagators as in the twistor Grassmannian approach?This does
not seem to be the case.

2. Could the counterpart of quark propagator as inverse propagator in M8 as the idea about
defining momentum space integrals as residue integrals would suggest? This would allow
on-mass-shell propagation like in twistor diagrams and would conform with the idea that
inversion relates M8 and H descriptions. This is suggested by the fact that no integration
over intermediate virtual momenta appears in the graphs defined by the algebraic points of
the pre-images of the partonic 2-surfaces X2

r .

How to identify external quarks? Note that bosons would consist of correlated quark-antiquark
pairs with the propagator obtained as a convolution of quark propagators. The correlation would
be present for the external states and possibly also for the states in the diagram and produced by
topologically.

1. The polynomial P and the P = 0 surface with 6-D real projection X6
r is not affected by

octonion automorphisms. Quarks with different states of motion would correspond to the
same P but to different choices of M4 as co-associative subspace for M8

c . P could be seen as
defining a class of scattering diagrams. P determines the vertices.

2. The space-time surface associated with a quark carrying given 4-momentum should be obtain-
able by a Lorenz transformation in SO(3, 1) ⊂ G2,c to give it light-like M4 so that complexified
octonionic automorphisms would generate 3-surfaces representing particles. If M4 ⊂M8 and
thus the CD associated with the quark is chosen suitably, the quark is massless. Any incoming
particle would be massless in this frame.
Lorentz invariance however requires a common Lorentz frame provided by the CD. The mo-
mentum of a quark in CD would be obtained by G2,c transformation. In the frame of CD the
external quark momenta arriving to the interior of CD at vertices associated with X3

r ∩Y 3
r are

time-like. Momentum conservation would hold in this frame. The difference between massive
constituent quarks and massless current quarks could be understood as reflecting M8 picture.
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To sum up, the resulting picture is similar to that at the level of H these diagrammatic
structures would be mapped to H by momentum inversion. Quantum classical correspondence
would be very detailed providing both configuration space and momentum space pictures.

11.5.4 Does M8−H duality relate momentum space and space-time rep-
resentations of scattering amplitudes?

It would seem that the construction of the scattering amplitudes is possible also at the level of
M8 [L111]. M8 picture would provide momentum representation of scattering diagrams whereas
H picture would provide the space-time representation.

Consider first a possible generalization of QFT picture involving propagators and vertices.

1. At first it seems that it is not possible to talk about propagation at the level of momentum
space: in positive energy ontology nothing propagates in momentum space if the propagator
is a free propagator Dp! In ZEO this is not quite so. One can regard annihilation operators
as creation operators for the fermionic vacuum associated with the opposite HC of CD (or
sub-CD): one has momentum space propagation from p to −p! The expressions of bosonic
charges would be indeed bi-local with annihilation and creation operators associated with the
mirror paired points in the two HCs of CD forming pairs. The momentum space propagator
Dp would actually result from the pairing of creation creation operators with the opposite
values of p and the notation D(p,−p) would be more appropriate.

2. In QFT interaction vertices are local in space-time but non-local in momentum space. The
n-vertex conserves the total momentum. Therefore one should just select points of M8 and
they are indeed selected by cognitive representation and assign scattering amplitude to this
set of points. To each point one could assign momentum space propagator of quark in M8

c but
it would not represent propagation! The vertex would be a multilocal entity defined by the
vertices defining the masses involved at light cone boundary and mass shells.
The challenge would be to identify these vertices as poly-local entities. In the QFT picture
there would be a set of n-vertices with some momenta common. What could this mean now?
One would have subset sets of momenta summing up to zero as vertices. If two subsets have a
common momentum this would correspond to a propagator line connecting them. Should one
decompose the points of cognitive representation so that it represents momentum space variant
of Feynman graph? How unique this decomposition is and do this kind of decompositions exist
unless one poses the condition that the total momenta associated with opposite boundaries
sum up to zero as done in ZEO. A given n-vertex in the decomposition means the presence of
sub-CDs for which the external momenta sum up to zero. This poses very tight constraints
on the cognitive representation, and one can wonder they can be satisfied if the cognitive
representation is finite as it is in the generic case.

3. Note that for given a polynomial P allowing only points in cognitive representation, one would
not have momentum space integrations as in QFT: they could however come from integrations
over the polynomial coefficients and would correspond to integration of WCW. In adelic picture
one allows only rational coefficients for the polynomials. This strongly suggests that the twistor
Grasmmannian picture [B21, ?, B43, B12] in which residue integral in the momentum space
gives as residues inverse quark propagators at the poles. M8 picture would represent the end
result of this integration and only on mass shell quarks would be involved. One could even
challenge the picture based on propagators and vertices and start from Yangian algebra based
on the generalization of local symmetries to multilocal symmetries [A29, A71] [B17] [L42].

4. In the case of H restriction of the second quantized free quark field of H to space-time surface
defines the propagators. In the recent case one would have a second quantized octonionic
spinor field in M8. The allowed modes of H spinor field are just the co-associative modes for
fixed selection of M4 analogous to momentum space spinors and restricted to Y 3

r . One could
speak of wave functions at Y 3

r , which is very natural since they correspond to mass shells.
The induced spinor field would have massless part corresponding to wave functions at the M4

light-cone boundary and part corresponding to X3 at which the modes would have definite
mass. P = 0 would select a discrete set of masses. Could second quantization have the
standard meaning in terms of anti-commutation relations posed on a free M8 spinor field. In
the case of M8

c one avoids normal ordering problems since there is no Dirac action. The anti-
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commutators however have singularities of type 7-D delta function. The anti-commutators
of oscillator operators at the same point are the problem. If only a single quark oscillator
operator at a given point of M8 is allowed since there is no local action in coordinate space
with the interaction part producing the usual troubles.

5. Could one perform a second quantization for E8 spinor field using free Dirac action? Could
one restrict the expansion of the spinor field to co-associative space-time surfaces giving
oscillator operators at the points of cognitive representation with the additional restriction
to the pre-image of given partonic 2-surface, whose identification was already considered.
Scattering amplitudes would involve n-vertices consisting of momenta summing up to zero
and connected to opposite incoming momenta at the opposite sides of the HCs with the
same tip in M8. Scattering amplitude would decompose to sub-diagrams defining a cluster
decomposition, and would correspond to sub-CDs. The simplest option is that there
are no internal propagator lines. The vanishing of the total momenta poses stringent
conditions on the points of cognitive representation.
Normal ordering divergences can however produce problems for this option in the case of

bosonic charges bilear in oscillator operators. At the level of H the solution came from
a bilocal modified Dirac action leading to bilocal expressions for conserved charges. Now
Yangian symmetry suggests a different approach: local vertices in momentum space can involve
only commuting oscillator operators.
Indeed, in ZEO one can regard annihilation operators as creation operators for the fermionic
vacuum associated with the opposite HC of CD (or sub-CD). The expressions of bosonic
charges would be indeed bi-local with annihilation and creation operators associated with
the mirror paired points in the two HCs of CD forming pairs. As already noticed, also the
momentum space propagator Dp = D(p,−p) would be also a bi-local object.

6. This is not enough yet. If there is only a single quark at given momentum, genuine particle
creation is not possible and the particle reactions are only re-arrangements of quarks but
already allowing formation of bosons as bound states of quarks and antiquarks. Genuine
particle creation demands local composites of several quarks at the same point p having
interpretation as a state with collinear momenta summing up to p and able to decay to states
with the total momentum p. This suggests the analog of SUSY proposed in [L81]. Also
Yangian approach is highly suggestive.
To sum up, momentum conservation together with the assumption of finite cognitive repre-
sentations is the basic obstacle requiring new thinking.

11.5.5 Is the decomposition to propagators and vertices needed?

One can challenge the QFT inspired picture.

1. As already noticed, the relationship P1(t) = P (2T−t) makes it possible to satisfy this condition
at least for the entire set of momenta. This does not yet allow non-trivial interactions without
posing additional conditions on the momentum spectrum. This does not look nice. One can
ask whether there is a kind of natural selection leading to polynomials defining space-time
surfaces allowing cognitive representations with vertex decompositions and polynomials P (t)
and Pr(t) without this symmetry? This idea looks ugly. Or could evolution start from simplest
surfaces allowing 4 vertices and lead to an engineering of more complex scattering diagrams
from these?

2. The map of momentum space propagators regarded as completely local objects in M8 to H
propagators is second ugly feature. The beauty and simplicity of the original picture would
be lost by introducing copies of sub-diagrams mapped to the various translations in H.

3. The Noether charges of the Dirac action in H fail to give rise to 4-fermion vertex operator.
The theory would be naturally just free field theory if one assumes cognitive representations.

The first heretic question is whether the propagators are really needed at the level of mo-
mentum space. This seems to be the case.

1. In ZEO the propagators pair creation and operators with opposite 4-momenta assignable to the
opposite HCs of CD having conjugate fermionic vacua (Dirac sea of negative energy fermions
and Dirac sea of positive energy fermions) so that momentum space propagators D(p,−p)
are non-local objects. The propagators would connect positive and negative energy fermions
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at the opposite HCs and this should be essential in the formulation of scattering amplitudes.
They cannot be avoided.

2. The propagators would result from the contractions of fermion oscillator operators giving a
7-D delta function at origin in continuum theory. This catastrophe is avoided in the number
theoretic picture. Since one allows only points withM8 coordinates in an extension of rationals,
one can assume Kronecker delta type anti-commutators. Besides cognitive representations, this
would reflect the profound difference between momentum space and space-time.
This would also mean that the earlier picture about the TGD analog of SUSY based on local
composites of oscillator operators [L81] makes sense at the level of M8. The composites could
be however local only for oscillator operators associated with the HC of CD. With the same
restriction they could be local also in theH picture.

What about vertices? Could Yangian algebra give directly the scattering amplitudes? This
would simplify dramatically the M8 − H duality for transition amplitudes. For this option the
P1(t) = P (2T − t) option required by continuity would be ideal.

1. Without vertices the theory would be a free field theory. The propagators would connect
opposite momenta in opposite HCs of CD. Vertices are necessary and they should be associated
with sub-CDs. Unless sub-CDs can have different numbers of positive and negative energy
quarks at the opposite HCs, the total quark number is the same in the initial and final states
if quarks and antiquarks associated with bosons as bound states of fermion and antiquark are
counted. This option would require minimally 4-quark vertex having 2 fermions of opposite
energies at the two hemi-spheres of the CD. A more general option looks more plausible. One
obtains non-trivial scattering amplitudes by contracting fermions assigned to the boundary P
(F ) past (future) HC of CD to the past (future) boundary Psub (Fsub) of a sub-CD. Sub-CD
and CD must have an opposite arrow of time to get the signs of energies correctly.
Sub-CDs would thus make particle creation and non-trivial scattering possible. There could
be an arbitrary number of sub-CDs and they should be assignable to the pre-images of the
partonic 2-surfaces X2

r if the earlier picture is correct. The precise identification of the partonic
2-surfaces is still unclear as also the question whether light-like orbits of partonic 2-surfaces
meet along their ends in the vertices.

2. As in the case of H, one could assign the analogs of n-vertices at pre-images of partonic 2-
surfaces at X2

r representing the momenta of massive modes of the octonionic Dirac equation
and belonging to the cognitive representations. The idea is to use generators of super-Yangian
algebra to be discussed later which are both bosonic and fermionic. The simplest construction
would assign these generators to the vertices as points in cognitive representation.
An important point is that Yangian symmetry would be a local symmetry at the level of
momentum space and correspond to non-local symmetry at the level of space-time rather than
vice versa as usually. The conserved currents would be local composites of quark oscillator
operators with same momentum just as they are in QFTs at space-time level representing
parallelly propagating quarks and antiquarks.
The simplest but not necessary assumption is that they are linear and bilinear in oscillator
operators associated with the same point of M8 and thus carrying 8-momenta assignable to
the modes of E8 spinor field and restricted to the co-associative 4-surface. Their number of
local composites is finite and corresponds to the number 8 of different states of 8-spinors of
given chirality.
Also a higher number of quarks is possible, and this was indeed suggested in [L81]. The
proposal was that instance leptons would correspond to local composites of 3 quarks. The
TGD based view about color allows this. These states would be analogous to the monomials
of theta parameters in the expansion of super-field. The H picture allows milder assumptions:
leptonic quarks reside at partonic 2-surface at different points but this is not necessary.

3. Instead of super-symplectic generators one has G2,c as the complexified automorphism group.
Also the Galois group of the extension acts as an automorphism group and is proposed to have
a central role in quantum TGD with applications to quantum biology [L36, L109]. As found,
G2,c acts as an analog of gauge or Kac-Moody group. Yangian has analogous structure but
the analogs of conformal weights are non-negative.

4. The identification of the analogs of the poly-local vertex operators as produces of charges
generators associated with FHC anbd PHC is the basic challenge. They should consist of
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quark creation operators (annihilation operators being associated as creation operators at the
opposite HC) and be generators of infinitesimal symmetries which in number theoretic physics
would correspond instead of isometries of WCW to the octonionic automorphism group G2

complexified to G2,c containing also the generators of SO(4) ⊂ G2 and thus also those of
Lorentz group SO(1, 3) ⊂ G2,c.
The construction Noether charges of E8 second quantized spinor field at momentum space
representation gives bilinear expressions in creation and annihilation operators associated with
opposite 3-momenta and would have a single fermion in a given HC. This is not enough: there
should be at least 4 fermions.

What strongly suggests itself are Yangian algebras [A29] [L42] having poly-local generators
and considered already earlier and appearing in the twistor Grassmannian approach [B21, ?]. The
sums of various quantum numbers would vanish for the vertex operators. These algebras are
quantum algebras and the construction of n-vertices could involve co-algebra operation. What is
new as compared to Lie algebras is that Yangian algebras are quantum algebras having co-algebra
structure allowing to construct n-local generators representing scattering amplitudes. It might be
possible replace oscillator operators with the quantum group counterparts.

11.5.6 Does the condition that momenta belong to cognitive represen-
tations make scattering amplitudes trivial?

Yangian symmetry is associated with 2-D integrable QFTs which tend to be physically rather
uninteresting. The scattering is in the forward direction and only phase shifts are induced. There
is no particle creation. If the relationship P1(t) = P (2T − t) is applied the momentum spectra for
FHC and PHC differ only by the sign. If all momenta are involved and the cognitive representations
are finite, the situation would be the same! Also the existence of cluster compositions involving
summations of subsets of momenta to zero is implausible. Something seems to go wrong!

The basic reason for the problem is the assumption that the momenta belong to cognitive
representations assumed to be finite as they indeed are in the generic case. But are they finite in
the recent situation involving symmetries?

1. The assumption that all possible momenta allowed by cognitive representation are involved,
allows only forward scattering unless there are several subsets of momenta associated with
either HC such that the momenta sum-up to the same total momentum. This would allow the
change of the particle number. The subsets Si with same total momentum ptot in the final
state could save as final states of subsets Sj with the same total momentum p in the initial
state. What could be the number theoretical origin of this degeneracy?

2. In the generic case the cognitive representation contains only a finite set of points (Fermat
theorem, in which one considers rational roots of xn + yn = zn, n > 2 is a basic example of
this) . There are however special cases in which this is not true. In particular, M4 and its
geodesic sub-manifolds provide a good example: all points in the extension of rationals are
allowed in M4 coordinates (note that there are preferred coordinates in the number theoretic
context).
The recent situation is indeed highly symmetric due to the Lorentz invariance of space-time
surfaces as roots reducing the equations to ordinary algebraic equations for a single complex
variable. X = 0 condition gives as a result a2

c = constant complex hyperboloid with a real
mass hyperboloid as a real projection. a2

c = rn is in the extension of rationals as a root of n:th
order polynomial. One has the condition Re(m2)2 − Im(m2) = Re(rn) giving X4

r a slicing by
real mass hyperboloids. If Im(m) and the spatial part of Re(m) belongs to the extension, one
has for real time coordinate t =

√
r2
M + Im(m2) + rn. If r2

M + Im(m)2 + rn is a square in the
extension also t belongs to the extension. Cognitive representation would contain an infinite
number of points and the it would be possible to have non-trivial cluster decompositions.
Scattering amplitude would be a sum over different choices of the momenta of the external
particles satisfying momentum conservation condition.
As found, the intersection of X4

r and X6
r is either empty or X4

r belongs to X6
r , Cognitive

representations would have an infinite number of points also now by the previous argument.
Partonic 2-surfaces at X3

r would be replaced with 3-D surfaces in X4
r in this situation and

would contain a large number of roots. The partonic 2-surfaces would be still present and
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correspond to the intersections of incoming space-time surfaces of quarks inside X6
r . These

surfaces would also contain the vertices.

3. Could number theoretic evolution gradually select space-time surfaces for which the number
theoretic dynamics involving massive quarks is possible? First would be generic polynomials
for which X3

r would be empty and only massless quarks arriving at the light-cone boundary
would be possible. After that surfaces allowing non-empty X3

r and massive quarks would
appear. There is a strong resemblance with the view about cosmological evolution starting
from massless phases and proceeding as a sequence of symmetry breakings causing particle
massivation. Now the massivation would not be caused by Higgs like fields but have purely
number theoretic interpretation and conform with the p-adic mass calculations [K60].
Also a cognitive explosion would occur since these space-time surfaces would be cognitively
superior after the emergence of massive quarks. If this picture has something to do with reality,
the space-time surfaces contributing to the scattering amplitudes would be very special and
interactions could be seen as a kind of number theoretical resonance phenomenon.

4. Even is not enough to obtain genuine particle reaction instead of re-arrangements: one must
have also local composites of collinear quarks at the same momentum p identifiable as the
sum of parallel momenta discussed in [L81]. This kind of situation is also encountered for
on-mass-shell vertices in twistor Grassmannian approach. The local composites could decay
to local composites with a smaller number of quarks but respecting momentum conservation.
Here the representations of Yangian algebra would come in rescue.

11.5.7 Momentum conservation and on-mass-shell conditions for cogni-
tive representations

Momentum conservation and on-mass shell-conditions are very powerful for cognitive representa-
tions, which in the generic case are finite. At mass shells the cognitive representations consist of
momenta in the extension of rationals satisfying the condition p2 = Re(rn), rn a complex root of
X, which is polynomial of degree n in p2 defined by the odd part of P . If

√
Re(rn) does not belong

to the extension defined by P , it can be extended to contain also
√
Re(rn).

For Pythagorean triangles in the field of rationals, mass shell condition gives for the mo-
mentum components in extension an equation analogous to the equation k2 + l2 = m2, which can
be most easily solved by noticing that the equation has rotation group SO(2) consisting of rational
rotation matrices as symmetries. The solutions are of form (k = r2 − s2, l = 2rs,m = r2 + s2).
By SO(2) invariance, one can choose the coordinate frame so that one has (k, l) = (r2 + s2, 0). By
applying to this root a rational rotation with cos(φ) = (r2 − s2)/(r2 + s2), sin(φ) = 2rs/(r2 + s2)
to obtain the general solution (k = r2 − s2, l = 2rs, n = r2 + s2). The expressions for k and l can
be permuted, which means replacing φ with φ− pi/2. For a more general case k2 + l2 = n one can
replace n with

√
n so that one has an extension of rationals.

For the hyperbolic variants of Pythagorean triangles, one has k2 − l2 = m2 or equivalently
l2 + m2 = k2 giving a Pythagorean triangle. The solution is k = r2 + s2, l = r2 − s2,m2 = 2rs.
The expressions for l and ma can be permuted. Rotation is replaced with 2-D Lorentz boost
cosh(η) = (r2 + s2)/(r2 − s2) and sinh(η) = 2rs/(r2 − s2) with rational matrix elements.

Consider now the 4-D case.

1. The algebra behind the solution depends in no manner on the number field considered and
makes sense even for the non-commutative case if m and n commute. Hence one can apply
the Pythagorean recipe also in 4-D case to the extension of rationals defined by P by adding
to it

√
rn.

2. Assume that a Lorentz frame can be chosen to be the rest frame in which one has p = (E =√
Rern, 0) (this might not be possible always). As in the Pythagorean case, there must be

a consistency condition. Now it would be of form E =
√
rn = p2

0 − p2
1 − p2

2 − p2
3 in the

extension defined by
√
rn. It is not clear whether this condition can be solved for all choices

of momentum components in the extension or assuming that algebraic integers of extension
are in question. One can also consider an option in which one has algebraic integer divided
by some integer N . p-Adic considerations would suggest that prime powers N = pk might be
interesting.
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The solutions
√
rn = p2

1 − p2
2 represent a special case. The general solution is obtained by

making Lorenz transformation with a matrix with elements in the discrete subgroup of Lorentz
group with matrix elements in the extension of rationals.

3. The solutions would define a discretization of the mass shell (3-D hyperbolic space) defined
as the orbit of the infinite discrete subgroup of SO(1, 3) considered - perhaps the subgroup of
SL(2, C) with matrix elements identified as algebraic integers.

If the entire subgroup of SL(2,C) with matrix elements in the extension of rationals is
realized, the situation would correspond effectively to a continuous momentum spectrum for infinite
cognitive representations. The quantization of momenta is however physically a more realistic
option.

1. An interesting situation corresponds to momenta with the same time component, in which case
the group would be a discrete subgroup of SO(3). The finite discrete symmetry subgroups
act as symmetries of Platonic solids and polygons forming the ADE hierarchy associated to
the inclusions of hyperfinite factors of type II1 and proposed to provide description of finite
measurement resolution in TGD framework.

2. The scattering would be analogous to diffraction and only to the directions specified by the
vertices of the Platonic solid. Platonic solids, in particular, icosahedron appear also in TGD
inspired quantum biology [L24, L106], and also in Nature. Could their origin be traced to
M8 −H duality mapping the Platonic momentum solids to H by inversion?

A more general situation would correspond to the restriction to a discrete non-compact
sub-group Γ ⊂ SL(2, C) with matrix elements in the extension of rationals. Sl(2, C) has a repre-
sentation as Möbius transformations of upper half-plane H2 of complex plane acting as conformal
transformations whereas the action in H3 is as isometries. The Möbius transformation acting as
isometries of H2 corresponds to SL(2, Z) having also various interesting subgroups, in particular
congruence subgroups.

1. Subgroups Γ of the modular group SL(2, Z) define tessellations (analogs of orindary lattices
in a curved space) of both H2 and H4. The fundamental domain [A7] (https://cutt.ly/
ahBrtT5) of the tessellation defined by Γ ⊂ SL(2, C) contains exactly one point at from each
orbit of Γ. The fundamental domain is analogous to lattice cell for an Euclidian 3-D lattice.
Γ must be small enough since the orbits would be otherwise dense just like rationals are a
dense sub-set of reals. In the case of rationals this leaves into consideration tje modular sub-
group SL(2, Z) or its subgroups. In the recent situation an extension of the modular group
allowing matrix elements to be algebraic integers of the extension is natural. Physically this
would correspond to the quantization of momentum components as algebraic integers. The
tessellation in M8 and its image in H would correspond to reciprocal lattice and lattice in
condensed matter physics.

2. So called uniform honeycombs [A14, A9, A27] (see https://cutt.ly/xhBwTph, https://

cutt.ly/lhBwPRc, and https://cutt.ly/0hBwUOO) in H3 assignable to SL(2, Z) can be re-
garded as polygons in 4-D space and H3 takes the roles of sphere S2 for platonic solids for
which the tessellation defined by faces is finite.
The four regular compact honeycombs in H3 for which the faces and vertex figures (the faces
meeting the vertex) are finite are of special interest physically. In the Schönflies notation char-
acterizing polytopes (tessellations are infinite variants of them) they are labelled by (p, q, r),
where p is the number of vertices of face, q is the number of faces meeting at vertex, and s is
the number of cells meeting at edge.
The regular compact honeycombs are listed by (5,3,4), (4,3,5), (3,5,3), (5,3,5). For Platonic
solids (5,3) characterizes dodecahedron, (4,3) cube, and (3,5) for icosahedron so that these
Platonic solids serve as basic building bricks of these tessellations. Rather remarkably, icosa-
hedral symmetries central in the TGD based model of genetic code [L24, L106], characterize
cells for 3 uniform honeycombs.

Consider now the momentum conservation conditions explicitly assuming momenta to be
algebraic integers. It is natural to restrict the momenta to algebraic integers in the extension of
rationals defined by the polynomial P . This allows linearization of the constraints from momentum
conservation quite generally.

Pythagorean case allows to guess what happens in 4-D case.

https://cutt.ly/ahBrtT5
https://cutt.ly/ahBrtT5
https://cutt.ly/xhBwTph
https://cutt.ly/lhBwPRc
https://cutt.ly/lhBwPRc
https://cutt.ly/0hBwUOO
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1. One can start from momentum conservation in the Pythagorean case having interpretation
in terms of complex integers p = (r + is)2 = r2 − s2 + 2irs. The momenta in the complex
plane are squares of complex integers z = r + is obtained by map z → w = z2 and complex
integers. One picks up in the w-plane integer momenta for the incoming and outgoing states
satisfying the conservation conditions

∑
i Pout,i =

∑
k Pin,k: what is nice is that the conditions

are linear in w-plane. After this one checks whether the inverse images
√
Pout,i and

√
Pin,i

are also complex integers.

2. To get some idea about constraints, one can check what CM system for a 2-particle system
means (it is not obvious whether it is always possible to find a CM system: one could have
massive particles which cannot form a rest system). One must have opposite spatial momenta
for P1 = (r1 + is1)2 and P2 = (r2 + is2)2. This gives rs1 = r2s2. The products risi correspond
to different compositions of the same integer N to factors. The values of r2

i + si2 are different.

3. In hyperbolic case one obtains the same conditions since the roles of r2 − s2 and r2 + s2 in
the conditions are changed so that r2 − s2 corresponds now to mass mass mass and differs
for different decomposition of N to factors. The linearization of the conservation conditions
generalizes also to the algebraic extensions of rationals with integers replaced by algebraic
integers.

The generalization to the 4-D case is possible in terms of octonions.

1. Replace complex numbers by quaternions q = q0 +q. The square of quaternion is q2 = q2
0−q ·

q+ 2iq0q. Allowed momenta for given mass correspond to points in q2-plane. Conservation
conditions in the q2 plane are linear and satisfied by quaternionic integers, which are squares.
So that in the q2 plane the allowed momenta form an integer lattice and the identification as
a square selects a subset of this lattice. This generalizes also to the algebraic integers in the
extension of rationals.

2. What about the co-associative case corresponding to the canonical basis {I1, iI3, iI5, iI7}?
Momenta would be as co-associative octonion o but o2 is a quaternion in the plane defined
by {I0, iI2, iI4, iI6}. o representable in terms of a complexified quaternion q = q0 + iq as
o = I4q and the in general complex values norm squared is give by oo with conjugation of
octonionic imaginary units but not i: this gives Minkowskian norm squared. This reduces the
situation to the quaternionic case.

3. In this case the CM system for two-particle case corresponds to the conditions q1,0q1 = q2,0q2

implying that q1 and q2 have opposite directions and q1,0|q1| = q2,0|q2|. The ratio of the
lengths of the momenta is integer. Now the squares qi,0|qi|2 , i = 1, 2 are factorizations of the
same integer N . Masses are in general different.

4. The situation generalizes also to complexified quaternions - the interpretation of the imaginary
part of momentum might be in terms of a decay width - and even to general octonions since
associativity is not involved with the conditions.

11.5.8 Further objections

The view about scattering amplitudes has developed rather painfully by objections creating little
shocks. The representation of scattering amplitudes is based on quark oscillator operator algebra.
This raises two further objections.

The non-vanishing contractions of the oscillator operators are necessary for obtaining non-
trivial scattering amplitudes but is this condition possible to satisfy.

1. One of the basic deviations of TGD from quantum field theories (QFTs) is the hypothesis that
all elementary particles, in particular bosons, can be described as bound states of fermions,
perhaps only quarks. In TGD framework the exchange of boson in QFT would mean an
emission of a virtual quark pair and its subsequent absorption. In ZEO in its basic form this
seems to be impossible.

2. If scattering corresponds to algebra morphism mapping products to products of co-products -
the number of quarks in say future HC is higher than in the past HC as required. But how
to obtain non-vanishing scattering amplitudes? There should be non-vanishing counterparts
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of propagators between points of FHC but this is not possible if only creation operators are
present in a given HC as ZEO requires. All particle reactions would be re-arrangements
of quarks and antiquarks to elementary fermions and bosons (OZI rule of the hadronic string
model: https://en.wikipedia.org/wiki/OZI_rule). The emission of virtual or real bosons
requires the creation of quark antiquark pairs and seems to be in conflict with the OZI rule.

3. It would be natural to assign to quarks and bosons constructed as their bound states non-
trivial inner product in a given HC of CD. Is this possible if the counterparts of annihilation
operators act as creation operators in the opposite HC? Can one assign inner product to a
given boundary of CD by assuming that hermitian conjugates of quark oscillator operators act
in the dual Hilbert space of the quark Fock space? Could this dual Hilbert space relate to
the Drinfeld’s double?

How could one avoid the OZI rule?

1. Is it enough to also allow annihilation operators in given HC? Bosonic G2,c generators could
involve them. The decay of boson to quark pair would still correspond to re-arrangement but
one would have inner product for states at given HC. The creation of bosons would still be
a problem. Needless to say, this option is not attractive.

2. A more plausible solution for this problem is suggested by the phenomenological picture in
which quarks at the level of H are assigned with partonic 2-surfaces and their orbits, string
world sheets, and their boundaries at the orbits of partonic 2-surfaces. By the discussion in
the beginning of this section, these surfaces could correspond at the level of M8 to space-time
regions of complexified space-time surface with real number theoretic metric having signature
(+,+,-,-), (+,+,+,-), (+,+,+,+) having 2,3, or 4 time-like dimensions. They would allow
non-negative values of mass squared and would be separated from the region of Minkowskian
signature by a transition region space-time region with dimension D ∈ {3, 2, 1} mapped to
CP2.
In these regions one would have 1, 2, or 3 additional energy like momentum components
pi = Ei. Ei. Could the change of sign for Ei transform creation operator to annihilation
operator as would look natural. This would give bosonic states with a non-vanishing norm
and also genuine boson creation. What forces to take this rather radical proposal seriously
that it conforms with the phenomenological picture.
In this region one could have a non-trivial causal diamond CD with signature (+,+,-,-),
(+,+,+,-). For the signature (+,+,+,+) CD reduces to a point with a vanishing four-
momentum and would correspond to CP2 type extremals (wormhole contacts). Elementary
fermions and bosons would consist of quarks in regions with signature (+,+,-,-) and (+,+,+,-
). It would seem that the freedom to select signature in twistorial amplitude is not mere luxury
but has very deep physical content.

One can invent a further objection. Suppose that the above proposal makes sense and
allows to assign propagators to a given HC. Does Yangian co-product allow a construction of
zero energy states giving rise to scattering amplitudes, which typically have a larger number of
particles in the future HC (FHC) than in past HC (PHC) and represent a genuine creation of
quark pairs?

1. One can add to the PHC quarks and bosons one-by-one by forming the product super G(2, c)
generators assignable to the added particles. To the FHC one would add the product of
co-products of these super G(2, c) generators (co-product of product is product of co-products
as an algebra morphism).

2. By the basic formula of co-product each addition would correspond to a superposition of
two states in FHC. The first state would be the particle itself having suffered a forward
scattering. Second state would involve 2 generators of super G2,c at different momenta
summing up to that for the initial state, and represent a scattering q → q + b for a quark
in the initial state and scattering b→ 2b, b→ 2b, or b→ 2q for a boson in the initial state.
Number theoretic momentum conservation assuming momenta to be algebraic integers should
allow processes in which quark oscillator operators are contracted between the states in FHC
and PHC or between quarks in the FHC.

3. Now comes the objection. Suppose that the state in PC consists of fundamental quarks.
Also the FC containing the product of co-products of quarks must contain these quarks

https://en.wikipedia.org/wiki/OZI_rule
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with the same momenta. But momentum conservation does not allow anything else in FC!
The stability of quarks is a desirable property in QFTs but something goes wrong! How to
solve the problem?
Also now phenomenological picture comes to the rescue and tells that elementary particles
- as opposed to fundamental fermions - are composites of fundamental fermions assignable to
flux tubes like structures involving 2 wormhole contacts. In particular, quarks as elementary
particles would involve quark at either throat of the first wormhole contact and quark-
antiquark pair associated with the second wormhole contact. The state would correspond
to a quantum superposition of different multilocal momentum configurations defining multi-
local states at M8 level. The momentum conservation constraint could be satisfied without
trivializing the scattering amplitudes since the contractions could occur between different
components of the superposition - this would be essential.
Note also that at H level there can be several quarks at a given wormhole throat defining a
multilocal state in M8: one could have a superposition of these states with different momenta
and again different components of the wave function could contract. By Uncertainty Principle
the almost locality in H would correspond to strong non-locality in M8. This could be seen
as an approximate variant of the TGD variant of H variant of SUSY considered in [L81].
Could the TGD variant of SUSY proposed in [L81] but realized at the level of momentum
space help to circumvent the objection? Suppose that the SUSY multiplet in M8 can be
created by a local algebraic product possessing a co-product delocalizing the local product of
oscillator operators at point p in PC and therefore represents the decay of the local composite
to factors with momenta at p1 and p− p1 in FC. This would not help to circumvent the
objection. Non-locality and wave functions in momentum space is needed.

11.6 Symmetries in M 8 picture

11.6.1 Standard model symmetries

Can one understand standard model symmetries in M8 picture?

1. SU(3) ⊂ G2 would respect a given choice of time axis as preferred co-associative set of imag-
inary units (I2 ⊂ {I2, iI3, iIb, iI7} for the canonical choice). The labels would therefore cor-
respond to the group SU(3). SU(3)c would be analogous to the local color gauge group in
the sense that the element of local SU(3)c would generate a complecofied space-time surface
from the flat and real M4. The real part of pure SU(3)c gauge potential would not however
reduce to pure SU(3) gauge potential. Could the vertex factors be simply generators of SU(3)
or SU(3)c?

2. What about electroweak quantum numbers in M8 picture? Octonionic spinors have spin and
isospin as quantum numbers and can be mapped to H spinors. Bosons would be bound states
of quarks and antiquarks at both sides.
How could electroweak interactions emerge at the level of M8? At the level of H an anal-
ogous problem is met: spinor connection gives only electroweak spinor connection but color
symmetries are isometries and become manifest via color partial waves. Classical color gauge
potentials can be identified as projections of color isometry generators to the space-time sur-
face.
Could electroweak gauge symmetries at the level of M8 be assigned with the subgroup U(2) ⊂
SU(3) of CP2 = SU(3)/U(2) indeed playing the role of gauge group? There is a large number
of space-time surfaces mapped to the same surface in H and related by a local U(2) trans-
formation. If this transformation acted on the octonionic spinor basis, it would be a gauge
transformation but this is not the case: constant octonion basis serves as a gauge fixing. Also
the space-time surface in M8 changes but preserves its ”algebraic shape”.

11.6.2 How the Yangian symmetry could emerge in TGD?

Yangian symmetry [A29, A71] appears in completely 2-D systems. The article [B30] (https://
arxiv.org/pdf/1606.02947.pdf) gives a representation which is easy to understand by a physicist
like me whereas the Wikipedia article remains completely incomprehensible to me.

https://arxiv.org/pdf/1606.02947.pdf
https://arxiv.org/pdf/1606.02947.pdf
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Yangian symmetry is associated with 2-D QFTs which tend to be physically rather unin-
teresting. The scattering is in forward direction and only phase shifts are induced. There is no
particle creation. Yangian symmetry appears in 4-D super gauge theories [B17] and in the twistor
approach to scattering amplitudes [B18, B25, B21, ?]. I have tried to understand the role of
Yangian symmetry in TGD [L42].

Yangian symmetry from octonionic automorphisms

An attractive idea is that the Yangian algebra having co-algebra structure could allow to construct
poly-local conserved charges and that these could define vertex operators in M8.

1. Yangian symmetry appears in 2-D systems only. In TGD framework strings world sheets could
be these systems as co-commutative 2-surfaces of co-associative space-time surface.

2. What is required is that there exists a conserved current which can be also regarded as a
flat connection. In TGD the flat connection would a connection for G2,c or its subgroup
associated with the map taking standard co-associative sub-space of Oc for which the number
theoretic norm squared is real and has Minkowski signature (M4 defined by the canonical
choice {I2, iI3, iI5, iI7}.
The recent picture about the solution of co-associativity conditions fixes the subgroup of G2

to SU(3). X4 corresponds to element g of the local SU(3) acting on preferred M4 ⊂M8
c with

the additional condition that the 4-surface X4 ⊂M8 is invariant under U(2) ⊂ SU(3) so that
each point of X4 corresponds to a CP2 point. At the mas shells as roots of a polynomial P ,
g reduces to unity and the 4-D tangent space is parallel to the preferred M4 on which g acts.
One can induce this flat connection to string world sheet and holomorphy of g at this surface
would guarantee the conservation of the current given by j0) = g−1dg.

3. Under these conditions the integral of the time component of current along a space-like curve
at string world sheets with varying end point is well-defined and the current

j1)(x) = εµνj0),ν(x)− 1

2
[jµ0)(x, t),

∫ x

j0
0)(t, y)dy]

is conserved. This is called the current at first level. Note that the currents have values in the
Lie algebra considered. It is essential that the integration volume is 1-D and its boundary is
characterized by a value of single coordinate x.

4. One can continue the construction by replacing j0 with j1 in the above formula and one obtains
an infinite hierarchy of conserved currents jn) defined by the formula

jn+1)(x) = εµνjn),ν(x)− 1

2
[jµn)(x, t),

∫ x

j0
n)(t, y)dy] (11.6.1)

The corresponding conserved charges Qn define the generators of Yangian algebra.

5. 2-D metric appears in the formulas. In the TGD framework one does not have Riemann metric
- only the number theoretic metric which is real only at real space-time surfaces already
discussed. Is the (effective) 2-dimensionality and holomorphy enough to avoid the possible
problems? Holomorphy makes sense also number theoretically and implies that the metric
disappears from the formulas for currents. Also current conservation reduces to the statement
of that current is equivalent to complex differential form.

6. Conserved charges would however require a 1-D integral and number theory does not favor this.
The solution of the problem comes from the observation that one can construct a slicing of
string world sheet to time-like curves as Hamiltonian orbits with Hamiltonian belonging to the
Yangian algebra and defined by the conserved current by standard formula jα = Jαβ∂βH in
terms of Kähler form defined by the 2-D Kähler metric of string world sheet. This generalizes
to Minkowskian signature and also makes sense for partonic 2-surfaces. Hamiltonians become
the classical conserved charges constant along the Hamiltonian orbit. This gives an infinite
hierarchy of conserved Hamiltonian charges in involution. Hamiltonian can be any combination
of the Hamiltonians in the hierarchy and labelled by a non-negative integer and the label of G2,c

generator. This is just what integrability implied by Yangian algebra means. Co-associativity
and co-commutativity would be the deeper number theoretic principles implying the Yangian
symmetry.
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7. Could one formulate this argument in dimension D = 4? Could one consider instead of local
current the integral of conserved currents over 2-D surfaces labelled by single coordinate x for
a given value of t? If the space-time surface in M8 (analog of Fermi sphere) allows a slicing by
orthogonal strings sheets and partonic 2-surfaces, one might consider the fluxes of the currents
g−1dg over the 2-D partonic 2-surfaces labelled by string coordinates (t, x) as effectively 2-
D currents, whose integrals over x would give the conserved charge. Induced metric should
disappear from the expressions so that fluxes of holomorphic differential forms over partonic
2-surface at (t, x) should be in question. Whether this works is not clear.

One should interpret the above picture at the level of momentum space instead of ordinary
space-time. The roles of momentum space and space-time are changed. At this point, one can
proceed by making questions.

1. One should find a representation for the algebra of the Hamiltonians associated with g(x)
defining the space-time surface. The charges are associated with the slicings of string world
sheets or partonic 2-surfaces by the orbits of Hamiltonian dynamics defined by a combination
of conserved currents so that current conservation becomes charge conservation. These charges
are labelled by the coordinate x characterizing the slices defined by the Hamiltonian orbits
and from these one can construct a non-local basis discrete basis using Fourier transform.

2. What the quantization of these classical charges - perhaps using fermionic oscillator oper-
ators in ZEO picture for which the local commutators vanish - could mean (only the anti-
commutators of creation operators associated with the opposite half-cones of CD with opposite
momenta are non-vanishing)? Do the Yangian charges involve only creation operators of either
type with the same 8-momentum as locality at M8 level suggests? Locality is natural l since
these Yangian charges are analogous to charges constructed from local currents at space-time
level.

3. Could the Yangian currents give rise to poly-local charges assignable to the set of vertices in
a cognitive representation and labelled by momenta? Could the level n somehow correspond
to the number n of the vertices and could the co-product ∆ generate the charges? What
does the tensor product appearing in the co-product really mean: do the sector correspond to
different total quark numbers for the generators? Is it a purely local operation in M8 producing
higher monomials of creation operators with the same momentum label or is superposition over
Hamiltonian slices by Fourier transform possibly involved ?

How to construct quantum charges

One should construct quantum charges. In the TGD framework the quantization of g(x) is not an
attractive idea. Could one represent the charges associated with g it in terms of quark oscillator
operators induced from the second quantized E8 spinors so that propagators would emerge in the
second quantization? Analogs of Kac Moody representations but with a non-negative spectrum of
conformal weights would be in question. Also super-symplectic algebra would have this property
making the formulation of the analogs of gauge conditions possible, and realizing finite measure-
ment resolution in terms of hierarchy of inclusions of hyper-finite factors of type II1 [K112, K43].
The Yangian algebra for G2,c or its subgroup could be the counterpart for these symmetries at the
level of H.

The following proposal for the construction for the charges and super-charges of Yangian
algebra in terms of quark oscillator operators is the first attempt.

1. One knows the Lie-algebra part of Yangian from the Poisson brackets of Hamiltonians as-
sociated with string world sheet slicing and possibly also for a similar slicing for partonic
2-surfaces. One should construct a representation in terms of quark ocillator operators in
ZEO framework for both Lie-algebra generators and their super-counterparts. Also co-product
should be needed.

2. The oscillator operators of E8 spinor field located at the points of X4 are available. The
charges must be local and describe states with non-linear quarks and antiquarks.
One must construct conserved charges as currents associated with the Hamiltonian orbits.
Bosonic currents are bilinear in quark and antiquark oscillator operators and their super coun-
terparts linear in quark or antiquark oscillator operators.
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3. Since the system is 2-D one can formally assume in Euclidian signature (partonic 2-surface)
Kähler metric gzz and Kähler form Jzz = igzz, which is antisymmetric and real in real
coordinates (Jkl = −J lk) knowing that they actually disappear from the formulas. One can
also define gamma matrices Γα = γk∂αp

k as projections of embedding space gamma matrices to
the string world sheet. In the case of string world sheet one can introduce light-like coordinates
(u, v) as analogous of complex coordinates and the only non-vanishing component of the metric
is guv.

4. The claim is that the time components Jun the bosonic currents

Jαn = b†pv(p)ΓαHnu(p)a† (11.6.2)

at the Hamiltonian curves with time coordinate t define conserved charges (α ∈ {u, v} at the
string world sheet).
Remark: vp corresponds to momentum −p for the corresponding plane wave in the Fourier
expansion of quark field but the physical momentum is p and the point of M8 that this state
corresponds.
Therefore one should have

Jun
du

= 0 (11.6.3)

One can check by a direct calculation what additional conditions are possibly required by this
condition.

5. The first point is that Hn is constant if v = constant coordinate line is a Hamiltonian orbit.
Also oscillator operators creating fermions and antifermions are constant. The derivative of
u(p) is

du(p)

du
=
∂u(p)

∂pk

dpk

du
.

. up is expressible as up = Dua, where D is a massless Dirac operator in M8 and ua is a
constant 8-D quark spinor with fixed chirality. D is sum of M4- and E4 parts and M4 part is
given by D(M4) = γkpk so that one has dpk/dt = γrdp

r/dt.
This gives

d(ΓuHnu(p))

du
= guvγk∂vp

k du(p)

du
= guv∂up · ∂vp .

If the tangent curves of u and v are orthogonal in the induced metric and v = 0 constant lines
are Hamiltonian orbits the bosonic charges are conserved.

One can perform a similar calculation for ddv(p)
du and the result is vanishing.

One must also have dguv/du = 0. This should reduce to the covariant constancy of guv. If the
square root of the metric determinant for string world sheet is included it cancels guv.

6. From the bosonic charges one construct corresponding fermionic super charges by replacing
the fermionic or anti-quark oscillator operator part with a constant spinor.

The simplest option is that partonic 2-surfaces contain these operators at points of cognitive
representation. One can ask whether co-product could forces local operators having a higher quark
number. What is clear that this number is limited to the number n = 0 of spin degrees of n = 8.

1. The commutators of bosonic and fermionic charges are fermionic charges and co-product would
in this case be a superposition of tensor products of bosonic and fermionic charges, whose
commutator gives bosonic charge. Now however the bosonic and fermionic charges commute
in the same half-cone of CD. Does this mean that the tensor product in question must be
tensor product for the upper and lower half-cones of CD?
For instance, in the fermionic case one would obtain superposition over pairs of fermions at say
lower half-cone and bosons at the upper half-cone. The momenta would be opposite meaning
that a local bosonic generator would have total momentum 2p at point p and fermionic gen-
erator at opposite cone would have momentum −p. The commutator would have momentum
p as required. In this manner one could create bosons in either half-cone.
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2. One can also assign to the bosonic generators a co-product as a pair of bosonic generators in
opposite half-cones commuting to the bosonic generator. Assume that bosonic generator is
at lower half-cone. Co-product must have a local composite of 4 oscillator operators in the
lower half-cone and composite of 2 oscillator operators in the upper half-cone. Their anti-
commutator contracts two pairs and leaves an operator of desired form. It therefore seems.
Statistics allows only generators with a finite number of oscillator operators corresponding to 8
spin indices, which suggests an interpretation in terms of the proposed SUSY [L81]. The roots
of P are many-sheeted coverings of M4 and this means that there are several 8-momenta with
the same M4 projection. This degree of freedom corresponds to Galois degrees of freedom.

3. Only momenta in cognitive representation are allowed and momentum is conserved. The
products of generators appearing in the sum defining the co-product of a given generator
T , which is a local composite of quarks, would commute or anti-commute to T , and their
momenta would sum-up to the momentum associated with T . The co-product would be
poly-local and receive contributions from the points of the cognitive representation. Also
other quantum numbers are conserved.

About the physical picture behind Yangian and definition of co-product

The physical picture behind the definition of Yangian in the TGD framework differs from that
adopted by Drinfeld, who has proposed - besides a general definition of the notion of quantum
algebra - also a definition of Yangian. In the Appendix Drinfeld’s definition is discussed in detail:
this discussion appears almost as such in [L42].

1. Drinfeld proposes a definition in terms of a representation in terms of generators of a free
algebra to which one poses relations [B37]. Yangian can be seen as an analog of Kac-Moody
algebra but with generators labelled by integer n ≥ 0 as an analog of non-negative confor-
mal weight. Also super-symplectic algebra has this property and its Yangianization is highly
suggestive. The generators of Yangian as algebra are elements JAn , n ≥ 0, with n = 0 and
n = 1. Elements JA0 define the Lie algebra and elements JA1 transform like Lie-algebra
elements so that commutators at this level are fixed.
Remark: I have normally used generator as synonym for the element of Lie algebra: I hope
that this does not cause confusion
The challenge is to construct higher level generators JAn . Their commutators with JA0 with
JAn are fixed and also the higher level commutators can be guessed from the additivity of n
and the transformation properties of generators JAn . The commutators are very similar to
those for Kac-Moody algebra. In the TGD picture the representation as Hamiltonians fixes
these commutation relations as being induced by a Poisson bracket. The Lie-algebra part of
Yangian can be therefore expressed explicitly.

2. The challenge is to understand the co-product ∆. The first thing to notice is that ∆ is a
Lie algebra homomorphism so that one has ∆(XY ) = ∆(X)∆(Y ) plus formulas expressing
linearity. The intuitive picture is that ∆ adds a tensor factor and is a kind of time reversal
of the product conserving total charges and the total value of the weight n. Already this
gives a good overall view about the general structure of the co-commutation relations.
The multiplication of generators by the unit element Id of algebra gives the generator

itself so that ∆(JA) should involve part Id⊗ JA ⊕ JA ⊗ Id. Generators are indeed additive
in the ordinary tensor product for Lie-algebra generators - for instance, rotation generators
are sums of those for the two systems. However, one speaks of interaction energy: could
the notion of ”interaction quantum numbers” make sense quite generally. Could this notion
provide some insights to proton spin puzzle [C28] meaning that quark spins do not seem to
contribute considerably to proton spin? A possible TGD based explanation is in terms of
angular momentum associated with the color magnetic flux tubes [K64], and the formulation
of this notion at M8 level could rely on the notion of ”interaction angular momentum”.
The time reversal rule applied to [JmA , J

n
B ] ∝ fABCJm+n

C suggests that ∆(TnA) contains a term
proportional to fCBAJ

m
C ⊗ J

n−m
B . This would suggest that co-product as a time reversal

involves also in the case of J0
A the term k1fCBAJ

0
C⊗J0

B , where k1 as an analog of interaction
energy.
Drinfeld’s proposal does not involve this term in accordance with Drinfeld’s intuition that
co-product represents a deformation of Lie-algebra proportional to a parameter denoted by
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~, which need not (and cannot!) actually correspond to ~. This view could be also defended
by the fact that JA0 do not create physical states but only measures the quantum numbers
generated by JnA, n > 0. TGD suggests interpretation as the analog of the interaction
energy.

3. In Drinfeld’s proposal, the Lie-algebra commutator is taken to be [J0
A, J

0
B ] = kfABCJ

0
C ,

k = 1. Usually one thinks that generators have the dimension of ~ so that dimensional
consistency requires k = ~. It seems that Drinfeld puts ~ = 1 and the ~ appearing in the
co-product has nothing to do with the actual ~.
The conservation of dimension applied to the co-product would give k1 = 1/~! What could

be the interpretation? The scattering amplitudes in QFTs are expanded in powers of gauge
coupling strengths α = g2/4π~. In ZEO co-product would be essential for obtaining non-
trivial scattering amplitudes and the expansion in terms of 1/~ would emerge automatically
from the corrections involving co-products - in path integral formalism this expansion emerges
from propagors
This view would also conform with the vision that Mother Nature loves her theoreticians.
The increase of heff/h0 = n as dimension of extension of rationals would be Mother
Nature’s way to make perturbation theory convergent [K42]. The increase of the degree of
P defining the space-time surface increases the algebraic complexity of the space-time surface
but reduces the value of α as a compensation.

4. Drinfeld gives the definition of Yangian in terms of relations for the generating elements
with weight n = 0 and n = 1. From these one can construct the generators by applying ∆
repeatedly. Explicit commutation relations are easier to understand by a physicist like me,
and I do not know whether the really nasty looking representation relations - Drinfeld himself
calls ”horrible” [B30] - are the only manner to define the algebra. In the TGD framework the
definition based on the idea about co-product as a strict time reversal of product would mean
deviation in the n = 0 sector giving rise to an interaction term having natural interpretation
as analog of interaction energy.

5. Drinfeld proposes also what is known as Drinfeld’s double [A73] (see http://tinyurl.com/

y7tpshkp) as a fusion of two Hopf algebras and allowing to see product and co-product as duals
of each other. The algebra involves slight breaking of associativity characterized by Drinfeld’s
associator. ZEO suggests [K53] that the members of Drinfeld’s double correspond to algebra
and co-algebra located at the opposite half-cones and there are two different options. Time
reversal occurring in ”big” state functions reductions (BSFRs) would transform the members
to each other and change the roles of algebra and co-algebra (fusion would become decay).

In the TGD framework there is also an additional degree of freedom related to the momenta
in cognitive representation, which could be regarded also as a label of generators. The idea that
commutators and co-commutators respect conservation of momentum allows the fixing of the
general form of ∆. Co-product of a generator at momentum p ina given half-cone would be
in the opposite half-cone and involve sum over all momentum pairs of generators at p1 and p2

with the constraint p1 + p2 + p = 0.

Summation does not make sense for momenta in the entire extension of rationals. The
situation changes if the momenta are algebraic integers for the extension of rationals considered:
quarks would be particles in a number theoretic box. In the generic case, very few terms - if any
- would appear in the sum but for space-time surfaces as roots of octonionic polynomials this is
not the case. The co-products would as such define the basic building bricks of the scattering
amplitudes obtained as vacuum expectation reducing the pairs of fermions in opposite half-cones
to propagators.

11.7 Appendix: Some mathematical background about Yan-
gians

In the following necessary mathematical background about Yangians are summarized.

http://tinyurl.com/y7tpshkp
http://tinyurl.com/y7tpshkp
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11.7.1 Yang-Baxter equation (YBE)

YBE has been used for more than four decades in integrable models of statistical mechanics
of condensed matter physics and of 2-D quantum field theories (QFTs) [A71]. It appears
also in topological quantum field theories (TQFTs) used to classify braids and knots [B17] (see
http://tinyurl.com/mcvvcqp) and in conformal field theories and models for anyons. Yangian
symmetry appears also in the twistor Grassmann approach to scattering amplitudes [B18, B25]
and thus involves YBE. At the same time new invariants for links were discovered and a new
braid-type relation was found. YBEs emerged also in 2-D conformal field theories.

Yang-Baxter equation (YBE) has a long history described in the excellent introduction
to YBE by Jimbo [B37] (see http://tinyurl.com/l4z6zyr, where one can also find a list of
references). YBE was first discovered by McGuire (1964) and 3 years later by Yang in a quantum
mechanical many-body problem involving a delta function potential

∑
i<j δ(xi−xj). Using Bethe’s

Ansatz for building wave functions they found that the scattering matrix factorized that it could
be constructed using as a building brick 2-particle scattering matrix - R-matrix. YBE emerged for
the R-matrix as a consistency condition for factorization. Baxter discovered in 1972 a solution of
the eight vertex model in terms of YBE. Zamolodchikov pointed out that the algebraic mechanism
behind factorization of 2-D QFTs is the same as in condensed matter models.

1978-1979 Faddeev, Sklyanin, and Takhtajan proposed a quantum inverse scattering method
as a unification of classical and quantum integrable models. Eventually the work with YBE led
to the discovery of the notion of quantum group by Drinfeld. Quantum group can be regarded
as a deformation Uq(g) of the universal enveloping algebra U(g) of Lie algebra. Drinfeld also
introduced the universal R-matrix, which does not depend on the representation of algebra used.

R-matrix satisfying YBE is now the common aspect of all quantum algebras. I am not a
specialist in YBE and can only list the basic points of Jimbo’s article. The interested reader can
look for details and references in the article of Jimbo.

In 2-D quantum field theories R-matrix R(u) depends on one parameter u identifiable as
hyperbolic angle characterizing the velocity of the particle. R(u) characterizes the interaction
experienced by two particles having delta function potential passing each other (see the figure of
http://tinyurl.com/kyw6xu6). In 2-D quantum field theories and in models for basic gate
in topological quantum computation the R-matrix is unitary. R-matrix can be regarded as an
endomorphism mapping V1 ⊗ V2 to V2 ⊗ V1 representing permutation of the particles.

YBE

R-matrix satisfies Yang-Baxter equation (YBE)

R23(u)R13(u+ v)R12(v) = R12(v)R13(u+ v)R23(u) (11.7.1)

having interpretation as associativity condition for quantum algebras.
At the limit u, v → ∞ one obtains R-matrix characterizing braiding operation of braid

strands. Replacement of permutation of the strands with braiding operation replaces permutation
group for n strands with its covering group. YBE states that the braided variants of identical
permutations (23)(13)(12) and (12)(13)(23) are identical.

The equations represent n6 equations for n4 unknowns and are highly over-determined so
that solving YBE is a difficult challenge. Equations have symmetries, which are obvious on the
basis of the topological interpretation. Scaling and automorphism induced by linear transforma-
tions of V act as symmetries, and the exchange of tensor factors in V ⊗ V and transposition are
symmetries as also shift of all indices by a constant amount (using modulo N arithmetics).

One can pose to the R-matrix some boundary condition. For V ⊗ V the condition states
that R(0) is proportional to the permutation matrix P for the factors.

General results about YBE

The following lists general results about YBE.

1. Belavin and Drinfeld proved that the solutions of YBE can be continued to meromorphic
functions in the complex plane with poles forming an Abelian group. R-matrices can be

http://tinyurl.com/mcvvcqp
http://tinyurl.com/l4z6zyr
http://tinyurl.com/kyw6xu6
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classified to rational, trigonometric, and elliptic R-matrices existing only for sl(n). Rational
and trigonometric solutions have a pole at origin and elliptic solutions have a lattice of
poles. In [B37] (see http://tinyurl.com/l4z6zyr) simplest examples about R-matrices
for V1 = V2 = C2 are discussed, one of each type.

2. In [B37] it is described how the notions of R-matrix can be generalized to apply to a col-
lection of vector spaces, which need not be identical. The interpretation is as commutation
relations of abstract algebra with co-product ∆ - say quantum algebra or Yangian algebra.
YBE guarantees the associativity of the algebra.

3. One can define quasi-classical R-matrices as R-matrices depending on Planck constant like
parameter ~ (which need have anythingto do with Planck constant) such that small values of
u one has R = constant × (I + ~r(u) + O(~2)). r(u) is called classical r-matrix and satisfies
CYBE conditions

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0

obtained by linearizing YBE. r(u) defines a deformation of Lie-algebra respecting Jacobi-
identities. There are also non-quasi-classical solutions. The universal solution for r-matrix is
formulated in terms of Lie-algebra so that the representation spaces Vi can be any represen-
tation spaces of the Lie-algebra.

4. Drinfeld constructed quantum algebras Uq(g) as quantized universal enveloping algebras Uq(g)
of a Lie algebra g. One starts from a classical r-matrix r and Lie algebra g. The idea is to
perform a “quantization” of the Lie-algebra as a deformation of the universal enveloping
algebra Uq(g) of U(g) by r. Drinfeld introduces a universal R-matrix independent of the
representation used. This construction will not be discussed here since it does not seem to
be as interesting as Yangian: in this case co-product ∆ does not seem to have a natural
interpretation as a description of interaction. The quantum groups are characterized by
parameter q ∈ C. For a generic value the representation theory of q-groups does not differ
from the ordinary one. For roots of unity situation changes due to degeneracy caused by the
fact qN = 1 for some N .

5. The article of Jimbo discusses also a fusion procedure initiated by Kulish, Restetikhin, and
Sklyanin allowing to construct new R-matrices from existing one. Fusion generalizes the
method used to construct group representation as powers of fundamental representation.
Fusion procedure constructs the R-matrix in W⊗V 2, where one has W = W1⊗W2 ⊂ V ⊗V 1.
Picking W is analogous to picking a subspace of tensor product representation V ⊗ V 1.

11.7.2 Yangian

Yangian algebra Y (g(u)) is associative Hopf algebra (see http://tinyurl.com/qfl8dwu) that is
bi-algebra consisting of associative algebra characterized by product µ: A ⊗ A → A with unit
element 1 satisfying µ(1, a) = a and co-associative co-algebra consisting of co-product ∆A ∈ A⊗A
and co-unit ε : A→ C satisfying ε◦∆(a) = a. Product and co-product are “time reversals” of each
other. Besides this one has antipode S as algebra anti-homomorphism S(ab) = S(b)S(a). YBE
has interpretation as an associativity condition for co-algebra (∆ ⊗ 1) ◦∆ = (1 ⊗∆) ◦∆. Also ε
satisfies associativity condition (ε⊗ 1) ◦∆ = (1⊗ ε) ◦∆.

There are many alternative formulations for Yangian and twisted Yangian listed in the
slides of Vidas Regelskis at http://tinyurl.com/ms9q8u4. Drinfeld has given two formulations
and there is FRT formulation of Faddeev, Restetikhin and Takhtajan.

Drinfeld’s formulation [B37] (see http://tinyurl.com/qfl8dwu) involves the notions of Lie
bi-algebra and Manin triple, which corresponds to the triplet formed by half-loop algebras with
positive and negative conformal weights, and full loop algebra. There is isomorphism mapping
the generating elements of positive weight and negative weight loop algebra to the elements of
loop algebra with conformal weights 0 and 1. The integer label n for positive half loop algebra
corresponds in the formulation based on Manin triple to conformal weight. The alternative inter-
pretation for n + 1 would be as the number of factors in the tensor power of algebra and would
in TGD framework correspond to the number of partonic 2-surfaces. In this interpretation the
isomorphism becomes confusing.

http://tinyurl.com/l4z6zyr
http://tinyurl.com/qfl8dwu
http://tinyurl.com/ms9q8u4
http://tinyurl.com/qfl8dwu
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In any case, one has two interpretations for n + 1 ≥ 1: either as parton number or as
occupation number for harmonic oscillator having interpretation as bosonic occupation number in
quantum field theories. The relationship between Fock space description and classical description
for n-particle states has remained somewhat mysterious and one can wonder whether these two
interpretations improve the understanding of classical correspondence (QCC).

Witten’s formulation of Yangian

The following summarizes my understanding about Witten’s formulation of Yangian for N = 4
SUSY [B17], which does not mention explicitly the connection with half loop algebras and loop
algebra and considers only the generators of Yangian and the relations between them. This
formulation gives the explicit form of ∆ and looks natural, when n corresponds to parton number.
Also Witten’s formulation for Super Yangian will be discussed.

However, it must be emphasized that Witten’s approach is not general enough for the
purposes of TGD. Witten uses the identification ∆(JA1 ) = fABCJ

B
0 × JC0 instead of the general

expression ∆(JA1 ) = JA1 ⊗1+1×JA1 +fABCJ
B
0 ×JC0 needed in TGD strongly suggested by the dual

roles of the super-symplectic conformal algebra and super-conformal algebra associated with the
light-like partonic orbits realizing generalized EP. There is also a nice analogy with the conformal
symmetry and its dual twistor Grassmann approach.

The elements of Yangian algebra are labelled by non-negative integers so that there is a
close analogy with the algebra spanned by the generators of Virasoro algebra with non-negative
conformal weight. The Yangian symmetry algebra is defined by the following relations for the
generators labeled by integers n = 0 and n = 1. The first half of these relations discussed in
very clear manner in [B17] follows uniquely from the fact that adjoint representation of the Lie
algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (11.7.2)

Besides this Serre relations are satisfied. These have more complex form and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(11.7.3)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor
gAB or gAB . {A,B,C} denotes the symmetrized product of three generators.

The right hand side often has coefficient ~2 instead of 1/24. ~ need not have anything
to do with Planck constant and as noticed in the main text has dimension of 1/~. The Serre
relations give constraints on the commutation relations of J (1)A. For J (1)A = JA the first Serre
relation reduces to Jacobi identity and second to the antisymmetry of the Lie bracket. The right
hand side involved completely symmetrized trilinears {JD, JE , JF } making sense in the universal
covering of the Lie algebra defined by JA.

Repeated commutators allow to generate the entire algebra, whose elements are labeled by
a non-negative integer n. The generators obtained in this manner are n-local operators arising in
(n − 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the
first Serre relation implies the second one so the relations are redundant. Why Witten includes
it is for the purpose of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exist also for continuum one-dimensional index).

Under certain consistency conditions, a discrete one-dimensional lattice provides a rep-
resentation for the Yangian algebra. One assumes that each lattice point allows a representation
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R of JA so that one has JA =
∑
i J

A
i acting on the infinite tensor power of the representation

considered. The expressions for the generators J1A in Witten’s approach are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (11.7.4)

This formula gives the generators in the case of conformal algebra. This representation exists
if the adjoint representation of G appears only one in the decomposition of R ⊗ R. This is the
case for SU(N) if R is the fundamental representation or is the representation of by kth rank
completely antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-
product ∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(11.7.5)

∆ allows to imbed Lie algebra into the tensor product in a non-trivial manner and the non-
triviality comes from the addition of the dual generator to the trivial co-product. In the case that
the single spin representation of J (1)A is trivial, the co-product gives just the expression of the
dual generator using the ordinary generators as a non-local generator. This is assumed in the
recent case and also for the generators of the conformal Yangian.

Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [B17].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can involve besides the unit operator also bosonic
generators if the symmetrized tensor product in question contains adjoint representation. This
is the case if fermions are in the fundamental representation and its conjugate. For SU(3) the
symmetrized tensor product of adjoint representations contains adjoint (the completely symmetric
structure constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters
involved) can be written in the following form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n ×m and m × n matrices, whose anti-commutator is the direct sum of n × n
and n × n matrices. For n = m bosonic generators transform like Lie algebra generators of
SU(n)× SU(n) whereas fermionic generators transform like n⊗ n⊕ n⊗ n under SU(n)× SU(n).
Supertrace is defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For
n 6= m the super trace condition removes the identity matrix and PU(n|m) and SU(n|m) are the
same. This does not happen for n = m: this is an important delicacy since this case corresponds
to N = 4 SYM. If any two matrices differing by an additive scalar are identified (projective scaling
as a new physical effect) one obtains PSU(n|n) and this is what one is interested in.
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Witten shows that the condition that adjoint is contained only once in the tensor product R⊗
R holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization
of the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(11.7.6)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

11.8 Conclusions

M8 −H duality plays a crucial role in quantum TGD and this motivated a critical study of the
basic assumptions involved.

11.8.1 Co-associativity is the only viable option

The notion of associativity of the tangent or normal space as a number theoretical counterpart of
a variational principle. This is not enough in order to have M8 −H duality. The first guess was
that the tangent space is associative and contains a commutative 2-D sub-manifold to guarantee
M8 −H duality.

1. The cold shower came as I learned that 4-D associative sub-manifolds of quaternion spaces are
geodesic manifolds and thus trivial. Co-associativity is however possible since any distribution
of associative normal spaces integrates to a sub-manifold. Typically these sub-manifolds are
minimal surfaces, which conforms with the physical intuitions. Therefore the surface X4

r given
by holography should be co-associative. By the same argument space-time surface contains
string world sheets and partonic 2-surfaces as co-complex surfaces.

2. X = ReQ(o) = 0 and Y = ImQ(P ) = 0 allow M4 and its complement as associative/co-
associative subspaces of Oc. The roots P = 0 for the complexified octonionic polynomials
satisfy two conditions X = 0 and Y = 0.
Surprisingly, universal solutions are obtained as brane-like entities X6

c with real dimension 12,
having real projection X6

r (”real” means that the number theoretic complex valued octonion
norm squared is real valued).
Equally surprisingly, the non-universal solutions to the conditions to X = 0 correspond com-
plex mass shells with real dimension 6 rather than 8. The solutions to X = Y = 0 correspond
to common roots of the two polynomials involved and are also 6-D complex mass shells.
The reason for the completely unexpected behavior is that the equations X = 0 and Y = 0
are reduced by Lorentz invariance to equations for the ordinary roots of polynomials for the
complexified mass squared type variable. The intersection is empty unless X and Y have a
common root and X4

r belongs to X6
r for a common root.

How to associate to the polynomial P a real 4-surface satisfying the conditions making
M8−H-duality?

1. P would fix complex mass shells in terms of its roots but not the 4-surfaces, contrary to the
original expectations. The fact that the 3-D mass shells belong to the same M4 and also their
tangent spaces are parallel to M4 together with rationality conditions for local SU(3) element
suggests number theoretical holography.

2. The key observation is that G2 as the automorphism group of octonions respects the co-
associativity of the 4-D real sub-basis of octonions. Therefore a local G2 gauge transformation
applied to a 4-D co-associative sub-space M c ⊂ Oc gives a co-associative four-surface as a real
projection. Also octonion analyticity allows G2 gauge transformation. If X4 is the image M4
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by a local SU(3) element such that it also remains invariant under SU(2) at each point, one
obtains automatically M8 −H duality.
The image of X4 under M8−H duality depends on g so that gauge invariance is not in question.
The plausible interpretation in case of SU(3) is in terms of Kac-Moody - or even Yangian
symmetry. Note that at QFT limit the gauge potentials defined at H level as projections of
Killing vector fields of SU(3) are replaced by their sums over parallel space-time sheets to
give gauge fields as the space-time sheets are approximated with a single region of Minkowski
space.

The study of octonionic Dirac equation shows that the solutions correspond to momenta at
mass shells m2 = rn obtained as roots of the polynomial P and that co-associativity is an essential
for the octonionic Dirac equation. This conforms with the reduction of everything to algebraic
conditions at the level of M8.

11.8.2 Construction of the momentum space counter parts of scattering
amplitudes in M8

The construction of scattering amplitudes in M8 was the main topic of this article. ZEO and the
interpretation of M8 as a momentum space analogous to the interior of the Fermi sphere give
powerful constraints on the scattering amplitudes. 0

1. The fact that SU(3) gauge transformation with boundary conditions defined by the mass shells
as roots of polynomial P defines space-time surface and the corresponding gauge field vanishes
plus the fact that at string world sheets the gauge potential defines a conserved current by
holomorphy strongly suggest Yangian symmetry differing from Kac-Moody symmetry in that
the analogs of conformal weights are non-negative. This leads to a proposal for how vertex
operators can be constructed in terms of co-product using fermionic oscillator operators but
with Kronecker delta anti-commutators since the cognitive representation is discrete.

2. The main objection is that the scattering amplitudes are trivial if quark momenta belong to
cognitive representations, which are finite in the generic case. This would be the case also in
2-D integrable theories. The objection can be circumvented. First, the huge symmetries
imply that cognitive representations can contain a very large - even an infinite - number
of points. At partonic 2-surface this number could reduce to finite. Equally importantly,
local composites of quark oscillation operators with collinear quark momenta are possible
and would be realized in terms of representations of Yangian algebra for G2,c serving as the
counterpart for super-symplectic and Kac-Moody algebras at the level of H.

3. ZEO leads to a concrete proposal for the construction of zero energy states - equivalently
scattering amplitudes - by using a representation of Yangian algebra realized in terms of
positive and negative energy quarks in opposite half-cones. Co-product plays a key role in the
construction. Also the proposed local composites of quarks proposed in [L81] make sense.

4. Momentum conservation conditions and mass shell conditions combined with the requirement
that the momenta are algebraic integers in the extension of rationals determined by the poly-
nomial P look rather difficult to solve. These conditions however linearize in the sense that
one can express the allowed momenta as squares of integer quaternions.

Also the construction of scattering amplitudes in M8 is considered. ZEO and the interpre-
tation of M8 as a momentum space analogous to the interior of the Fermi sphere give powerful
constraints on the scattering amplitudes. The fact that G2,c gauge transformation defines space-
time surface and the corresponding gauge field vanishes plus the fact that at string world sheets
the gauge potential defines a conserved current by holomorphy strongly suggest Yangian symmetry
differering from Kac-Moody symmetry in that the analogs of conformal weights are non-negative.
This leads to a proposal for how vertex operators can be constructed in terms of co-product us-
ing fermionic oscillator operators but with Kronecker delta anticommutators since the cognitive
representation is discrete.

The main objection is that the scattering amplitudes are trivial if quark momenta belong
to cognitive representations, which are finite in the generic case. This would be the case also in
2-D integrable theories. The objection can be circumvented. First, the huge symmetries imply
that cognitive representations can contain a very large - even an infinite - number of points. At
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partonic 2-surface this number could reduce to finite. Equally importantly, local composites of
quark oscillation operators with collinear quark momenta are possible and would be realized in
terms of representations of Yangian algebra for G2,c serving as the counterpart for super-symplectic
and Kac-Moody algebras at the level of H.

ZEO leads to a concrete proposal for the construction of zero energy states - equivalently
scattering amplitudes - by using a representation of Yangian algebra realized in terms of positive
and negative energy quarks in opposite half-cones. Co-product plays a key role in the construction.
Also the proposed local composites of quarks proposed in [L81] make sense.

Momentum conservation conditions and mass shell conditions combined with the require-
ment that the momenta are algebraic integers in the extension of rationals determined by the
polynomial P look rather difficult to solve. These conditions however linearize in the sense that
one can express the allowed momenta as squares of integer quaternions.
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Chapter 12

Cosmology and Astrophysics in
Many-Sheeted Space-Time

12.1 Introduction

This chapter is devoted to the applications of TGD to astrophysics and cosmology are discussed. It
must be admitted that the development of the proper interpretation of the theory has been rather
slow and involved rather weird twists motivated by conformist attitudes. Typically these attempts
have brought into theory ad hoc identifications of say gravitational four-momentum although theory
itself has from very beginning provided completely general formulas.

Perhaps the real problem has been that radically new views about ontology were necessary
before it was possible to see what had been there all the time. Zero energy ontology (ZEO)
states that all physical states have vanishing net quantum numbers. The hierarchy of dark matter
identified as macroscopic quantum phases labeled by arbitrarily large values of Planck constant is
second aspect of the new ontology.

12.1.1 Zero Energy Ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the boundaries of future and past direct light-cones forming
a causal diamond. All conserved quantum numbers of the positive and negative energy states are
of opposite sign so that these states can be created from vacuum. “Any physical state is creatable
from vacuum” becomes thus a basic principle of quantum TGD and together with the notion of
quantum jump resolves several philosophical problems (What was the initial state of universe?,
What are the values of conserved quantities for Universe, Is theory building completely useless if
only single solution of field equations is realized?).

At the level of elementary particle physics positive and negative energy parts of zero energy
state are interpreted as initial and final states of a particle reaction so that quantum states become
physical events. Equivalence Principle would hold true in the sense that the classical gravitational
four-momentum of the vacuum extremal whose small deformations appear as the argument of
configuration space spinor field is equal to the positive energy of the positive energy part of the
zero energy quantum state.

Robertson-Walker cosmologies correspond to vacua with respect to inertial energy and in
fact with respect to all quantum numbers. They are not vacua with respect to gravitational charges
defined as Noether charges associated with the curvature scalar. Also more general imbeddings
of Einstein’s equations are typically vacuum extremals with respect to Noether charges assignable
to Kähler action since otherwise one ends up with conflict between imbeddability and dynamics.
This suggests that physical states have vanishing net quantum numbers quite generally. The
construction of quantum theory [K45, K30] indeed leads naturally to zero energy ontology stating
that everything is creatable from vacuum.

Zero energy states decompose into positive and negative energy parts having identification
as initial and final states of particle reaction in time scales of perception longer than the geometro-
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temporal separation T of positive and negative energy parts of the state. If the time scale of
perception is smaller than T , the usual positive energy ontology applies.

In zero energy ontology inertial four-momentum is a quantity depending on the temporal
time scale T used and in time scales longer than T the contribution of zero energy states with
parameter T1 < T to four-momentum vanishes. This scale dependence alone implies that it does
not make sense to speak about conservation of inertial four-momentum in cosmological scales.
Hence it would be in principle possible to identify inertial and gravitational four-momenta and
achieve strong form of Equivalence Principle. It however seems that this is not the correct approach
to follow.

The the relationship between TGD and GRT was understood quite recently (2014). GRT
space-time as effective space-time obtained by replacing many-sheeted space-time with Minkowski
space with effective metric determined as a sum of Minkowski metric and sum over the deviations
of the induced metrices of space-time sheets from Minkowski metric. Poincare invariance suggests
strongly classical form of Equivalence Principle (EP) for the GRT limit in long length scales at
least expressed in terms of Einstein’s equations in given resolution scale with space-time sheets
with size smaller than resolution scale represented as external currents.

One can consider also other kinds of limits such as the analog of GRT limit for Euclidian
space-time regions assignable to elementary particles. In this case deformations of CP2 metric
define a natural starting point and CP2 indeed defines a gravitational instanton with very large
cosmological constant in Einstein-Maxwell theory. Also gauge potentials of standard model corre-
spond classically to superpositions of induced gauge potentials over space-time sheets.

The vacuum extremals are absolutely essential for the TGD based view about long length
scale limit about gravitation. Effective GRT space time would be imbeddable as a vacuum extremal
to H. This is just assumption albeit coming first in mind - especially so when one has not yet
understood how GRT space-time emerges from TGD!

Already the Kähler action defined by CP2 Kähler form J allows enormous vacuum degen-
eracy: any four-surface having Lagrangian sub-manifold of CP2 as its CP2 projection is a vacuum
extremal. The dimension of these sub-manifolds is at most two. Robertson-Walker cosmologies cor-
respond to vacua with respect to inertial energy and in fact with respect to all quantum numbers.
They are not vacua with respect to gravitational charges defined as Noether charges associated
with the curvature scalar. Also more general imbeddings of Einstein’s equations are typically vac-
uum extremals with respect to Noether charges assignable to Kähler action since otherwise one
ends up with conflict between imbeddability and dynamics. This suggests that physical states have
vanishing net quantum numbers quite generally. The construction of quantum theory [K45, K30]
indeed leads naturally to zero energy ontology stating that everything is creatable from vacuum.

In TGD framework topological field quantization leads to the hypothesis that quantum
concepts should have geometric counterparts and also potential energy should have precise correlate
at the level of description based on topological field quanta. This indeed seems to be the case.
As already explained, TGD allows space-time sheets to have both positive and negative time
orientations. This in turn implies that also the sign of energy can be also negative. This suggests
that the generation of negative energy space-time sheets representing virtual gravitons together
with energy conservation makes possible the generation of huge gravitationally induced kinetic
energies and gravitational collapse. In this process inertial energy would be conserved since instead,
of positive energy gravitons, the inertial energy would go to the energy of matter.

This picture has a direct correlate in quantum field theory where the exchange negative en-
ergy virtual bosons gives rise to the interaction potential. The gravitational red-shift of microwave
background photons is the strongest support for the non-conservation of energy in General Rela-
tivity. In TGD it could have concrete explanation in terms of absorption of negative energy virtual
gravitons by photons leading to gradual reduction of their energies. This explanation is consistent
with the classical geometry based explanation of the red-shift based on the stretching of electro-
magnetic wave lengths. This explanation is also consistent with the intuition based on Feynman
diagram description of gravitational acceleration in terms of graviton exchanges.

12.1.2 Dark Matter Hierarchy And Hierarchy Of Planck Constants

The idea about hierarchy of Planck constants relying on generalization of the embedding space was
inspired both by empirical input (Bohr quantization of planetary orbits and anomalies of biology)
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and by the mathematics of hyper-finite factors of type II1 combined with the quantum classical
correspondence. Consider first the mathematical structure in question.

1. The Clifford algebra of World of Classical Worlds (WCW) creating many fermion states is
a standard example of an algebra expressible as a direct integral of copies of von Neumann
algebras known as hyper-finite factor of type II1 (HFFs). The inclusions of HFFs relate very in-
timately to the notion of finite measurement resolution. There is a canonical hierarchy of Jones
inclusions [A1] labeled by finite subgroups of SU(2) [A85]. Quantum classical correspondence
suggests that these inclusions have space-time correlates [K112, K42] and the generalization
of embedding space would provide these correlates.

2. The space CD×CP2, where CD ⊂M4 is so called causal diamond identified as the intersection
of future and past directed light-cones defines the basic geometric structure in zero energy
ontology. The positive (negative) energy part of the zero energy state is located to the lower
(upper) light-like boundaries of CD × CP2 and has interpretation as the initial (final) state
of the physical event in standard positive energy ontology. p-Adic length scale hypothesis
follows if one assumes that the temporal distance between the tips of CD comes as an octave
of fundamental time scale defined by the size of CP2. The “world of classical worlds” (WCW )
is union of sub-WCWs associated with spaces CD×CP2 with different locations in M4×CP2.

3. One can say that causal diamond CD and the space CP2 appearing as factors in CD × CP2

forms the basic geometric structure in zero energy ontology, is replaced with a book like
structure obtained by gluing together infinite number of singular coverings and factor spaces
of CD resp. CP2 together. The copies are glued together along a common “back” M2 ⊂ M2

of the book in the case of CD. In the case of CP2 the most general option allows two backs
corresponding to the two non-isometric geodesic spheres S2

i , i = I, II, represented as sub-

manifolds ξ1 = ξ
2

and ξ1 = ξ2 in complex coordinates transforming linearly under U(2) ⊂
SU(3). Color rotations in CP2 produce different choices of this pair.

4. The selection of S2 and M2 is an imbedding space correlate for the fixing of quantization axes
and means symmetry breaking at the level of embedding space geometry. WCW is union
over all possible choices of CD and pairs of geodesic spheres so that at the level no symmetry
breaking takes place. The points of M2 and S2 have a physical interpretation in terms of
quantum criticality with respect to the phase transition changing Planck constant (leakage to
another page of the book through the back of the book).

5. The pages of the singular coverings are characterized by finite subgroups Ga and Gb of SU(2)
and these groups act in covering or leave the points of factor space invariant. The pages are
labeled by Planck constants ~(CD) = na~0 and ~(CP2) = nb~0, where na and nb are integers
characterizing the orders of maximal cyclic subgroups of Ga and Gb. For singular factor spaces
one has ~(CD) = ~0/na and ~(CP2) = ~0/nb. The observed Planck constant corresponds to
~ = (~(CD)/~(CP2))× ~0. What is also important is that (~/~0)2 appears as a scaling factor
of M4 covariant metric so that Kähler action via its dependence on induced metric codes
for radiative corrections coming in powers of ordinary Planck constant: therefore quantum
criticality and vanishing of radiative corrections to functional integral over WCW does not
mean vanishing of radiative corrections.

The interpretation in terms of dark matter comes as follows.

1. Large values of ~ make possible macroscopic quantum phase since all quantum scales are scaled
upwards by ~/~0. Anyonic and charge fractionization effects allow to “measure” ~(CD) and
~(CP2) rather than only their ratio. ~(CD) = ~(CP2) = ~0 corresponds to what might be
called standard physics without any anyonic effects and visible matter is identified as this
phase.

2. Particle states belonging to different pages of the book can interact via classical fields and by
exchanging particles, such as photons, which leak between the pages of the book. This leakage
means a scaling of frequency and wavelength in such a way that energy and momentum of
photon are conserved. Direct interactions in which particles from different pages appear in
the same vertex of generalized Feynman diagram are impossible. This seems to be enough to
explain what is known about dark matter. This picture differs in many respects from more
conventional models of dark matter making much stronger assumptions and has far reaching
implications for quantum biology, which also provides support for this view about dark matter.
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This is the basic picture. One can imagine large number of speculative applications.

1. The number theoretically simple ruler-and-compass integers n having as factors only first
powers of Fermat primes and power of 2 would define a physically preferred values of na
and nb and thus a sub-hierarchy of quantum criticality for which subsequent levels would
correspond to powers of 2: a connection with p-adic length scale hypothesis suggests itself.
Ruler and compass hypothesis implies that besides p-adic length scales also their 3- and 5-
multiples should be important.

2. Ga could correspond directly to the observed symmetries of visible matter induced by the
underlying dark matter if singular factor space is in question [K42]. For instance, in living
matter molecules with 5- and 6-cycles could directly reflect the fact that free electron pairs
associated with these cycles correspond to na = 5 and na = 6 dark matter possibly responsible
for anomalous conductivity of DNA [K42, K21] and recently reported strange properties of
graphene [D12]. Also the tetrahedral and icosahedral symmetries of water molecule clusters
could have similar interpretation [K39]. [D21].

3. A further fascinating possibility is that the evidence for Bohr orbit quantization of planetary
orbits [E18] could have interpretation in terms of gigantic Planck constant for underlying
dark matter [K89] so that macroscopic and -temporal quantum coherence would be possible
in astrophysical length scales manifesting itself in many way: say as preferred directions of
quantization axis (perhaps related to the CMB anomaly) or as anomalously low dissipation
rates.

4. Since the gravitational Planck constant ~gr = GM1m/v0, v0 = 2−11 for the inner planets,
is proportional to the product of the gravitational masses of interacting systems, it must be
assigned to the field body of the two systems and characterizes the interaction between systems
rather than systems themselves. This observation applies quite generally and each field body
of the system (em, weak, color, gravitational) is characterized by its own Planck constant.

12.1.3 Many-Sheeted Cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial and
gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of
the limiting temperature, the assumption about the existence of the vapor phase dominated by
cosmic strings, and quantum criticality imply a rather detailed picture of the cosmic evolution,
which differs from that provided by the standard cosmology in several respects but has also strong
resemblances with inflationary scenario.

The most important differences are following.

1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a
spectrum of Hubble constants.

2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each
sub-cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological
length scales so that the use of anthropic principle to explain why fundamental constants are
tuned for life is not necessary.

3. The new view about energy means that inertial energy is negative for space-time sheets with
negative time orientation and that the density of inertial energy vanishes in cosmological
length scales. Therefore any cosmology is in principle creatable from vacuum and the problem
of initial values of cosmology disappears. The density of matter near the initial moment is
dominated by cosmic strings approaches to zero so that big bang is transformed to a silent
whisper amplified to a relatively big bang.

4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of dark
space-time sheets which differ from non-dark ones in that they define multiple coverings of M4.
Quantum coherence of dark matter in the length scale of space-time sheet involved implies
that even in cosmological length scales Universe is more like a living organism than a thermal
soup of particles.

5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the
imbeddability requirement apart from a single parameter characterizing the duration of the
period after which transition to sub-critical cosmology necessarily occurs. The fluctuations
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of the microwave background reflect the quantum criticality of the critical period rather than
amplification of primordial fluctuations by exponential expansion. This and also the finite size
of the space-time sheets predicts deviations from the standard cosmology.

12.1.4 Cosmic Strings

Cosmic strings belong to the basic extremals of the Kähler action. The string tension of the cosmic
strings is T ' .2 × 10−6/G and slightly smaller than the string tension of the GUT strings and
this makes them very interesting cosmologically.

TGD predicts two basic types of strings.

1. The analogs of hadronic strings correspond to deformations of vacuum extremals carrying
non-vanishing induced Kähler fields. p-Adic thermodynamics for super-symplectic quanta
condensed on them with additivity of mass squared yields without further assumptions stringy
mass formula. These strings are associated with various fractally scaled up variants of hadron
physics.

2. Cosmic strings correspond to homologically non-trivial geodesic sphere of CP2 (more generally
to complex sub-manifolds of CP2) and have a huge string tension. These strings are expected
to have deformations with smaller string tension which look like magnetic flux tubes with finite
thickness in M4 degrees of freedom. The signature of these strings would be the homological
non-triviality of the CP2 projection of the transverse section of the string.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of
cosmic strings are responsible for the evolution of astrophysical structures in a very wide length
scale range. Large voids with size of order 108 light years can be seen as structures containing knot-
ted and linked cosmic string pairs wound around the boundaries of the void. Galaxies correspond
to same structure with smaller size and linked around the supra-galactic strings. This conforms
with the finding that galaxies tend to be grouped along linear structures. Simple quantitative esti-
mates show that even stars and planets could be seen as structures formed around cosmic strings
of appropriate size. Thus Universe could be seen as fractal cosmic necklace consisting of cosmic
strings linked like pearls around longer cosmic strings linked like...

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

12.2 Basic Principles Of General Relativity From TGD Point
Of View

General Coordinate Invariance, Equivalence Principle are corner stones of general relativity and
one expects that they hold true also in TGD some sense. The earlier attempts to understand
the relationship between TGD and GRT have been in terms of solutions of Einstein’s equations
imbeddable to M4 × CP2 instead of introducing GRT space-time as a fictive notion naturally
emerging from TGD as a simplified concept replacing many-sheeted space-time. This resolves also
the worries related to Equivalence Principle. TGD can be seen as a “microscopic” theory behind
TGD and the understanding of the microscopic elements becomes the main focus of theoretical
and hopefully also experimental work some day.

Objections against TGD have turned out to be the best route to the correct interpretation of
the theory. A very general objection against TGD relies on the notion of induced gauge fields and
metric implying extremely strong constraints between classical gauge fields for preferred extremals.
These constraints cannot hold true for gauge fields in the usual sense. Also linear superposition is
lost. The solution of the problem comes from simple observation: it is not fields which superpose
but their effects on test particle topologically condensed to space-time sheets carrying the classical
fields. Superposition is replaced with set theoretic union. This leads also naturally to explicit
identification of the effective metric and gauge potentials defined in M4 and defining GRT limit of
TGD.

Finite length scale resolution is central notion in TGD and implies that the topological
inhomogenities (space-time sheets and other topological inhomogenities) are treated as point-like

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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objects and described in terms of energy momentum tensor of matter and various currents coupling
to effective YM fields and effective metric important in length scales above the resolution scale.
Einstein’s equations with coupling to gauge fields and matter relate these currents to the Einstein
tensor and metric tensor of the effective metric of M4. The topological inhomogenities below cutoff
scale serve determine the curvature of the effective metric.

The original proposal, which I called smoothed out space-time, took into account the topo-
logical inhomogenities but neglected many-sheetedness in length scales above resolution scale. I
also identified the effective metric can be identified as induced metric: this is very strong as-
sumption although the properties of vacuum extremals support this identification at least in some
important special cases.

The attempts to understand Kähler-Dirac (or Kähler-Dirac-) action has provided very strong
boost to the understanding of the basic problems related to GRT-TGD relationship, understanding
of EP means at quantum level in TGD, and how the properties of induced electroweak gauge
potentials can be consistent with what is known about electroweak interactions: for instance, if is
far from clear how em charge can be well-defined for the modes of the induced spinor field and how
the effective absence of weak bosons above weak scale is realized at classical level for Kähler-Dirac
action.

12.2.1 General Coordinate Invariance

General Coordinate Invariance plays in the formulation of quantum TGD even deeper role than
in that of GRT. Since the fundamental objects are 3-D surfaces, the construction of the geometry
of the configuration space of 3-surfaces (the world of classical worlds, WCW) requires that the
definition of the geometry assigns to a given 3-surfaceX3 a unique space-time surfaceX4(X3). This
space-time surface is completely analogous to Bohr orbit, which means a completely unexpected
connection with quantum theory.

General Coordinate Invariance is analogous to gauge symmetry and requires gauge fixing.
The definition assigning X4(X3) to given X3 must be such that the outcome is same for all 4-
diffeomorphs of X3. This condition is highly non-trivial since X4(X3) = X4(Y 3) must hold true
if X3 and Y 3 are 4-diffeomorphs. One manner to satisfy this condition is by assuming quantum
holography and weakened form of General Coordinate Invariance: there exists physically preferred
3-surfaces X3 defining X4(X3), and the 4-diffeomorphs Y 3 of X3 at X4(X3) provide classical
holograms of X3: X4(Y 3) = X4(X3) is trivially true. Zero energy ontology allows to realize this
form of General Coordinate Invariance.

1. In ZEO WCW decomposes into a union of sub-WCWs associated with causal diamonds CD×
CP2 (CD denotes the intersection of future and past directed light-cones of M4), and the
intersections of space-time surface with the light-light boundaries of CD × CP2 are excellent
candidates for preferred space-like 3-surfaces X3. The 3-surfaces at δCD × CP2 are indeed
physically special since they carry the quantum numbers of positive and negative energy parts
of the zero energy state.

2. Preferred 3-surfaces could be also identified as light-like 3-surfaces X3
l at which the Euclidian

signature of the induced space-time metric changes to Minkowskian. Also light-like boundaries
of X4 can be considered. These 3-surfaces are assumed to carry elementary particle quantum
numbers and their intersections with the space-like 3-surfaces X3 are 2-dimensional partonic
surfaces so that effective 2-dimensionality consistent with the conformal symmetries of X3

l

results if the identifications of 3-surfaces are physically equivalent. Light-like 3-surfaces are
identified as generalized Feynman diagrams and due to the presence of 2-D partonic 2-surfaces
representing vertices fail to be 3-manifolds. Generalized Feynman diagrams could be also
identified as Euclidian regions of space-time surface.

3. General Coordinate Invariance in minimal form requires that the slicing of X4(X3
l ) by light

light 3-surfaces Y 3
l “parallel” to X3

l predicted by number theoretic compactification gives rise
to quantum holography in the sense that the data associated with any Y 3

l allows an equivalent
formulation of quantum TGD. This poses a strong condition on the spectra of the Kähler-Dirac
operator at Y 3

l and thus to the preferred extremals of Kähler action since the WCW Kähler
functions defined by various choices of Y 3

l can differ only by a sum of a holomorphic function
and its conjugate [K113, K30] .
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12.2.2 The Basic Objection Against TGD

The basic objection against TGD is that induced metrics for space-time surfaces in M4 × CP2

form an extremely limited set in the space of all space-time metrics appearing in the path integral
formulation of General Relativity. Even special metrics like the metric of a rotating black hole fail
to be imbeddable as an induced metric. For instance, one can argue that TGD cannot reproduce
the post-Newtonian approximation to General Relativity since it involves linear superposition of
gravitational fields of massive objects. As a matter fact, Holger B. Nielsen- one of the very few
colleagues who has shown interest in my work - made this objection for at least two decades ago
in some conference and I remember vividly the discussion in which I tried to defend TGD with my
poor English.

The objection generalizes also to induced gauge fields expressible solely in terms of CP2

coordinates and their gradients. This argument is not so strong as one might think first since in
standard model only classical electromagnetic field plays an important role.

1. Any electromagnetic gauge potential has in principle a local embedding in some region. Pre-
ferred extremal property poses strong additional constraints and the linear superposition of
massless modes possible in Maxwell’s electrodynamics is not possible.

2. There are also global constraints leading to topological quantization playing a central role in
the interpretation of TGD and leads to the notions of field body and magnetic body having
non-trivial application even in non-perturbative hadron physics. For a very large class of pre-
ferred extremals space-time sheets decompose into regions having interpretation as geometric
counterparts for massless quanta characterized by local polarization and momentum directions.
Therefore it seems that TGD space-time is very quantal. Is it possible to obtain from TGD
what we have used to call classical physics at all?

The imbeddability constraint has actually highly desirable implications in cosmology. The
enormously tight constraints from imbeddability imply that imbeddable Robertson-Walker cos-
mologies with infinite duration are sub-critical so that the most pressing problem of General
Relativity disappears. Critical and over-critical cosmologies are unique apart from a parame-
ter characterizing their duration and critical cosmology replaces both inflationary cosmology and
cosmology characterized by accelerating expansion. In inflationary theories the situation is just
the opposite of this: one ends up with fine tuning of inflaton potential in order to obtain recent
day cosmology.

Despite these and many other nice implications of the induced field concept and of sub-
manifold gravity the basic question remains. Is the imbeddability condition too strong physically?
What about linear superposition of fields which is exact for Maxwell’s electrodynamics in vacuum
and a good approximation central also in gauge theories. Can one obtain linear superposition in
some sense?

1. Linear superposition for small deformations of gauge fields makes sense also in TGD but for
space-time sheets the field variables would be the deformations of CP2 coordinates which are
scalar fields. One could use preferred complex coordinates determined about SU(3) rotation
to do perturbation theory but the idea about perturbations of metric and gauge fields would
be lost. This does not look promising. Could linear superposition for fields be replaced with
something more general but physically equivalent?

2. This is indeed possible. The basic observation is utterly simple: what we know is that the
effects of gauge fields superpose. The assumption that fields superpose is un-necessary! This
is a highly non-trivial lesson in what operationalism means for theoreticians tending to take
these kind of considerations as mere “philosophy”.

3. The hypothesis is that the superposition of effects of gauge fields occurs when the M4 projec-
tions of space-time sheets carrying gauge and gravitational fields intersect so that the sheets
are extremely near to each other and can touch each other ( CP2 size is the relevant scale).

A more detailed formulation goes as follows.

1. One can introduce common M4 coordinates for the space-time sheets. A test particle (or real
particle) is identifiable as a wormhole contact and is therefore point-like in excellent approxi-
mation. In the intersection region for M4 projections of space-time sheets the particle forms
topological sum contacts with all the space-time sheets for which M4 projections intersect.
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2. The test particle experiences the sum of various gauge potentials of space-time sheets involved.
For Maxwellian gauge fields linear superposition is obtained. For non-Abelian gauge fields
gauge fields contain interaction terms between gauge potentials associated with different space-
time sheets. Also the quantum generalization is obvious. The sum of the fields induces
quantum transitions for states of individual space time sheets in some sense stationary in their
internal gauge potentials.

3. The linear superposition applies also in the case of gravitation. The induced metric for each
space-time sheet can be expressed as a sum of Minkowski metric and CP2 part having inter-
pretation as gravitational field. The natural hypothesis that in the above kind of situation
the effective metric is sum of Minkowski metric with the sum of the CP2 contributions from
various sheets. The effective metric for the system is well-defined and one can calculate a
curvature tensor for it among other things and it contains naturally the interaction terms be-
tween different space-time sheets. At the Newtonian limit one obtains linear superposition of
gravitational potentials. One can also postulate that test particles moving along geodesics in
the effective metric. These geodesics are not geodesics in the metrics of the space-time sheets.

4. This picture makes it possible to interpret classical physics as the physics based on effective
gauge and gravitational fields and applying in the regions where there are many space-time
sheets which M4 intersections are non-empty. The loss of quantum coherence would be due
to the effective superposition of very many modes having random phases.

The effective superposition of the CP2 parts of the induced metrics gives rise to an effective
metric which is not in general imbeddable to M4 × CP2. Therefore many-sheeted space-time
makes possible a rather wide repertoire of 4-metrics realized as effective metrics as one might have
expected and the basic objection can be circumvented In asymptotic regions where one can expect
single sheetedness, only a rather narrow repertoire of “archetypal” field patterns of gauge fields
and gravitational fields defined by topological field quanta is possible.

The skeptic can argue that this still need not make possible the embedding of a rotating
black hole metric as induced metric in any physically natural manner. This might be the case but
need of course not be a catastrophe. We do not really know whether rotating blackhole metric is
realized in Nature. I have indeed proposed that TGD predicts new physics [K106]. Unfortunately,
gravity probe B could not check whether this new physics is there since it was located at equator
where the new effects vanish.

12.2.3 How GRT And Equivalence Principle Emerge From TGD?

The question how TGD relates to General Relativity Theory (GRT) has been a rich source of prob-
lems during last 37 years. In the light of after-wisdom the problems have been due to my too limited
perspective. I have tried to understand GRT limit in the TGD framework instead of introducing
GRT space-time as a fictive notion naturally emerging from TGD as a simplified concept replac-
ing many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/manysheeted.jpg or
Fig. ?? in the appendix of this book) . This resolves also the worries related to Equivalence
Principle.

TGD itself gains the status of “microscopic” theory of gravity and the experimental chal-
lenges relate to how make the microscopy of gravitation experimentally visible. This involves
questions such as “How to make the presence of Euclidian space-time regions visible?”,

How to reveal many-sheeted character of space-time, topological field quantization, and
the presence of magnetic flux tubes?,”How to reveal quantum gravity as understood in
TGD involving in an essential manner gravitational Planck constant hgr identifiable as
heff inspired by anomalies of bio-electromagnetism?

[K81].

More technical questions relate to the Kähler-Dirac action, in particular to how conservation
laws are realized. During all these years several questions have been lurking at the boarder of
conscious and sub-conscious. How can one guarantee that em charge is well-defined for the spinor
modes when classical W fields are present? How to avoid large parity breaking effects due to
classical Z0 fields? How to avoid the problems due to the fact that color rotations induced vielbein
rotation of weak fields? The common answer to these questions is restriction of the modes of

http://tgdtheory.fi/appfigures/manysheeted.jpg
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induced spinor field to 2-D string world sheets (and possibly also partonic 2-surfaces) such that
the induced weak fields vanish. This makes string picture a part of TGD.

TGD and GRT

Concerning GRT limit the basic questions are the following ones.

1. Is it really possible to obtain a realistic theory of gravitation if general space-time metric is
replaced with induced metric depending on 8 embedding space coordinates (actually only 4
by general coordinate invariance?

2. What happens to Einstein equations?

3. What about breaking of Poincare invariance, which seems to be real in cosmological scales?
Can TGD cope with it?

4. What about Equivalence Principle (EP)

5. Can one predict the value of gravitational constant?

6. What about TGD counterpart of blackhole, which certainly represents the boundary of realm
in which GRT applies?

Consider first possible answers to the first three questions.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets (see Fig. http:

//tgdtheory.fi/appfigures/fieldsuperpose.jpg or ?? in the appendix of this book).

2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski
metric in standard coordinates for the space-time sheets. One could replace flat metric of
M4 with effective metric as sum of metric and deviations associated with various space-time
sheets “above” the M4 point. This effective metric of M4 regarded as independent space
would correspond to that of General Relativity. This resolves long standing issues relating to
the interpretation of TGD. Also standard model gauge potentials can be defined as effective
fields in the same manner and one expects that classical electroweak fields vanish in the length
scales above weak scale.

3. This picture brings in mind the old intuitive notion of smoothed out quantum average space-
time thought to be realized as surface in M4×CP2 rather than in terms of averages metric and
gauge potentials in M4. The problem of this approach was that it was not possible to imagine
any quantitative recipe for the averaging and this was essentially dur to the sub-manifold
assumption.

4. One could generalize this picture and consider effective metrics for CP2 and M2 × CP2 cor-
responding to CP2 type vacuum extremals describing elementary particles and cosmic strings
respectively.

5. Einstein’s equations could hold true for the effective metric. The vanishing of the covariant
divergence of energy momentum tensor would be a remnant of Poincare invariance actually
still present in the sense of Zero Energy Ontology (ZEO) but having realization as global
conservation laws.

6. The breaking of Poincare invariance at the level of effective metric could have interpretation
as effective breaking due to zero energy ontology (ZEO), in which various conserved charges
are length dependent and defined separately for each causal diamond (CD).

The following considerations are about answers to the fourth and fifth questions.

1. EP at classical level would hold true in local sense if Einstein’s equations hold true for the
effective metric. Underlying Poincare invariance suggests local covariant conservation laws.

2. The value of gravitational constant is in principle a prediction of theory containing only radius
as fundamental scale and Kähler coupling strength as only coupling constant analogous to
critical temperature. In GRT inspired quantum theory of gravitation Planck length scale
given by LP =

√
~eff ×G is the fundamental length scale. In TGD size R defines it and it

is independent of heff . The prediction for gravitational constant is prediction for the TGD
counterpart of LP : L2

P = R2/n, n dimensionless constant. The prediction for G would be
G = R2/(n× ~eff ) or G = R2/(n× ~eff,min). The latter option is the natural one.

http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
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Interesting questions relate to the fate of blackholes in TGD framework.

1. Blackhole metric as such is quite possible as effective metric since there is no need to imbed it
to embedding space. One could however argue that blackhole metric is so simple that it must
be realizable as single-sheeted space-time surface. This is indeed possible above some radius
which can be smaller than Schwarschild radius. This is due to the compactness of CP2 . A
general result is that the embedding carriers non-vanishing gauge charge say em charge. This
need not have physical significance if the metric of GRT corresponds to the effective metric
obtained by the proposed recipe.

2. TGD forces to challenge the standard view about black holes. For instance, could it be that
blackhole interior corresponds microscopically to Euclidian space time regions? For these
CP2 endowed with effective metric would be appropriate GRT type description. Reissner-
Nordström metric with cosmological constant indeed allows CP2 as solution [K106]. M4

region and CP2 region would be joined along boundaries at which determinant of four-metric
vanishes. If the radial component of R-N metric is required to be finite, one indeed obtains
metric with vanishing determinant at horizon and it is natural to assume that the metric
inside is Euclidian. Similar picture would applied to the cosmic strings as spaces M2 × S2

with effective metric.

3. Could holography hold true in the sense that blackhole horizon is replaced with a partonic
2-surface with astrophysical size and having light-like orbit as also black-hole horizon has.

4. The notion of gravitational Planck constant ~gr = GMm/v0, where v0 is typical rotation
velocity in the system consisting of masses M and m, has been one of the speculative aspects
of TGD. hgr would be assigned with “gravitational” magnetic flux tube connecting the systems
in question and it has turned out that the identification hgr = heff makes sense in particle
length scales. The gravitational Compton length is universal and given λgr = GM/v0. This
strongly suggests that quantum gravity becomes important already above Schwarschild radius
rS = 2GMm. The critical velocity at which gravitational Compton length becomes smaller
than rS is v0/c = 1/

√
2. All astrophysical objects would be genuinely quantal objects in TGD

Universe point and blackholes would lose their unique role. An experimental support for these
findings comes from experiments of Tajmar et al [E24, E34] [K81].

For few ago entropic gravity [B9, B41] was a buzzword in blogs. The idea was that gravity
would have a purely thermodynamical origin. I have commented the notion of entropic gravity
from the point of view of TGD earlier [K106].

The basic objection is standard QM against the entropic gravity is that gravitational inter-
action of neutrons with Earth’s gravitational field is describable by Schrödinger equation and this
does not fit with thermodynamical description.

Although the idea as such does not look promising TGD indeed suggests that the correlates
for thermodynamical quantities at space-time level make sense in ZEO leading to the view that
quantum TGD is square root of thermodynamics.

Th interesting question is whether temperature has space-time correlate.

1. In Zero Energy Ontology quantum theory can be seen as a square root of thermodynamics
formally and this raises the question whether ordinary temperature could parametrize wave
functions having interpretation as square roots of thermal distributions in ZEO. The quan-
tum model for cell membrane [K38] having the usual thermodynamical model as limit gives
support for this idea. If this were the case, temperature would have by quantum classical
correspondence direct space-time correlate.

2. A less radical view is that temperature can be assigned with the effective space-time metric
only. The effective metric associated with M4 defining GRT limit of TGD is defined sta-
tistically in terms of metric of many-sheeted space-time and would naturally contain in its
geometry thermodynamical parameters. The averaging over the WCW spinors fields involving
integral over 3-surfaces is also involved.

Equivalence Principle

Equivalence Principle has several interpretations.

1. The global form form of Equivalence Principle (EP) realized in Newtonian gravity states that
inertial mass = gravitational mass (mass is replaces with four-momentum in the possible
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relativistic generalization). This form does not make sense in general relativity since four-
momentum is not well-defined: this problem is the starting point TGD.

2. The local form of EP can be expressed in terms of Einstein’s equations. Local covariant
conservation law does not imply global conservation law since energy momentum tensor is
indeed tensor. One can try to define gravitational mass as something making sense in special
cases. The basic problem is that there is no unique identification of empty space Minkowski
coordinates. Gravitational mass could be identified as a a parameter appearing in asymptotic
expression of solutions of Einstein’s equations.

In TGD framework EP need not be problem of principle.

1. In TGD gravitational interaction couples to inertial four-momentum, which is well-defined as
classical Noether charge associated with Kähler action. The very close analogy of TGD with
string models suggest the same.

2. Only if one assumes that gravitational and inertial exist separately and are forced to be
identical, one ends up with potential problems in TGD. This procedure might have sound
physical basis in TGD but one should identify it in convincing manner.

3. In cosmology mass is not conserved, which in positive energy ontology would suggests breaking
of Poincare invariance. In Zero Energy Ontology (ZEO) this is not the case. The conserved
four-momentum assignable to either positive or negative energy part of the states in the basis
of zero energy states depends on the scale of causal diamond (CD). Note that in ZEO zero
energy states can be also superpositions of states with different four-momenta and even fermion
numbers as in case of coherent state formed by Cooper pairs.

Consider now EP in quantum TGD.

1. Inertial momentum is defined as Noether charge for Kähler action.

2. One can assign to Kähler-Dirac action quantal four-momentum (I will use “Kähler-Dirac”
instead of “modified” used in earlier work) [K113]. Its conservation is however not at all
all trivial since embedding space coordinates appear in KD action like external fields. It
however seems that at least for the modes localized at string world sheets the four-momentum
conservation could be guaranteed by an assumption motivated by holomorphy [K113]. The
assumption states that the variation of holomorphic/antiholomorphic Kähler-Dirac gamma
matrices induced by isometry is superposition of K-D gamma matrices of same type.

3. Quantum Classical Correspondence (QCC) suggests that the eigenvalues of quantal four-
momentum are equal to those of Kähler four-momentum. If this is the case, QCC would
imply EP and force conservation of antal four-momenta even if the assumption about varia-
tions of gamma matrices fails! This could be realized in terms of Lagrange multiplier terms
added to Kähler action and localized at the ends of CD and analogous to constraint terms in
ordinary thermodynamics.

4. QCC generalizes to Cartan sub-algebra of symmetries and would give a correlation between
geometry of space-time sheet and conserved quantum numbers. One can consider even stronger
form of QCC stating that classical correlation functions at space-time surface are same as the
quantal once.

The understanding of EP at classical level has been a long standing head-ache in TGD
framework. What seems to be the eventual solution looks disappointingly trivial in the sense that
its discovery requires only some common sense.

The trivial but important observation is that the GRT limit of TGD does not require that
the space-times of GRT limit are imbeddable to the embedding space M4×CP2. The most elegant
understanding of EP at classical level relies on following argument suggesting how GRT space-time
emerges from TGD as an effective notion.

1. Particle experiences the sum of the effects caused by gravitational forces. The linear superpo-
sition for gravitational fields is replaced with the sum of effects describable in terms of effective
metric in GRT framework. Hence it is natural to identify the metric of the effective space-time
as the sum of M4 metric and the deviations of various space-time sheets to which particle has
topological sum contacts. This metric is defined for the M4 serving as coordinate space and
is not in general expressible as induced metric.
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2. Underlying Poincare invariance is not lost but global conservation laws are lost for the effective
space-time. A natural assumption is that global energy-momentum conservation translates to
the vanishing of covariant divergence of energy momentum tensor.

3. By standard argument this implies Einstein’s equations with cosmological constant Λ: this
at least in statistical sense. Λ would parametrize the presence of topologically condensed
magnetic flux tubes. Both gravitational constant and cosmological constant would come out
as predictions.

This picture is in principle all that is needed. TGD is in this framework a “microscopic”
theory of gravitation and GRT describes statistically the many-sheetedness in terms of single
sheeted space-time identified as M4 as manifold. All notions related to many-sheeted space-time -
such as cosmic strings, magnetic flux tubes, generalized Feynman diagrams representing deviations
from GRT. The theoretical and experimental challenge is discover what these deviations are and
how to make them experimentally visible.

One can of course ask whether EP or something akin to it could be realized for preferred
extremals of Kähler action.

1. In cosmological and astrophysical models vacuum extremals play a key role. Could small
deformations of them provide realistic enough models for astrophysical and cosmological scales
in statistical sense?

2. Could preferred extremals satisfy something akin to Einstein’s equations? Maybe! The mere
condition that the covariant divergence of energy momentum tensor for Kähler action vanishes,
is satisfied if Einsteins equations with cosmological terms are satisfied. One can however
consider also argue that this condition can be satisfied also in other ways. For instance,
four-momentum currents associated with them be given by Einstein’s equations involving
several cosmological “constants”. The vanishing of covariant divergence would however give a
justification for why energy momentum tensor is locally conserved for the effective metric and
thus gives rise to Einstein’s equations.

EP as quantum classical correspondence

Quite recently I returned to an old question concerning the meaning of Equivalence Principle (EP)
in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a pseudo
problem due to uncritical assumption there really are two different four-momenta which must be
identified. If even the identification of these two different momenta is difficult, the pondering of
this kind of problem might be waste of time.

At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality constant
does not depend on any other parameters characterizing particle (except spin). The are excellent
reasons to expect that the stringy picture for interactions predicts this.

1. The old idea is that EP reduces to the coset construction for Super Virasoro algebra using the
algebras associated with G and H. The four-momenta assignable to these algebras would be
identical from the condition that the differences of the generators annihilate physical states
and identifiable as inertial and gravitational momenta. The objection is that for the preferred
3-surface H by definition acts trivially so that time-like translations leading out from the
boundary of CD cannot be contained by H unlike G. Hence four-momentum is not associated
with the Super-Virasoro representations assignable to H and the idea about assigning EP to
coset representations does not look promising.

2. Another possibility is that EP corresponds to quantum classical correspondence (QCC) stat-
ing that the classical momentum assignable to Kähler action is identical with gravitational
momentum assignable to Super Virasoro representations. This view might be equivalent with
coset space view. This forced to reconsider the questions about the precise identification of the
Kac-Moody algebra and about how to obtain the magic five tensor factors required by p-adic
mass calculations [K106].
A more precise formulation for EP as QCC comes from the observation that one indeed obtains
two four-momenta in TGD approach. The classical four-momentum assignable to the Kähler
action and that assignable to the Kähler-Dirac action. This four-momentum is an operator and
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QCC would state that given eigenvalue of this operator must be equal to the value of classical
four-momentum for the space-time surfaces assignable to the zero energy state in question. In
this form EP would be highly non-trivial. It would be justified by the Abelian character of four-
momentum so that all momentum components are well-defined also quantum mechanically.
One can also consider the splitting of four-momentum to longitudinal and transversal parts
as done in the parton model for hadrons: this kind of splitting would be very natural at the
boundary of CD. The objection is that this correspondence is nothing more than QCC.

3. A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces holds true.
This is the case if the action of symplectic algebra can be defined at light-like 3-surfaces or even
for the entire space-time surfaces. This could be achieved by parallel translation of light-cone
boundary providing slicing of CD. The four-momenta associated with the two representations
of super-symplectic algebra would be naturally identical and the interpretation would be in
terms of EP.

12.2.4 The Recent View About Kähler-Dirac Action

The understanding of Kähler-Dirac action and equation have provided very strong boost to the
understanding of the basic problems related to GRT-TGD relationship, understanding of howe EP
means at quantum level in TGD, and how the properties of induced electroweak gauge potentials
can be consistent with what is known about electroweak interactions.

The understanding of Kähler Dirac action has been second long term project. How can one
guarantee that em charge is well-defined for the spinor modes when classical W fields are present?
How to avoid large parity breaking effects due to classical Z0 fields? How to avoid the problems
due to the fact that color rotations induced vielbein rotation of weak fields? The common answer
to these questions is restriction of the modes of induced spinor field to 2-D string world sheets
(and possibly also partonic 2-surfaces) such that the induced weak fields vanish. This makes string
picture a part of TGD.

Kähler-Dirac action

12.2.5 Kähler-Dirac Action

Kähler-Dirac equation

12.2.6 Kähler-Dirac Equation In The Interior Of Space-Time Surface

The solution of K-D equation at string world sheets is very much analogous to that in string models
and holomorphy (actually, its Minkowskian counterpart) plays a key role. Note however the K-D
gamma matrices might not necessarily define effective metric with Minkowskian signature even for
string world sheets. Second point to notice is that one can consider also solutions restricted to
partonic 2-surfaces. Physical intuition suggests that they are very important because wormhole
throats carry particle quantum numbers and because wormhole contacts mediat the interaction
between space-time sheets. Whether partonic 2-surfaces are somehow dual to string world sheets
remains an open question.

1. Conformal invariance/its Minkowskian variant based on hyper-complex numbers realized at
string world sheets suggests a general solution of Kähler-Dirac equation. The solution ansatz
is essentially similar to that in string models.

2. Second half of complexified Kähler-Dirac gamma matrices annihilates the spinors which are
either holomorphic or anti-holomorphic functions of complex (hyper-complex) coordinate.

3. What about possible modes delocalized into entire 4-D space-time sheet possible if there are
preferred extremals for which induced gauge field has only em part. What suggests itself is
global slicing by string world sheets and obtain the solutions as integrals over localized modes
over the slices.

The understanding of symmetries (isometries of embedding space) of K-D equation has
turned out to be highly non-trivial challenge. The problem is that embedding space coordinates
appear in the role of external fields in K-D equation. One cannot require the vanishing of the
variations of the K-D action with respect to the embedding space-time coordinates since the action
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itself is second quantized object. Is it possible to have conservation laws associated with the
embedding space isometries?

1. Quantum classical correspondence (QCC) suggests the conserved Noether charges for Kähler
action are equal to the eigenvalues of the Noether charges for Kähler-Dirac action. The quantal
charge conservation would be forced by hand. This condition would realize also Equivalence
Principle.

2. Second possibility is that the current following from the vanishing of second variation of Kähler
action and the modification of Kähler gamma matrices defined by the deformation are linear
combinations of holomorphic or anti-holomorphic gammas just like the gamma matrix itself
so that K-D remains true. Conformal symmetry would therefore play a fundamental role.
Isometry currents would be conserved although variations with respect to embedding space
coordinates would not vanish in general.

3. The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equiv-
alence classes of the deformations can be finite and n would naturally relate to the hierarchy
of Planck constants heff = n× h (see Fig. ?? also in the Appendix).

12.2.7 Boundary Terms For Kähler-Dirac Action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The näıve guess that consistency requires Kähler-Dirac-
Chern Simons equation at partonic orbits. This need not however be correct and therefore it is
best to carefully consider what one wants.

What one wants?

It is could to make first clear what one really wants.

1. What one wants is generalized Feynman diagrams demanding massless Dirac propagators at
the boundaries of string world sheets interpreted as fermionic lines of generalized Feynman
diagrams. This gives hopes that twistor Grassmannian approach emerges at QFT limit. This
boils down to the condition

√
g4ΓnΨ = pkγkΨ

at the space-like ends of space-time surface. This condition makes sense also at partonic orbits
although they are not boundaries in the usual sense of the word. Here however delicacies
since g4 vanishes at them. The localization of induced spinor fields to string world sheets
implies that fermionic propagation takes place along their boundaries and one obtains the
braid picture.
The general idea is that the space-time geometry near the fermion line would define the
four-momentum propagating along the line and quantum classical correspondence would be
realized. The integral over four-momenta would be included to the functional integral over
3-surfaces.
The basic condition is that

√
g4Γn is constant at the boundaries of string world sheets and

depends only on the piece of this boundary representing fermion line rather than on its
point. Otherwise the propagator does not exist as a global notion. Constancy allows to
write

√
g4ΓnΨ = pkγkΨ since only M4 gamma matrices are constant.

2. If pk is light-like one can assume massless Dirac equation and restriction of the induced spinor
field inside the Euclidian regions defining the line of generalized Feynman diagram. The
interpretation would be as on mass-shell massless fermion. If pk is not light-like, this is not
possible and induced spinor field is delocalized outside the Euclidian portions of the line of
generalized Feynman diagram: interactions would be basically due to the dispersion of induced
spinor fields to Minkowskian regions. The interpretation would be as a virtual particle. The
challenge is to find whether this interpretation makes sense and whether it is possible to
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articulate this idea mathematically. The alternative assumption is that also virtual particles
can localized inside Euclidian regions.

3. One can wonder what the spectrum of pk could be. If the identification as virtual momenta is
correct, continuous mass spectrum suggests itself. For the incoming lines of generalized Feyn-
man diagram one expects light-like momenta so that Γn should be light-like. This assumption
is consistent with super-conformal invariance since physical states would correspond to bound
states of massless fermions, whose four-momenta need not be parallel. Stringy mass spectrum
would be outcome of super-conformal invariance and 2-sheetedness forced by boundary condi-
tions for Kähler action would be essential for massivation. Note however that the string curves
along the space-like ends of space-time surface are also internal lines and expected to carry
virtual momentum: classical picture suggests that pk tends to be space-like.

Chern-Simons Dirac action from mathematical consistency

A further natural condition is that the possible boundary term is well-defined. At partonic orbits
the boundary term of Kähler-Dirac action need not be well-defined since

√
g4Γn becomes singular.

This leaves only Chern-Simons Dirac action

ΨΓαC−SDαΨ

under consideration at both sides of the partonic orbits and one can consider continuity of C-S-D
action as the boundary condition. Here ΓαC−S denotes the C-S-D gamma matrix, which does not
depend on the induced metric and is non-vanishing and well-defined. This picture conforms also
with the view about TGD as almost topological QFT.

One could restrict Chern-Simons-Dirac action to partonic orbits since they are special in the
sense that they are not genuine boundaries. Also Kähler action would naturally contain Chern-
Simons term.

One can require that the action of Chern-Simons Dirac operator is equal to multiplication
with ipkγk so that massless Dirac propagator is the outcome. Since Chern-Simons term involves
only CP2 gamma matrices this would define the analog of Dirac equation at the level of embed-
ding space. I have proposed this equation already earlier and introduction this it as generalized
eigenvalue equation having pseudomomenta pk as its solutions.

If space-like ends of space-time surface involve no Chern-Simons term, one obtains the
boundary condition

√
g4ΓnΨ = 0 (12.2.1)

at them. Ψ would behave like massless mode locally. The condition
√
g4ΓnΨ = γkpkΨ = 0 would

state that incoming fermion is massless mode globally. If Chern-Simons term is present one obtains
also Chern-Simons term in this condition but also now fermion would be massless in global sense.
The physical interpretation would be as incoming massless fermions.

12.2.8 About The Notion Of Four-Momentum In TGD Framework

The starting point of TGD was the energy problem of General Relativity [K106]. The solution of
the problem was proposed in terms of sub-manifold gravity and based on the lifting of the isometries
of space-time surface to those of M4 ×CP2 in which space-times are realized as 4-surfaces so that
Poincare transformations act on space-time surface as an 4-D analog of rigid body rather than
moving points at space-time surface. It however turned out that the situation is not at all so
simple.

There are several conceptual hurdles and I have considered several solutions for them. The
basic source of problems has been Equivalence Principle (EP): what does EP mean in TGD frame-
work [K106]? A related problem has been the interpretation of gravitational and inertial masses, or
more generally the corresponding 4-momenta. In General Relativity based cosmology gravitational
mass is not conserved and this seems to be in conflict with the conservation of Noether charges.
The resolution is in terms of ZEO (ZEO), which however forces to modify slightly the original view
about the action of Poincare transformations.
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A further problem has been quantum classical correspondence (QCC): are quantal four-
momenta associated with super conformal representations and classical four-momenta associated as
Noether charges with Kähler action for preferred extremals identical? Could inertial-gravitational
duality - that is EP - be actually equivalent with QCC? Or are EP and QCC independent dualities.
A powerful experimental input comes p-adic mass calculations [K68] giving excellent predictions
provided the number of tensor factors of super-Virasoro representations is five, and this input
together with Occam’s razor strongly favors QCC=EP identification.

There is also the question about classical realization of EP and more generally, TGD-GRT
correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum field theory
(for attempts to understand and generalize the approach in TGD framework see [K100]. This
approach seems to be extremely well suited to TGD and I have considered a generalization of this
approach from N = 4 SUSY to TGD framework by replacing point like particles with string world
sheets in TGD sense and super-conformal algebra with its TGD version: the fundamental objects
are now massless fermions which can be regarded as on mass shell particles also in internal lines (but
with unphysical helicity). The approach solves old problems related to the realization of stringy
amplitudes in TGD framework, and avoids some problems of twistorial QFT (IR divergences
and the problems due to non-planar diagrams). The Yangian [A29] [B25, B17, B18] variant of
4-D conformal symmetry is crucial for the approach in N = 4 SUSY, and implies the recently
introduced notion of amplituhedron [B12]. A Yangian generalization of various super-conformal
algebras seems more or less a “must” in TGD framework. As a consequence, four-momentum is
expected to have characteristic multilocal contributions identifiable as multipart on contributions
now and possibly relevant for the understanding of bound states such as hadrons.

Scale dependent notion of four-momentum in zero energy ontology

Quite generally, General Relativity does not allow to identify four-momentum as Noether charges
but in GRT based cosmology one can speak of non-conserved mass [K90], which seems to be in
conflict with the conservation of four-momentum in TGD framework. The solution of the problem
comes in terms of ZEO (ZEO) [K9, K110], which transforms four-momentum to a scale dependent
notion: to each causal diamond (CD) one can assign four-momentum assigned with say positive
energy part of the quantum state defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single coherent
whole. ZEO also allows maximal “free will” in quantum jump since every zero energy state can be
created from vacuum and at the same time allows consistency with the conservation laws. ZEO
has rather dramatic implications: in particular the arrow of thermodynamical time is predicted to
vary so that second law must be generalized. This has especially important implications in living
matter, where this kind of variation is observed.

More precisely, this superposition corresponds to a spinor field in the “world of classical
worlds” (WCW) [K110]: its components - WCW spinors - correspond to elements of fermionic
Fock basis for a given 4-surface - or by holography implied by general coordinate invariance (GCI)
- for 3-surface having components at both ends of CD. Strong form of GGI implies strong form
of holography (SH) so that partonic 2-surfaces at the ends of space-time surface plus their 4-D
tangent space data are enough to fix the quantum state. The classical dynamics in the interior is
necessary for the translation of the outcomes of quantum measurements to the language of physics
based on classical fields, which in turn is reduced to sub-manifold geometry in the extension of the
geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-QCC.
Strong form of holography has strongly stringy flavor: string world sheets connecting the wormhole
throats appearing as basic building bricks of particles emerge from the dynamics of induced spinor
fields if one requires that the fermionic mode carries well-defined electromagnetic charge [K113].

Are the classical and quantal four-momenta identical?

One key question concerns the classical and quantum counterparts of four-momentum. In TGD
framework classical theory is an exact part of quantum theory. Classical four-momentum corre-
sponds to Noether charge for preferred extremals of Kähler action. Quantal four-momentum in
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turn is assigned with the quantum superposition of space-time sheets assigned with CD - actu-
ally WCW spinor field analogous to ordinary spinor field carrying fermionic degrees of freedom as
analogs of spin. Quantal four-momentum emerges just as it does in super string models - that is as
a parameter associated with the representations of super-conformal algebras. The precise action
of translations in the representation remains poorly specified. Note that quantal four-momentum
does not emerge as Noether charge: at at least it is not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest? If so, the
Noether four-momentum should be same for all space-time surfaces in the superposition. QCC
suggests that also the classical correlation functions for various general coordinate invariant local
quantities are same as corresponding quantal correlation functions and thus same for all 4-surfaces
in quantum superposition - this at least in the measurement resolution used. This would be an
extremely powerful constraint on the quantum states and to a high extend could determined the
U-, M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects the descrip-
tions based on classical physics defined by Kähler action in the interior of space-time surface and
the quantal description in terms of quantum states assignable to the intersections of space-like
3-surfaces at the boundaries of CD and light-like 3-surfaces at which the signature of induced met-
ric changes. SH means effective 2-dimensionality since the four-dimensional tangent space data
at partonic 2-surfaces matters. SH could be interpreted as Kac-Mody and symplectic symmetries
meaning that apart from central extension they act almost like gauge symmetries in the interiors
of space-like 3-surfaces at the ends of CD and in the interiors of light-like 3-surfaces representing
orbits of partonic 2-surfaces. Gauge conditions are replaced with Super Virasoro conditions. The
word “almost” is of course extremely important.

What Equivalence Principle (EP) means in quantum TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A possible
generalization would be equivalence of gravitational and inertial four-momenta. In GRT this
correspondence cannot be realized in mathematically rigorous manner since these notions are
poorly defined and EP reduces to a purely local statement in terms of Einstein’s equations.

What about TGD? What could EP mean in TGD framework?

1. Is EP realized at both quantum and space-time level? This option requires the identification
of inertial and gravitational four-momenta at both quantum and classical level. It is now
clear that at classical level EP follows from very simple assumption that GRT space-time
is obtained by lumping together the space-time sheets of the many-sheeted space-time and
by the identification the effective metric as sum of M4 metric and deviations of the induced
metrics of space-time sheets from M2 metric: the deviations indeed define the gravitational
field defined by multiply topologically condensed test particle. Similar description applies to
gauge fields. EP as expressed by Einstein’s equations would follow from Poincare invariance at
microscopic level defined by TGD space-time. The effective fields have as sources the energy
momentum tensor and YM currents defined by topological inhomogenities smaller than the
resolution scale.

2. QCC would require the identification of quantal and classical counterparts of both gravitational
and inertial four-momenta. This would give three independent equivalences, say PI,class =
PI,quant, Pgr,class = Pgr,quant, Pgr,class = PI,quant, which imply the remaining ones.
Consider the condition Pgr,class = PI,class. At classical level the condition that the standard
energy momentum tensor associated with Kähler action has a vanishing divergence is guaran-
teed if Einstein’s equations with cosmological term are satisfied. If preferred extremals satisfy
this condition they are constant curvature spaces for non-vanishing cosmological constant.It
must be emphasized that field equations are extremely non-linear and one must also consider
preferred extremals (which could be identified in terms of space-time regions having so called
Hamilton-Jacobi structure): hence these proposals are guesses motivated by what is known
about exact solutions of field equations.
Consider next Pgr,class = PI,class. At quantum level I have proposed coset representations
for the pair of super conformal algebras g and h ⊂ g which correspond to the coset space
decomposition of a given sector of WCW with constant values of zero modes. The coset
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construction would state that the differences of super-Virasoro generators associated with g
resp. h annhilate physical states.
The identification of the algebras g and h is not straightforward. The algebra g could be formed
by the direct sum of super-symplectic and super Kac-Moody algebras and its sub-algebra h
for which the generators vanish at partonic 2-surface considered. This would correspond to
the idea about WCW as a coset space G/H of corresponding groups (consider as a model
CP2 = SU(3)/U(2) with U(2) leaving preferred point invariant). The sub-algebra h in question
includes or equals to the algebra of Kac-Moody generators vanishing at the partonic 2-surface.
A natural choice for the preferred WCW point would be as maximum of Kähler function
in Euclidian regions: positive definiteness of Kähler function allows only single maximum
for fixed values of zero modes). Coset construction states that differences of super Virasoro
generators associated with g and h annihilate physical states. This implies that corresponding
four-momenta are identical that is Equivalence Principle.
The objection against the identification h in the decomposition g = t + h of the symplectic
algebra as Kac-Moody algebra is that this does not make sense mathematically. The strong
form of holography implied by strong form of General Coordinate Invariance however implies
that the action of Kac-Moody algebra for the maxima of Kähler function induces unique action
of sub-algebra of symplectic algebra so that the identification makes sense after all [K31].

3. Does EP reduce to one aspect of QCC? This would require that classical Noether four-
momentum identified as inertial momentum equals to the quantal four-momentum assignable
to the states of super-conformal representations and identifiable as gravitational four-momentum.
There would be only one independent condition: Pclass ≡ PI,class = Pgr,quant ≡ Pquant.
Holography realized as AdS/CFT correspondence states the equivalence of descriptions in
terms of gravitation realized in terms of strings in 10-D space-time and gauge fields at the
boundary of AdS. What is disturbing is that this picture is not completely equivalent with the
proposed one. In this case the super-conformal algebra would be direct sum of super-symplectic
and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations [K68]
have motivated the use of them as a guideline in attempts to understand TGD. The basic outcome
was that elementary particle spectrum can be understood if Super Virasoro algebra has five tensor
factors. Can one decide the fate of the two approaches to EP using this number as an input?

This is not the case. For both options the number of tensor factors is five as required.
Four tensor factors come from Super Kac-Moody and correspond to translational Kac-Moody type
degrees of freedom in M4, to color degrees of freedom and to electroweak degrees of freedom
(SU(2)× U(1)). One tensor factor comes from the symplectic degrees of freedom in ∆CD × CP2

(note that Hamiltonians include also products of δCD and CP2 Hamiltonians so that one does not
have direct sum!).

The reduction of EP to the coset structure of WCW sectors would be extremely beautiful
property. But also the reduction of EP to QCC looks very nice and deep, and it seems that the coset
option is definitely wrong: the reason is that for H in G/H decomposition the four-momentum
vanishes.

TGD-GRT correspondence and Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level. The under-
standing comes from the realization that GRT is only an effective theory obtained by endowing
M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets (see Fig. ?? in the
Appendix).

2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski
metric instandard M4 coordinates for the space-time sheets. One can define effective metric as
sum of M4 metric and deviations. This effective metric would correspond to that of General
Relativity. This resolves long standing issues relating to the interpretation of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
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effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in ZEO
(ZEO), in which various conserved charges are length dependent and defined separately for
each causal diamond (CD).

How translations are represented at the level of WCW?

The four-momentum components appearing in the formulas of super conformal generators corre-
spond to infinitesimal translations. In TGD framework one must be able to identify these infinites-
imal translations precisely. As a matter of fact, finite measurement resolution implies that it is
probably too much to assume infinitesimal translations. Rather, finite exponentials of translation
generators are involved and translations are discretized. This does not have practical signficance
since for optimal resolution the discretization step is about CP2 length scale.

Where and how do these translations act at the level of WCW? ZEO provides a possible
answer to this question.

1. Discrete Lorentz transformations and time translations act in the space of CDs: inertial four-momentum
Quantum state corresponds also to wave function in moduli space of CDs. The moduli space

is obtained from given CD by making all boosts for its non-fixed boundary: boosts correspond to a
discrete subgroup of Lorentz group and define a lattice-like structure at the hyperboloid for which
proper time distance from the second tip of CD is fixed to Tn = n × T (CP2). The quantization
of cosmic redshift for which there is evidence, could relate to this lattice generalizing ordinary 3-D
lattices from Euclidian to hyperbolic space by replacing translations with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains all
positive values. One has wave functions in the moduli space defined as a pile of these lattices
defined at the hyperboloid with constant value of T (CP2): one can say that the points of this pile
of lattices correspond to Lorentz boosts and scalings of CDs defining sub-WCW:s.

The interpretation in terms of group which is product of the group of shifts Tn(CP2) →
Tn+m(CP2) and discrete Lorentz boosts is natural. This group has same Cartesian product struc-
ture as Galilean group of Newtonian mechanics. This would give a discrete rest energy and by
Lorentz boosts discrete set of four-momenta giving a contribution to the four-momentum appearing
in the super-conformal representation.

What is important that each state function reduction would mean localisation of either
boundary of CD (that is its tip). This localization is analogous to the localization of particle in
position measurement in E3 but now discrete Lorentz boosts and discrete translations Tn − − >
Tn+m replace translations. Since the second end of CD is necessary del-ocalized in moduli space,
one has kind of flip-flop: localization at second end implies de-localization at the second end. Could
the localization of the second end (tip) of CD in moduli space correspond to our experience that
momentum and position can be measured simultaneously? This apparent classicality would be an
illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alternation of the
direction of the thermodynamical time: the asymmetry between the two ends of CDs would induce
the quantum arrow of time. This picture also allows to understand what the experience growth of
geometric time means in terms of CDs.

2. The action of translations at space-time sheets
The action of embedding space translations on space-time surfaces possibly becoming trivial

at partonic 2-surfaces or reducing to action at δCD induces action on space-time sheet which
becomes ordinary translation far enough from end end of space-time surface. The four-momentum
in question is very naturally that associated with Kähler action and would therefore correspond
to inertial momentum for PI,class = Pquant,gr option. Indeed, one cannot assign quantal four-
momentum to Kähler action as an operator since canonical quantization badly fails. In finite
measurement infinitesimal translations are replaced with their exponentials for PI,class = Pquant,gr
option.

What looks like a problem is that ordinary translations in the general case lead out from
given CD near its boundaries. In the interior one expects that the translation acts like ordinary
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translation. The Lie-algebra structure of Poincare algebra including sums of translation generators
with positive coefficient for time translation is preserved if only time-like superpositions if gener-
ators are allowed also the commutators of time-like translation generators with boost generators
give time like translations. This defines a Lie-algebraic formulation for the arrow of geometric
time. The action of time translation on preferred etxremal would be ordinary translation plus
continuation of the translated preferred extremal backwards in time to the boundary of CD. The
transversal space-like translations could be made Kac-Moody algebra by multiplying them with
functions which vanish at δCD.

A possible interpretation would be that Pquant,gr corresponds to the momentum assignable to
the moduli degrees of freedom and Pcl,I to that assignable to the time like translations. Pquant,gr =
Pcl,I would code for QCC. Geometrically quantum classical correspondence would state that time-
like translation shift both the interior of space-time surface and second boundary of CD to the
geometric future/past while keeping the second boundary of space-time surface and CD fixed.

Yangian and four-momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach to N = 4
SUSY culminating in the notion of amplituhedron which promises to give a nice projective geometry
interpretation for the scattering amplitudes [B12]. Yangian symmetry is a multilocal generalization
of ordinary symmetry based on the notion of co-product and implies that Lie algebra generates
receive also multilocal contributions. I have discussed these topics from slightly different point of
view in [K100], where also references to the work of pioneers can be found.

1. Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group
in the study of integrable systems. Yangians are Hopf algebras which can be assigned with Lie
algebras as the deformations of their universal enveloping algebras. The elegant but rather cryptic
looking definition is in terms of the modification of the relations for generating elements [K100] .
Besides ordinary product in the enveloping algebra there is co-product ∆ which maps the elements
of the enveloping algebra to its tensor product with itself. One can visualize product and co-
product is in terms of particle reactions. Particle annihilation is analogous to annihilation of two
particle so single one and co-product is analogous to the decay of particle to two. ∆ allows to
construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody al-
gebra or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for super-
conformal algebra in very elegant andconcrete manner in the article Yangian Symmetry in D=4
superconformal Yang-Mills theory [B17] . Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced
with a continuous one. Discrete index poses conditions on the Lie group and its representation
(adjoint representation in the case of N = 4 SUSY). One of the conditions conditions is that the
tensor product R⊗R∗ for representations involved contains adjoint representation only once. This
condition is non-trivial. For SU(n) these conditions are satisfied for any representation. In the
case of SU(2) the basic branching rule for the tensor product of representations implies that the
condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra.
Now however the generators are labelled by non-negative integers labeling the light-like incoming
and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra
also negative values are allowed. Note that only the generators with non-negative conformal
weight appear in the construction of states of Kac-Moody and Virasoro representations so that the
extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be labelled
by conformal weights n = 0 and n = 1 and and their mutual commutation relations are same as for
Kac-Moody algebra. The commutators of n = 1 generators with themselves are however something
different for a non-vanishing deformation parameter h. Serre’s relations characterize the difference
and involve the deformation parameter h. Under repeated commutations the generating elements
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generate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just one half
of the Virasoro algebra or Kac-Moody algebra. The generators with n > 0 are n + 1-local in the
sense that they involve n + 1-forms of local generators assignable to the ordered set of incoming
particles of the scattering amplitude. This non-locality generalizes the notion of local symmetry
and is claimed to be powerful enough to fix the scattering amplitudes completely.

2. How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however possible to
keep discussion at general level and still say something interesting (as I hope!). The key question is
whether it could be possible to generalize the proposed Yangian symmetry and geometric picture
behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question is quite
too limited since it allows only single representation of the gauge group and requires massless
particles. One must allow all representations and massive particles so that the representation
of symmetry algebra must involve states with different masses, in principle arbitrary spin and
arbitrary internal quantum numbers. The candidates are obvious: Kac-Moody algebras [A11]
and Virasoro algebras [A23] and their super counterparts. Yangians indeed exist for arbitrary
super Lie algebras. In TGD framework conformal algebra of Minkowski space reduces to
Poincare algebra and its extension to Kac-Moody allows to have also massive states.

2. The formal generalization looks surprisingly straightforward at the formal level. In ZEO one
replaces point like particles with partonic two-surfaces appearing at the ends of light-like orbits
of wormhole throats located to the future and past light-like boundaries of causal diamond
(CD ×CP2 or briefly CD). Here CD is defined as the intersection of future and past directed
light-cones. The polygon with light-like momenta is naturally replaced with a polygon with
more general momenta in ZEO and having partonic surfaces as its vertices. Non-point-likeness
forces to replace the finite-dimensional super Lie-algebra with infinite-dimensional Kac-Moody
algebras and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.

3. This description replaces disjoint holomorphic surfaces in twistor space with partonic 2-surfaces
at the boundaries of CD×CP2 so that there seems to be a close analogy with Cachazo-Svrcek-
Witten picture. These surfaces are connected by either light-like orbits of partonic 2-surface
or space-like 3-surfaces at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated
with isometries of M4 × CP2 annihilating the scattering amplitudes must be extended to a
co-algebras with a non-trivial deformation parameter. Kac-Moody group is thus the product
of Poincare and color groups. This algebra acts as deformations of the light-like 3-surfaces
representing the light-like orbits of particles which are extremals of Chern-Simon action with
the constraint that weak form of electric-magnetic duality holds true. I know so little about the
mathematical side that I cannot tell whether the condition that the product of the represen-
tations of Super-Kac-Moody and Super-Virasoro algebras contains adjoint representation only
once, holds true in this case. In any case, it would allow all representations of finite-dimensional
Lie group in vertices whereas N = 4 SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody
algebra associated with the light-cone boundary which is metrically 3-dimensional. The finite-
dimensional Lie group is in this case replaced with infinite-dimensional group of symplec-
tomorphisms of δM4

+/− made local with respect to the internal coordinates of the partonic
2-surface. This picture also justifies p-adic thermodynamics applied to either symplectic or
isometry Super-Virasoro and giving thermal contribution to the vacuum conformal and thus
to mass squared.

3. The construction of TGD leads also to other super-conformal algebras and the natural guess
is that the Yangians of all these algebras annihilate the scattering amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still act on single
partonic surface only. The discrete Yangian associated with this algebra associated with the
closed polygon defined by the incoming momenta and the negatives of the outgoing momenta
acts in multi-local manner on scattering amplitudes. It might make sense to speak about
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polygons defined also by other conserved quantum numbers so that one would have generalized
light-like curves in the sense that state are massless in 8-D sense.

3.Could Yangian symmetry provide a new view about conserved quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound
states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute.
Since the co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to generators
with high value of n, it seems that they commute also with n ≥ 1 generators. This applies to four-
momentum, color isospin and color hyper charge, and also to the Virasoro generator L0 acting on
Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum
of contributions from various levels? If so, the four momentum and mass squared would involve
besides the local term assignable to wormhole throats also n-local contributions. The interpretation
in terms of n-parton bound states would be extremely attractive. n-local contribution would involve
interaction energy. For instance, string like object would correspond to n = 1 level and give
n = 2-local contribution to the momentum. For baryonic valence quarks one would have 3-local
contribution corresponding to n = 2 level. The Yangian view about quantum numbers could give
a rigorous formulation for the idea that massive particles are bound states of massless particles.

12.3 TGD Inspired Cosmology

TGD Universe consists of quantum counterparts of a statistical system at critical temperature.
As a consequence, topological condensate is expected to possess hierarchical, fractal like structure
containing topologically condensed 3-surfaces with all possible sizes. Both Kähler magnetized and
Kähler electric 3-surfaces ought to be important and string like objects indeed provide a good
example of Kähler magnetic structures important in TGD inspired cosmology. In particular space-
time is expected to be many-sheeted even at cosmological scales and ordinary cosmology must
be replaced with many-sheeted cosmology. The presence of vapor phase consisting of free cosmic
strings and possibly also elementary particles is second crucial aspects of TGD inspired cosmology.

It should be made clear from beginning that many-sheeted cosmology involves a vulnerable
asumption. It is assumed that single-sheeted space-time surface is enough to model the cosmology.
This need not to be the case. GRT limit of TGD is obtained by lumping together the sheets of
many-sheeted space-time to a piece of Minkowski space and endowing it with an effective metric,
which is sum of Minkowski metric and deviations of the induced metrics of space-time sheets from
Minkowski metric. Hence the proposed models make sense only if GRT limits allowing embedding
as a vacuum extremal of Kähler action have special physical role.

Quantum criticality of TGD Universe (Kähler coupling strength is analogous to critical tem-
perature) supports the view that many-sheeted cosmology is in some sense critical. Criticality in
turn suggests fractality. Phase transitions, in particular the topological phase transitions giving
rise to new space-time sheets, are (quantum) critical phenomena involving no scales. If the curva-
ture of the 3-space does not vanish, it defines scale: hence the flatness of the cosmic time=constant
section of the cosmology implied by the criticality is consistent with the scale invariance of the
critical phenomena. This motivates the assumption that the new space-time sheets created in
topological phase transitions are in good approximation modellable as critical Robertson-Walker
cosmologies for some period of time at least.

Any one-dimensional sub-manifold allows global embeddings of subcritical cosmologies whereas
for a given 2-dimensional Lagrange manifold of CP2 critical and overcritical cosmologies allow only
one-parameter family of partial embeddings. The infinite size of the horizon for the imbeddable
critical cosmologies is in accordance with the presence of arbitrarily long range quantum fluctua-
tions at criticality and guarantees the average isotropy of the cosmology. Embedding is possible
for some critical duration of time. The parameter labelling these cosmologies is a scale factor char-
acterizing the duration of the critical period. These cosmologies have the same optical properties
as inflationary cosmologies but exponential expansion is replaced with logarithmic one. Critical
cosmology can be regarded as a “Silent Whisper amplified to Bang” rather than “Big Bang” and
transformed to hyperbolic cosmology before its embedding fails. Split strings decay to elementary
particles in this transition and give rise to seeds of galaxies. In some later stage the hyperbolic cos-
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mology can decompose to disjoint 3-surfaces. Thus each sub-cosmology is analogous to biological
growth process leading eventually to death.

The critical cosmologies can be used as a building blocks of a fractal cosmology contain-
ing cosmologies containing ... cosmologies. p-Adic length scale hypothesis allows a quantitative
formulation of the fractality [K89] . Fractal cosmology predicts cosmos to have essentially same
optical properties as inflationary scenario. Fractal cosmology explains the paradoxical result that
the observed density of the matter is much lower than the critical density associated with the
largest space-time sheet of the fractal cosmology. Also the observation that some astrophysical
objects seem to be older than the Universe, finds a nice explanation.

Absolutely essential element of the considerations (and longstanding puzzle of TGD inspired
cosmology) is the conservation of energy implied by Poincare invariance which seems to be in con-
flict with the non-conservation of gravitational energy. It took long time to discover the natural
resolution of the paradox. In TGD Universe matter and antimatter have opposite energies and
gravitational four-momentum is identified as difference of the four momenta of matter and an-
timatter (or vice versa, so that gravitational energy is positive). The assumption that the net
inertial energy density vanishes in cosmological length scales is the proper interpretation for the
fact that Robertson-Walker cosmologies correspond to vacuum extremals of Kähler action.

Tightly bound, possibly coiled pairs of cosmic strings are the basic building block of TGD
inspired cosmology and all al structures including large voids, galaxies, stars, and even planets
can be seen as pearls in a cosmic fractal necklace consisting of cosmic strings containing smaller
cosmic strings linked around them containing... During cosmological evolution the cosmic strings
are transformed to magnetic flux tubes and these structures are also key players in TGD inspired
quantum biology.

Negative energy virtual gravitons represented by topological quanta having negative time
orientation and hence also negative energy. The absorption of negative energy gravitons by photons
could explain gradual red-shifting of the microwave background radiation at particle level. Negative
energy virtual gravitons give also rise to a negative gravitational potential energy. Quite generally,
negative energy virtual bosons build up the negative interaction potential energy. An important
constraint to TGD inspired cosmology is the requirement that Hagedorn temperature TH ∼ 1/R,
where R is CP2 size, is the limiting temperature of radiation dominated phase.

12.3.1 Robertson-Walker Cosmologies

Robertson-Walker cosmologies are the basic building block of standard cosmologies and sub-critical
R-W cosmologies have a very natural place in TGD framework as Lorentz invariant cosmologies.
Inflationary cosmologies are replaced with critical cosmologies being parameterized by a single
parameter telling the duration of the critical cosmology. Over-critical cosmologies are not possible
at all.

Why Robertson-Walker cosmologies?

One can hope Robertson Walker cosmology represented as a vacuum extremal of the Kähler action
to be a reasonable idealization only in the length scales, where the density of the Kähler charge
vanishes. Since (visible) matter and antimatter carry Kähler charges of opposite sign this means
that Kähler charge density vanishes in length scales, where matter-antimatter asymmetry disap-
pears on the average. This length scale is certainly very large in present day cosmology: in the
proposed model for cosmology its present value is of the order of 108 light years: the size of the
observed regions containing visible matter predominantly on their boundaries [E40] . That only
matter is observed can be understood from the fact that fermions reside dominantly at future
oriented space-time sheets and anti-fermions on past-oriented space-time sheets.

Robertson Walker cosmology is expected to apply in the description of the condensate locally
at each condensate level and it is assumed that the GRT based criteria for the formation of
“structures” apply. In particular, the Jeans criterion stating that density fluctuations with size
between Jeans length and horizon size can lead to the development of the “structures” will be
applied.



548 Chapter 12. Cosmology and Astrophysics in Many-Sheeted Space-Time

Imbeddability requirement for RW cosmologies

Standard Robertson-Walker cosmology is characterized by the line element [E33]

ds2 = f(a)da2 − a2(
dr2

1− kr2
+ r2dΩ2) , (12.3.1)

where the values k = 0,±1 of k are possible.
The line element of the light cone is given by the expression

ds2 = da2 − a2(
dr2

1 + r2
+ r2dΩ2) . (12.3.2)

Here the variables a and r are defined in terms of standard Minkowksi coordinates as

a =
√

(m0)2 − r2
M ,

rM = ar . (12.3.3)

Light cone clearly corresponds to mass density zero cosmology with k = −1 and this makes the
case k = −1 is rather special as far embeddings are considered since any Lorentz invariant map
M4

+ → CP2 defines embedding

sk = fk(a) . (12.3.4)

Here fk are arbitrary functions of a.
k = −1 requirement guarantees imbeddability if the matter density is positive as is easy to

see. The matter density is given by the expression

ρ =
3

8πGa2
(

1

gaa
+ k) . (12.3.5)

A typical embedding of k = −1 cosmology is given by

φ = f(a) ,

gaa = 1− R2

4
(∂af)2 . (12.3.6)

where φ can be chosen to be the angular coordinate associated with a geodesic sphere of CP2 (any
one-dimensional sub-manifold of CP2 works equally well). The square root term is always positive
by the positivity of the mass density and the embedding is indeed well defined. Since gaa is smaller
than one, the matter density is necessarily positive.

Critical and over-critical cosmologies

TGD allows vacuum extremal embeddings of a one-parameter family of critical over-critical cos-
mologies. Critical cosmologies are however not inflationary in the sense that they would involve the
presence of scalar fields. Exponential expansion is replaced with a logarithmic one so that the cos-
mologies are in this sense exact opposites of each other. Critical cosmology has been used hitherto
as a possible model for the very early cosmology. What is remarkable that this cosmology becomes
vacuum at the moment of “Big Bang” since mass density behaves as 1/a2 as function of the light
cone proper time. Instead of “Big Bang” one could talk about “Small Whisper” amplified to bang
gradually. This is consistent with the idea that space-time sheet begins as a vacuum space-time
sheet for some moment of cosmic time. As an imbedded 4-surface this cosmology would correspond
to a deformed future light cone having its tip inside the future light cone. The interpretation of
the tip as a seed of a phase transition is possible. The embedding makes sense up to some moment
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of cosmic time after which the cosmology becomes necessarily hyperbolic. At later time hyperbolic
cosmology stops expanding and decomposes to disjoint 3-surfaces behaving as particle like objects
co-moving at larger cosmological space-time sheet. These 3-surfaces topologically condense on
larger space-time sheets representing new critical cosmologies.

Consider now in more detail the embeddings of the critical and overcritical cosmologies. For
k = 0, 1 the imbeddability requirement fixes the cosmology almost uniquely. To see this, consider
as an example of k = 0/1 embedding the map from the light cone to S2, where S2 is a geodesic
sphere of CP2 with a vanishing Kähler form (any Lagrage manifold of CP2 would do instead of
S2). In the standard coordinates (Θ,Φ) for S2 and Robertson-Walker coordinates (a, r, θ, φ) for
future light cone (, which can be regarded as empty hyperbolic cosmology), the embedding is given
as

sin(Θ) =
a

a1
,

(∂rΦ)2 =
1

K0

[
1

1− kr2
− 1

1 + r2

]
,

K0 =
R2

4a2
1

, k = 0, 1 , (12.3.7)

when Robertson-Walker coordinates are used for both the future light cone and space-time surface.
The differential equation for Φ can be written as

∂rΦ = ±

√
1

K0

[
1

1− kr2
− 1

1 + r2

]
. (12.3.8)

For k = 0 case the solution exists for all values of r. For k = 1 the solution extends only
to r = 1, which corresponds to a 4-surface rM = m0/

√
2 identifiable as a ball expanding with the

velocity v = c/
√

2. For r → 1 Φ approaches constant Φ0 as Φ − Φ0 ∝
√

1− r. The space-time
sheets corresponding to the two signs in the previous equation can be glued together at r = 1 to
obtain sphere S3.

The expression of the induced metric follows from the line element of future light cone

ds2 = da2 − a2(
dr2

1− kr2
+ r2dΩ2) . (12.3.9)

The imbeddability requirement fixes almost uniquely the dependence of the S2 coordinates
a and r and the gaa component of the metric is given by the same expression for both k = 0 and
k = 1.

gaa = 1−K ,

K ≡ K0
1

(1− u2)
,

u ≡ a

a1
. (12.3.10)

The embedding fails for a ≥ a1. For a1 � R the cosmology is essentially flat up to immediate
vicinity of a = a1. Energy density and “pressure” follow from the general equation of Einstein
tensor and are given by the expressions

ρ =
3

8πGa2
(

1

gaa
+ k) , k = 0, 1 ,

1

gaa
=

1

1−K
,

p = −(ρ+
a∂aρ

3
) = −ρ

3
+

2

3
K0u

2 1

(1−K)(1− u2)2
ρcr ,

u ≡ a

a1
. (12.3.11)
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Here the subscript “cr” refers to k = 0 case. Since the time component gaa of the metric
approaches constant for very small values of the cosmic time, there are no horizons associated with
this metric. This is clear from the formula

r(a) =

∫ a

0

√
gaa

da

a

for the horizon radius.
The mass density associated with these cosmologies behaves as ρ ∝ 1/a2 for very small values

of the M4
+ proper time. The mass in a co-moving volume is proportional to a/(1−K) and goes to

zero at the limit a→ 0. Thus, instead of Big Bang one has “Silent Whisper” gradually amplifying
to Big Bang. The embedding fails at the limit a → a1. At this limit energy density becomes
infinite. This cosmology can be regarded as a cosmology for which co-moving strings (ρ ∝ 1/a2)
dominate the mass density as is clear also from the fact that the “pressure” becomes negative at
big bang (p → −ρ/3) reflecting the presence of the string tension. The natural interpretation is
that cosmic strings condense on the space-time sheet which is originally empty.

The facts that the embedding fails and gravitational energy density diverges for a = a1

necessitates a transition to a hyperbolic cosmology. For instance, a transition to radiation or
matter dominated hyperbolic cosmology can occur at the limit θ → π/2. At this limit φ(r)
must transform to a function φ(a). The fact, that vacuum extremals of Kähler action are in
question, allows large flexibility for the modelling of what happens in this transition. Quantum
criticality and p-adic fractality suggest the presence of an entire fractal hierarchy of space-time
sheets representing critical cosmologies created at certain values of cosmic time and having as their
light cone projection sub-light cone with its tip at some a=constant hyperboloid.

More general embeddings of critical and over-critical cosmologies as vacuum extremals

In order to obtain embeddings as more general vacuum extremals, one must pose the condition
guaranteeing the vanishing of corresponding the induced Kähler form (see the Appendix of this
book). Using coordinates (r, u = cos(Θ),Ψ,Φ) for CP2 the surfaces in question can be expressed
as

r =

√
X

1−X
,

X = D|k + u| ,

u ≡ cos(Θ) , D =
r2
0

1 + r2
0

× 1

C
, C = |k + cos(Θ0)| . (12.3.12)

Here C and D are integration constants.
These embeddings generalize to embeddings to M4 × Y 2, where Y 2 belongs to a family of

Lagrange manifolds described in the Appendix of this book with induced metric

ds2
eff =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[

(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
. (12.3.13)

For k 6= 1 u = ±1 corresponds in general to circle rather than single point as is clear from the
fact that seffΦΦ is non-vanishing at u = ±1 so that u and Φ parameterize a piece of cylinder. The
generalization of the previous embedding is as

sin(Θ) = ka →
√
seffΦΦ = ka . (12.3.14)

For Φ the expression is as in the previous case and determined by the requirement that grr corre-
sponds to k = 0, 1.
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The time component of the metric can be expressed as

gaa = 1− R2k2

4

seffΘΘ

d
√
seffΦΦ

dΘ

(12.3.15)

In this case the 1/(1− k2a2) singularity of the density of gravitational mass at Θ = π/2 is shifted

to the maximum of seffΦΦ as function of Θ defining the maximal value amax of a for which the
embedding exists at all. Already for a0 < amax the vanishing of gaa implies the non-physicality of
the embedding since gravitational mass density becomes infinite.

The geometric properties of critical cosmology change radically in the transition to the ra-
diation dominated cosmology: before the transition the CP2 projection of the critical cosmology is
two-dimensional. After the transition it is one-dimensional. Also the isometry group of the cosmol-
ogy changes from SO(3)×E3 to SO(3, 1) in the transition. One could say that critical cosmology
represents Galilean Universe whereas hyperbolic cosmology represents Lorentzian Universe.

String dominated cosmology

A particularly interesting cosmology is string dominated cosmology with very nearly critical mass
density. Assuming that strings are co-moving the mass density of this cosmology is proportional
to 1/a2 instead of the 1/a3 behavior characteristic to the standard matter dominated cosmology.
The line element of this metric is very simple: the time component of the metric is simply constant
smaller than 1:

gaa = K < 1 . (12.3.16)

The Hubble constant for this cosmology is given by

H =
1√
Ka

, (12.3.17)

and the so called acceleration parameter [E33] k0 proportional to the second derivative ä therefore
vanishes. Mass density and pressure are given by the expression

ρ =
3

8πGKa2
(1−K) = −3p . (12.3.18)

What makes this cosmology so interesting is the absence of the horizons. The comparison with
the critical cosmology shows that these two cosmologies resemble each other very closely and both
could be used as a model for the very early cosmology.

Stationary cosmology

An interesting candidate for the asymptotic cosmology is stationary cosmology for which gravita-
tional four-momentum currents (and also gravitational color currents) are conserved. This cosmol-
ogy extremizes the Einstein-Hilbert action with cosmological term given by

∫
(kR + λ)

√
gd4x+ λ

and is obtained as a sub-manifold X4 ⊂ M4
+ × S1, where S1 is the geodesic circle of CP2 (note

that embedding is now unique apart from isometries by variational principle).
For a vanishing cosmological constant, field equations reduce to the conservation law for the

isometry associated with S1 and read

∂a(Gaa∂aφ
√
g) = 0 , (12.3.19)

where φ denotes the angle coordinate associated with S1. From this one finds for the relevant
component of the metric the expression
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gaa =
(1− 2x)

(1− x)
,

x = (
C

a
)2/3 . (12.3.20)

The mass density and “pressure” of this cosmology are given by the expressions

ρ =
3

8πGa2

x

(1− 2x)
,

p = −(ρ+
a∂aρ

3
) = −ρ

9

[
3− 2

(1− 2x)

]
. (12.3.21)

The asymptotic behavior of the energy density is ρ ∝ a−8/3. “Pressure” becomes negative indicat-
ing that this cosmology is dominated by the string like objects, whose string tension gives negative
contribution to the “pressure”. Also this cosmology is horizon free as are all string dominated
cosmologies: this is of crucial importance in TGD inspired cosmology.

It should be noticed that energy density for this cosmology becomes infinite for x = (C/a)2/3 =
1/2 implying that this cosmology doesn’t make sense at very early times so that the non-conservation
of gravitational energy is necessary during the early stages of the cosmology.

Non-conservation of gravitational energy in RW cosmologies

In RW cosmology the gravitational energy in a given co-moving sphere of radius r in local light
cone coordinates (a, r, θ, φ) is given by

E =

∫
ρgaa∂am

0√gdV . (12.3.22)

The rate characterizing the non-conservation of gravitational energy is determined by the parameter
X defined as

X ≡ (dE/da)vap
E

=
(dE/da+

∫
|grr|p∂rm0√gdΩ)

E
, (12.3.23)

where p denotes the pressure and dΩ denotes angular integration over a sphere with radius r. The
latter term subtracts the energy flow through the boundary of the sphere.

The generation of the pairs of positive and negative (inertial) energy space-time sheets leads
to non-conservation of gravitational energy. The generation of pairs of positive and negative energy
cosmic strings would be involved with the generation of a critical sub-cosmology.

For RW cosmology with subcritical mass density the calculation gives

X =
∂a(ρa3/

√
gaa)

(ρa3/
√
gaa)

+
3pgaa
ρa

.

(12.3.24)

This formula applies to any infinitesimal volume. The rate doesn’t depend on the details of the
embedding (recall that practically any one-dimensional sub-manifold of CP2 defines a huge family
of subcritical cosmologies). Apart from the numerical factors, the rate behaves as 1/a in the
most physically interesting RW cosmologies. In the radiation dominated and matter dominated
cosmologies one has X = −1/a and X = −1/2a respectively so that gravitational energy decreases
in radiation and matter dominated cosmologies. For the string dominated cosmology with k = −1
having gaa = K one has X = 2/a so that gravitational energy increases: this might be due to the
generation of dark matter due to pairs of cosmic strings with vanishing net inertial energy.
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For the cosmology with exactly critical mass density Lorentz invariance is broken and the
contribution of the rate from 3-volume depends on the position of the co-moving volume. Taking
the limit of infinitesimal volume one obtains for the parameter X the expression

X = X1 +X2 ,

X1 =
∂a(ρa3/

√
gaa)

(ρa3/
√
gaa)

,

X2 =
pgaa
ρa
× 3 + 2r2

(1 + r2)3/2
. (12.3.25)

Here r refers to the position of the infinitesimal volume. Simple calculation gives

X = X1 +X2 ,

X1 = 1
a

[
1 + 3K0u

2 1
1−K

]
,

X2 = − 1
3a

[
1−K − 2K0u

2

(1−u2)2

]
× 3+2r2

(1+r2)3/2 ,

K = K0

1−u2 , u = a
a0

, K0 = R2

4a2
0
. (12.3.26)

The positive density term X1 corresponds to increase of gravitational energy which is gradually
amplified whereas pressure term (p < 0) corresponds to a decrease of gravitational energy changing
however its sign at the limit a→ a0.

The interpretation is in terms of creation of pairs of positive and negative energy particles
contributing nothing to the inertial energy. Also pairs of positive energy gravitons and negative
anti-gravitons are involved. The contributions of all particle species are determined by thermal
arguments so that gravitons should not play any special role as thought originally.

Pressure term is negligible at the limit r → ∞ so that topological condensation occurs all
the time at this limit. For a → 0, r → 0 one has X > 0 → 0 so that condensation starts from
zero at r = 0. For a → 0, r → ∞ one has X = 1/a which means that topological condensation is
present already at the limit a→ 0.

Both the existence of the finite limiting temperature and of the critical mass density imply
separately finite energy per co-moving volume for the condensate at the very early stages of the
cosmic evolution. In fact, the mere requirement that the energy per co-moving volume in the
vapor phase remains finite and non-vanishing at the limit a → 0 implies string dominance as the
following argument shows.

Assuming that the mass density of the condensate behaves as ρ ∝ 1/a2(1+α) one finds from
the expression

ρ ∝
( 1
gaa
− 1)

a2
,

that the time component of the metric behaves as gaa ∝ aα. Unless the condition α < 1/3 is
satisfied or equivalently the condition

ρ <
k

a2+2/3
(12.3.27)

is satisfied, gravitational energy density is reduced. In fact, the limiting behavior corresponds to
the stationary cosmology, which is not imbeddable for the small values of the cosmic time. For
stationary cosmology gravitational energy density is conserved which suggests that the reduction
of the density of cosmic strings is solely due to the cosmic expansion.
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12.3.2 Free Cosmic Strings

The free cosmic strings correspond to four-surfaces of type X2×S2, where S2 is the homologically
nontrivial geodesic sphere of CP2 [L2] , [L2] and X2 is minimal surface in M4

+. As a matter fact,
any complex manifold Y 2 ⊂ CP2 is possible. In this section, a co-moving cosmic string solution
inside the light cone M4

+(m) associated with a given m point of M4
+ will be constructed.

Recall that the line element of the light cone in co-moving coordinates inside the light cone
is given by

ds2 = da2 − a2(
dr2

1 + r2
+ r2dΩ2) . (12.3.28)

Outside the light cone the line element is given

ds2 = −da2 − a2(− dr2

1− r2
+ r2dΩ2) , (12.3.29)

and is obtained from the line element inside the light cone by replacements a→ ia and r → −ir.

Simplest solutions

Using the coordinates (a =
√

(m0)2 − r2
M , ar = rM ) for X2 the orbit of the cosmic string is given

by

θ =
π

2
,

φ = f(r) . (12.3.30)

Inside the light cone the line element of the induced metric of X2 is given by

ds2 = da2 − a2(
1

1 + r2
+ r2f2

,r)dr
2 . (12.3.31)

The equations stating the minimal surface property of X2 can be expressed as a differential conser-
vation law for energy or equivalently for the component of the angular momentum in the direction
orthogonal to the plane of the string. The conservation of the energy current Tα gives

Tα,α = 0 ,

Tα = Tgαβm0
,β

√
g ,

T =
1

8αKR2
' .52× 10−6 1

G
. (12.3.32)

The numerical estimate TG ' .52 × 10−6 for the string tension is upper bound and corresponds
to a situation in which the entire area of S2 contributes to the tension. It has been obtained using
αK/104 and R2/G = 2.5 × 107 given by the most recent version of p-adic mass calculations (the
earlier estimate was roughly by a factor 1/2 too small due to error in the calculation [K45, L63]
). The string tension belongs to the range TG ∈ [10−6 − 10−7] predicted for GUT strings [E36]
. WMAP data give the upper bound TG ∈ [10−6 − 10−7], which does not however hold true in
the recent case since criticality predicts adiabatic spectrum of perturbations as in the inflationary
scenarios.

The non-vanishing components of energy current are given by

T a = TUa ,

T r = −T r

U
,

U =
√

1 + r2(1 + r2)f2
,r . (12.3.33)
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The equations of motion give

U =
r√

r2 − r2
0

, (12.3.34)

or equivalently

φ,r =
r0

r
√

(r2 − r2
0)(1 + r2)

, (12.3.35)

where r0 is an integration constant to be determined later. Outside the light cone the solution has
the form

φ,r =
r0√

r2 + r2
0r
√

1− r2
. (12.3.36)

In the region inside the light cone, where the conditions

r0 << r << 1 (12.3.37)

hold, the solution has the form

φ(r) ' φ0 +
v

r
,

v =
r0√

1 + r2
0

, (12.3.38)

corresponding to the linearized equations of motion

f,rr +
2f,r
r

= 0 , (12.3.39)

obtained most nicely from the angular momentum conservation condition.

Cosmic string is stationary in comoving coordinates

In co-moving coordinates (in general the co-moving coordinates of sub-light-cone M4
+!) the string is

stationary. In Minkowski coordinates string rotates with an angular velocity inversely proportional
to the distance from the origin

ω ' v

rM
(12.3.40)

so that the orbital velocity of the string becomes essentially constant in this region. For very large
values of r the orbital velocity of the string vanishes as 1/r. Outside the light cone the variable r
is in the role of time and for a given value of the time variable r strings are straight and one can
regard the string as a rigidly rotating straight string in this region.

Inside the light cone, the solution becomes ill defined for the values of r smaller than the
critical value r0. Although the derivative φ,r becomes infinite at this limit, the limiting value of
φ is finite so that strings winds through a finite angle. The normal component T r of the energy
momentum current vanishes at r = r0 identically, which means that no energy flows out at the end
of the string. The coordinate variable r becomes however bad at r = r0 (string resembles a circle
at r0) and this conclusion must be checked using φ as coordinate instead of r. The result is that
the normal component of the energy current indeed vanishes.

Field equations are not however satisfied at the end of the string since the normal component
of the angular momentum current (in z- direction) is non-vanishing at the boundary and given by
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Jr = Tr2a . (12.3.41)

This means that the string loses angular momentum through its ends although the angular mo-
mentum density of the string is vanishing. The angular momentum lost at moment a is given
by

J =
Tr2a2

2
=
Tr2

M

2
. (12.3.42)

This angular momentum is of the same order of magnitude as the angular momentum of a typical
galaxy [E38] .

In M4 coordinates singularity corresponds to a disk in the plane of string growing with a
constant velocity, when the coordinate m0 is positive

rM = vm0 ,

v =
r0√

1 + r2
0

. (12.3.43)

From the expression of the energy density of the string

T a = T
ar√
r2 − r2

0

,

T =
1

8αKR2
, (12.3.44)

it is clear that energy density diverges at the singularity.

Energy of the cosmic string

As already noticed, the string tension is by a factor of order 10−6 smaller than the critical string
tension Tcr = 1/4G implying angle deficit of 2π in GRT so that there seems to be no conflict with
General Relativity (unlike in the original scenario, in which the CP2 radius was of order Planck
length).

The energy of the string portion ranging from r0 to r1 is given by

E = T
√

(r2
1 − r2

0)a = T
√
δr2
M . (12.3.45)

It should be noticed that M4 time development of the string can be regarded as a scaling: each
point of the string moves to radial direction with a constant velocity v.

One can calculate the total change of the angle φ from the integral

∆φ =

√
r2
0

1 + r2
0

∫ ∞
r0

dr
1

r
√

(r2 − r2
0)(1 + r2)

. (12.3.46)

The upper bound of this quantity is obtained at the limit r0 → 0 and equals to ∆φ = π/2.
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12.3.3 Cosmic Strings And Cosmology

The model for cosmic strings has forced to question all cherished assumptions including positive
energy ontology, Equivalence Principle, and positivity of gravitational mass. The final outcome
turned out to be rather conservative. ZEO is unavoidable, Equivalence Principle holds true univer-
sally but its general relativistic formulation makes sense only in long length scales, and gravitational
mass has definite sign for positive/negative energy states. As a matter fact, all problems were cre-
ated by the failure to realize that the expression of gravitational energy in terms of Einstein’s tensor
does not hold true in short length scales and must be replaced with the stringy expression resulting
naturally by dimensional reduction of quantum TGD to string model like theory [K113, K45, L63].

The realization that GRT is only an effective description of many-sheeted space-time as
Minkowski space M4 endowed with effective metric whose deviation from flat metric is the sum of
the corresponding deviations for space-time sheets in the region of M4 considered resolved finally
the problems and allowed to reduced Equivalence Principle to its form in GRT. Similar description
applies also to gauge interactions.

TGD is therefore a microscopic theory and the physics for single space-time sheet is expected
to be extremely simpler, much simpler than in gauge theory and general relativity already due to
the fact that only four bosonic variables (4 embedding space coordinates) defined the dynamics at
this level.

ZEO and cosmic strings

There are two kinds of cosmic strings: free and topological condensed ones and both are important
in TGD inspired cosmology.

1. Free cosmic strings are not absolute minima of the Kähler action (the action has wrong sign). In
the original identification of preferred extremals as absolute minima of Kähler action this was a
problem. In the new formulation preferred extremals correspond to quantum criticality identi-
fied as the vanishing of the second variation of Kähler action at least for the deformations defin-
ing symmetries of Kähler action [K113, K45]. The symmetries very probably correspond to con-
formal symmetries acting as or almost as gauge symmetries. The number of conformal equiva-
lence classes of space-time sheets with same Kähler action and conserved charges is expected to
be finite and correspond to n in heff = n×h defining the hierarchy of Planck constants labelling
phases of dark matter (see Fig. http://tgdtheory.fi/appfigures/planckhierarchy.jpg

or Fig. ??) in the appendix of this book).
Criticality guarantees the conservation of the Noether charges assignable to the Kähler-Dirac
action. Ideal cosmic strings are excluded because they fail to satisfy the conditions charac-
terizing the preferred extremal as a space-time surface containing regions with both Euclidian
and Minkowskian signature of the induced metric with light-like 3-surface separating them
identified as orbits of partonic 2-surfaces carrying elementary particle quantum numbers. The
topological condensation of CP2 type vacuum extremals representing fermons generates neg-
ative contribution to the action and reduces the string tension and leaves cosmic strings still
free.

2. If the topologically condensate of fermions has net Kähler charges as the model for matter
antimatter asymmetry suggests, the repulsive interaction of the particles tends to thicken the
cosmic string by increasing the thickness of its infinitely thin M4 projection so that Kähler
magnetic flux tubes result. These flux tubes are ideal candidates for the carriers of dark matter
with a large value of Planck constant. The criterion for the phase transition increasing ~ is
indeed the presence of a sufficiently dense plasma implying that perturbation theory in terms of
Z2αem (Z is the effective number of charges with interacting with each other without screening
effects) fails for the standard value of Planck constant. The phase transition h→ heff reduces
the value of αem = e2/2 × heff so that perturbation theory works. This phase transition
scales up also the transversal size of the cosmic string. Similar criterion works also for other
charges. The resulting phase is anyonic if the resulting 2-surfaces containing almost spherical
portions connected by flux tubes to each other encloses the tip of the causal diamond (CD).
The proposal is that dark matter resides on complex anyonic 2-surfaces surrounding the tips
of CDs.

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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3. The topological condensation of cosmic strings generates wormhole contacts represented as
pieces of CP2 type vacuum extremals identified as bosons composed of fermion-anti-fermion
pairs. Also this generates negative action and can make cosmic string a preferred extremal of
Kähler action. The earliest picture was based on dynamical cancelation mechanism involving
generation of strong Kähler electric fields in the condensation whose action compensated for
Kähler magnetic action. Also this mechanism might be at work. Cosmic strings could also form
bound states by the formation graviton like flux tubes connecting them and having wormhole
contacts at their ends so that again action is reduced.

4. One can argue that in long enough length and time scales Kähler action per volume must
vanish so that the idealization of cosmology as a vacuum extremal becomes possible and there
must be some mechanism compensating the positive action of the free cosmic strings. The
general mechanism could be topological condensation of fermions and creation of bosons by
topological condensation of cosmic strings to space-time sheets.

In this framework zero energy states correspond to cosmologies leading from big bang to
big crunch separated by some time interval T of geometric time. Quantum jumps can gradually
increase the value T and TGD inspired theory of consciousness suggests that the increase of T
might relate to the shift for the contents of conscious experience towards geometric future. In
particular, what is usually regarded as cosmology could have started from zero energy state with
a small value of T .

Topological condensation of cosmic strings

In the original vision about topological condensation of cosmic strings I assumed that large voids
represented by space-time sheets contain “big” cosmic string in their interior and galactic strings
near their boundaries. The recent much simpler view is that there are just galactic strings which
carry net fermion numbers (matter antimatter asymmetry). If they have also net em charge they
have a repulsive interaction and tend to end up to the boundaries of the large void. Since this
slows down the expansive motion of strings, the repulsive interaction energy increases and a phase
transition increasing Planck constant and scaling up the size of the void occurs after which cosmic
strings are again driven towards the boundary of the resulting larger void.

One cannot assume that the exterior metric of the galactic strings is the one predicted by
assuming General Relativity in the exterior region. This would mean that metric decomposes as
g = g2(X2) + g2(Y 2). g(X2) would be flat as also g2(Y 2) expect at the position of string. The
resulting angle defect due to the replacement of plane Y 2 with cone would be large and give rise
to lense effect of same magnitude as in the case of GUT cosmic strings. Lense effect has not been
observed.

This suggests that General Relativity fails in the length scale of large void as far as the
description of topologically condensed cosmic strings is considered. The constant velocity spectrum
for distant stars of galaxies and the fact that galaxies are organized along strings suggests that these
string generate in a good approximation Newtonian potential. This potential predicts constant
velocity spectrum with a correct value velocity.

In the stationary situation one expects that the exterior metric of galactic string corresponds
to a small deformation of vacuum extremal of Kähler action which is also extremal of the curva-
ture scalar in the induced metric. This allows a solution ansatz which conforms with Newtonian
intuitions and for which metric decomposes as g = g1 + g3, where g1 corresponds to axis in the
direction of string and g3 remaining 1 + 2 directions.

Dark energy is replaced with dark matter in TGD framework

The observed accelerating expansion of the Universe has forced to introduce the notion of cosmo-
logical constant in the GRT based cosmology. In TGD framework the situation is different.

1. The gigantic value of gravitational Planck constant implies that dark matter makes TGD
Universe a macroscopic quantum system even in cosmological length scales. Astrophysical
systems become stationary quantum systems which participate in cosmic expansion only via
quantum phase transitions increasing the value of gravitational Planck constant.

2. Critical cosmologies, which are determined apart from a single parameter in TGD Universe,
are natural during all quantum phase transitions, in particular the phase transition periods
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increasing the size of large voids and having interpretation in terms of an increase of gravita-
tional Planck constant. Cosmic expansion is predicted to be accelerating during these periods.
The mere criticality requires that besides ordinary matter there is a contribution ΩΛ ' .74
to the mass density besides visible matter and dark matter. In fact, also for the over-critical
cosmologies expansion is accelerating.

3. In GRT framework the essential characteristic of dark energy is its negative pressure. In
TGD framework critical and over-critical cosmologies have automatically effective negative
pressure. This is essentially due to the constraint that Lorentz invariant vacuum extremal of
Kähler action is in question. The mysterious negative pressure would be thus a signal about
the representability of space-time as 4-surface in H and there is no need for any microscopic
description in terms of exotic thermodynamics.

The values for the TGD counterpart of cosmological constant

One can introduce a parameter characterizing the contribution of dark mass to the mass density
during critical periods and call it cosmological constant recalling however that the contribution
does not correspond to dark energy. The value of this parameter is same as in the standard
cosmology from mere criticality assumption.

What is new that p-adic fractality predicts that Λ scales as 1/L2(k) as a function of the
p-adic scale characterizing the space-time sheet implying a series of phase transitions reducing
Λ. The order of magnitude for the recent value of the cosmological constant comes out correctly.
The gravitational energy density assignable to the cosmological constant is identifiable as that
associated with topologically condensed cosmic strings and magnetic flux tubes to which they are
gradually transformed during cosmological evolution.

The näıve expectation would be the density of cosmic strings would behave as 1/a2 as
function of M4

+ proper time. The vision about dark matter as a phase characterized by gigantic
Planck constant however implies that large voids do not expand in continuous manner during
cosmic evolution but in discrete quantum jumps increasing the value of the gravitational Planck
constant and thus increasing the size of the large void as a quantum state. Since the set of preferred
values of Planck constant is closed under multiplication by powers of 2, p-adic length scales Lp,
p ' 2k form a preferred set of sizes scales for the large voids.

TGD cosmic strings are consistent with the fluctuations of CMB

GUT cosmic strings were excluded by the fluctuation spectrum of the CMB background [E2] .
In GRT framework these fluctuations can be classified to adiabatic density perturbations and
isocurvature density perturbations. Adiabatic density perturbations correspond to overall scaling
of various densities and do not affect the vanishing curvature scalar. For isocurvature density
fluctuations the net energy density remains invariant. GUT cosmic strings predict isocurvature
density perturbations while inflationary scenario predicts adiabatic density fluctuations.

In TGD framework inflation is replaced with quantum criticality of the phase transition
period leading from the cosmic string dominated phase to matter dominated phase. Since curvature
scalar vanishes during this period, the density perturbations are indeed adiabatic.

Matter-antimatter asymmetry and cosmic strings

Despite huge amount of work done during last decades (during the GUT era the problem was
regarded as being solved!) matter-antimatter asymmetry remains still an unresolved problem of
cosmology. A possible resolution of the problem is matter-antimatter asymmetry in the sense that
cosmic strings contain antimatter and their exteriors matter. The challenge would be to understand
the mechanism generating this asymmetry. The vanishing of the net gauge charges of cosmic string
allows this symmetry since electro-weak charges of quarks and leptons can cancel each other.

The challenge is to identify the mechanism inducing the CP breaking necessary for the
matter-antimatter asymmetry. Quite a small CP breaking inside cosmic strings would be enough.

1. The key observation is that vacuum extremals as such are not physically acceptable: small de-
formations of vacuum extremals to non-vacua are required. This applies also to cosmic strings
since as such they do note present preferred extremals. The reason is that the preferred
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extremals involve necessary regions with Euclidian signature providing four-dimensional rep-
resentations of generalized Feynman diagrams with particle quantum numbers at the light-like
3-surfaces at which the induced metric is degenerate.

2. The simplest deformation of vacuum extremals and cosmic strings would be induced by the
topological condensation of CP2 type vacuum extremals representing fermions. The topological
condensation at larger space-time surface in turn creates bosons as wormhole contacts.

3. This process induces a Kähler electric fields and could induce a small Kähler electric charge
inside cosmic string. This in turn would induce CP breaking inside cosmic string inducing
matter antimatter asymmetry by the minimization of the ground state energy. Conservation
of Kähler charge in turn would induce asymmetry outside cosmic string and the annihilation
of matter and antimatter would then lead to a situation in which there is only matter.

4. Either galactic cosmic strings or big cosmic strings (in the sense of having large string tension)
at the centers of galactic voids or both could generate the asymmetry and in the recent
scenario big strings are not necessary. One might argue that the photon to baryon ratio
r ∼ 10−9 characterizing matter asymmetry quantitatively must be expressible in terms of some
fundamental constant possibly characterizing cosmic strings. The ratio ε = G/~R2 ' 4×10−8

is certainly a fundamental constant in TGD Universe. By replacing R with 2πR would give
ε = G/(2πR)2 ' 1.0× 10−9. It would not be surprising if this parameter would determine the
value of r.

The model can be criticized.

1. The model suggest only a mechanism and one can argue that the Kähler electric fields cre-
ated by topological condensates could be random and would not generate any Kähler electric
charge. Also the sign of the asymmetry could depend on cosmic string. A CP breaking at the
fundamental level might be necessary to fix the sign of the breaking locally.

2. The model is not the only one that one can imagine. It is only required that antimatter is
somewhere else. Antimatter could reside also at other p-adic space-time sheets and at the
dark space-time sheets with different values of Planck constant.

The needed CP breaking is indeed predicted by the fundamental formulation of quantum
TGD in terms of the Kähler-Dirac action associated with Kähler action and its generalization
allowing include instanton term as imaginary part of Kähler action inducing CP breaking [K113,
K77] .

1. The key idea in the formulation of quantum TGD in terms of modified Dirac equation associ-
ated with Kähler action is that the Dirac determinant defined by the generalized eigenvalues
assignable to the Dirac operator DK equals to the vacuum functional defined as the exponent
of Kähler function in turn identifiable as Kähler action for a preferred extremal, whose proper
identification becomes a challenge. In ZEO (ZEO) 3-surfaces are pairs of space-like 3-surfaces
assignable to the boundaries of causal diamond (CD) and for deterministic action principle
this suggests that the extremals are unique. In presence of non-determinism the situation
changes.

2. The huge vacuum degeneracy of Kähler action suggests that for given pair of 3-surfaces at
the boundaries of CD there is a continuum of extremals with the same Kähler action and
conserved charges obtained from each other by conformal transformations acting as gauge
symmetries and respecting the light-likeness of wormhole throats (as well as the vanishing of
the determinant of space-time metric at them). The interpretation is in terms of quantum
criticality with the hierarchy of symmetries defining a hierarchy of criticalities analogous to
the hierarchy defined by the rank of the matrix defined by the second derivatives of potential
function in Thom’s catastrophe theory.

3. The number of gauge equivalence classes is expected to be finite integer n and the proposal
is that it corresponds to the value of the effective Planck constant heff = n × h so that a
connection with dark matter hierarchy labelled by values of n emerges [K42].

4. This representation generalizes - at least formally. One could add an imaginary instanton term
to the Kähler function and corresponding Kähler-Dirac operator DK so that the generalized
eigenvalues assignable to DK become complex. The generalized eigenvalues correspond to the
square roots of the eigenvalues of the operator DD† = (pkγk + Γn)(pkγk + Γn)† acting at
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the boundaries of string world sheets carrying fermion modes and it seems that only space-
like 3-surfaces contribute. Γn is the normal component of the vector defined by Kähler-Dirac
gamma matrices. One can define Dirac determinant formally as the product of the eigenvalues
of DD†.
The conjecture is that the resulting Dirac determinant equals to the exponent of Kähler ac-
tion and imaginary instanton term for the preferred extremal. The instanton term does not
contribute to the WCW metric but could provide a first principle description for CP breaking
and anyonic effects. It also predicts the dependence of these effects on the page of the book
like structure defined by the generalized embedding space realizing the dark matter hierarchy
with levels labeled by the value of Planck constant.

5. In the case of cosmic strings CP breaking could be especially significant and force the generation
of Kähler electric charge. Instanton term is proportional to 1/heff so that CP breaking would
be small for the gigantic values of heff characterizing dark matter. For small values of heff the
breaking is large provided that the topological condensation is able to make the CP2 projection
of cosmic string four-dimensional so that the instanton contribution to the complexified Kähler
action is non-vanishing and large enough. Since instanton contribution as a local divergence
reduces to the contributions assignable to the light-like 3-surfaces X3

l representing topologically
condensed particles, CP breaking is large if the density of topologically condensed fermions
and wormhole contacts generated by the condensation of cosmic strings is high enough.

CP breaking at the level of CKM matrix

The CKM matrix for quarks contains CP breaking phase factors and this could lead to different
evaporation rates for baryons and anti-baryons are different (quark cannot appear as vapor phase
particle since vapor phase particle must have vanishing color gauge charges and in the recent vision
about quantum TGD CP2 type vacuum extremal which has not suffered topological condensation
represents vacuum). The CP breaking at the level of CKM matrix would be implied by the instan-
ton term present in the complexified Kähler action and Kähler-Dirac operator. The mechanism
might rely on hadronic Kähler electric fields which are accompanied by color electric gauge fields
proportional to induced Kähler form.

The topological condensation of quarks on hadronic strings containing weak color electric
fields proportional to Kähler electric fields should be responsible for its string tension and this
should in turn generate CP breaking. At the parton level the presence of CP breaking phase factor
exp(ikSCS), where SCS =

∫
X4 J ∧ J + boundary term is purely topological Chern Simons term

and naturally associated with the boundaries of space-time sheets with at most D = 3-dimensional
CP2 projection, could have something to do with the matter antimatter asymmetry. Note however
that TGD predicts no strong CP breaking as QCD does [L63] .

Development of strings in the string dominated cosmology

The development of the string perturbations in the Robertson Walker cosmology has been studied
[E12] and the general conclusion seems to be that all the details smaller than horizon are rapidly
smoothed out. One must of course take very cautiously the application of these result in TGD
framework.

In present case, the horizon has an infinite size so that details in all scales should die away.
To see what actually happens consider small perturbations of a static string along z-axis. Restrict
the consideration to a perturbation in the y-direction. Using instead of the proper time coordinate
t the “conformal time coordinate” τ defined by dτ = dt/a the equations of motion read [E12]

(∂τ +
2ȧ

a
)(ẏU) = ∂z(y

′U) ,

U =
1√

1 + (y′)2 − ẏ2
. (12.3.47)

Rest Restrict the consideration to small perturbations for which the condition U ' 1 holds. For
the string dominated cosmology the quantity ȧ/a = 1/

√
K is constant and the equations of motion

reduce to a very simple approximate form
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ÿ +
2√
K
ẏ − y′′ = 0 . (12.3.48)

The separable solutions of this equation are of type

y = g(a)(C sin (kz) +D cos (kz)) ,

g(a) = (
a

a0
)r . (12.3.49)

where r is a solution of the characteristic equation r2 + 2r/
√
K + k2 = 0:

r = − 1√
K

(1±
√

1− k2K) . (12.3.50)

For perturbations of small wavelength k > 1/
√
K, an extremely rapid attenuation occurs; 1/

√
K '

1027! For the long wavelength perturbations with k << 1/
√
K (physical wavelength is larger

than t) the attenuation is milder for the second root of above equation: attenuation takes place

as (a/a0)
√
Kk2/2. The conclusion is that irregularities in all scales are smoothed away but that

attenuation is much slower for the long wave length perturbations.
The absence of horizons in the string dominated phase has a rather interesting consequence.

According to the well known Jeans criterion the size L of density fluctuations leading to the
formation of structures [E12] must satisfy the following conditions

lJ < L < lH , (12.3.51)

where lH denotes the size of horizon and lJ denotes the Jeans length related to the sound velocity
vs and cosmic proper time as [E12]

lJ ' 10vst . (12.3.52)

For a string dominated cosmology the size of the horizon is infinite so that no upper bound for
the size of the possible structures results. These structures of course, correspond to string like
objects of various sizes in the microscopic description. This suggests that primordial fluctuations
create structures of arbitrary large size, which become visible at much later time, when cosmology
becomes string dominated again.

Limiting temperature

Since particles are extended objects in TGD, one expects the existence of the limiting temperature
TH (Hagedorn temperature as it is called in string models) so that the primordial cosmology is
in Hagedorn temperature. A special consequence is that the contribution of the light particles
to the energy density becomes negligible: this is in accordance with the string dominance of
the critical mass cosmology. The value of TH is of order TH ∼ ~/R, where R is CP2 radius
of order R ∼ 103.5

√
G and thus considerably smaller than Planck temperature. Note that TH

increases with Planck constant and one can wonder whether this increase continues only up to
TH = ~cr/R =

√
~cr/G, which corresponds to the critical value ~cr = R2/G. The value R2/G =

3 × 2023~0 is consistent with p-adic mass calculations and is favored by by number theoretical
arguments [K45, L63] .

The existence of limiting temperature gives strong constraint to the value of the light cone
proper time aF when radiation dominance must have established itself in the critical cosmology
which gave rise to our sub-cosmology. Before the moment of transition to hyperbolic cosmology
critical cosmology is string dominated and the generation of negative energy virtual gravitons builds
up gradually the huge energy density density, which can lead to gravitational collapse, splitting
of the strings and establishment of thermal equilibrium with gradually rising temperature. This
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temperature cannot however become higher than Hagedorn temperature TH , which serves thus as
the highest possible temperature of the effectively radiation dominated cosmology following the
critical period. The decay of the split strings generates elementary particles providing the seeds of
galaxies.

If most strings decay to light particles then energy density is certainly of the form 1/a4

of radiation dominated cosmology. This is not the only manner to obtain effective radiation
dominance. Part of the thermal energy goes to the kinetic energy of the vibrational motion of
strings and energy density ρ ∝ 1/a2 cannot hold anymore. The strings of the condensate is
expected to obey the scaling law ρ ∝ 1/a4, p = ρ/3 [E12] . The simulations with string networks

suggest that the energy density of the string network behaves as ρ ∝ 1/a2(1+v2), where v2 is
the mean square velocity of the point of the string [E15] . Therefore, if the value of the mean
square velocity approaches light velocity, effective radiation dominance results even when strings
dominate [E35] . In radiation dominated cosmology the velocity of sound is v = 1/

√
3. When v

lowers to sound velocity one obtains stationary cosmology which is string dominated.

An estimate for aF is obtained from the requirement that the temperature of the radiation
dominated cosmology, when extrapolated from its value TR ' .3eV at the time about aR ∼ 3×107

years for the decoupling of radiation and matter to a = aF using the scaling law T ∝ 1/a,
corresponds to Hagedorn temperature. This gives

aF = aR
TR
TH

,

TH = n
R , aR ∼ 3× 107 y , TR = .27 eV .

(12.3.53)

This gives a rough estimate aF ∼ 3 × 10−10 seconds, which corresponds to length scale of order
7.7× 10−2 meters. The value of aF is quite large.

The result does not mean that radiation dominated sub-cosmologies might have not de-
veloped before a = aF . In fact, entire series of critical sub-cosmologies could have developed to
radiation dominated phase before the final one leading to our sub-cosmology is actually possible.
The contribution of sub-cosmology i to the total energy density of recent cosmology is in the first
approximation equal to the fraction (aF (i)/aF )4. This ratio is multiplied by a ratio of numerical
factors telling the number of effectively massless particle species present in the condensate if ele-
mentary particles dominate the mass density. If strings dominate the mass density (as expected)
the numerical factor is absent.

For some reason the later critical cosmologies have not evolved to the radiation dominated
phase. This might be due to the reduced density of cosmic strings in the vapor phase caused by the
formation of the earlier cosmologies which does not allow sufficiently strong gravitational collapse
to develop and implies that critical cosmology transforms directly to stationary cosmology without
the intervening effectively radiation dominated phase. Indeed, condensed cosmic strings develop
Kähler electric field compensating the huge positive Kähler action of free string and can survive
the decay to light particles if they are not split. The density of split strings yielding light particles
is presumably the proper parameter in this respect.

p-Adic length scale hypothesis allows rather predictive quantitative model for the series of
sub-cosmologies [K89] predicting the number of them and allowing to estimate the moments of their
birth, the durations of the critical periods and also the durations of radiation dominated phases.
p-Adic length scale hypothesis allows also to estimate the maximum temperature achieved during
the critical period: this temperature depends on the duration of the critical period a1 as T ∼ n/a1,
where n turns out to be of order 1030. This means that if the duration of the critical period is long
enough, transition to string dominated asymptotic cosmology occurs with the intervening decay of
cosmic strings leading to the radiation dominated phase.

The existence of the limiting temperature has radical consequences concerning the prop-
erties of the very early cosmology. The contribution of a given massless particle to the energy
density becomes constant. So, unless the number of the effectively massless particle families N(a)
increases too fast the contribution of the effectively massless particles to the energy density be-
comes negligible. The massive excitations of large size (string like objects) are indeed expected to
become dominant in the mass density.
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What about thermodynamical implications of dark matter hierarchy?

The previous discussion has not mentioned dark matter hierarchy labeled by increasing values of
Planck constants and predicted macroscopic quantum coherence in arbitrarily long scales. In TGD
Universe dark matter hierarchy means also a hierarchy of conscious entities with increasingly long
span of memory and higher intelligence [K98, K38] .

This forces to ask whether the second law is really a fundamental law and whether it could
reflect a wrong view about existence resulting resulting when all these dark matter levels and infor-
mation associated with conscious experiences at these levels is neglected. For instance, biological
evolution difficult to understand in a universe obeying second law relies crucially on evolution as
gradual progress in which sudden leaps occur as new dark matter levels emerge.

TGD inspired consciousness suggests that Second Law holds true only for the mental images
of a given self (a system able to avoid bound state entanglement with environment [K98] ) rather
than being a universal physical law. Besides these mental images there is irreducible basic awareness
of self and second law does not apply to it. Also the hierarchy of higher level conscious entities
is there. In this framework second law would basically reflect the exclusion of conscious observers
from the physical model of the Universe.

12.3.4 Mechanism Of Accelerated Expansion In TGD Universe

In TGD framework the most plausible identification for the accelerated periods of cosmic expansion
is in terms of phase transitions increasing gravitational Planck constant. These phase transitions
would in average sense provide quantum counterpart for smooth cosmic expansion. These phase
transitions might be initiated by the repulsive Coulomb interaction between cosmic strings driven to
the boundaries of the large voids. It is interesting to see how this view relates with the assumption
of positive cosmological constant.

How accelerated expansion results in standard cosmology?

The accelerated of cosmic expansion means that the deceleration parameter

q = −(ad2a/ds2)/(da/ds)2

is negative. For Robertson-Walker cosmologies one has

H2 ≡ (
da/ds

a
)2 =

8πGρ+ Λ

3
−K/a2, K = 0,±1 ,

3
d2a/ds2

a
= Λ− 4πG(ρ+ 3p) ≡ −4πG(1 + 3w)ρ . (12.3.54)

It is clear that the accelerated expansion requires positive value of Λ.
The deceleration parameter can be expressed as q = 1

2 (1 + 3w)(1 +K/(aH)2). K =, 0, 1,−1
tells whether the cosmology is flat, hyper-spherical, or hyperbolic. The rate for the change of
Hubble constant can be expressed as (dH/ds)/H2 = (1+q) and the acceleration of cosmic expansion
means q < −1. All particle models predict q ≥ −1.

On basis of modified Einstein’s equations written for the recent metric convention (+,-,-.-)
(note that opposite signature changes the sign of the left hand side)

−Gαβ − Λgαβ = 8πGTαβ (12.3.55)

it is clear that the introduction of a positive cosmological constant could be interpreted by saying
that for gravitational vacuum carries energy density equal to Λ/8π and negative pressure. The
negative gravitational pressure would induce the acceleration.

Cosmological term at the level of field equations could be also interpreted by saying that
Einstein’s equations hold true in the original sense but that energy momentum tensor contains
besides the density of inertial mass also a positive density of purely gravitational mass: T →
T + Λg so that Equivalence Principle fails. Since cosmological constant means effectively negative
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pressure p = −Λ/8π the introduction of the cosmological constant means the effective replacement
ρ+3p→ ρ+3p−2Λ/8π). In the so called Λ−CDM model [E5] the densities of dark energy, ordinary
matter, and dark matter are assumed to sum up to critical mass density ρcr = 3/(8πgaaGa

2). The
fraction of dark matter density is deduced to be ΩΛ = .74 from mere criticality.

Critical cosmology predicts accelerated expansion

In order to get clue about the mechanism of accelerated cosmic expansion in TGD framework it is
useful to study the deceleration parameter for various cosmologies in TGD framework.

In standard Friedmann cosmology with non-vanishing cosmological constant one has

3
d2a/ds2

a
= Λ− 4πG(ρ+ 3p) . (12.3.56)

From this form it is obvious why Λ > 0 is required in order to obtain accelerating expansion.
Deceleration parameter is a purely geometric property of cosmology and defined as

q ≡ −a d
2a/ds2

(da/ds)2
. (12.3.57)

During radiation and matter dominated phases the value of q is positive. In TGD framework there
are several metrics which are independent of details of dynamics.

1. String dominated cosmology

String dominated cosmology is hyperbolic cosmology and might serve as a model for very
early cosmology corresponds to the metric

gaa ≡ (ds/da)2 = 1−K0 . (12.3.58)

In this case one has q = 0.

2. Critical cosmology

Critical cosmology with flat 3-space corresponds to

gaa = 1−K ,

K ≡ K0

1− u2
,

u ≡ a

a1
. (12.3.59)

gaa has the same form also for over-critical cosmologies. Both cosmologies have finite duration. In
this case q is given by

q = −K0
K0u

2

1− u2 −K0
< 0 , (12.3.60)

and is negative. The rate of change for Hubble constant is

dH/ds

H2
= −(1 + q) , (12.3.61)

so that one must have q < −1 in order to have acceleration. This holds true for a >
√

(1−K0)/(1 +K0)a1.
Quantum critical cosmology could be seen as a universal characteristic of quantum critical

phases associated with phase transition like phenomena. No assumptions about the mechanism
behind the transition are made. There is great temptation to assign this cosmology to the phase
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transitions increasing the size of large voids occurring during late cosmology. The observed jerk
assumed to lead from de-accelerated to accelerated expansion for about 13 billion years ago might
have interpretation as a transition of this kind.

3. Stationary cosmology

TGD predicts a one-parameter family of stationary cosmologies from the requirement that
the density of gravitational 4-momentum is conserved. This is guaranteed if curvature scalar is ex-
tremized. These cosmologies are expected to define asymptotic cosmologies or at least characterize
the stationary phases between quantum phase transitions. The metric is given by

gaa =
1− 2x

1− x
,

x = (
a0

a
)2/3 . (12.3.62)

The deceleration parameter

q =
1

3

x

(1− 2x)(1− x)
. (12.3.63)

is positive so that it seems that TGD does not lead to a continual acceleration which might be
regarded as tearing galaxies into pieces.

If quantum critical phases correspond to the expansion of large voids induced by the accel-
erated radial motion of galactic strings as they reach the boundaries of the voids, one can consider
a series of phase transitions between stationary cosmologies in which the value of gravitational
Planck constant and the parameter a0 characterizing the stationary cosmology increase by some
even power of two as the ruler-and-compass integer hypothesis [K45, K42] and p-adic length scale
hypothesis suggests.

4. Summary

One can safely conclude that TGD predict accelerated cosmic expansion during critical
periods and that dark energy is replaced with dark matter in TGD framework. There is also a
rather clear view about detailed mechanism leading to the accelerated expansion at “microscopic”
level. Some summarizing remarks are in order.

1. Accelerated expansion is predicted only during periods of over-critical and critical cosmologies
parameterized essentially by their duration. The microscopic description would be in terms
of phase transitions increasing the size scale of large void. This phase transition is basically
a quantum jump increasing gravitational Planck constant and thus the size of the large void.
p-Adic length scales are favored sizes of the large voids. A large piece of 4-D cosmological
history would be replaced by a new one in this transition so that quite a dramatic event would
be in question.

2. p-Adic fractality forces to ask whether there is a fractal hierarchy of time scales in which
Equivalence Principle in the formulation provided by General Relativity sense fails locally
(no failure in stringy sense). This would predict a fractal hierarchy of large voids and phase
transitions during which accelerated expansion occurs.

3. Cosmological constant can be said to be vanishing in TGD framework and the description of
accelerated expansion in terms of a positive cosmological constant is not equivalent with TGD
description since only effective pressure is negative. TGD description has some resemblance to
the description in terms of quintessence [E8] , a hypothetical form of matter for which equation
of state is of form p = −wρ, w < −1/3, so that one has ρ+ 3p = 1− w < 0 and deceleration
parameter can be negative. The energy density of quintessence is however positive. TGD does
not predict endlessly accelerated acceleration tearing galaxies into pieces if the total purely
gravitational energy of large voids is assumed to vanish so that Equivalence Principle holds
above this length scale.
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TGD counterpart of Λ as a density of dark matter rather than dark energy

The value of Λ is expressed usually as a fraction of vacuum energy density from the critical mass
density. Combining the data about acceleration of cosmic expansion with the data about cosmic
microwave background gives ΩΛ ' .74.

1. Critical mass density requires also in TGD framework the presence of dark contribution since
visible matter contribute only a few percent of the total mass density and ΩΛ ' . − 74 char-
acterizes this contribution. Since the acceleration mechanism has nothing to do with dark
energy, dark energy can be replaced with dark matter in TGD framework.

2. The dark matter hierarchy labeled by the values of Planck constant suggests itself. The
1/a2 behavior of dark matter density suggests an interpretation as dark matter topologically
condensed on cosmic strings. Besides ordinary particles also super-symplectic bosons and their
super partners playing a key role in the model of hadrons and black holes suggest themselves.

3. Stationary cosmology predicts that the density of stringy matter and thus dark matter de-
creases like 1/a2 as a function of M4

+ proper time. This behavior is very natural in cosmic
string dominated cosmology and one expects that the TGD counterpart of cosmological con-
stant should behave as Λ ∝ 1/a2 in average sense. At primordial period cosmological constant
would be gigantic but its recent value would be extremely small and naturally of correct or-
der of magnitude if the fraction of positive gravitational energy is few per cent about negative
gravitational energy. Hence the basic problem of the standard cosmology would find an elegant
solution.

Piecewise constancy of TGD counterpart of Λ and p-adic length scale hypothesis

There are good reasons to believe that TGD counterpart of Λ is piecewise constant. Classical
picture suggests that the sizes of large voids increase in discrete jumps. The transitions increasing
the size of the void would occur when the galactic strings end up to the boundary of the large void
and large repulsive Coulomb energy forces the phase transition increasing Planck constant.

Also the quantum astrophysics based on the notion of gravitational Planck constant strongly
suggests that astrophysical systems are analogous to stationary states of atoms so that the sizes
of astrophysical systems remain constant during the cosmological expansion, and can change only
in quantum jumps increasing the value of Planck constant and therefore increasing the radius of
the large void regarded as dark matter bound state.

Since the set of preferred values of Planck constant is closed under multiplication by powers
of 2, p-adic length scales Lp, p ' 2k form a preferred set of sizes scales for the large voids with
phase transitions increasing k by even integer. What values of k are realized depends on the time
scale of the dynamics driving the galactic strings to the boundaries of expanded large void. Even
if all values of k are realized the transitions becomes very rare for large values of a.

p-Adic fractality predicts that the effective cosmological constant Λ scales as 1/L2(k) as a
function of the p-adic scale characterizing the space-time sheet implying a series of phase transitions
reducing the value of effective cosmological constant Λ. As noticed, the allowed values of k would
be of form k = k0 +2n, where however all integer value need not be realized. By p-adic length scale
hypothesis primes are candidates for k. The recent value of the effective cosmological constant can
be understood. The gravitational energy density usually assigned to the cosmological constant is
identifiable as that associated with topologically condensed cosmic strings and magnetic flux tubes
to which they are gradually transformed during cosmological evolution.

p-Adic prediction is consistent with the recent study [E37] according to which cosmological
constant has not changed during the last 8 billion years: the conclusion comes from the reshifts of
supernovae of type Ia. If p-adic length scales Le(k) = p ' 2k, k any positive integer, are allowed,
the finding gives the lower bound TN >

√
(2)/(

√
2− 1))× 8 = 27.3 billion years for the recent age

of the universe.

Brad Shaefer from Lousiana University has studied the red shifts of gamma ray bursters
up to a red shift z = 6.3, which corresponds to a distance of 13 billion light years [E14] , and
claims that the fit to the data is not consistent with the time independence of the cosmological
constant. In TGD framework this would mean that a phase transition changing the value of the
cosmological constant must have occurred during last 13 billion years. In principle the phase
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transitions increasing the size of large voids could be observed as sudden changes of sign for the
deceleration parameter.

The reported cosmic jerk as an accelerated period of cosmic expansion

There is an objection against the hypothesis that cosmological constant has been gradually de-
creasing during the cosmic evolution. Type Ia supernovae at red shift z ∼ .45 are fainter than
expected, and the interpretation is in terms of an accelerated cosmic expansion [E13] . If a period
of an accelerated expansion has been preceded by a decelerated one, one would näıvely expect that
for older supernovae from the period of decelerating expansion, say at redshifts about z > 1, the
effect should be opposite. The team led by Adam Riess [E23] has identified 16 type Ia supernovae
at redshifts z > 1.25 and concluded that these supernovae are indeed brighter. The conclusion is
that about about 5 billion years ago corresponding to z ' .48, the expansion of the Universe has
suffered a cosmic jerk and transformed from a decelerated to an accelerated expansion.

The apparent dimming/brightening of supernovae at the period of accelerated/decelerated
expansion the follows from the luminosity distance relation

F =
L

4πd2
L

, (12.3.64)

where L is actual luminosity and F measured luminosity, and from the expression for the distance
dL in flat cosmology in terms of red shift z in a flat Universe

dL = (1 + z)

∫ z

0

du

H(u)

= (1 + z)H−1
0

∫ z

0

exp

[
−
∫ u

0

du [1 + q(u)] d(ln(1 + u)

]
du , (12.3.65)

where one has

H(z) =
dln(a)

ds
,

q ≡ −d
2a/ds2

aH2
=
dH−1

ds
− 1 . (12.3.66)

In TGD framework a corresponds to the light-cone proper time and s to the proper time of
Robertson-Walker cosmology. Depending on the sign of the deceleration parameter q, the distance
dL is larger or smaller and accordingly the object looks dimmer or brighter.

The natural interpretation for the jerk would be as a period of accelerated cosmic expansion
due to a phase transition increasing the value of gravitational Planck constant.

12.4 Microscopic Description Of Black-Holes In TGD Uni-
verse

In TGD framework the embedding of the metric for the interior of Schwartshild black-hole fails
below some critical radius. This strongly suggests that only the exterior metric of black-hole makes
sense in TGD framework and that TGD must provide a microscopic description of black-holes.
Somewhat unexpectedly, I ended up with this description from a model of hadrons.

Super-symplectic algebra is a generalization of Kac-Moody algebra obtained by replacing
the finite-dimensional group G with the group of symplectic transformations of δM4

± ×CP2. This
algebra defines the group of isometries for the “world of classical worlds” and together with the
Kac-Moody algebra assignable to the deformations of light-like 3-surfaces representing orbits of
2-D partonic surfaces it defines the mathematical backbone of quantum TGD as almost topological
QFT.
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From the point of view of experimentalist the basic question is how these super-symplectic
degrees of freedom reflect themselves in existing physics and the pleasant surprise was that super-
symplectic bosons explain what might be called the missing hadronic mass and spin. The point is
that quarks explain only about 170 MeV of proton mass. Also the spin puzzle of proton is known
for years. Also precise mass formulas for hadrons emerge.

Super-symplectic degrees of freedom represent dark matter in electro-weak sense and highly
entangled hadronic strings in Hagedorn temperature are very much analogous to black-holes. This
indeed generalizes to a microscopic model for black-holes created when hadronic strings fuse to-
gether in high density.

12.4.1 Super-Symplectic Bosons

TGD predicts also exotic bosons which are analogous to fermion in the sense that they correspond
to single wormhole throat associated with CP2 type vacuum extremal whereas ordinary gauge
bosons corresponds to a pair of wormhole contacts assignable to wormhole contact connecting
positive and negative energy space-time sheets. These bosons have super-conformal partners with
quantum numbers of right handed neutrino and thus having no electro-weak couplings. The bosons
are created by the purely bosonic part of super-symplectic algebra [K31, K113] , whose generators
belong to the representations of the color group and 3-D rotation group but have vanishing electro-
weak quantum numbers. Their spin is analogous to orbital angular momentum whereas the spin
of ordinary gauge bosons reduces to fermionic spin. Recall that super-symplectic algebra is crucial
for the construction of WCW Kähler geometry. If one assumes that super-symplectic gluons suffer
topological mixing identical with that suffered by say U type quarks, the conformal weights would
be (5,6,58) for the three lowest generations. The application of super-symplectic bosons in TGD
based model of hadron masses is discussed in [K70] and here only a brief summary is given.

As explained in [K70] , the assignment of these bosons to hadronic space-time sheet is an
attractive idea.

1. Quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution
should correspond to the non-perturbative aspects of QCD. A possible identification of this
contribution is in terms of super-symplectic gluons. Baryonic space-time sheet with k = 107
would contain a many-particle state of super-symplectic gluons with net conformal weight of
16 units. This leads to a model of baryons masses in which masses are predicted with an
accuracy better than 1 per cent.

2. Hadronic string model provides a phenomenological description of non-perturbative aspects
of QCD and a connection with the hadronic string model indeed emerges. Hadronic string
tension is predicted correctly from the additivity of mass squared for J = 2 bound states of
super-symplectic quanta. If the topological mixing for super-symplectic bosons is equal to that
for U type quarks then a 3-particle state formed by 2 super-symplectic quanta from the first
generation and 1 quantum from the second generation would define baryonic ground state with
16 units of conformal weight. A very precise prediction for hadron masses results by assuming
that the spin of hadron correlates with its super-symplectic particle content.

3. Also the baryonic spin puzzle caused by the fact that quarks give only a small contribution
to the spin of baryons, could find a natural solution since these bosons could give to the spin
of baryon an angular momentum like contribution having nothing to do with the angular
momentum of quarks.

4. Super-symplectic bosons suggest a solution to several other anomalies related to hadron
physics. The events observed for a couple of years ago in RHIC [C32] suggest a creation
of a black-hole like state in the collision of heavy nuclei and inspire the notion of color glass
condensate of gluons, whose natural identification in TGD framework would be in terms of
a fusion of hadronic space-time sheets containing super-symplectic matter materialized also
from the collision energy. In the collision, valence quarks connected together by color bonds
to form separate units would evaporate from their hadronic space-time sheets in the collision,
and would define TGD counterpart of Pomeron, which experienced a reincarnation for few
years ago [C38]. The strange features of the events related to the collisions of high energy
cosmic rays with hadrons of atmosphere (the particles in question are hadron like but the
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penetration length is anomalously long and the rate for the production of hadrons increases
as one approaches surface of Earth) could be also understood in terms of the same general
mechanism.

12.4.2 Are Ordinary Black-Holes Replaced With Super-Symplectic Black-
Holes In TGD Universe?

Some variants of super string model predict the production of small black-holes at LHC. I have never
taken this idea seriously but in a well-defined sense TGD predicts black-hole like states associated
with super-symplectic gravitons with strong gravitational constant defined by the hadronic string
tension. The proposal is that super-symplectic black-holes have been already seen in Hera, RHIC,
and the strange cosmic ray events.

Baryonic super-symplectic black-holes of the ordinary M107 hadron physics would have mass
934.2 MeV, very near to proton mass. The mass of their M89 counterparts would be 512 times
higher, about 478 GeV. “Ionization energy” for Pomeron, the structure formed by valence quarks
connected by color bonds separating from the space-time sheet of super-symplectic black-hole in
the production process, corresponds to the total quark mass and is about 170 MeV for ordinary
proton and 87 GeV for M89 proton. This kind of picture about black-hole formation expected to
occur in LHC differs from the stringy picture since a fusion of the hadronic mini black-holes to a
larger black-hole is in question.

An interesting question is whether the ultrahigh energy cosmic rays having energies larger
than the GZK cut-off of 5 × 1010 GeV are baryons, which have lost their valence quarks in a
collision with hadron and therefore have no interactions with the microwave background so that
they are able to propagate through long distances.

In neutron stars the hadronic space-time sheets could form a gigantic super-symplectic
black-hole and ordinary black-holes would be naturally replaced with super-symplectic black-holes
in TGD framework (only a small part of black-hole interior metric is representable as an induced
metric). This obviously means a profound difference between TGD and string models.

1. Hawking-Bekenstein black-hole entropy would be replaced with its p-adic counterpart given
by

Sp = (
M

m(CP2)
)2 × log(p) , (12.4.1)

where m(CP2) is CP2 mass, which is roughly 10−4 times Planck mass. M is the contribution
of p-adic thermodynamics to the mass. This contribution is extremely small for gauge bosons
but for fermions and super-symplectic particles it gives the entire mass.

2. If p-adic length scale hypothesis p ' 2k holds true, one obtains

Sp = klog(2)× (
M

m(CP2)
)2, (12.4.2)

m(CP2) = ~/R, R the “radius” of CP2, corresponds to the standard value of h for all values
of heff .

3. Hawking-Bekenstein area law gives in the case of Schwartschild black-hole

S =
A

4G
× ~ = πGM2 × ~ . (12.4.3)

For the p-adic variant of the law Planck mass is replaced with CP2 mass and klog(2) ' log(p)
appears as an additional factor. Area law is obtained in the case of elementary particles if k is
prime and wormhole throats have M4 radius given by p-adic length scale Lk =

√
kR which is

exponentially smaller than Lp. For macroscopic super-symplectic black-holes modified area law
results if the radius of the large wormhole throat equals to Schwartschild radius. Schwartschild
radius is indeed natural: a simple deformation of the Schwartschild exterior metric to a metric
representing rotating star transforms Schwartschild horizon to a light-like 3-surface at which
the signature of the induced metric is transformed from Minkowskian to Euclidian.

4. The formula for the gravitational Planck constant appearing in the Bohr quantization of plan-
etary orbits and characterizing the gravitational field body mediating gravitational interaction
between masses M and m [K89] reads as
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~gr =
GMm

v0
~0 .

v0 = 2−11 is the preferred value of v0. One could argue that the value of gravitational Planck
constant is such that the Compton length ~gr/M of the black-hole equals to its Schwartshild
radius. This would give

~gr =
GM2

v0
~0 , v0 = 1/2 . (12.4.4)

The requirement that ~gr is a ratio of ruler-and-compass integers expressible as a product of
distinct Fermat primes (only four of them are known) and power of 2 would quantize the mass
spectrum of black hole [K89] . Even without this constraint M2 is integer valued using p-adic
mass squared unit and if p-adic length scale hypothesis holds true this unit is in an excellent
approximation power of two.

5. The gravitational collapse of a star would correspond to a process in which the initial value of
v0 , say v0 = 2−11, increases in a stepwise manner to some value v0 ≤ 1/2. For a supernova
with solar mass with radius of 9 km the final value of v0 would be v0 = 1/6. The star could
have an onion like structure with largest values of v0 at the core as suggested by the model of
planetary system. Powers of two would be favored values of v0. If the formula holds true also
for Sun one obtains 1/v0 = 3× 17× 213 with 10 per cent error.

6. Black-hole evaporation could be seen as means for the super-symplectic black-hole to get rid
of its electro-weak charges and fermion numbers (except right handed neutrino number) as
the antiparticles of the emitted particles annihilate with the particles inside super-symplectic
black-hole. This kind of minimally interacting state is a natural final state of star. Ideal
super-symplectic black-hole would have only angular momentum and right handed neutrino
number.

7. In TGD light-like partonic 3-surfaces are the fundamental objects and space-time interior
defines only the classical correlates of quantum physics. The space-time sheet containing the
highly entangled cosmic string might be separated from environment by a wormhole contact
with size of black-hole horizon.

This looks the most plausible option but one can of course ask whether the large partonic 3-
surface defining the horizon of the black-hole actually contains all super-symplectic particles so
that super-symplectic black-hole would be single gigantic super-symplectic parton. The interior
of super-symplectic black-hole would be a space-like region of space-time, perhaps resulting as a
large deformation of CP2 type vacuum extremal. Black-hole sized wormhole contact would define
a gauge boson like variant of the black-hole connecting two space-time sheets and getting its mass
through Higgs mechanism. A good guess is that these states are extremely light.

12.4.3 Anyonic View About Blackholes

A new element to the model of black hole comes from the vision that black hole horizon as a
light-like 3-surface corresponds to a light-like orbit of light-like partonic 2-surface. This allows two
kinds of black holes. Fermion like black hole would correspond to a deformed CP2 type extremal
which Euclidian signature of metric and topologically condensed at a space-time sheet with a
Minkowskian signature. Boson like black hole would correspond to a wormhole contact connecting
two space-time sheets with Minkowskian signature. Wormhole contact would be a piece deformed
CP2 type extremal possessing two light-like throats defining two black hole horizons very near
to each other. It does not seem absolutely necessary to assume that the interior metric of the
black-hole is realized in another space-time sheet with Minkowskian signature.

Second new element relates to the value of Planck constant. For ~gr = 4GM2 the Planck

length LP (~) =
√
~G equals to Schwartschild radius and Planck mass equals to MP (~) =

√
~/G =

2M . If the mass of the system is below the ordinary Planck mass: M ≤ mP (~0)/2 =
√

~0/4G,
gravitational Planck constant is smaller than the ordinary Planck constant.

Black hole surface contains ultra dense matter so that perturbation theory is not expected to
converge for the standard value of Planck constant but do so for gravitational Planck constant. If
the phase transition increasing Planck constant is a friendly gesture of Nature making perturbation
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theory convergent, one expects that only the black holes for which Planck constant is such that
GM2/4π~ < 1 holds true are formed. Black hole entropy - being proportional to 1/~- is of order
unity so that TGD black holes are not very entropic. ~ = GM2/v0, v0 = 1/4, would hold true
for an ideal black hole with Planck length (~G)1/2 equal to Schwartshild radius 2GM . Since black
hole entropy is inversely proportional to ~, this would predict black hole entropy to be of order
single bit. This of course looks totally non-sensible if one believes in standard thermodynamics.
For the star with mass equal to 1040 Planck masses the entropy associated with the initial state
of the star would be roughly the number of atoms in star equal to about 1060. Black hole entropy
proportional to GM2/~ would be of order 1080 provided the standard value of ~ is used as unit.
This stimulates some questions.

1. Does second law pose an upper bound on the value of ~ of dark black hole from the requirement
that black hole has at least the entropy of the initial state. The maximum value of ~ would
be given by the ratio of black hole entropy to the entropy of the initial state and about 1020

in the example consider to be compared with GM2/v0 ∼ 1080.

2. Or should one generalize thermodynamics in a way suggested by ZEO by making explicit
distinction between subjective time (sequence of quantum jumps) and geometric time? The
arrow of geometric time would correlate with that of subjective time. One can argue that
the geometric time has opposite direction for the positive and negative energy parts of the
zero energy state interpreted in standard ontology as initial and final states of quantum event.
If second law would hold true with respect to subjective time, the formation of ideal dark
black hole would destroy entropy only from the point of view of observer with standard arrow
of geometric time. The behavior of phase conjugate laser light would be a more mundane
example. Do self assembly processes serve as example of non-standard arrow of geometric
time in biological systems? In fact, zero energy state is geometrically analogous to a big bang
followed by big crunch. One can however criticize the basic assumption as ad hoc guess. One
should really understand the the arrow of geometric time. This is discussed in detail in [L4] .

If the partonic 2-surface surrounds the tip of causal diamond CD, the matter at its surface
is in anyonic state with fractional charges. Anyonic black hole can be seen as single gigantic
elementary particle stabilized by fractional quantum numbers of the constituents preventing them
from escaping from the system and transforming to ordinary visible matter.

One can imagine that the partonic surface is not exact sphere except for ideal black holes
but contains large number of magnetic flux tubes giving rise to handles. Also a pair of spheres
with different radii can be considered with surfaces of spheres connected by braided flux tubes.
The braiding of these handles can represent information and one can even consider the possibility
that black hole can act as a topological quantum computer. There would be no sharp difference
between the dark parts of black holes and those of ordinary stars. Only the volume containing
the complex flux tube structures associated with the orbits of planets and various objects around
star would become very small for black hole so that the black hole might code for the topological
information of the matter collapsed into it.

12.5 A Quantum Model For The Formation Of Astrophys-
ical Structures And Dark Matter?

D. Da Rocha and Laurent Nottale, the developer of Scale Relativity, have ended up with an
highly interesting quantum theory like model for the evolution of astrophysical systems [E18] (I
am grateful for Victor Christianito for informing me about the article). In particular, this model
applies to planetary orbits. I learned later that also A. Rubric and J. Rubric have proposed a Bohr
model for planetary orbits [E32] already 1998.

The model is simply Schrödinger equation with Planck constant ~ replaced with what might
be called gravitational Planck constant

~ → ~gr =
GmM

v0
. (12.5.1)

Here I have used units ~ = c = 1. v0 is a velocity parameter having the value v0 = 144.7 ± .7
km/s giving v0/c = 4.6× 10−4. The peak orbital velocity of stars in galactic halos is 142± 2 km/s
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whereas the average velocity is 156 ± 2 km/s. Also sub-harmonics and harmonics of v0 seem to
appear.

The model makes fascinating predictions which hold true. For instance, the radii of planetary
orbits fit nicely with the prediction of the hydrogen atom like model. The inner solar system
(Mercury,Venus,Earth, Mars) corresponds to v0 and outer solar system to v0/5.

The predictions for the distribution of major axis and eccentricities have been tested suc-
cessfully also for exoplanets. Also the periods of 3 planets around pulsar PSR B1257+12 fit with
the predictions with a relative accuracy of few hours/per several months. Also predictions for
the distribution of stars in the regions where morphogenesis occurs follow from the gravitational
Schödinger equation.

What is important is that there are no free parameters besides v0. In [E18] a wide variety
of astrophysical data is discussed and it seem that the model works and has already now made
predictions which have been later verified. In the following I shall discuss Nottale’s model from
the point of view of TGD.

12.5.1 TGD Prediction For The Parameter v0

One of the basic questions is the origin of the parameter v0, which according to a rich amount
of experimental data discussed in [E18] seems to play a role of a constant of Nature. One of the
first applications of cosmic strings in TGD sense was an explanation of the velocity spectrum of
stars in the galactic halo in terms of dark matter which could consists of cosmic strings. Cosmic
strings could be orthogonal to the galactic plane going through the nucleus (jets) or they could
be in galactic plane in which case the strings and their decay products would explain dark matter
assuming that the length of cosmic string inside a sphere of radius R is or has been roughly R [K32]
. The predicted value of the string tension is determined by the CP2 radius whose ratio to Planck
length is fixed by electron mass via p-adic mass calculations. The resulting prediction for the v0 is
correct and provides a working model for the constant orbital velocity of stars in the galactic halo.

The parameter v0 ' 2−11, which has actually the dimension of velocity unless on puts c = 1,
and also its harmonics and sub-harmonics appear in the scaling of ~. v0 corresponds to the velocity
of distant stars in the model of galactic dark matter. TGD allows to identify this parameter as
the parameter

v0 = 2
√
TG =

√
1

2αK

√
G

R2
,

T =
1

8αK

~0

R2
. (12.5.2)

Here T is the string tension of cosmic strings, R denotes the “radius” of CP2 (2R is the radius
of geodesic sphere of CP2). αK is Kähler coupling strength, the basic coupling constant strength
of TGD, whose evolution as a function of p-adic length scale is fixed by quantum criticality. The
condition that G is invariant in the p-adic coupling constant evolution and number theoretical
arguments predict

αK(p) = k
1

log(p) + log(K)
,

K =
R2

~0G
= 2× 3× 5× 7× 11× 13× 17× 19× 23 , k ' π/4 . (12.5.3)

The predicted value of v0 depends logarithmically on the p-adic length scale and for p ' 2127 − 1
(electron’s p-adic length scale) one has v0 ' 2−11.

12.5.2 Model ror planetary orbits without v0 → v0/5 scaling

Also harmonics and sub-harmonics of v0 appear in the model of Nottale and Da Rocha. For
instance, the outer planets (Jupiter, Saturn,...) correspond to v0/5 whereas the 4 inner planets
correspond to v0. Quite generally, it is found that the values seem to come as harmonics and
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sub-harmonics of v0: vn = nv0 and v0/n, and the argument [E18] is that the different values of n
relate to fractality. This scaling is not necessary for the planetary orbits in TGD based model.

Effectively a multiplication n → 5n of the principal quantum number is in question in the
case of outer planets. If one accepts the interpretation that visible matter has concentrated around
dark matter, which is in macroscopic quantum phase around Bohr orbits, this allows to consider
also the possibility that ~gr has the same value for all planets.

1. Some gravitational perturbation has kicked dark matter from the region of the asteroid belt
to n ' 5k, k = 2, .., 6, orbits. The best fit is obtained by using values of n deviating somewhat
from multiples of 5 which suggests that the scaling of v0 is not needed. Gravitational pertur-
bations might have caused the same for the visible matter. The fact that the tilt angles of
Earth and outer planets other than Pluto are nearly the same suggests that the orbits of these
planets might be an outcome of some violent quantum process for dark matter preserving the
orbital plane in a good approximation. Pluto might in turn have experienced some violent
collision changing its orbital plane.

2. There could exist at least small amounts of dark matter at all orbits but visible matter is
concentrated only around orbits containing some critical amount of dark matter.

Table 12.1 gives the radii of planet orbits predicted by Bohr orbit model and by Titius-Bode
law.

Exp. T-B Bohr1 Bohr2

Planet R/RM R/RM [n,R/RM ] [n,R/RM ]

Mercury 1 1 [3, 1]
Venus 1.89 1.75 [4, 1.8]
Earth 2.6 2.5 [5, 2.8]
Mars 3.9 4 [6, 4]
Asteroids 6.1-8.7 7 [(7, 8, 9), (5.4, 7.1, 9)]
Jupiter 13.7 13 [11, 13.4] [2× 5,11.1]
Saturn 25.0 25 [3× 5, 25] [3× 5, 25]
Uranus 51.5 49 [22, 53.8] [4× 5,44.4]
Neptune 78.9 97 [27 , 81] [5× 5, 69.4]
Pluto 105.2 97 [31, 106.7] [6× 5,100]

Table 12.1: Table represents the experimental average orbital radii of planets, the predictions of
Titius-Bode law (note the failure for Neptune), and the predictions of Bohr orbit model assuming
a) that the principal quantum number n corresponds to best possible fit, b) the scaling v0 → v0/5
for outer planets. Option a) gives the best fit with errors being considerably smaller than the
maximal error |∆R|/R ' 1/n except for Uranus. RM denotes the orbital radius of Mercury. T-B
refers to Titius-Bode law.

How to understand the harmonics and sub-harmonics of v0 in TGD framework?

Also harmonics and sub-harmonics of v0 appear in the model of Nottale and Da Rocha. In par-
ticular, the outer planets (Jupiter, Saturn,...) correspond to v0/5 whereas the 4 inner planets
correspond to v0 in this model. As already found, TGD allows also an alternative explanation.

Quite generally, it is found that the values seem to come as harmonics and sub-harmonics of
v0: vn = nv0 and v0/n, and the argument [E18] is that the different values of n relate to fractality.
This quantization is a challenge for TGD since v0 certainly defines a fundamental constant in TGD
Universe.

1. Consider first the harmonics of v0. Besides cosmic strings of type X2 × S2 ⊂ M4 × CP2 one
can consider also deformations of these strings defining their multiple coverings so that the
deformation is n-valued as a function of S2-coordinates (Θ,Φ) and the projection to S2 is thus
an n→ 1 map. The solutions are higher dimensional analogs of originally closed orbits which
after perturbation close only after n turns. This kind of surfaces emerge in the TGD inspired
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model of quantum Hall effect naturally [K7] and n → ∞ limit has an interpretation as an
approach to chaos [K102] .
Using the coordinates (x, y, θ, φ) of X2 × S2 and coordinates mk for M4 of the unperturbed
solution the space-time surface the deformation can be expressed as

mk = mk(x, y, θ, φ) ,

(Θ,Φ) = (θ, nφ) . (12.5.4)

The value of the string tension would be indeed n2-fold in the first approximation since the
induced Kähler form defining the Kähler magnetic field would be Jθφ = nsin(Θ) and one
would have vn = nv0. At the limit mk = mk(x, y) different branches for these solutions
collapse together.

2. Consider next how sub-harmonics appear in TGD framework. Suppose that cosmic strings
decay to magnetic flux tube structures. This could the counterpart for cosmic expansion.
The Kähler magnetic flux Φ = BS is conserved in the process but the thickness of the M4

projection of the cosmic string increases field strength is reduced. This means that string
tension, which is proportional to B2S, is reduced (so that also Kähler action is reduced). The
fact that space-time surface is Bohr orbit in generalized sense means that the reduced string
tension (magnetic energy per unit length) is quantized.

The task is to guess how the quantization occurs. There are two options.

1. The simplest explanation for the reduction of v0 is based on the decay of a flux tube resembling
a disk with a hole to n identical flux tubes so that v0 → v0/n results for the resulting flux
tubes. It turns out that this mechanism is favored and explains elegantly the value of ~gr for
outer planetary system. One can also consider small-p p-adicity so that n would be prime.

2. Second explanation is more intricate. Consider a magnetic flux tube. Since magnetic flux is
quantized, the magnetic field strengths are quantized in integer multiples of basic strength:
B = nB0 and would rather naturally correspond to the multiple coverings of the original
magnetic flux tube with magnetic energy quantized in multiples of n2. The idea is to require
internal consistency in the sense that the allowed reduced field strengths are such that the
spectrum associated with B0 is contained to the spectrum associated with the quantized field
strengths B1 > B0. This would allow only field strengths B = BS/n

2, where BS denotes
the field strength of the fundamental cosmic string and one would have vn = v0/n. Flux
conservation requires that the area of the flux tube scales as n2.

Sub-harmonics might appear in the outer planetary system and there are indications for the
higher harmonics below the inner planetary system [E18] : for instance, solar radius corresponds
to n = 1 orbital for v3 = 3v0. This would suggest that Sun and also planets have an onion like
structure with highest harmonics of v0 and strongest string tensions appearing in the solar core
and highest sub-harmonics appearing in the outer regions. If the matter results as decay remnants
of cosmic strings this means that the mass density inside Sun should correlate strongly with the
local value of n characterizing the multiple covering of cosmic strings.

One can ask whether the very process of the formation of the structures could have excited
the higher values of n just like closed orbits in a perturbed system become closed only after n turns.
The energy density of the cosmic string is about one Planck mass per ∼ 107 Planck lengths so
that n > 1 excitation increasing this density by a factor of n2 is obviously impossible except under
the primordial cosmic string dominated period of cosmology during which the net inertial energy
density must have vanished. The structure of the future solar system would have been dictated
already during the primordial phase of cosmology when negative energy cosmic string suffered a
time reflection to positive energy cosmic strings.

Nottale equation is consistent with the TGD based model for dark matter

TGD allows two models of dark matter. The first one is spherically symmetric and the second one
cylindrically symmetric. The first thing to do is to check whether these models are consistent with
the gravitational Schrödinger equation/Bohr quantization.

1. Spherically symmetric model for the dark matter
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The following argument based on Bohr orbit quantization demonstrates that this is indeed
the case for the spherically symmetric model for dark matter. The argument generalizes in a trivial
manner to the cylindrically symmetric case.

1. The gravitational potential energy V (r) for a mass distribution M(r) = xTr (T denotes string
tension) is given by

V (r) = Gm

∫ R0

r

M(r)

r2
dr = GmxTlog(

r

R0
) . (12.5.5)

Here R0 corresponds to a large radius so that the potential is negative as it should in the
region where binding energy is negative.

2. The Newton equation mv2

r = GmxT
r for circular orbits gives

v = xGT . (12.5.6)

3. Bohr quantization condition for angular momentum by replacing ~ with ~gr reads as mvr =
n~gr and gives

rn =
n~gr
mv

= nr1 ,

r1 =
GM

vv0
. (12.5.7)

Here v is rather near to v0.

4. Bound state energies are given by

En =
mv2

2
− xT log(

r1

R0
) + xT log(n) . (12.5.8)

The energies depend only weakly on the radius of the orbit.

5. The centrifugal potential l(l + 1)/r2 in the Schrödinger equation is negligible as compared
to the potential term at large distances so that one expects that degeneracies of orbits with
small values of l do not depend on the radius. This would mean that each orbit is occupied
with same probability irrespective of value of its radius. If the mass distribution for the starts
does not depend on r, the number of stars rotating around galactic nucleus is simply the
number of orbits inside sphere of radius R and thus given by N(R) ∝ R/r0 so that one has
M(R) ∝ R. Hence the model is self consistent in the sense that one can regard the orbiting
stars as remnants of cosmic strings and thus obeying same mass distribution.

2. Cylindrically symmetric model for the galactic dark matter

TGD allows also a model of the dark matter based on cylindrical symmetry. In this case the
dark matter would correspond to the mass of a cosmic string orthogonal to the galactic plane and
traversing through the galactic nucleus. The string tension would the one predicted by TGD. In
the directions orthogonal to the plane of galaxy the motion would be free motion so that the orbits
would be helical, and this should make it possible to test the model. The quantization of radii of
the orbits would be exactly the same as in the spherically symmetric model. Also the quantization
of inclinations predicted by the spherically symmetric model could serve as a sensitive test. In this
kind of situation general theory of relativity would predict only an angle deficit giving rise to a
lens effect. TGD predicts a Newtonian 1/ρ potential in a good approximation.

Spiral galaxies are accompanied by jets orthogonal to the galactic plane and a good guess
is that they are associated with the cosmic strings. The two models need not exclude each other.
The vision about astrophysical structures as pearls of a fractal necklace would suggest that the
visible matter has resulted in the decay of cosmic strings originally linked around the cosmic string
going through the galactic plane and creating M(R) ∝ R for the density of the visible matter in
the galactic bulge. The finding that galaxies are organized along linear structures [E40] fits nicely
with this picture.

MOND and TGD

TGD based model explains also the MOND (Modified Newton Dynamics) model of Milgrom [E29]
for the dark matter. Instead of dark matter, the model assumes a modification of Newton’s law
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of gravitation. The model is based on the observation that the transition to a constant velocity
spectrum seems in the galactic halos seems to occur at a constant value of the stellar acceleration
equal to a0 ' 10−11g, where g is the gravitational acceleration at the Earth. MOND theory
assumes that Newtonian laws are modified below a0.

The explanation relies on Bohr quantization. Since the stellar radii in the halo are quantized
in integer multiples of a basic radius and since also rotation velocity v0 is constant, the values of the
acceleration are quantized as a(n) = v2

0/r(n) and a0 correspond to the radius r(n) of the smallest
Bohr orbit for which the velocity is still constant. For larger orbital radii the acceleration would
indeed be below a0. a0 would correspond to the distance above which the density of the visible
matter does not appreciably perturb the gravitational potential of the straight string. This of
course requires that gravitational potential is that given by Newton’s theory and is indeed allowed
by TGD.

The MOND theory (see http://tinyurl.com/qt875) [E29] and its variants predict that
there is a critical acceleration below which Newtonian gravity fails. This would mean that New-
tonian gravitation is modified at large distances. String models and also TGD predict just the
opposite since in this regime General Relativity should be a good approximation.

1. The 1/r2 force would transform to 1/r force at some critical acceleration of about a = 10−10

m/s2: this is a fraction of 10−11 about the gravitational acceleration at the Earth’s surface.

2. The recent empirical study (see http://tinyurl.com/ychyy3z3) [E25] giving support for
this kind of transition in the dynamics of stars at large distances and therefore breakdown of
Newtonian gravity in MOND like theories.

In TGD framework critical acceleration is predicted but the recent experiment does not
force to modify Newton’s laws. Since Big Science is like market economy in the sense that funding
is more important than truth, the attempts to communicate TGD based view about dark matter
[K42, K89, K75, K90, K32] have turned out to be hopeless. Serious Scientist does not read anything
not written on silk paper.

1. One manner to produce this spectrum is to assume density of dark matter such that the mass
inside sphere of radius R is proportional to R at last distances [K32]. Decay products of and
ideal cosmic strings (see http://tinyurl.com/y8wbeo4q) would predict this. The value of the
string tension predicted correctly by TGD using the constraint that p-adic mass calculations
give electron mass correctly [K60].

2. One could also assume that galaxies are distributed along cosmic string like pearls in necklace.
The mass of the cosmic string would predict correct value for the velocity of distant stars. In
the ideal case there would be no dark matter outside these cosmic strings.

(a) The difference with respect to the first mechanism is that this case gravitational acceler-
ation would vanish along the direction of string and motion would be free motion. The
prediction is that this kind of motions take place along observed linear structures formed
by galaxies and also along larger structures.

(b) An attractive assumption is that dark matter corresponds to phases with large value of
Planck constant is concentrated on magnetic flux tubes. Holography would suggest that
the density of the magnetic energy is just the density of the matter condensed at wormhole
throats associated with the topologically condensed cosmic string.

(c) Cosmic evolution modifies the ideal cosmic strings and their Minkowski space projection
gets gradually thicker and thicker and their energy density - magnetic energy - character-
ized by string tension could be affected

TGD option differs from MOND in some respects and it is possible to test empirically which
option is nearer to the truth.

1. The transition at same critical acceleration is predicted universally by this option for all
systems-now stars- with given mass scale if they are distributed along cosmic strings like like
pearls in necklace. The gravitational acceleration due the necklace simply wins the gravita-
tional acceleration due to the pearl. Fractality encourages to think like this.

2. The critical acceleration predicted would correspond to acceleration of the same order of
magnitude as the acceleration caused by cosmic string. From M2/Rcr = GM/R2

cr = TG/Rcr
(assuming that dark matter dominates) one obtains the estimate Rcr = M/T and acr =
GT 2/M , where M is the visible mass of the object - for instance the ordinary matter of a

http://tinyurl.com/qt875
http://tinyurl.com/ychyy3z3
http://tinyurl.com/y8wbeo4q
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galaxy. If critical acceleration is always the same, one would have T = (acrM/G)1/2 so that
the visible mass would scale like M ∝ T 2 if acr is constant of Nature.

3. If 1/r2 changes to 1/r in the MOND model, one obtains the same predictions as in TGD for
the planar orbits orthogonal to the long string along which galaxies correspond to flux tube
tangles. The models are not equivalent. In TGD, general orbit of the star corresponds to a
helical motion of the star in the plane orthogonal to the cosmic string and along the cosmic
string so that the obser concentration of visible matter on a preferred plane is predicted. This
concentration of orbits in a single plane has been recently reported as an anomaly of dark
matter models [L124].

TGD option explains also other strange findings of cosmology.

1. The basic prediction is the large scale motions of dark matter along cosmic strings. The
characteristic length and time scale of dynamics is scaled up by the scaling factor of ~. This
could explain the observed large scale motion of galaxy clusters - dark flow (see http://

tinyurl.com/ckfg25) [E3] - assigned with dark matter in conflict with the expectations of
standard cosmology.

2. Cosmic strings could also relate to the strange relativistic jet like structures (see http://

tinyurl.com/2x5od6) [E9] meaning correlations between very distant objects. Universe would
be a spaghetti of cosmic strings around which matter is concentrated.

3. The TGD based model for the final state of star (see http://tinyurl.com/yantmeot) [K106]
actually predicts the presence of string like object defining preferred rotation axis. The beams
of light emerging from supernovae would be preferentially directed along this lines- actually
magnetic flux tubes. Same would apply to the gamma ray bursts (see http://tinyurl.com/

csd2an) [E4] from quasars, which would not be distributed evenly in all directions but would
be like laser beams along cosmic strings.

12.5.3 The Interpretation Of ~gr And Pre-Planetary Period

~gr could corresponds to a unit of angular momentum for quantum coherent states at magnetic
flux tubes or walls containing macroscopic quantum states. Quantitative estimate demonstrates
that ~gr for astrophysical objects cannot correspond to spin angular momentum. For Sun-Earth
system one would have ~gr ' 1077~. This amount of angular momentum realized as a mere
spin would require 1077 particles! Hence the only possible interpretation is as a unit of orbital
angular momentum. The linear dependence of ~gr on m is consistent with the additivity of angular
momenta in the fusion of magnetic flux tubes to larger units if the angular momentum associated
with the tubes is proportional to both m and M .

Just as the gravitational acceleration is a more natural concept than gravitational force, also
~gr/m = GM/v0 could be more natural unit than ~gr. It would define a universal unit for the
circulation

∮
v · dl, which is apart from 1/m-factor equal to the phase integral

∮
pφdφ appearing in

Bohr rules for angular momentum. The circulation could be associated with the flow associated
with outer boundaries of magnetic flux tubes surrounding the orbit of mass m around the central
mass M � m and defining light like 3-D CDs analogous to black hole horizons.

The expression of ~gr depends on masses M and m and can apply only in space-time regions
carrying information about the space-time sheets of Mandthe orbit of m. Quantum gravitational
holography suggests that the formula applies at 3-D light like causal determinant (CD) X3

l defined
by the wormhole contacts gluing the space-time sheet X3

l of the planet to that of Sun. More
generally, X3

l could be the space-time sheet containing the planet, most naturally the magnetic flux
tube surrounding the orbit of the planet and possibly containing dark matter in super-conducting
state. This would give a precise meaning for ~gr and explain why ~gr does not depend on the
masses of other planets.

The simplest option consistent with the quantization rules and with the explanatory role of
magnetic flux structures is perhaps the following one.

1. X3
l is a torus like surface around the orbit of the planet containing de-localized dark matter.

The key role of magnetic flux quantization in understanding the values of v0 suggests the
interpretation of the torus as a magnetic or Z0 magnetic flux tube. At pre-planetary period
the dark matter formed a torus like quantum object. The conditions defining the radii of Bohr
orbits follow from the requirement that the torus-like object is in an eigen state of angular

http://tinyurl.com/ckfg25
http://tinyurl.com/ckfg25
http://tinyurl.com/2x5od6
http://tinyurl.com/2x5od6
http://tinyurl.com/yantmeot
http://tinyurl.com/csd2an
http://tinyurl.com/csd2an
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momentum in the center of mass rotational degrees of freedom. The requirement that rotations
do not leave the torus-like object invariant is obviously satisfied. Newton’s law required by
the quantum-classical correspondence stating that the orbit corresponds to a geodesic line in
general relativistic framework gives the additional condition implying Bohr quantization.

2. A simple mechanism leading to the localization of the matter would have been the pinching of
the torus causing kind of a traffic jam leading to the formation of the planet. This process could
quite well have involved a flow of matter to a smaller planet space-time sheet Y 3

l topologically
condensed at X3

l . Most of the angular momentum associated with torus like object would
have transformed to that of planet and situation would have become effectively classical.

3. The conservation of magnetic flux means that the splitting of the orbital torus would generate
a pair of Kähler magnetic charges. It is not clear whether this is possible dynamically and
hence the torus could still be there. In fact, TGD explanation for the tritium beta decay
anomaly citeTroitsk,Mainz in terms of classical Z0 force [K93] requires the existence of this
kind of torus containing neutrino cloud whose density varies along the torus. This picture
suggests that the lacking n = 1 and n = 2 orbits in the region between Sun and Mercury are
still in magnetic flux tube state containing mostly dark matter.

4. The fact that ~gr is proportional to m means that it could have varied continuously during
the accumulation of the planetary mass without any effect in the planetary motion: this is of
course nothing but a manifestation of Equivalence Principle.

5. It is interesting to look for the scaled up versions of Planck mass mPl =
√

~gr/~ ×
√

~/G =√
M1M2/v0 and Planck length LPl =

√
~gr/~×

√
~/G = G

√
M1M2/v0. For M1 = M2 = M

this gives mPl = M/
√
v0 ' 45.6×M and LPl = rS/2

√
v0 ' 22.8×rS , where rS is Schwartshild

radius. For Sun rS is about 2.9 km so that one has LPl ' 66 km. For a few years ago it was
found that Sun contains “inner-inner” core of radius about R = 300 km [F7] which is about
4.5× LPl.

12.5.4 Inclinations For The Planetary Orbits And The Quantum Evo-
lution Of The Planetary System

The inclinations of planetary orbits provide a test bed for the theory. The semiclassical quantization
of angular momentum gives the directions of angular momentum from the formula

cos(θ) =
m√

j(j + 1)
, |m| ≤ j . (12.5.9)

where θ is the angle between angular momentum and quantization axis and thus also that between
orbital plane and (x,y)-plane. This angle defines the angle of tilt between the orbital plane and
(x,y)-plane.

m = j = n gives minimal value of angle of tilt for a given value of n of the principal quantum
number as

cos(θ) =
n√

n(n+ 1)
. (12.5.10)

For n = 3, 4, 5 (Mercury, Venus, Earth) this gives θ = 30.0, 26.6, and 24.0 degrees respectively.
Only the relative tilt angles can be compared with the experimental data. Taking as usual the

Earth’s orbital plane as the reference the relative tilt angles give what are known as inclinations.
The predicted inclinations are 6 degrees for Mercury and 2.6 degrees for Venus. The observed
values [E10] are 7.0 and 3.4 degrees so that the agreement is satisfactory. If one allows half-odd
integer spin the fit is improved. For j = m = n − 1/2 the predictions are 7.1 and 2.9 degrees
for Mercury and Venus respectively. For Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto the
inclinations are 1.9, 1.3, 2.5, 0.8, 1.8, 17.1 degrees. For Mars and outer planets the tilt angles are
predicted to have wrong sign for m = j. In a good approximation the inclinations vanish for outer
planets except Pluto and this would allow to determine m as m '

√
5n(n+ 1)/6: the fit is not

good.
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The assumption that matter has condensed from a matter rotating in (x,y)-plane orthogonal
to the quantization axis suggests that the directions of the planetary rotation axes are more or less
the same and by angular momentum conservation have not changed appreciably. The prediction for
the tilt of the rotation axis of the Earth is 24 degrees of freedom in the limit that the Earth’s spin
can be treated completely classically, that is for m = j >> 1 in the units used for the quantization
of the Earth’s angular momentum. What is the value of ~gr for Earth is not obvious (using the
unit ~gr = GM2/v0 the Earth’s angular momentum would be much smaller than one). The tilt
of the rotation axis of Earth with respect to the orbit plane is 23.5 degrees so that the agreement
is again satisfactory. This prediction is essentially quantal: in purely classical theory the most
natural guess for the tilt angle for planetary spins is 0 degrees.

The observation that the 4 inner planets Mercury, Venus, Earth, and Mars have in a reason-
able approximation the predicted inclinations suggest that they originate from a primordial period
during which they formed spherical cells of dark matter and had thus full rotational degrees of
freedom and were in eigen states of angular momentum corresponding to a full rotational symme-
try. The subsequent SO(3) → SO(2) symmetry breaking leading to the formation of torus like
configurations did not destroy the information about this period since the information about the
value of j and m was coded by the inclination of the planetary orbit.

In contrast to this, the dark matter associated with Earth and outer planets up to Neptune
formed a flattened magnetic or Z0 magnetic flux tube resembling a disk with a hole and the
subsequent symmetry breaking broke it to separate flux tubes. Earth’s spherical disk was joined
to the disk formed by the outer planets. The spherical disk could be still present and contain
super-conducting dark matter. The presence of this “heavenly sphere” might closely relate to the
fact that Earth is a living planet. The time scale T = 2πR/c is very nearly equal to 5 minutes and
defines a candidate for a bio-rhythm.

If this flux tube carried the same magnetic flux as the flux tubes associated with the inner
planets, the decomposition of the disk with a hole to 5 flux tubes corresponding to Earth and to
the outer planets Mars, Jupiter, Saturn and Neptune, would explain the value of v0 correctly and
also the small inclinations of outer planets. That Pluto would not originate from this structure,
is consistent with its anomalously large values of inclination i = 17.1 degrees, small value of
eccentricity e = .248, and anomalously large value of inclination of equator to orbit about 122
degrees as compared to 23.5 degrees in the case of Earth [E10] .

12.5.5 Eccentricities And Comets

Bohr-Sommerfeld quantization allows also to deduce the eccentricities of the planetary and comet
orbits. One can write the quantization of energy as

p2
r

2m1
+

p2
θ

2m1r2
+

p2
φ

2m1r2sin2(θ)
− k

r
= −E1

n2
,

E1 =
k2

2~2
gr

×m1 =
v2

0

2
×m1 . (12.5.11)

Here one has k = GMm1. E1 is the binding energy of n = 1 state. In the orbital plane (θ =
π/2, pθ = 0) the conditions are simplified. Bohr quantization gives pφ = m~gr implying

p2
r

2m1
+
k2~2

gr

2m1r2
− k

r
= −E1

n2
. (12.5.12)

For pr = 0 the formula gives maximum and minimum radii r± and eccentricity is given by

e2 =
r+ − r−
r+

=
2
√

1− m2

n2

1 +
√

1− m2

n2

. (12.5.13)

For small values of n the eccentricities are very large except for m = n. For instance, for (m =
n− 1, n) for n = 3, 4, 5 gives e = (.93, .89, .86) to be compared with the experimental values (.206,
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.007, .0167). Thus the planetary eccentricities with Pluto included (e = .248) must vanish in the
lowest order approximation and must result as a perturbation of the magnetic flux tube.

The large eccentricities of comet orbits might however have an interpretation in terms of
m < n states. The prediction is that comets with small eccentricities have very large orbital radius.
Oort’s cloud is a system weakly bound to a solar system extending up to 3 light years. This gives
the upper bound n ≤ 700 if the comets of the cloud belong to the same family as Mercury, otherwise
the bound is smaller. This gives a lower bound to the eccentricity of not nearly circular orbits in
the Oort cloud as e > .32.

12.5.6 Why The Quantum Coherent Dark Matter Is Not Visible?

The obvious objection against quantal astrophysics is that astrophysical systems look extremely
classical. Quantal dark matter in many-sheeted space-time resolves this counter argument. As
already explained, the sequence of symmetry breakings of the rotational symmetry would explain
nicely why astral Bohr rules work. The prediction is however that de-localized quantal dark
matter is probably still present at (the boundaries of) magnetic flux tubes and spherical shells. It
is however the entire structure defined by the orbit which behaves like a single extended particle
so that the localization in quantum measurement does not mean a localization to a point of the
orbit. Planet itself corresponds to a smaller localized space-time sheet condensed at the flux tube.

One should however understand why this dark matter with a gigantic Planck constant is not
visible. The simplest explanation is that there cannot be any direct quantum interactions between
ordinary and dark matter in the sense that particles with different values of Planck constant could
appear in the same particle vertex. This would allow also a fractal hierarchy copies of standard
model physics to exist with different p-adic mass scales.

There is also second argument. The inability to observe dark matter could mean inability
to perform state function reduction localizing the dark matter. The probability for this should
be proportional to the strength of the measurement interaction. For photons the strength of the
interaction is characterized by the fine structure constant. In the case of dark matter the fine
structure constant is replaced with

αem,gr = αem ×
~
~gr

= αem ×
v0

GMm
. (12.5.14)

For M = m = mPl ' 10−8 kg the value of the fine structure constant is smaller than αemv0 and
completely negligible for astrophysical masses. However, for processes for which the lowest order
classical rates are non-vanishing, rates are not affected in the lowest order since the increase of
the Compton length compensates the reduction of α. Higher order corrections become however
small. What makes dark matter invisible is not the smallness of αem but the fact that the binding
energies of say hydrogen atom proportional to α2me are scaled as 1/~2 so that the spectrum is
scaled down.

12.5.7 Quantum Interpretation Of Gravitational Schrödinger Equation

Schrödinger equation - or even Bohr rules - in astrophysical length scales with a gigantic value of
Planck constant looks sheer madness from the standard physics point of view. In TGD Universe
situation is different. TGD predicts infinite hierarchy of effective values of Planck constants heff =
n×h and hgr = heff is a natural assumption. The high values of Planck constant is effective but it
implies macroscopic quantum coherence in scales proportional to heff . The hierarchy of effective
Planck constants labels the levels of a hierarchy of quantum criticalities, which is basic prediction
of TGD. The hierarchy of Planck constants is associated with dark matter.

The special feature of gravitational interaction is that hgr characterizing its strength is
proportional to the product of the interacting masses. Hence gravitational Compton length
~gr/m = GM/v0 is independent of the smaller mass and same for all particles. The predic-
tions for the quantal behavior of massive bodies follow from the mere assumption that microscopic
particles couple to the large central mass via magnetic flux tubes with large value of hgr. What the
situation actually is remains open. Interestingly, in the model of bio-photons as decay products
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of dark photons with hgr = heff the energy spectrum of dark cyclotron photons is universal and
co-incides with the spectrum of bio-photons [K76, ?].

Bohr quantization of planetary orbits and prediction for Planck constant

The predictions of the generalization of the p-adic length scale hypothesis are consistent with
the TGD based model for the Bohr quantization of planetary orbits and some new non-trivial
predictions follow.

1. Generalization of the p-adic length scale hypothesis

The evolution in phase resolution in p-adic degrees of freedom corresponds to emergence of
algebraic extensions allowing increasing variety of phases exp(iπ/n) expressible p-adically. This
evolution can be assigned to the emergence of increasingly complex quantum phases and the
increase of Planck constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only square
roots of rationals are number theoretically special since they correspond to algebraic extensions
of p-adic numbers involving only square roots which should emerge first and therefore systems
involving these values of q should be especially abundant in Nature.

These polygons are obtained by ruler and compass construction and Gauss showed that
these polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices: all

Fermat primes Fns in this expression must be different. The analog of the p-adic length scale
hypothesis emerges since larger Fermat primes are near a power of 2. The known Fermat primes
Fn = 22n + 1 correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
It is not known whether there are higher Fermat primes. n = 3, 5, 15-multiples of p-adic length
scales clearly distinguishable from them are also predicted and this prediction is testable in living
matter. I have already earlier considered the possibility that Fermat polygons could be of special
importance for cognition and for biological information processing [K71] .

This condition could be interpreted as a kind of resonance condition guaranteeing that scaled
up sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF could take
the same role in the evolution of Planck constants assignable with the phase resolution as Mersenne
primes have in the evolution assignable to the p-adic length scale resolution. The conjecture would
be that hgr/h = nF holds true.

2. Can one really identify gravitational and inertial Planck constants?

The original unconsciously performed identification of the gravitational and inertial Planck
constants leads to some confusing conclusions but it seems that the new view about the quantization
of Planck constants resolves these problems and allows to see ~gr as a special case of ~eff = n×h.

1. ~gr is proportional to the product of masses of interacting systems and not a universal con-
stant like ~. One can however express the gravitational Bohr conditions as a quantization
of circulation

∮
v · dl = n(GM/v0)~0 so that the dependence on the planet mass disappears

as required by Equivalence Principle. This suggests that gravitational Bohr rules relate to
velocity rather than inertial momentum as is indeed natural. The quantization of circulation
is consistent with the basic prediction that space-time surfaces are analogous to Bohr orbits.

2. ~gr seems to characterize a relationship between planet and central mass and quite generally
between two systems with the property that smaller system is topologically condensed at the
space-time sheet of the larger system. Thus it would seem that ~gr is not a universal constant
and cannot correspond to a special value of heff . Due to the large masses the identification
hgr = heff = n× h can be made without experimental uncertainties.

The recent view about the quantization of Planck constant in terms of coverings of space-
time seems to resolve these problems.

1. One can also make the identification ~gr = ~eff = n× ~0 and associate it with the space-time
sheet along which the masses interact provided each pair (M,mi) of masses is characterized
by its own sheets. These sheets would correspond to flux tube like structures carrying the
gravitational flux of dark matter. If these sheets correspond to n-fold covering of M4, one can
understand ~gr = n × ~0 as a particular instance of the ~eff . Note that v0 could depend on
planet in this case.
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2. The integer quantization of Planck constants is consistent with the huge values of gravitational
Planck constant ~gr=heff = n×h within experimental resolution. A stronger prediction would
follow from that v0 is constant for inner resp. outer planets and ~gr/~0 = nF . The ratios of
planetary masses would be ratios of Fermat integers in this case. The accuracy is about 10 per
cent and the discrepancy could be explained in terms of the variation of v0. One can imagine
also other preferred values of n. In particular, n = pk, p prime, is favored by the generalized
p-adic length scale hypothesis following from number theoretical arguments and NMP [K111].

Quantization as a means of avoiding gravitational collapse

Schrödinger equation provided a solution to the infrared catastrophe of the classical model of atom:
the classical prediction was that electron would radiate its energy as brehmstrahlung and would
be captured by the nucleus. The gravitational variant of this process would be the capture of the
planet by a black hole, and more generally, a collapse of the star to a black hole. Gravitational
Schrödinger equation could obviously prevent the catastrophe.

For 1/r gravitation potential the Bohr radius is given by agr = GM/v2
0 = rS/2v

2
0 , where

rS = 2GM is the Schwartchild radius of the mass creating the gravitational potential: obviously
Bohr radius is much larger than the Schwartschild radius. That the gravitational Bohr radius does
not depend on m conforms with Equivalence Principle, and the proportionality ~gr ∝Mm can be
deduced from it. Gravitational Bohr radius is by a factor 1/2v2

0 larger than black hole radius so
that black hole can swallow the piece of matter with a considerable rate only if it is in the ground
state and also in this state the rate is proportional to the black hole volume to the volume defined
by the black hole radius given by 23v6

0 ∼ 10−20.
The ~gr → ∞ limit for 1/r gravitational potential means that the exponential factor

exp(−r/a0) of the wave function becomes constant: on the other hand, also Schwartshild and
Bohr radii become infinite at this limit. The gravitational Compton length associated with mass
m does not depend on m and is given by GM/v0 and the time T = Egr/~gr defined by the gravita-
tional binding energy is twice the time taken to travel a distance defined by the radius of the orbit
with velocity v0 which suggests that signals travelling with a maximal velocity v0 are involved with
the quantum dynamics.

In the case of planetary system the proportionality ~gr ∝ mM creates problems of principle
since the influence of the other planets is not taken account. One might argue that the generaliza-
tion of the formula should be such that M is determined by the gravitational field experienced by
mass m and thus contains also the effect of other planets. The problem is that this field depends
on the position of m which would mean that ~gr itself would become kind of field quantity.

Does the transition to non-perturbative phase correspond to a change in the value of
~?

Nature is populated by systems for which perturbative quantum theory does not work. Exam-
ples are atoms with Z1Z2e

2/4π~ > 1 for which the binding energy becomes larger than rest
mass, non-perturbative QCD resulting for Qs,1Qs,2g

2
s/4π~ > 1, and gravitational systems sat-

isfying GM1M2/4π~ > 1. Quite generally, the condition guaranteeing troubles is of the form
Q1Q2g

2/4π~ > 1. There is no general mathematical approach for solving the quantum physics of
these systems but it is believed that a phase transition to a new phase of some kind occurs.

The gravitational Schrödinger equation forces to ask whether Nature herself takes care of the
problem so that this phase transition would involve a change of the value of the Planck constant
to guarantee that the perturbative approach works. The values of ~ would vary in a stepwise
manner from ~(∞) to ~(3) = ~(∞)/4. The non-perturbative phase transition would correspond to
transition to the value of

~
~0

→
[
Q1Q2g

2

v

]
(12.5.15)

where [x] is the integer nearest to x, inducing

Q1Q2g
2

4π~
→ v

4π
. (12.5.16)
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The simplest (and of course ad hoc) assumption making sense in TGD Universe is that v is a
harmonic or subharmonic of v0 appearing in the gravitational Schrödinger equation. For instance,
for the Kepler problem the spectrum of binding energies would be universal (independent of the
values of charges) and given by En = v2m/2n2 with v playing the role of small coupling. Bohr
radius would be g2Q2/v

2 for Q2 � Q1.
This provides a new insight to the problems encountered in quantizing gravity. QED started

from the model of atom solving the infrared catastrophe. In quantum gravity theories one has
started directly from the quantum field theory level and the recent decline of the M-theory shows
that we are still practically where we started. If the gravitational Schrödinger equation indeed
allows quantum interpretation, one could be more modest and start from the solution of the
gravitational IR catastrophe by assuming a dynamical spectrum of ~ comes as integer multiples of
ordinary Planck constant. The implications would be profound: the whole program of quantum
gravity would have been misled as far as the quantization of systems with GM1M2/~ > 1 is
considered. In practice, these systems are the most interesting ones and the prejudice that their
quantization is a mere academic exercise would have been completely wrong.

An alternative formulation for the occurrence of a transition increasing the value of ~ could
rely on the requirement that classical bound states have reasonable quantum counterparts. In the
gravitational case one would have rn = n2~2

gr/GM
2
1M , for M1 � M , which is extremely small

distance for ~gr = ~ and reasonable values of n. Hence, either n is so large that the system is
classical or ~gr/~ is very large. Equivalence Principle requires the independence of rn on M1, which
gives ~ = kGM1M2 giving rn = n2kGM . The requirement that the radius is above Schwartshild
radius gives k ≥ 2. In the case of Dirac equation the solutions cease to exist for Z ≥ 137 and which
suggests that ~ is large for hypothetical atoms having Z ≥ 137.

12.5.8 How Do The Magnetic Flux Tube Structures And Quantum
Gravitational Bound States Relate?

In the case of stars in galactic halo the appearance of the parameter v0 characterizing cosmic
strings as orbital rotation velocity can be understood classically. That v0 appears also in the
gravitational dynamics of planetary orbits could relate to the dark matter at magnetic flux tubes.
The argument explaining the harmonics and sub-harmonics of v0 in terms of properties of cosmic
strings and magnetic flux tubes identifiable as their descendants strengthens this expectation.

The notion of magnetic body

In TGD inspired theory of consciousness the notion of magnetic body plays a key role: magnetic
body is the ultimate intentional agent, experiencer, and performer of bio-control and can have
astrophysical size: this does not sound so counter-intuitive if one takes seriously the idea that
cognition has p-adic space-time sheets as space-time correlates and that rational points are common
to real and p-adic number fields. The point is that infinitesimal in p-adic topology corresponds to
infinite in real sense so that cognitive structures would have literally infinite size.

The magnetic flux tubes carrying various supra phases can be interpreted as special instance
of dark energy and dark matter. This suggests a correlation between gravitational self-organization
and quantum phases at the magnetic flux tubes and that the gravitational Schrödinger equation
somehow relates to the ordinary Schrödinger equation satisfied by the macroscopic quantum phases
at magnetic flux tubes. Interestingly, the transition to large Planck constant phase should occur
when the masses of interacting is above Planck mass since gravitational self-interaction energy
is V ∼ GM2/R. For the density of water about 103 kg/m3 the volume carrying a Planck mass
correspond to a cube with side 2.8× 10−4 meters. This corresponds to a volume of a large neuron,
which suggests that this phase transition might play an important role in neuronal dynamics.

Could gravitational Schrödinger equation relate to a quantum control at magnetic
flux tubes?

An infinite self hierarchy is the basic prediction of TGD inspired theory of consciousness (“every-
thing is conscious and consciousness can be only lost”). Topological quantization allows to assign
to any material system a field body as the topologically quantized field pattern created by the
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system [?, ?] . This field body can have an astrophysical size and would utilize the material body
as a sensory receptor and motor instrument.

Magnetic flux tube and flux wall structures are natural candidates for the field bodies.
Various empirical inputs have led to the hypothesis that the magnetic flux tube structures define
a hierarchy of magnetic bodies, and that even Earth and larger astrophysical systems possess
magnetic body which makes them conscious self-organizing living systems. In particular, life at
Earth would have developed first as a self-organization of the super-conducting dark matter at
magnetic flux tubes [?] .

For instance, EEG frequencies corresponds to wavelengths of order Earth size scale and
the strange findings of Libet about time delays of conscious experience [J8, J6] find an elegant
explanation in terms of time taken for signals propagate from brain to the magnetic body [?] .
Cyclotron frequencies, various cavity frequencies, and the frequencies associated with various p-
adic frequency scales are in a key role in the model of bio-control performed by the magnetic body.
The cyclotron frequency scale is given by f = eB/m and rather low as are also cavity frequencies
such as Schumann frequencies: the lowest Schumann frequency is in a good approximation given
by f = 1/2πR for Earth and equals to 7.8 Hz.

1. Quantum time scales as “bio-rhythms” in solar system?

To get some idea about the possible connection of the quantum control possibly performed
by the dark matter with gravitational Schrödinger equation, it is useful to look for the values of
the periods defined by the gravitational binding energies of test particles in the fields of Sun and
Earth and look whether they correspond to some natural time scales. For instance, the period
T = 2GMSn

2/v3
0 defined by the energy of nth planetary orbit depends only on the mass of Sun

and defines thus an ideal candidate for a universal “bio-rhythm”.
For Sun black hole radius is about 2.9 km. The period defined by the binding energy of

lowest state in the gravitational field of Sun is given TS = 2GMS/v
3
0 and equals to 23.979 hours

for v0/c = 4.8233 × 10−4. Within experimental limits for v0/c the prediction is consistent with
24 hours! The value of v0 corresponding to exactly 24 hours would be v0 = 144.6578 km/s (as a
matter fact, the rotational period of Earth is 23.9345 hours). As if as the frequency defined by the
lowest energy state would define a “biological” clock at Earth! Mars is now a strong candidate for
a seat of life and the day in Mars lasts 24hr 37m 23s! n = 1 and n = 2 are orbitals are not realized
in solar system as planets but there is evidence for the n = 1 orbital as being realized as a peak
in the density of IR-dust [E18] . One can of course consider the possibility that these levels are
populated by small dark matter planets with matter at larger space-time sheets. Bet as it may,
the result supports the notion of quantum gravitational entrainment in the solar system.

The slower rhythms would become as n2 sub-harmonics of this time scale. Earth itself
corresponds to n = 5 state and to a rhythm of .96 hours: perhaps the choice of 1 hour to serve as a
fundamental time unit is not merely accidental. The magnetic field with a typical ionic cyclotron
frequency around 24 hours would be very weak: for 10 Hz cyclotron frequency in Earth’s magnetic
field the field strength would about 10−11 T. However, T = 24 hours corresponds with 6 per
cent accuracy to the p-adic time scale T (k = 280) = 213T (2, 127), where T (2, 127) corresponds
to the secondary p-adic time scale of .1 s associated with the Mersenne prime M127 = 2127 − 1
characterizing electron and defining a fundamental bio-rhythm and the duration of memetic codon
[K46] .

Comorosan effect [K114] , [I13, I4] demonstrates rather peculiar looking facts about the
interaction of organic molecules with visible laser light at wavelength λ = 546 nm. As a result
of irradiation molecules seem to undergo a transition S → S∗. S∗ state has anomalously long
lifetime and stability in solution. S → S∗ transition has been detected through the interaction of
S∗ molecules with different biological macromolecules, like enzymes and cellular receptors. Later
Comorosan found that the effect occurs also in non-living matter. The basic time scale is τ = 5
seconds. p-Adic length scale hypothesis does not explain τ , and it does not correspond to any
obvious astrophysical time scale and has remained a mystery.

The idea about astro-quantal dark matter as a fundamental bio-controller inspires the guess
that τ could correspond to some Bohr radius R for a solar system via the correspondence τ = R/c.
As observed by Nottale, n = 1 orbit for v0 → 3v0 corresponds in a good approximation to the solar
radius and to τ = 2.18 seconds. For v0 → 2v0 n = 1 orbit corresponds to τ = AU/(4× 25) = 4.992
seconds: here R = AU is the astronomical unit equal to the average distance of Earth from Sun.
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The deviation from τC is only one per cent and of the same order of magnitude as the variation of
the radius for the orbit due to orbital eccentricity (a− b)/a = .0167 [E10] .

2. Earth-Moon system

For Earth serving as the central mass the Bohr radius is about 18.7 km, much smaller than
Earth radius so that Moon would correspond to n = 147.47 for v0 and n = 1.02 for the sub-harmonic
v0/12 of v0. For an afficionado of cosmic jokes or a numerologist the presence of the number of
months in this formula might be of some interest. Those knowing that the Mayan calendar had
11 months and that Moon is receding from Earth might rush to check whether a transition from
v/11 to v/12 state has occurred after the Mayan culture ceased to exist: the increase of the orbital
radius by about 3 per cent would be required! Returning to a more serious mode, an interesting
question is whether light satellites of Earth consisting of dark matter at larger space-time sheets
could be present. For instance, in [?] I have discussed the possibility that the larger space-time
sheets of Earth could carry some kind of intelligent life crucial for the bio-control in the Earth’s
length scale.

The period corresponding to the lowest energy state is from the ratio of the masses of Earth
and Sun given by ME/MS = (5.974/1.989) × 10−6 given by TE = (ME/MS) × TS = .2595 s.
The corresponding frequency fE = 3.8535 Hz frequency is at the lower end of the theta band
in EEG and is by 10 per cent higher than the p-adic frequency f(251) = 3.5355 Hz associated
with the p-adic prime p ' 2k, k = 251. The corresponding wavelength is 2.02 times Earth’s
circumference. Note that the cyclotron frequencies of Nn, Fe, Co, Ni, and Cu are 5.5, 5.0, 5.2, 4.8
Hz in the magnetic field of .5 × 10−4 Tesla, which is the nominal value of the Earth’s magnetic
field. In [K83] I have proposed that the cyclotron frequencies of Fe and Co could define biological
rhythms important for brain functioning. For v0/12 associated with Moon orbit the period would
be 7.47 s: I do not know whether this corresponds to some bio-rhythm.

It is better to leave for the reader to decide whether these findings support the idea that
the super conducting cold dark matter at the magnetic flux tubes could perform bio-control and
whether the gravitational quantum states and ordinary quantum states associated with the mag-
netic flux tubes couple to each other and are synchronized.

12.5.9 About The Interpretation Of The Parameter v0

The formula for the gravitational Planck constant contains the parameter v0/c = 2−11. This
velocity defines the rotation velocities of distant stars around galaxies. It can be seen also as a
charasteristic velocity scale for inner planets. The presence of a parameter with dimensions of
velocity should carry some important information about the geometry of dark matter space-time
sheets.

Velocity like parameters appear also in other contexts. There is evidence for the Tifft’s quan-
tization of cosmic redshifts in multiples of v0/c = 2.68× 10−5/3: also other units of quantization
have been proposed but they are multiples of v0 [E39] .

The strange behavior of graphene includes high conductivity with conduction electrons be-
having like massless particles with light velocity replaced with v0/c = 1/300. The TGD inspired
model [K21] explains the high conductivity as being due to the Planck constant ~(M4) = 6~0

increasing the de-localization length scale of electron pairs associated with hexagonal rings of
mono-atomic graphene layer by a factor 6 and thus making possible overlap of electron orbitals.
This explains also the anomalous conductivity of DNA containing 5- and 6-cycles [K21] .

p-Adic length scale hypothesis and v0 → v0/5 transition at inner-outer border for
planetary system

v0 → v0/5 transition would allow to interpret the orbits of outer planets as n ≥ 1 orbits. The
obvious question is whether inner to outer zone as v0 → v0/5 transition could be interpreted in
terms of the p-adic length scale hierarchy.

1. The most important p-adic length scale are given by primary p-adic length scales Le(k) =
2(k−151)/2 × 10 nm and secondary p-adic length scales Le(2, k) = 2k−151 × 10 nm, k prime.

2. The p-adic scale Le(2, 139) = 114 Mkm is slightly above the orbital radius 109.4 Mkm of
Venus. The p-adic length scale Le(2, 137) ' 28.5 Mkm is roughly one half of Mercury’s orbital
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radius 57.9 Mkm. Thus strong form of p-adic length scale hypothesis could explain why the
transition v0 → v0/5 occurs in the region between Venus and Earth (n = 5 orbit for v0 layer
and n = 1 orbit for v0/5 layer).

3. Interestingly, the primary p-adic length scales Le(137) and Le(139) correspond to fundamen-
tal atomic length scales which suggests that solar system be seen as a fractally scaled up
“secondary” version of atomic system.

4. Planetary radii have been fitted also using Titius-Bode law predicting r(n) = r0 + r1 × 2n.
Hence on can ask whether planets are in one-one correspondence with primary and secondary
p-adic length scales Le(k). For the orbital radii 58, 110, 150, 228 Mkm of Mercury, Venus,
Earth, and Mars indeed correspond approximately to k= 276, 278, 279, 281: note the special
position of Earth with respect to its precedessor. For Jupiter, Saturn, Uranus, Neptune,
and Pluto the radii are 52,95,191,301,395 Mkm and would correspond to p-adic length scales
Le(280 + 2n)), n = 0, ..., 3. Obviously the transition v0 → v0/5 could occur in order to make
the planet–p-adic length scale one-one correspondence possible.

5. It is interesting to look whether the p-adic length scale hierarchy applies also to the solar
structure. In a good approximation solar radius .696 Mkm corresponds to Le(270), the lower
radius .496 Mkm of the convective zone corresponds to Le(269), and the lower radius .174
Mkm of the radiative zone (radius of the solar core) corresponds to Le(266). This encourages
the hypothesis that solar core has an onion like sub-structure corresponding to various p-adic
length scales. In particular, Le(2, 127) (Le(127) corresponds to electron) would correspond to
28 Mm. The core is believed to contain a structure with radius of about 10 km: this would
correspond to Le(231). This picture would suggest universality of star structure in the sense
that stars would differ basically by the number of the onion like shells having standard sizes.

Quite generally, in TGD Universe the formation of join along boundaries bonds is the space-
time correlate for the formation of bound states. This encourages to think that (Z0) magnetic
flux tubes are involved with the formation of gravitational bound states and that for v0 → v0/k
corresponds either to a splitting of a flux tube resembling a disk with a whole to k pieces, or to
the scaling down B → B/k2 so that the magnetic energy for the flux tube thickened and stretched
by the same factor k2 would not change.

After decade of developing this model, it has become clear that TGD favors generalization
of p-adic length scale hypothesis: primes near but below powers of prime are favored. This could
explain the factor five scaling of 1/v0

Is dark matter warped?

The reduced light velocity could be due to the warping of the space-time sheet associated with
dark electrons. TGD predicts besides gravitational red-shift a non-gravitational red-shift due to
the warping of space-time sheets possible because space-time is 4-surface rather than abstract
4-manifold. A simple example of everyday life is the warping of a paper sheet: it bends but is
not stretched, which means that the induced metric remains flat although one of its component
scales (distance becomes longer along direction of bending). For instance, empty Minkowski space
represented canonically as a surface of M4 × CP2 with constant CP2 coordinates can become
periodically warped in time direction because of the bending in CP2 direction. As a consequence,
the distance in time direction shortens and effective light-velocity decreases when determined from
the comparison of the time taken for signal to propagate from A to B along warped space-time
sheet with propagation time along a non-warped space-time sheet.

The simplest warped embedding defined by the map M4 → S1, S1 a geodesic circle of CP2.
Let the angle coordinate of S1 depend linearly on time: Φ = ωt. gtt component of metric becomes
1 − R2ω2 so that the light velocity is reduced to v0/c =

√
1−R2ω2. No gravitational field is

present.
The fact that M4 Planck constant na~0 defines the scaling factor n2

a of CP2 metric could
explain why dark matter resides around strongly warped embeddings of M4. The quantization of
the scaling factor of CP2 by R2 → n2

aR
2 implies that the initial small warping in the time direction

given by gtt = 1−ε, ε = R2ω2, will be amplified to gtt = 1−n2
aε if ω is not affected in the transition

to dark matter phase. na = 6 in the case of graphene would give 1− x ' 1− 1/36 so that only a
one per cent reduction of light velocity is enough to explain the strong reduction of light velocity
for dark matter.
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Is c/v0 quantized in terms of ruler and compass rationals?

The known cases suggests that c/v0 is always a rational number expressible as a ratio of integers
associated with n-polygons constructible using only ruler and compass.

1. c/v0 = 300 would explain graphene. The nearest rational satisfying the ruler and compass
constraint would be q = 5× 210/17 ' 301.18.

2. If dark matter space-time sheets are warped with c0/v = 211 one can understand Nottale’s
quantization for the radii of the inner planets. For dark matter space-time sheets associated
with outer planets one would have c/v0 = 5× 211.

3. If Tifft’s red-shifts relate to the warping of dark matter space-time sheets, warping would
correspond to v0/c = 2.68× 10−5/3. c/v0 = 25 × 17× 257/5 holds true with an error smaller
than .1 per cent.

Tifft’s quantization and cosmic quantum coherence

An explanation for Tifft’s quantization in terms of Jones inclusions could be that the subgroup
G of Lorentz group defining the inclusion consists of boosts defined by multiples η = nη0 of the
hyperbolic angle η0 ' v0/c. This would give v/c = sinh(nη0) ' nv0/c. Thus the dark matter
systems around which visible matter is condensed would be exact copies of each other in cosmic
length scales since G would be an exact symmetry. The property of being an exact copy applies
of course only in single level in the dark matter hierarchy. This would mean a de-localization
of elementary particles in cosmological length scales made possible by the huge values of Planck
constant. A precise cosmic analog for the de-localization of electron pairs in benzene ring would
be in question.

Why then η0 should be quantized as ruler and compass rationals? In the case of Planck
constants the quantum phases q = exp(imπ/nF ) are number theoretically simple for nF a ruler
and compass integer. If the boost exp(η) is represented as a unitary phase exp(imη) at the level
of discretely de-localized dark matter wave functions, the quantization η0 = n/nF would give
rise to number theoretically simple phases. Note that this quantization is more general than
η0 = nF,1/nF,2.

12.6 Some Examples About Gravitational Anomalies In TGD
Universe

The many-sheeted space-time and the hierarchy of Planck constants predict new physics which
should be seen as anomalies in the models based on general relativity. In the following some
examples about these anomalies are discussed.

12.6.1 SN1987A And Many-Sheeted Space-Time

Lubos Motl has written a highly rhetoric, polemic, and adrenaline rich posting (see http://

tinyurl.com/px4hzdc) about the media buzz related to supernova SN1987A. The target of Lubos
Motl is the explanation proposed by James Franson from the University of Maryland for the
findings discussed in Physics Archive Blog (see http://tinyurl.com/mde7jat). I do not have
any strong attitude to Franson’s explanation but the buzz is about very real thing: unfortunately
Lubos Motl tends to forget the facts in his extreme orthodoxy.

What happened was following. Two separate neutrino bursts arrived from SN 1987 A. At
7.35 AM Kamionakande detected 11 antineutrons, IMB 8 antineutrinos, and Baksan 5 antineutri-
nos. Approximately 3 hours later Mont Blanc liquid scintillator detected 5 antineutrinos. Optical
signal came 4.7 hours later.

The are several very real problems as one can get convinced by going to Wikipedia (http:
//tinyurl.com/mglkm4):

1. If neutrinos and photons are emitted simultaneously and propagate with the same speed, they
should arrive simultaneously. I am not specialist enough to try to explain this difference in
terms of standard astrophysics. Franson however sees this difference as something not easy to
explain and tries to explain it in his own model.

http://tinyurl.com/px4hzdc
http://tinyurl.com/px4hzdc
http://tinyurl.com/mde7jat
http://tinyurl.com/mglkm4
http://tinyurl.com/mglkm4
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2. There are two neutrino bursts rather than one. A modification of the model of supernova
explosion allowing two bursts of neutrinos would be needed but this would suggest also two
photon bursts.

These problems have been put under the carpet. Those who are labelled as crackpots often
are much more aware about real problems than the academic career builders.

In TGD framework the explanation would be in terms of many-sheeted space-time. In
GRT limit of TGD the sheets of the many-sheeted space-time (see Fig. http://tgdtheory.

fi/appfigures/manysheeted.jpg or Fig. A-6.1 in the appendix of this book) are lumped to
single sheet: Minkowski space with effective metric defined by the sum of Minkowski metric and
deviations of the metrics of the various sheets from Minkowski metric. The same recipe gives
effective gauge potentials in terms of induced gauge potentials.

Different arrival times for neutrinos and photons would be however a direct signature of the
many-sheeted space-time since the propagation velocity along space-time sheets depends on the
induced metric. The larger the deviation from the flat metric is, the slower the propagation velocity
and thus longer the arrival time is. Two neutrino bursts would have explanation as arrivals along
two different space-time sheets. Different velocity for photons and neutrinos could be explained
if they arrive along different space-time sheets. I proposed for more than two decades ago this
mechanism as an explanation for the finding of cosmologists that there are two different Hubble
constants: they would correspond to different space-time sheets.

The distance of SN1987A is 168, 000 light- years. This means that the difference between
velocities is ∆c/c ' ∆T/T ' 3hours/168× 103 ' 2× 10−9. The long distance is what makes the
effect visible.

I proposed earlier sub-manifold gravity as an explanation for the claimed super-luminality
of the neutrinos coming to Gran Sasso from CERN. In this case the effect would have been ∆c/c '
2.5 × 10−5 and thus four orders of magnitude larger than four supernova neutrinos. It however
turned out that the effect was not real.

Towards the end of 2014 Lubos Motl Motl had a posting about galactic blackhole Sagit-
tarius A as neutrino factory (see http://tinyurl.com/pvzrqoz). Chandra X-ray observatory
(see http://tinyurl.com/6jdp7es) and also Nustar (http://tinyurl.com/89b8r96) and Swift
Gamma-Ray Burst Mission (see http://tinyurl.com/ybmrpuu6) detected some X-ray flares from
Sagittarius A. 2-3 hours earlier IceCube (see http://tinyurl.com/lg7mko) detected high energy
neutrinos by IceCube on the South Pole.

Could neutrinos arrive from the galactic center? If they move with the same (actually
somewhat lower) velocity than photons, this cannot be the case. The neutrinos did the same trick as
SN1987A neutrinos and arrived 2-3 hours before the X-rays! What if one takes TGD seriously and
estimates ∆c/c for this event? The result is ∆c/c ∼ (1.25−1.40)×10−8 for 3 hours lapse using the
estimate r = 25, 900± 1, 400 light years (see http://tinyurl.com/5vexvq). ∆c/c is by a factor 4
larger than for SN1987A at distance about 168, 000 light years (see http://tinyurl.com/mglkm4).
This distance is roughly 8 times longer. This would suggests that the smaller the space-time sheets
the nearer the velocity of neutrinos is to its maximal value. For photons the reduction from the
maximal signal velocity is larger.

12.6.2 Pioneer And Flyby Anomalies For Almost Decade Later

The article [E19] (see http://tinyurl.com/avmndwa ) is about two old anomalies discovered in
the solar system: Pioneer anomaly [E7] and Flyby anomaly [E21, E20, E17, E27] with which I
worked for years ago.

I remember only the general idea that dark matter concentrations at orbits of planets or at
spheres with radii equal that of orbit could cause the anomalies. So I try to reconstruct all from
scratch and during reconstruction become aware of something new and elegant that I could not
discover for years ago.

The popular article [E19] claims that Pioneer anomaly is understood. I am not at all
convinced about the solution of Pioneer anomaly. Several ”no new physics” solutions have been
tailored during years but later it has been found that they do not work.

Suppose that dark matter is at the surface of sphere so that by a well-known text book
theorem it does not create gravitational force inside it. This is an overall important fact, which

http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tinyurl.com/pvzrqoz
http://tinyurl.com/6jdp7es
http://tinyurl.com/89b8r96
http://tinyurl.com/ybmrpuu6
http://tinyurl.com/lg7mko
http://tinyurl.com/5vexvq
http://tinyurl.com/mglkm4
http://tinyurl.com/avmndwa
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I did not use earlier. The model explains both anomalies and also allow to calculate the total
amount of dark matter at the sphere.

1. Consider first the Pioneer anomaly.

(a) Inside the dark matter sphere with radius of Jupiter’s orbit the gravitational force caused
by dark matter vanishes. Outside the sphere also dark matter contributes to the gravi-
tational attraction and Pioneer’s acceleration becomes a little bit smaller since the dark
matter at the sphere containing the orbit radius of Jupiter or Saturn also attracts the
space-craft after the passby. A simple test for spherical model is the prediction that the
mass of Jupiter effectively increases by the amount of dark matter at the sphere after
passby.

(b) The magnitude of the Pioneer anomaly is about ∆a/a = 1.3× 10−4 [K89] and translates
to Mdark/M ' 1.3× 10−4. What is highly non-trivial is that the anomalous acceleration
is given by Hubble constant suggesting that there is a connection with cosmology fixing
the value of dark mass once the area of the sphere containing it is fixed. This follows as a
prediction if the surface mass density is universal and proportional to the Hubble constant.
Could one interpret the equality of the two accelerations as an equilibrium condition? The
Hubble acceleration H associated with the cosmic expansion (expansion velocity increases
with distance) would be compensated by the acceleration due to the gravitational force
of dark matter. The formula for surface density of dark matter is from Newton’s law
GMdark = H given by σdark = H/4πG. The approximate value of dark matter surface
density is from Hc = 6.7× 10−10 m/s2 equal to σ = .8 kg/m2 and surprisingly large.

(c) The value of acceleration is a = .8× 10−10 × g, g = 9.81 m/s2 whereas the MOND model
(see http://tinyurl.com/32t9wt ) finds the optimal value for the postulated minimal
gravitational acceleration to be a0 = 1.2 × 10−10 m/s2. In TGD framework it would be
assignable to the traversal through the dark matter shell. The ratio of the two accelerations
is a/a0 = 6.54.

(d) TGD inspired quantum biology requiring that the universal cyclotron energy spectrum of
dark photons heff = hgr transforming to to bio-photons is in visible and UV range for
charged particles gives the estimate Mdark/ME ' 2× 10−4 [K76] and is of the same order
of magnitude smaller than for Jupiter. The minimum value of the magnetic field at flux
tubes has been assumed to be BE = .2 Gauss, which is the value of endogenous magnetic
field explaining the effects of ELF em radiation on vertebrate brain. The two estimates
are clearly consistent.

2. In Flyby anomaly spacecraft goes past Earth to gain momentum (Earth acts as a sling) for
its travel towards Jupiter. During flyby a sudden acceleration occurs but this force is on only
during the flyby but not before or after that. The basic point is that the spacecraft visits near
Earth, and this is enough to explain the anomaly.
The space-craft enters from a region outside the orbit of Earth containing dark matter and
thus experiences also the dark force created by the sphere. After that the space craft enters
inside the dark matter region, and sees a weaker gravitational force since the dark matter
sphere is outside it and does not contribute. This causes a change in its velocity. After flyby
the spacecraft experiences the forces caused by both Earth and dark matter sphere and the
situation is the same as before flyby. The net effect is a change in the velocity as observed.
From this the total amount of dark matter can be estimated. Also biology based argument
gives an estimate for the fraction of dark matter in Earth.

This model supports the option in which the dark matter is concentrated on sphere. The
other option is that it is concentrated at flux tube around orbit: quantitative calculations would
be required to see whether this option can work. One can consider of course also more complex
distributions: say 1/r distribution outside the sphere giving rise to constant change in acceleration
outside the sphere.

A possible very simple TGD model for the sphere containing dark matter could be in terms of
a boundary defined by a gigantic wormhole contact with large heff = hgr (at its space-time sheet
representing ”line of generalized Feynman diagram” one has deformation of CP2 type vacuum
extremal with Euclidian signature of induced metric) with radius given by the radius of Bohr
orbit with gravitational Planck constant equal to ~gr = GMm/v0, where v0 is a parameter with
dimensions of velocity. This radius does not depend on the mass of the particle involved and is

http://tinyurl.com/32t9wt
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given by rn = GM/v3
0 where rS = 2GM is Schwartschild radius equal to 3 km for Sun [K89]. One

has v0/c ' 2−11 for 4 inner planets. For outer planets v0 is scaled down by a factor 1/5.

The sphere should also correspond to a magnetic flux sheet with field line topology of
dipole field. By flux conservation the flux must arrive along flux tube parallel to a preferred axis
presumably orthogonal to the plane of planets and flux conservation should must true. This kind
of structure is predicted also by the TGD model in terms of cylindrically symmetric candidate for
an extremal of Kähler action representing astrophysical object [K17].

An interesting possibility is that also Earth-Moon system contains a spherical shell of dark
matter at distance given by the radius of Moon’s orbit (about 60 Earth’s radii). If so the analogs
of the two effects could be observed also in Earth Moon system and the testing of the effects would
become much easier. This would also mean understanding of the formation of Moon. Also interior
of Earth (and also Sun) could contain spherical shells containing dark matter as the TGD inspired
model for the spherically symmetric orbit constructed for more than two decades ago [K17] suggests.
One can raise interesting questions. Could also the matter in small scale systems be accompanied
by dark matter shells at radii equal to Bohr radii in the first approximation and could these effects
be tested? Note that a universal surface density for dark matter predicts that the change of
acceleration universally be given by Hubble constant H.

12.6.3 Further Progress In The Understanding Of Dark Matter And
Energy In TGD Framework

The remarks below were inspired by an extremely interesting link to a popular article (see http:

//tinyurl.com/ybjox4zb) about a possible explanation of dark matter in terms of vacuum polar-
ization associated with gravitation. The model can make sense only if the sign of the gravitational
energy of antimatter is opposite to that of matter and whether this is the case is not known. Since
the inertial energies of matter and antimatter are positive, one might expect that this is the case
also for gravitational energies by Equivalence Principle but one might also consider alternative and
also I have done this in TGD framework.

The popular article lists four observations related to dark matter that neither cold dark
matter (CMD) model nor modified gravitation model (MOND) can explain, and the claim is that
the vacuum energy model is able to cope with them.

Consider first the TGD based model.

1. The model assumes that galaxies are like pearls along strings defined by cosmic strings ex-
pended to flux tubes during cosmic expansion survives also these tests. This is true also in
longer scales due to the fractality if TGD inspired cosmology: for instance, galaxy clusters
would be organized in a similar manner.

2. The dark magnetic energy of the string like object (flux tube) is identifiable as dark energy and
the pearls would correspond to dark matter shells with a universal mass density of.8 kg/m2

estimated from Pioneer and Flyby anomalies assuming to be caused by spherical dark matter
shells assignable to the orbits of planets. This value follows from the condition that the anoma-
lous acceleration is identical with Hubble acceleration. Even Moon could be accompanied by
this kind of shell: if so, the analog of Pioneer anomaly is predicted.

3. The dark matter shell around galactic core could have decayed to smaller shells by heff
reducing phase transition. This phase transition would have created smaller surfaces with
smaller values of heff = hgr. One can consider also the possibility that it contains all the
galactic matter as dark matter. There would be nothing inside the surface of the gigantic
wormhole throat: this would conform with holography oriented thinking.

I checked the four observations listed in the popular article (see http://tinyurl.com/

ybjox4zb) some of which CMD (cold dark matter) scenario and MOND fail to explain. TGD
explains all of them.

1. It has been found that the effective surface mass density σ = ρ0R0/3 (volume density times
volume of ball equals to effective surface density times surface area of the ball for constant
volume density) of galactic core region containing possible halo is universal and its value is
.9 kg/m2 (see the article (see http://tinyurl.com/y864lfyx). Pioneer and Flyby anomalies
fix the surface density to.8 kg/m2. The difference is about 10 per cent! One must of course

http://tinyurl.com/ybjox4zb
http://tinyurl.com/ybjox4zb
http://tinyurl.com/ybjox4zb
http://tinyurl.com/ybjox4zb
http://tinyurl.com/y864lfyx
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be cautious here: even the correct order of magnitude would be fine since Hubble acceleration
parameter might be different for the cluster than for the solar system now.
Note that in the article the effective surface density is defined as σ = ρ0r0, where r0 is the
radius of the region and ρ0 is density in its center. The correct definition for a constant 3-D
density inside ball is σ = ρ0r0/3.

2. The dark matter has been found to be inside core region within few hundred parsecs. This is
just what TGD predicts since the velocity spectrum of distant stars is due to the gravitational
field created by dark energy identifiable as magnetic energy of cosmic string like object - the
thread containing galaxies as pearls.

3. It has been observed that there is no dark matter halo in the galactic disk. Also this is an
obvious prediction of TGD model.

4. The separation of matter - now plasma clouds between galaxies - and dark matter in the
collisions of galaxy clusters (observed for instance for bullet cluster consisting of two colliding
clusters) is also explained qualitatively by TGD. The explanation is qualitatively similar to
that in the CMD model of the phenomenon. Stars of galaxies are not affected except from
gravitational slow-down much but the plasma phase interacts electromagnetically and is slowed
down much more in the collision. The dominating dark matter component making itself
visible by gravitational lensing separates from the plasma phase and this is indeed observed:
the explanation in TGD framework would be that it is macroscopically quantum coherent
(heff = hgr) and does not dissipate so that the thermodynamical description does not apply.
In the case of galaxy clusters also the dark energy of cosmic strings is involved besides the
galactic matter and this complicates the situation but the basic point is that dark matter
component does not slow down as plasma phase does.
CMD model has the problem that the velocity of dark matter bullet (smaller cluster of bullet
cluster) is higher than predicted by CMD scenario. Attractive fifth force acting between dark
matter particles becoming effective at short distances has been proposed as an explanation:
intuitively this adds to the potential energy negative component so that kinetic energy is
increased. I have proposed that gravitational constant might vary and be roughly twice the
standard value: I do not believe this explanation now.
The most feasible explanation is that the anomaly relates to the presence of thickened cosmic
strings carrying dark energy as magnetic energy and dark matter shells instead of 3-D cold
dark matter halos. This additional component would contribute to gravitational potential
experienced by the smaller cluster and explain the higher velocity.

12.6.4 Variation Of Newston’s Constant And Of Length Of Day

J. D. Anderson et al [E22] have published an article discussing the observations suggesting a
periodic variation of the measured value of Newton constant and variation of length of day.

According to the article, about a dozen measurements of Newton’s gravitational constant, G,
since 1962 have yielded values that differ by far more than their reported random plus systematic
errors. Authors find that these values for G are oscillatory in nature, with a period of P =
5.899 ± 0.062 yr , an amplitude of , S = 1.619 ± 0.103 × 10−14 m3kg−1 s−2 and mean-value
crossings in 1994 and 1997. The relative variation ∆G/G ∼ 2.4 × 10−4. Authors suggest that
the actual values of G does not vary but some unidentified factor in the measurement process is
responsible for an apparent variations.

According to the article, of other recently reported results, the only measurement with the
same period and phase is the Length of Day (LOD —defined as a frequency measurement such that
a positive increase in LOD values means slower Earth rotation rates and therefore longer days).
The period is also about half of a solar activity cycle, but the correlation is far less convincing. The
5.9 year periodic signal in LOD has previously been interpreted as due to fluid core motions and
inner-core coupling. We report the G/LOD correlation, whose statistical significance is 0.99764
assuming no difference in phase, without claiming to have any satisfactory explanation for it. Least
unlikely, perhaps, are currents in the Earth’s fluid core that change both its moment of inertia
(affecting LOD) and the circumstances in which the Earth-based experiments measure G. In this
case, there might be correlations with terrestrial-magnetic-field measurements.

In the popular article “Why do measurements of the gravitational constant vary so much?”
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(see http://tinyurl.com/k5onwoe) Anderson states that there is also a possible connection with
Flyby anomaly [E21], which also shows periodic variation.

In the following TGD inspired model for the findings is developed. The gravitational cou-
pling would be in radial scaling degree of freedom and rigid body rotational degrees of freedom.
In rotational degrees of freedom the model is in the lowest order approximation mathematically
equivalent with Kepler model. The model for the formation of planets around Sun suggests that
the dark matter shell has radius equal to that of Moon’s orbit. This leads to a prediction for the
oscillation period of Earth radius: the prediction is consistent with the observed 5.9 years period.
The dark matter shell would correspond to n = 1 Bohr orbit in the earlier model for quantum
gravitational bound states based on large value of Planck constant if the velocity parameter v0 ap-
pearing in ~gr = GMEMD/v0 equals to the rotation velocity of Moon. Also n > 1 orbits are
suggestive and their existence would provide additional support for TGD view about quantum
gravitation. There are further amazing co-incidences. The gravitational Compton length GM/v0

of particle is very near to the Earth’s radius in case Earth if central mass is Earth mass. For the
mass of dark matter shell it is the variation ∆RE . This strongly suggest that quantum coherence
in astrophysical scales has been and perhaps still is present.

Coupled oscillations of radii of Earth and dark matter shell as an explanation for the
variations

A possible TGD explanation for the variation emerges from the following arguments.

1. By angular momentum conservation requiring Iω = L = constant the oscillation of the length
of day (LOD) can be explained by the variation of the radius RE of Earth since the moment
of inertia is proportional to R2

E . This gives ∆LOD/LOD = 2∆R/R. This explains also
the apparent variation of G since the gravitational acceleration at the surface of Earth is
g = GM/R2

E so that one has ∆g/g = 2∆R/R. Note that the variations have opposite phase.

2. Flyby and Pioneer anomalies [K2] relies on the existience of dark matter shell with a universal
surface mass density, whose value is such that in the case of Earth the total mass in the shell
would be MD ∼ 10−4ME . The value MD/ME ' 1.3× 10−4 suggested by TGD is of the same
order of magnitude as ∆R/R. Even galactic dark matter around galactic core could correspond
to a shell with this surfaces density of mass [K2]. This plus the claim that also Flyby anomaly
has oscillatory character suggest a connection. Earth and dark mass shell are in a collective
pulsation with a frequency of Earth pulsation about 6 years and the interaction is gravitational
attraction. Note that the frequencies need not be the same. Momentum conservation in radial
direction indeed requires that both of them participate in oscillation.

A detailed model

One can construct a model for the situation.

1. Earth and dark matter shell are modelled as rigid bodies with spatially constant density
except that their radii can change. Earth and dark matter shell are characterized by moments
of inertia IE = (3/5) ×MEr

3
E and ID = (2/3) ×MDr

2
D. If one restricts the consideration

to a rigid body rotation around fixed axis (call it z-axis), one has effective point masses
M1 = 3ME/5 and M2 = 2MD/3 and the problem is mathematically very similar to a motion
point like particles with these effective masses in plane subject to the mutual gravitational
force obtained by averaging the gravitational 1/r potential over the volumes of the two mass
distributions. In the lowest order the problem is very similar to a central force problem with
1/r-potential plus corrections coming as series in rE/rD. This problem can be solved by using
angular momentum conservation and energy conservation.

2. In the lowest order approximation rE/rD = 0 one has just Kepler problem in 1/rD force
between masses M1 and M2 for MD and one obtains the analogs of elliptic orbit in the analog
of plane defined by rD and φ. Kepler’s law T 2

D ∝ r3
D fixes the average value of rD, call this

value RD.

3. In the next approximation one feeds this solution to the equations for rE by replacing rD with
its average value RD to obtain the interaction potential depending on the radius rE . It must
be harmonic oscillator potential and the elastic constant determines the oscillation period of
rE . The value of this period should be about 6 yr.

http://tinyurl.com/k5onwoe
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The Lagrangian is sum of kinetic terms plus potential term

L = TE + TD + Vgr ,

TE = 1
2ME(dREdt )2 + 1

2IE(dΦE
dt )2 , TD = 1

2MD(dRDdt )2 + 1
2ID(dΦD

dt )2 .

(12.6.1)

One could criticize the choice of the coefficients of the kinetic terms for radial coordinates RE and
RD as masses and one could indeed consider a more general choices. One can also argue, that the
rigid bodies cannot be completely spherically since in this case it would not be possible to talk
about rotation - at least in quantum mechanical sense.

Gravitational interaction potential is given by

Vgr = −G
∫
dVE

∫
dADρEσD

1
rD,E

, rD,E = |rD − rE | ,

dAD = r2
DdΩD dVE = r2

EdrEdΩE ,

ρE = 3ME

4πR3
E
, σD = MD

4πR2
D

.

(12.6.2)

The integration measures are the standard integration measures in spherical coordinates.

One can extract the rD factor from rD,E (completely standard step) to get

1
rD,E

= 1
rD
X ,

X = 1
|nD−xnE | = 1

[1+x2−2xcos(θ)]1/2 = 1
(1+x2)1/2

1
(1−2xcos(θ)/(1+x2))1/2 ,

x = rE
rD

, cos(θ) = nD · nE .

(12.6.3)

Angular integration over θ is trivial and only the integration over rE remains.

Vgr = −GMDME
3r2
D

r3
E

∫ rE/rD
0

F (ε(x)) x2

(1−x2)1/2 dx ,

F (ε) = (1+ε)1/2−(1−ε)1/2)
ε ' 1− ε

8 ,

ε = 2x
1+x2 , x = rE

rD
.

(12.6.4)

In the approximation F (ε) = 1 introducing error of few per cent the outcome is

Vgr = − 3GMDME

rD
×
[
arcsin(x)− x

√
1− x2

]
= 3GMDME

rD

[
2
3 + x2

5 +O(x3) + ...
]
,

x = rE
rD

.

(12.6.5)

The physical interpretation of the outcome is clear.



12.6. Some Examples About Gravitational Anomalies In TGD Universe 595

1. The first term in the series gives the gravitational potential between point like particles de-
pending on rD only giving rise to the Kepler problem. The orbit is closed - an ellipse whose
eccentricity determines the amplitude of ∆RD/RD. In higher orders one expects that the strict
periodicity is lost in the general case. From the central force conditionM2ω

2
drD = GMDME/r

2
D

one has

TD =
√

2
3 ×

√
RD
rS,E

2πRD
c , rS,E = 2GME .

(12.6.6)

rS,E ' 8.87 mm is the Earth’s Schwartschild radius. The first guess is that the dark matter
shell has the radius of Moon orbit RMoon ' 60.33×RE , RE = 6.731×106 m. This would give
TD = TMoon ' 30 days.

2. Second term gives harmonic oscillator potential kER
2
E/2, kE = 6GMDME/5R

3
D in the ap-

proximation that rD is constant. Oscillator frequency is

Tω2
E =

kE
ME
× 6GMD

5R3
D

. (12.6.7)

The oscillator period is given by

TE = 2π ×

√
5R3

D

6GMD
= 2π ×

√
53×

√
RD
RS,D

× RD
c

. (12.6.8)

In this approximation the amplitude of oscillation cannot be fixed but the non-linearity relates
the amplitude to the amplitude of rD.

3. One can estimate the period of oscillation by feeding in the basic numbers. One has RD ∼
RMoon = 60.34RE , RE = 6.371 × 106 m. A rough earlier estimate for MD is given by
MD/ME ' 1.3 × 10−4. The relative amplitude of the oscillation is ∆G/G = 2∆R/R '
2.4× 10−4, which suggests ∆R/R 'MD/ME .
The outcome is TE ' 6.1 yr whereas the observed period is TE ' 5.9 yr. The discrepancy
could be due to non-linear effects making the frequency continuous classically.

An interesting question is whether macroscopic quantal effects might be involved.

1. The applicability of Bohr rules to the planetary motion [K89] first proposed by Nottale [E18]
encourages to ask whether one could apply also to the effective Kepler problem Bohr rules with
gravitational Planck constant ~gr = GMEMD/v0, where v0 is a parameter with dimensions of
velocity. The rotation velocity of Moon v0/c = 10−5/3 is the first order of magnitude guess.
Also one can ask whether also n > 1 other dark matter layers are possible at Bohr orbits so
that one would have the analog of atomic spectroscopy.

2. From angular momentum quantization requires L = mω2R = n~gr and from central force
condition one obtains the standard formula for the radius of Bohr orbit rn = n2GME/v

2
0 . For

n = 1 the radius of the orbit would be radius of the orbit of Moon with accuracy of 3 per cent.
Note that the mass of Moon is about 1 per cent of the Earth’s mass and thus roughly by a
factor 100 higher than the mass of the spherical dark matter shell.

Clearly, the model might have caught something essential about the situation. What remains
to be understood is the amplitude ∆R/R. It seems that ∆R/R 'MD/ME holds true. This is not
too surprising but one should understand how this follows from the basic equations.



Chapter 13

Overall View About TGD from
Particle Physics Perspective

13.1 Introduction

Topological Geometrodynamics is able to make rather precise and often testable predictions. In the
following I want to describe the recent over all view about the aspects of quantum TGD relevant
for particle physics.

During these 37 years TGD has become quite an extensive theory involving also applications
to quantum biology and quantum consciousness theory. Therefore it is difficult to decide in which
order to proceed. Should one represent first the purely mathematical theory as done in the articles
in Prespace-time Journal [L6, L7, L11, L12, L9, L5, L10, L1]? Or should one start from the
TGD inspired heuristic view about space-time and particle physics and represent the vision about
construction of quantum TGD briefly after that? In this and other two chapters I have chosen the
latter approach since the emphasis is on the applications on particle physics.

Second problem is to decide about how much material one should cover. If the representation
is too brief no-one understands and if it is too detailed no-one bothers to read. I do not know
whether the outcome was a success or whether there is any way to success but in any case I have
been sweating a lot in trying to decide what would be the optimum dose of details.

The third problem are the unavoidable mammoth bones and redundancy as one deals with
are extensive material as TGD is. The attempts to get rid of them have turned out to be a Sisyfian
task but I have done my best!

In the first chapter I concentrate the heuristic picture about TGD with emphasis on particle
physics.

• First I represent briefly the basic ontology: the motivations for TGD and the notion of many-
sheeted space-time, the concept of zero energy ontology, the identification of dark matter in
terms of hierarchy of Planck constant which now seems to follow as a prediction of quantum
TGD, the motivations for p-adic physics and its basic implications, and the identification
of space-time surfaces as generalized Feynman diagrams and the basic implications of this
identification.

• Symmetries of quantum TGD are discussed. Besides the basic symmetries of the embedding
space geometry allowing to geometrize standard model quantum numbers and classical fields
there are many other symmetries. General Coordinate Invariance is especially powerful in
TGD framework allowing to realize quantum classical correspondence and implies effective
2-dimensionality realizing strong form of holography. Super-conformal symmetries of super
string models generalize to conformal symmetries of 3-D light-like 3-surfaces associated with
light-like boundaries of so called causal diamonds defined as intersections of future and past
directed light-cones (CDs) and with light-like 3-surfaces. Whether super-conformal symmetries
imply space-time SUSY is far from a trivial question. What is suggested is a generalization
of the space-time supersymmetry analogous to N = 2 SUSY and not involving Majorana
spinors since fermion numbers are conserved in TGD. Twistorial approach to gauge theories
has gradually become part of quantum TGD and the natural generalization of the Yangian
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symmetry identified originally as symmetry of N = 4 SYMs is postulated as basic symmetry
of quantum TGD.

• The understanding of the relationship between TGD and GRT and quantum and classical
variants of Equivalence Principle (EP) in TGD have develope rather slowly but the recent
picture is rather feasible.

1. The recent view is that EP at quantum level reduces to Quantum Classical Correspondence
(QCC) in the sense that Cartan algebra Noether charges assignable to 3-surface in case
of Kähler action (inertial charges) are identical with eigenvalues of the quantal variants
of Noether charges for Kähler-Dirac action (gravitational charges). The well-definedness
of the latter charges is due to the conformal invariance assignable to 2-D surfaces (string
world sheets and possibly partonic 2-surfaces) at which the spinor modes are localized in
generic case. This localization follows from the condition that em charge has well defined
value for the spinor modes. The localization is possibly only for the Kähler-Dirac action
and key role is played by the modification of gamma matrices to Kähler-Dirac gamma
matrices. The gravitational four-momentum is thus completely analogous to stringy four-
momentum.

2. At classical level EP follows from the interpretation of GRT space-time as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective
metric determined as a sum of Minkowski metric and sum over the deviations of the
induced metrics of space-time sheets from Minkowski metric. Poincare invariance suggests
strongly classical EP for the GRT limit in long length scales at least. Similar procedure
applies to induced gauge fields.
The classical four-momentum assignable to the light-like boundaries of string world sheets
at partonic orbits can be identified as gravitational momentum naturally identifiable as
inertial momentum assignable to embedding space spinor harmonics defined a ground state
of super-conformal representation.

• The so called weak form of electric-magnetic duality has turned out to have extremely far
reaching consequences and is responsible for the recent progress in the understanding of the
physics predicted by TGD. The duality leads to a detailed identification of elementary particles
as composite objects of massless particles and predicts new electro-weak physics at LHC.
Together with a simple postulate about the properties of preferred extremals of Kähler action
the duality allows also to realized quantum TGD as almost topological quantum field theory
giving excellent hopes about integrability of quantum TGD.

• There are two basic visions about the construction of quantum TGD. Physics as infinite-
dimensional Kähler geometry of world of classical worlds (WCW) endowed with spinor struc-
ture and physics as generalized number theory. These visions are briefly summarized as also
the practical construction involving the concept of Dirac operator. As a matter fact, the
construction of TGD involves several Dirac operators.

1. The Kähler Dirac equation holds true in the interior of space-time surface and its solutions
localized at string world sheets have a natural interpretation in terms of fundamental
fermions forming building bricks of all particles.

2. A very natural boundary condition at the light-like boundaries of string world sheets is that
induced 1-D Dirac operator annihilates the spinor modes so that they are characterized
by light-like 8-momentum crucial for 8-D tangent space twistorialization.

3. Third Dirac operator is associated with embedding space spinor harmonics defining ground
states of super-conformal representations.

4. The fourth Dirac operator is associated with super Virasoro generators and super Virasoro
conditions define Dirac equation in WCW. These conditions characterize zero energy states
as modes of WCW spinor fields and code for the generalization of S-matrix to a collection
of what I call M -matrices defining the rows of unitary U -matrix defining unitary process.

• Twistor approach has inspired several ideas in quantum TGD during the last years and it
seems that the Yangian symmetry and the construction of scattering amplitudes in terms of
Grassmannian integrals generalizes to TGD framework. This is due to ZEO allowing to assume
that all particles have massless fermions as basic building blocks. ZEO inspires the hypothesis
that incoming and outgoing particles are bound states of fundamental fermions associated with
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wormhole throats. Virtual particles would also consist of on mass shell massless particles but
without bound state constraint. This implies very powerful constraints on loop diagrams and
there are excellent hopes about their finiteness.

The discussion of this chapter is rather sketchy and the reader interesting in details can
consult the books about TGD [K109, K101, K26, K68, K84, K73, K102] .

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

13.2 Some Aspects Of Quantum TGD

In the following I summarize very briefly those basic notions of TGD which are especially relevant
for the applications to particle physics. The representation will be practically formula free. The
article series published in Prespace-time Journal [L6, L7, L11, L12, L9, L5, L10, L16] describes
the mathematical theory behind TGD. The seven books about TGD [K109, K101, K26, K84, K73,
K68, K49, K92] provide a detailed summary about the recent state of TGD.

13.2.1 New Space-Time Concept

The physical motivation for TGD was what I have christened the energy problem of General
Relativity. The notion of energy is ill-defined because the basic symmetries of empty space-time
are lost in the presence of gravity. The way out is based on assumption that space-times are
imbeddable as 4-surfaces to certain 8-dimensional space by replacing the points of 4-D empty
Minkowski space with 4-D very small internal space. This space -call it S- is unique from the
requirement that the theory has the symmetries of standard model: S = CP2, where CP2 is
complex projective space with 4 real dimensions [L16] , is the unique choice.

The replacement of the abstract manifold geometry of general relativity with the geometry
of surfaces brings the shape of surface as seen from the perspective of 8-D space-time and this
means additional degrees of freedom giving excellent hopes of realizing the dream of Einstein
about geometrization of fundamental interactions.

The work with the generic solutions of the field equations assignable to almost any general
coordinate invariant variational principle led soon to the realization that the notion space-time in
this framework is much more richer than in general relativity quite contrary to what one might
expect on basis of representability as a surface in 8-D embedding space.

1. Space-time decomposes into space-time sheets (see Fig. ?? in the appendix of this book)
with finite size: this lead to the identification of physical objects that we perceive around us
as space-time sheets. For instance, the outer boundary of the table is where that particular
space-time sheet ends. Besides sheets also string like objects and elementary particle like
objects appear so that TGD can be regarded also as a generalization of string models obtained
by replacing strings with 3-D surfaces.

2. Elementary particles are identified as topological inhomogenuities glued to these space-time
sheets (see figs. http://tgdtheory.fi/appfigures/particletgd.jpg, http://tgdtheory.
fi/appfigures/elparticletgd.jpg, which are also in the appendix of this book). In this
conceptual framework material structures and shapes are not due to some mysterious substance
in slightly curved space-time but reduce to space-time topology just as energy- momentum
currents reduce to space-time curvature in general relativity.

3. Also the view about classical fields changes. One can assign to each material system a field
identity since electromagnetic and other fields decompose to topological field quanta. Examples
are magnetic and electric flux tubes and flux sheets and topological light rays representing light
propagating along tube like structure without dispersion and dissipation making em ideal tool
for communications [K74] . One can speak about field body or magnetic body of the system.

Field body indeed becomes the key notion distinguishing TGD inspired model of quantum
biology from competitors but having applications also in particle physics since also leptons and
quarks possess field bodies. The is evidence for the Lamb shift anomaly of muonic hydrogen [C2]
and the color magnetic body of u quark whose size is somethat larger than the Bohr radius could
explain the anomaly [K64] .

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
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13.2.2 ZEO

In standard ontology of quantum physics physical states are assumed to have positive energy. In
ZEO physical states decompose to pairs of positive and negative energy states such that all net
values of the conserved quantum numbers vanish. The interpretation of these states in ordinary
ontology would be as transitions between initial and final states, physical events. By quantum
classical correspondences zero energy states must have space-time and embedding space correlates.

1. Positive and negative energy parts reside at future and past light-like boundaries of causal
diamond (CD) defined as intersection of future and past directed light-cones and visualizable
as double cone (see ig. ?? in the appendix of this book) ). The analog of CD in cosmology
is big bang followed by big crunch. CDs for a fractal hierarchy containing CDs within CDs.
Disjoint CDs are possible and CDs can also intersect.

2. p-Adic length scale hypothesis [K69] motivates the hypothesis that the temporal distances
between the tips of the intersecting light-cones come as octaves T = 2nT0 of a fundamental
time scale T0 defined by CP2 size R as T0 = R/c. One prediction is that in the case of electron
this time scale is .1 seconds defining the fundamental biorhythm. Also in the case u and d
quarks the time scales correspond to biologically important time scales given by 10 ms for u
quark and by and 2.5 ms for d quark [K11] . This means a direct coupling between microscopic
and macroscopic scales.

ZEO conforms with the crossing symmetry of quantum field theories meaning that the final
states of the quantum scattering event are effectively negative energy states. As long as one can
restrict the consideration to either positive or negative energy part of the state ZEO is consistent
with positive energy ontology. This is the case when the observer characterized by a particular
CD studies the physics in the time scale of much larger CD containing observer’s CD as a sub-CD.
When the time scale sub-CD of the studied system is much shorter that the time scale of sub-
CD characterizing the observer, the interpretation of states associated with sub-CD is in terms of
quantum fluctuations.

ZEO solves the problem which results in any theory assuming symmetries giving rise to
conservation laws. The problem is that the theory itself is not able to characterize the values of
conserved quantum numbers of the initial state. In ZEO this problem disappears since in principle
any zero energy state is obtained from any other state by a sequence of quantum jumps without
breaking of conservation laws. The fact that energy is not conserved in general relativity based
cosmologies can be also understood since each CD is characterized by its own conserved quantities.
As a matter fact, one must be speak about average values of conserved quantities since one can
have a quantum superposition of zero energy states with the quantum numbers of the positive
energy part varying over some range.

For thermodynamical states this is indeed the case and this leads to the idea that quantum
theory in ZEO can be regarded as a “complex square root” of thermodynamics obtained as a
product of positive diagonal square root of density matrix and unitary S-matrix. M -matrix defines
time-like entanglement coefficients between positive and negative energy parts of the zero energy
state and replaces S-matrix as the fundamental observable. In standard quantum measurement
theory this time-like entanglement would be reduced in quantum measurement and regenerated
in the next quantum jump if one accepts Negentropy Maximization Principle (NMP) [K63] as the
fundamental variational principle. Various M -matrices define the rows of the unitary U matrix
characterizing the unitary process part of quantum jump. From the point of view of consciousness
theory the importance of ZEO is that conservation laws in principle pose no restrictions for the
new realities created in quantum jumps: free will is maximal.

The most dramatic implications of ZEO are to the modelling of living matter since the basic
unit is now a pair of space-like 3-surfaces at the opposite boundaries of CD rather than single
3-surface at either boundary. By holography the space-time surface connecting them can be taken
as basic units and define space-time correlates for behavioral patterns. This modifies dramatically
the views about self-organization and morphogenesis.

13.2.3 The Hierarchy Of Planck Constants

The motivations for the hierarchy of Planck constants come from both astrophysics [K89] and
biology [K82, K38] . In astrophysics the observation of Nottale [E18] that planetary orbits in solar
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system seem to correspond to Bohr orbits with a gigantic gravitational Planck constant motivated
the proposal that Planck constant might not be constant after all [K89, K75] .

This led to the introduction of the quantization of Planck constant as an independent pos-
tulate. It has however turned that quantized Planck constant in effective sense could emerge from
the basic structure of TGD alone. Canonical momentum densities and time derivatives of the
embedding space coordinates are the field theory analogs of momenta and velocities in classical
mechanics. The extreme non-linearity and vacuum degeneracy of Kähler action imply that the
correspondence between canonical momentum densities and time derivatives of the embedding
space coordinates is 1-to-many: for vacuum extremals themselves 1-to-infinite (see Fig. ?? in the
appendix of this book).

A convenient technical manner to treat the situation is to replace embedding space with
its n-fold singular covering. Canonical momentum densities to which conserved quantities are
proportional would be same at the sheets corresponding to different values of the time derivatives.
At each sheet of the covering Planck constant is effectively heff = n × h. This splitting to
multi-sheeted structure can be seen as a phase transition reducing the densities of various charges
by factor 1/n and making it possible to have perturbative phase at each sheet (gauge coupling
strengths are proportional to 1/heff and scaled down by 1/n). The connection with fractional
quantum Hall effect [D2] is suggestive [K77] .

This has many profound implications, which are welcome from the point of view of quantum
biology but the implications would be profound also from particle physics perspective and one could
say that living matter represents zoome up version of quantum world at elementary particle length
scales.

1. Quantum coherence and quantum superposition become possible in arbitrary long length
scales. One can speak about zoomed up variants of elementary particles and zoomed up
sizes make it possible to satisfy the overlap condition for quantum length parameters used as a
criterion for the presence of macroscopic quantum phases. In the case of quantum gravitation
the length scale involved are astrophysical. This would conform with Penrose’s intuition that
quantum gravity is fundamental for the understanding of consciousness and also with the idea
that consciousness cannot be localized to brain.

2. Photons with given frequency can in principle have arbitrarily high energies by E = hf formula,
and this would explain the strange anomalies associated with the interaction of ELF em fields
with living matter [J4] . Quite generally the cyclotron frequencies which correspond to energies
much below the thermal energy for ordinary value of Planck constant could correspond to
energies above thermal threshold.

3. The value of Planck constant is a natural characterizer of the evolutionary level and biolog-
ical evolution would mean a gradual increase of the largest Planck constant in the hierarchy
characterizing given quantum system. Evolutionary leaps would have interpretation as phase
transitions increasing the maximal value of Planck constant for evolving species. The space-
time correlate would be the increase of both the number and the size of the sheets of the
covering associated with the system so that its complexity would increase.

4. The phase transitions changing Planck constant change also the length of the magnetic flux
tubes. The natural conjecture is that biomolecules form a kind of Indra’s net connected by
the flux tubes and ~ changing phase transitions are at the core of the quantum bio-dynamics.
The contraction of the magnetic flux tube connecting distant biomolecules would force them
near to each other making possible for the bio-catalysis to proceed. This mechanism could
be central for DNA replication and other basic biological processes. Magnetic Indra’s net
could be also responsible for the coherence of gel phase and the phase transitions affecting
flux tube lengths could induce the contractions and expansions of the intracellular gel phase.
The reconnection of flux tubes would allow the restructuring of the signal pathways between
biomolecules and other subsystems and would be also involved with ADP-ATP transformation
inducing a transfer of negentropic entanglement [?] (see Fig. ?? in the appendix of this book).
The braiding of the magnetic flux tubes could make possible topological quantum computation
like processes and analog of computer memory realized in terms of braiding patterns [K6] .

5. p-Adic length scale hypothesis and hierarchy of Planck constants suggest entire hierarchy of
zoomed up copies of standard model physics with range of weak interactions and color forces
scaling like ~. This is not conflict with the known physics for the simple reason that we know
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very little about dark matter (partly because we might be making misleading assumptions
about its nature). One implication is that it might be someday to study zoomed up variants
particle physics at low energies using dark matter.
Dark matter would make possible the large parity breaking effects manifested as chiral selection
of bio-molecules [C52] . The classical Z0 and possibly also W fields responsible for parity
breaking effects must be experienced by fundamental fermions in cellular length scale. This is
not possible for ordinary value of Planck constant above weak scale since the induced spinor
modes are restricted on string world sheets at which W and Z0 fields vanish: this follows from
the well-definedness of em charge. If the value of Planck constant is so large that weak scale
is some biological length scale, weak fields are effectively massless below this scale and large
parity breaking effects become possible.
For the solutions of field equations which are almost vacuum extremals Z0 field is non-vanishing
and proportional to electromagnetic field. The hypothesis that cell membrane corresponds to a
space-time sheet near a vacuum extremal (this corresponds to criticality very natural if the cell
membrane is to serve as an ideal sensory receptor) leads to a rather successful model for cell
membrane as sensory receptor with lipids representing the pixels of sensory qualia chart. The
surprising prediction is that bio-photons [I7] and bundles of EEG photons can be identified
as different decay products of dark photons with energies of visible photons. Also the peak
frequencies of sensitivity for photoreceptors are predicted correctly [K82] .

The hierarchy of Planck constants has become key part of TGD and is actually forced by
the condition that strings connecting partonic 2-surfaces are correlates for the formation of bound
states. The basic problem of both QFTs and string theories is the failure to describe bound states,
and the generalization of quantum theory by introducing the hierarchy of Planck constant solves
this problem.

13.2.4 P-Adic Physics And Number Theoretic Universality

p-Adic physics [K68, K96] has become gradually a key piece of TGD inspired biophysics. Basic
quantitative predictions relate to p-adic length scale hypothesis and to the notion of number
theoretic entropy. Basic ontological ideas are that life resides in the intersection of real and p-adic
worlds and that p-adic space-time sheets serve as correlates for cognition. Number theoretical
universality requires the fusion of real physics and various p-adic physics to single coherent whole
analogous to adeles. On implication is the generalization of the notion of number obtained by
fusing real and p-adic numbers to a larger structure.

p-Adic number fields

p-Adic number fields Qp [A36] -one for each prime p- are analogous to reals in the sense that one
can speak about p-adic continuum and that also p-adic numbers are obtained as completions of the
field of rational numbers. One can say that rational numbers belong to the intersection of real and
p-adic numbers. p-Adic number field Qp allows also an infinite number of its algebraic extensions.
Also transcendental extensions are possible. For reals the only extension is complex numbers.

p-Adic topology defining the notions of nearness and continuity differs dramatically from
the real topology. An integer which is infinite as a real number can be completely well defined
and finite as a p-adic number. In particular, powers pn of prime p have p-adic norm (magnitude)
equal to p−n in Qp so that at the limit of very large n real magnitude becomes infinite and p-adic
magnitude vanishes.

p-Adic topology is rough since p-adic distance d(x, y) = d(x−y) depends on the lowest pinary
digit of x−y only and is analogous to the distance between real points when approximated by taking
into account only the lowest digit in the decimal expansion of x − y. A possible interpretation is
in terms of a finite measurement resolution and resolution of sensory perception. p-Adic topology
looks somewhat strange. For instance, p-adic spherical surface is not infinitely thin but has a finite
thickness and p-adic surfaces possess no boundary in the topological sense. Ultra-metricity is the
technical term characterizing the basic properties of p-adic topology and is coded by the inequality
d(x− y) ≤Min{d(x), d(y)}. p-Adic topology brings in mind the decomposition of perceptive field
to objects.
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Motivations for p-adic number fields

The physical motivations for p-adic physics came from the observation that p-adic thermodynamics
-not for energy but infinitesimal scaling generator of so called super-conformal algebra [A23] acting
as symmetries of quantum TGD [K101] - predicts elementary particle mass scales and also masses
correctly under very general assumptions [K68] . The calculations are discussed in more detail in
the second article of the series. In particular, the ratio of proton mass to Planck mass, the basic
mystery number of physics, is predicted correctly. The basic assumption is that the preferred primes
characterizing the p-adic number fields involved are near powers of two: p ' 2k, k positive integer.
Those nearest to power of two correspond to Mersenne primes Mn = 2n−1. One can also consider
complex primes known as Gaussian primes, in particular Gaussian Mersennes MG,n = (1 + i)n−1.

It turns out that Mersennes and Gaussian Mersennes are in a preferred position physically
in TGD based world order. What is especially interesting that the length scale range 10 nm-5
µm contains as many as four scaled up electron Compton lengths Le(k) =

√
5L(k) assignable to

Gaussian Mersennes Mk = (1 + i)k − 1, k = 151, 157, 163, 167, [K82] . This number theoretical
miracle supports the view that p-adic physics is especially important for the understanding of
living matter.

The philosophical for p-adic numbers fields come from the question about the possible phys-
ical correlates of cognition [K71]. Cognition forms representations of the external world which have
finite cognitive resolution and the decomposition of the perceptive field to objects is an essential
element of these representations. Therefore p-adic space-time sheets could be seen as candidates
of thought bubbles, the mind stuff of Descartes.

Rational numbers belong to the intersection of real and p-adic continua. An obvious gener-
alization of this statement applies to real manifolds and their p-adic variants. When extensions of
p-adic numbers are allowed, also some algebraic numbers can belong to the intersection of p-adic
and real worlds. The notion of intersection of real and p-adic worlds has actually two meanings.

1. The intersection could consist of the rational and possibly some algebraic points in the inter-
section of real and p-adic partonic 2-surfaces at the ends of CD. This set is in general discrete.
The interpretation could be as discrete cognitive representations.

2. The intersection could also have a more abstract meaning. For instance, the surfaces defined
by rational functions with rational coefficients have a well-defined meaning in both real and
p-adic context and could be interpreted as belonging to this intersection. There is strong
temptation to assume that intentions are transformed to actions only in this intersection. One
could say that life resides in the intersection of real and p-adic worlds in this abstract sense.

Additional support for the idea comes from the observation that Shannon entropy S =
−
∑
pnlog(pn) allows a p-adic generalization if the probabilities are rational numbers by replacing

log(pn) with −log(|pn|p), where |x|p is p-adic norm. Also algebraic numbers in some extension
of p-adic numbers can be allowed. The unexpected property of the number theoretic Shannon
entropy is that it can be negative and its unique minimum value as a function of the p-adic prime
p it is always negative. Entropy transforms to information!

In the case of number theoretic entanglement entropy there is a natural interpretation for
this. Number theoretic entanglement entropy would measure the information carried by the en-
tanglement whereas ordinary entanglement entropy would characterize the uncertainty about the
state of either entangled system. For instance, for p maximally entangled states both ordinary
entanglement entropy and number theoretic entanglement negentropy are maximal with respect
to Rp norm. Negentropic entanglement carries maximal information. The information would be
about the relationship between the systems, a rule. Schrödinger cat would be dead enough to know
that it is better to not open the bottle completely (see Fig. ?? in the appendix of this book).

Negentropy Maximization Principle [K63] coding the basic rules of quantum measurement
theory implies that negentropic entanglement can be stable against the effects of quantum jumps
unlike entropic entanglement. Therefore living matter could be distinguished from inanimate
matter also by negentropic entanglement possible in the intersection of real and p-adic worlds. In
consciousness theory negentropic entanglement could be seen as a correlate for the experience of
understanding or any other positively colored experience, say love.

Negentropically entangled states are stable but binding energy and effective loss of relative
translational degrees of freedom is not responsible for the stability. Therefore bound states are not
in question. The distinction between negentropic and bound state entanglement could be compared
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to the difference between unhappy and happy marriage. The first one is a social jail but in the
latter case both parties are free to leave but do not want to. The special characterics of negentropic
entanglement raise the question whether the problematic notion of high energy phosphate bond [I2]
central for metabolism could be understood in terms of negentropic entanglement. This would also
allow an information theoretic interpretation of metabolism since the transfer of metabolic energy
would mean a transfer of negentropy [?] .

13.3 Symmetries Of TGD

Symmetry principles play key role in the construction of WCW geometry have become and de-
serve a separate explicit treatment even at the risk of repetitions. Symmetries of course manifest
themselves also at space-time level and space-time supersymmetry - possibly present also in TGD
- is the most non-trivial example of this.

13.3.1 General Coordinate Invariance

General coordinate invariance is certainly of the most important guidelines and is much more
powerful in TGD framework thanin GRT context.

1. General coordinate transformations as a gauge symmetries so that the diffeomorphic slices of
space-time surface equivalent physically. 3-D light-like 3-surfaces defined by wormhole throats
define preferred slices and allows to fix the gauge partially apart from the remaining 3-D
variant of general coordinate invariance and possible gauge degeneracy related to the choice of
the light-like 3-surface due to the Kac-Moody invariance. This would mean that the random
light-likeness represents gauge degree of freedom except at the ends of the light-like 3-surfaces.

2. GCI can be strengthened so that the pairs of space-like ends of space-like 3-surfaces at CDs are
equivalent with light-like 3-surfaces connecting them. The outcome is effective 2-dimensionality
because their intersections at the boundaries of CDs must carry the physically relevant informa-
tion. One must however notice also the presence of string world sheets emerging from number
theoretic vision and from the condition that spinor modes have well-defined cm charge. Par-
tonic 2-surfaces (plus 4-D tangent space data) and string world sheets would carry the data
about quantum states and the interpretation would be in terms of strong holography. The
role of string world sheets in TGD is very much analogous to their role in AdS/CFT duality.

13.3.2 Generalized Conformal Symmetries

One can assign Kac-Moody type conformal symmetries to light-like 3-surfaces as isometries of H
localized with respect to light-like 3-surfaces. Kac Moody algebra essentially the Lie algebra of
gauge group with central extension meaning that projective representation in which representation
matrices are defined only modulo a phase factor. Kac-Moody symmetry is not quite a pure gauge
symmetry.

One can assign a generalization of Kac-Moody symmetries to the boundaries of CD by
replacing Lie-group of Kac-Moody algebra with the group of symplectic (contact-) transformations
[A43, A26, A25] of H+ provided with a degenerate Kähler structure made possible by the effective
2-dimensionality of δM4

+. The light-like radial coordinate of δM4
+ plays the role of the complex

coordinate of conformal transformations or their hyper-complex analogs. The basic hypothesis is
that these transformations define the isometry algebra of WCW.

p-Adic mass calculations require also second super-conformal symmetry. It is defined by
Kac-Moody algebra assignable to the isometries of the embedding space or possibly those of δCD.
This algebra must appear together with symplectic algebra as a direct sum. The original guess
was that Kac-Moody algebra is associated with light-like 3-surfaces as a local algebra localized by
hand with respect to the internal coordinates. A more elegant identification emerged in light of the
wisdom gained from the solutions of the Kähler-Dirac equation. Neutrino modes and symplectic
Hamiltonians generate symplectic algebra and the remaining fermion modes and Hamiltonians of
symplectic isometries generate the Kac-Moody algebra and the direct sum of these algebras acts
naturally on physical states.
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A further physically well-motivated hypothesis inspired by holography and extended GCI
is that these symmetries extend so that they apply at the entire space-time sheet and also at the
level of embedding space.

1. The extension to the entire space-time surface requires the slicing of space-time surface by
partonic 2- surfaces and by stringy world sheets such that each point of stringy world sheet
defines a partonic 2-surface and vice versa. This slicing has deep physical motivations since
it realizes geometrically standard facts about gauge invariance (partonic 2-surface defines the
space of physical polarizations and stringy space-time sheet corresponds to non-physical po-
larizations) and its existence is a hypothesis about the properties of the preferred extremals
of Kähler action.
There is a similar decomposition also at the level of CD and so called Hamilton-Jacobi coor-
dinates for M4

+ [K17] define this kind of slicings. This slicing can induced the slicing of the
space-time sheet. The number theoretic vision gives a further justification for this hypothesis
and also strengthens it by postulating the presence of the preferred time direction having in-
terpretation in terms of real unit of octonions. In ZEO this time direction corresponds to the
time-like vector connecting the tips of CD.

2. The simplest extension of the symplectic algebra at the level of embedding space is by parallel
translating the light-cone boundary. This would imply duality of the formulations using light-
like and space-like 3-surfaces and Equivalence Principle (EP) might correspond to this duality
in turn implied by strong form of general coordinate invariance (GCI).

Figure 13.1: Conformal symmetry preserves angles in complex plane

Conformal symmetries (see Fig. 13.1) would provide the realization of WCW as a union
of symmetric spaces. Symmetric spaces are coset spaces of form G/H. The natural identification
of G and H is as groups of symplectic transformations and its subroup leaving preferred 3-surface
invariant (acting as diffeomorphisms for it). Quantum fluctuating (metrically non-trivial) degrees
of freedom would correspond to symplectic transformations of H+ and fluxes of the induced Kähler
form would define a local representation for zero modes: not necessarily all of them.

A highly attractive hypothesis motivated by fractality is that the algebras of conformal sym-
metries represent broken conformal symmetries in the sense that the sub-algebras with conformal
weights coming as integer multiples of fixed integer n annihilate the physical states and correspond-
ing Noether charges associated with Kähler and Kähler-Dirac action vanish. The hierarchies of
symmetry breakings defined by the sequences ni+1 =

∏
k<i+1mk would correspond to hierarchies

of Planck constants heff and hierarchies of CDs with increasing sizes characterized by the distance
between the tips of CD. The transformation of generators from those of gauge symmetries to real
physical symmetries would bring in new degrees of freedom increasing measurement resolution.
The hierarchies would define also inclusion hierarchies of hyper-finite factors of type II1 [K112].
The level of Kähler action n would tell the number of conformal equivalence classes connecting the
3-surfaces at the boundaries of CD.
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13.3.3 Equivalence Principle And Super-Conformal Symmetries

Equivalence Principle (EP) is a second corner stone of General Relativity and together with GCI
leads to Einstein’s equations. What EP states is that inertial and gravitational masses are identical.
In this form it is not well-defined even in GRT since the definition of gravitational and inertial four-
momenta is highly problematic because Noether theorem is not available. Therefore the realization
is in terms of local equations identifying energy momentum tensor with Einstein tensor.

Thinking EP in terms of scattering amplitudes for graviton exchange, it seems obvious that
EP is true in TGD since all particles are string like objects (monopole flux tubes connecting pairs
of wormhole contacts accompanied by fermionic strings). How EP is realized in TGD has been a
longstanding open question [K106]. The problem has been that at the classical level EP in its GRT
form can hold true only in long enough length scales and it took long to time to realize that only
the stringy form of this principle is required. The first question is how to identify the gravitational
and inertial four-momenta. I have considered very many proposals in this regard!

One could argue that Equivalence Principle (EP) reduces to a mere tautology in TGD
framework since stringy picture implies stringy scattering amplitudes for graviton exchanges. This
might be the case at quantum level. There are however problems: how the exact Poincare invariance
can be consistent with the non-conservation of four-momentum in GRT based cosmologies? What
EP could mean at quantum level? Does EP reduce at classical level to Einstein’s equations in
some sense. How to take into account the many-sheetedness of TGD space-time? The following
represents the latest vision about EP in TGD.

1. ZEO and non-conservation of Poincare charges in Poincare invariant theory of gravitation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the
fact that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact,
the definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe
vanish identically and their densities should vanish in scales below the scale defining the scale for
observations and assignable to causal diamond (CD). This observation allows to imagine a ways
out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quan-
tum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations. Classical
gravitation should have a thermodynamical description if this interpretation is correct. The av-
erage values of the quantum numbers assignable to a space-time sheet would depend on the size
of CD and possibly also its location in M4. If the temporal distance between the tips of CD
is interpreted as a quantized variant of cosmic time, the non-conservation of energy-momentum
defined in this manner follows. One can say that conservation laws hold only true in given scale
defined by the largest CD involved.

2. Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that
it reduces to quantum classical correspondence meaning that the classical charges of Kähler action
can be identified with eigen values of quantal charges associated with Kähler-Dirac action.

1. At quantum level I have proposed coset representations for the pair of super-symplectic alge-
bras assignable to the light-like boundaries of CD and the Super Kac-Moody algebra assignable
to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as realization of EP. For
coset representation the differences of super-conformal generators would annihilate the phys-
ical states so that one can argue that the corresponding four-momenta are identical. One
could even say that one obtains coset representation for the “vibrational” parts of the super-
conformal algebras in question. It is now clear that this idea does not work. Note however
that coset representations occur naturally for the subalgebras of symplectic algebra and Super
Kac-Moody algebra and are naturally induced by finite measurement resolution.

2. The most recent view (2014) about understanding how EP emerges in TGD is described
in [K106] and relies heavily on superconformal invariance and a detailed realisation of ZEO
at quantum level. In this approach EP corresponds to quantum classical correspondence
(QCC): four-momentum identified as classical conserved Noether charge for space-time sheets
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associated with Käbler action is identical with quantal four-momentum assignable to the rep-
resentations of super-symplectic and super Kac-Moody algebras as in string models and having
a realisation in ZEO in terms of wave functions in the space of causal diamonds (CDs).

3. The latest realization is that the eigenvalues of quantal four-momentum can be identified as
eigenvalues of the four-momentum operator assignable to the Kähler-Dirac equation. This
realisation seems to be consistent with the p-adic mass calculations requiring that the super-
conformal algebra acts in the tensor product of 5 tensor factors.

3. Equivalence Principle at classical level

How Einstein’s equations and General Relativity in long length scales emerges from TGD
has been a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum ex-
tremals are only approximate representations of the physical situation and that small fluctuations
around them give rise to an inertial four-momentum identifiable as gravitational four-momentum
identifiable in terms of Einstein tensor. EP would hold true in the sense that the average grav-
itational four-momentum would be determined by the Einstein tensor assignable to the vacuum
extremal. This interpretation does not however take into account the many-sheeted character of
TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an effective theory
obtained by endowing M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets.

2. This is true also for the classical gravitational field defined by the deviation from flat Minkowski
metric instandard M4 coordinates for the space-time sheets. One can define effective metric as
sum of M4 metric and deviations. This effective metric would correspond to that of General
Relativity. This resolves long standing issues relating to the interpretation of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of QCC
rather than realise QCC interpreted as EP. The condition that the energy momentum tensor for
Kähler action has vanishing covariant divergence would be satisfied in GRT if Einstein’s equations
with cosmological term hold true. This is the case.

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to “gravitational” color charges and
the charges defined by the conserved currents associated with color isometries would define “iner-
tial” color charges. Since the induced color fields are proportional to color Hamiltonians multiplied
by Kähler form they vanish identically for vacuum extremals in accordance with “gravitational”
color confinement.

The latest clarification related to EP comes from the natural boundary condition that the
boundaries of string world sheets at light-like orbits of the partonic 2-surfaces are light-like (if the
boundary curve is not light-like, it is necessarily space-like). These orbits correspond to light-like
embedding space 8-momenta classically, which leads to a generalization of 4-D twistors to 8-D ones
at the level of the tangent space M8 by introducing octonion structure and allowing to generalize
twistor formalism so that it applies to particles massive in M4 sense [K100]. If the light-like curve is
light-like geodesic, the 8-momentum is conserved and its M4 and CP2 parts have constant length.
In E4 degrees of freedom this means SO(4) symmetry, which might allow an interpretation as the
symmetry of strong interactions in the description applying at hadron level. The particle states
would not be eigenstates of E4 momentum but characterized by wave functions in S3 assignable to
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irreducible SO(4) representations. At quark and gluon level the harmonics of CP2 would describe
color. At the level of generalized Feynman diagrams the natural identification of M4 part of the
8-momentum would be as incoming M4 momentum labelling the harmonics of the embedding
space and this identification would provide a concrete realization of EP. In CP2 degrees of freedom
CP2 −E4 duality relating hadrons and quarks and gluons would be a more abstract realization of
EP.

13.3.4 Extension Of Super-Conformal Symmetries

The original idea behind the extension of conformal symmetries to super-conformal symmetries
was the observation that isometry currents defining infinitesimal isometries of WCW have natural
super-counterparts obtained by contracting the Killing vector fields with the complexified gamma
matrices of the embedding space.

This vision has generalized considerably as the construction of WCW spinor structure in
terms of Kähler-Dirac action has developed. The basic philosophy behind this idea is that WCW
spinor structure must relate directly to the fermionic sector of quantum physics. In particular,
Kähler-Dirac gamma matrices should be expressible in terms of the fermionic oscillator operators
associated with the second quantized induced spinor fields.

The explicit realization of this program leads to an identification of rich spectrum of super-
conformal symmetries and generalization of the ordinary notion of space-time supersymmetry.
What happens that all fermionic oscillator operator generate broken super-conformal gauge sym-
metries whereas in SUSYs there is only finite number of them.

One can however identify sub-algebra of super-conformal symmetries associated with right
handed neutrino and this suggests N = 2 super-symmetry respecting conservation of fermion
numbers as the least broken SUSY [B6] [K88].

One must be however extremely cautious here since one can imagine several variants for
space-time SUSY. The sparticles predicted by a typical supersymmetric extension of standard
model have not been observed at LHC. A possible explanation is that supersymmetric matter
corresponds to a non-standard value of heff and thus dark matter and does not appear in the
vertices of Feynman diagrams involving ordinary matter. If this is the case, the mass scales of
sparticles and particles could be same.

13.3.5 Does TGD Allow The Counterpart Of Space-Time Super-Symmetry?

It has been clear from the beginning that the notion of super-conformal symmetry crucial for
the successes of super-string models generalizes in TGD framework. The answer to the question
whether space-time SUSY makes sense in TGD framework has not been obvious at all but it seems
now that the answer is affirmative. The evolution of the ideas relevant for the formulation of SUSY
in TGD framework is summarized in the chapters of [K84] . The chapters devoted to the SUSY
QFT limit of TGD [?], to twistor approach to TGD [K100] , and to the generalization of Yangian
symmetry of N = 4 SYM manifest in the Grassmannian twistor approach [B25] to a multi-local
variant of super-conformal symmetries [K100] represent a gradual development of the ideas about
how super-symmetric M -matrix could be constructed in TGD framework.

Before continuing a warning to the reader is in order. In their recent form the above listed
chapters do not represent the final outcome but just an evolution of ideas proceeding by trial and
error.

Contrary to the original expectations, TGD seems to allow a generalization of the space-
time super-symmetry. This became clear with the increased understanding of the Kähler-Dirac
action [K113, K30] . It is possible to define SUSY algebra at fundamental level as anti-commutation
relations of fermionic oscillator operators. Depending on the situation N = 2N SUSY algebra (an
inherent cutoff on the number of fermionic modes at light-like wormhole throat) or fermionic
part of super-conformal algebra with infinite number of oscillator operators results. The addition
of fermion in particular mode would define particular super-symmetry. This super-symmetry is
badly broken due to the dynamics of the Kähler-Dirac operator which also mixes M4 chiralities
inducing massivation. Since right-handed neutrino has no electro-weak couplings the breaking of
the corresponding super-symmetry should be weakest.
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ZEO combined with the analog of the twistor approach to N = 4 SYMs and weak form
of electric-magnetic duality has actually led to this kind of formulation [K100] . What is new
that also virtual particles have massless fermions as their building blocks. This implies manifest
finiteness of loop integrals so that the situation simplifies dramatically. What is also new element
that physical particles and also string like objects correspond to bound states of massless fermions.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level
and whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There
are several problems involved.

1. In TGD framework super-symmetry means addition of a fermion to the state and since the
number of spinor modes is larger states with large spin and fermion numbers are obtained.
This picture does not fit to the standard view about super-symmetry. In particular, the iden-
tification of theta parameters as Majorana spinors and super-charges as Hermitian operators
is not possible.

2. The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is however
only a belief. Weyl spinors meaning complex theta parameters are also possible. Theta param-
eters can also carry fermion number meaning only the supercharges carry fermion number and
are non-hermitian. The general classification of super-symmetric theories indeed demonstrates
that for D = 8 Weyl spinors and complex and non-hermitian super-charges are possible. The
original motivation for Majorana spinors might come from MSSM assuming that right handed
neutrino does not exist. This belief might have also led to string theories in D = 10 and
D = 11 as the only possible candidates for TOE after it turned out that chiral anomalies
cancel. It indeed turns out that TGD view about space-time SUSY is internally consistent.
Even more, the separate conservation of quark and lepton number is essential for the internal
consistency of this view [?] .

3. The massivation of particles is the basic problem of both SUSYs and twistor approach. I have
discussed several solutions to this problem [K100]. Twistor Grassmannian approach to N = 4
SYM and the generalization of the Yangian symmetry of this theory inspires two approaches
to the problem.

(a) In ZEO one can construct physical particles as bound states of massless particles associated
with the opposite wormhole throats. If the particles have opposite 3-momenta the resulting
state is automatically massive. In fact, this forces massivation of also spin one bosons since
the fermion and anti-fermion must move in opposite directions for their spins to be parallel
so that the net mass is non-vanishing: note that this means that even photon, gluons, and
graviton have small mass.
This mechanism makes topologically condensed fermions massive and padic thermody-
namics allows to describe the massivation in terms of zero energy states and M -matrix.
Bosons would receive to their mass besides the small mass coming from thermodynamics
also a stringy contribution which would be the counterpart of the contribution coming
from Higgs vacuum expectation value and Higgs gives rise to longitudinal polarizations.
No Higgs potential is however needed. The cancellation of infrared divergences necessary
for exact Yangian symmetry and the observation that even photon receives small mass
suggest that scalar Higgs would disappear completely from the spectrum.

(b) Second approach relies on the generalization of twistor approach. 4-D twistors become
8-dimensional when quaternionic sigma matrices are replaced by octonionic ones. Light-
likeness in 8-D sense would allow massive particles in 4-D sense [K100]. The classical
8-momentum associated with the light-like boundary of string world sheet would realize
M8 octonionic twistoriality concretely. This approach is very elegant and allows the 4-
momenta of fermions decomposing particles to be massive and there are no problems
with the massivation and emergence of the third polarization. Infrared problems are
automatically absent in this framework. Encouragingly, M4 and CP2 are indeed the
unique four-manifolds allowing twistor space which is Kähler manifold. It seems that this
option is the only physically plausible one.

Basic data bits

Let us first summarize the data bits about possible relevance of super-symmetry for TGD before
the addition of the 3-D measurement interaction term to the Kähler-Dirac action [K113] .
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1. Right-handed covariantly constant neutrino spinor νR defines a super-symmetry in CP2 degrees
of freedom in the sense that Dirac equation is satisfied by covariant constancy and there is no
need for the usual ansatz Ψ = DΨ0 giving D2Ψ = 0. This super-symmetry allows to construct
solutions of Dirac equation in CP2 [A48, A56, A39, A53].

2. In M4 × CP2 this means the existence of massless modes Ψ = /pΨ0, where Ψ0 is the tensor
product of M4 and CP2 spinors. For these solutions M4 chiralities are not mixed unlike for
all other modes which are massive and carry color quantum numbers depending on the CP2

chirality and charge. As matter fact, covariantly constant right-handed neutrino spinor mode
is the only color singlet. The mechanism leading to non-colored states for fermions is based on
super-conformal representations for which the color is neutralized [K60, K60] . The negative
conformal weight of the vacuum (assumption) also cancels the enormous contribution to mass
squared coming from mass in CP2 degrees of freedom.

3. The massless right-handed neutrinos would be associated with string boundaries light-like M4

- rather than only M8 sense. They would satisfy massless Dirac equation. What this Dirac
equation is, is far from obvious and I have considered almost all possibilities that one can
imagine.
The minimal option is that the gamma matrix associated with the fermion line is the light-like
Kähler-Dirac gamma matrix since the K-D gamma matrix in normal direction should vanish
by natural boundary conditions for the extremal of Kähler action. This gamma matrix should
have a vanishing covariant divergence by field equations.
This would allow a light-like M4 momentum with varying direction: light-likeness of M4 mo-
mentum gives just Virasoro conditions in the same manner as for CP2 type vacuum extremals.
For general M8 type orbits a mixing with left handed neutrino would take place but if string
world sheets do not carry induced W boson fields, the mixing with charged spinor components
does not occur (W gauge potential is present but can be gauge transformed away). This
mixing would induce breaking of SUSY and give mass for the right-handed neutrino.

4. Space-time super-symmetry in the conventional sense of the word is impossible in TGD frame-
work since it would require Majorana spinors. In 8-D space-time with Minkowski signature of
metric Majorana spinors are definitely ruled out by the standard argument leading to super
string model. Majorana spinors would also break separate conservation of lepton and baryon
numbers in TGD framework.

Could one generalize super-symmetry?

Could one then consider a more general space-time super-symmetry with “space-time” identified
as space-time surface rather than Minkowski space?

1. The TGD variant of the super-symmetry could correspond quite concretely to the addition of
right-handed neutrinos to fermion and boson states at partonic 2-surfaces. Since right-handed
neutrinos do not have electro-weak interactions, the addition might not appreciably affect the
mass formula although it could affect the p-adic prime defining the mass scale.

2. The problem is to understand what this addition of the right-handed neutrino means. To
begin with, notice that in TGD Universe fermions reside at light-like 3-surfaces at which the
signature of induced metric changes. Bosons correspond to pairs of light-like wormhole throats
with wormhole contact having Euclidian signature of the induced metric.
The long standing head ache has been that for bosons with parallel light-like four-momenta
with same sign of energy the spins of fermion and anti-fermion are opposite so that one would
obtain only scalar bosons! The problem disappears when 4-D light-likeness is replaced with
8-D light-likeness. The massless Dirac equation using induced gamma matrices at the light-like
boundary of string world sheet indeed allows momenta which are light-like in 8-D sense and
massive in M4 sense so that a mixing of M4 chiralities occurs. This allows to have both spin
one bosonic states.

3. The super-symmetry as an addition of a fermion carrying right handed neutrino quantum
numbers to the wormhole throat opposite to that carrying many-fermion state does not make
sense since the resulting state cannot be distinguished from gauge boson or Higgs type particle.
The light-like 3-surfaces can however carry fermion numbers up to the number of modes of the
induced spinor field, which is expected to be infinite inside string like objects having wormhole
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throats at ends and finite when one has space time sheets containing the throats [K113].
In very general sense one could say that each mode defines a very large broken N -super-
symmetry with the value of N depending on state and light-like 3-surface. The breaking of
this super-symmetry would come from electro-weak - , color - , and gravitational interactions.
Right-handed neutrino would by its electro-weak and color inertness define a minimally broken
super-symmetry.

4. What this addition of the right handed neutrinos or more general fermion modes could precisely
mean? One cannot assign fermionic oscillator operators to right handed neutrinos which are
covariantly constant in both M4 and CP2 degrees of freedom since the modes with vanishing
energy (frequency) cannot correspond to fermionic oscillator operator creating a physical state
since one would have a = a†. The intuitive view is that all the spinor modes move in an exactly
collinear manner - somewhat like quarks inside hadron do approximately. This would suggest
right-handed neutrinos have a non-vanishing but massless four-momentum so that there is an
unavoidable breaking of SUSY.

TGD counterpart of space-time super-symmetry

This picture allows to define more precisely what one means with the approximate super-symmetries
in TGD framework.

1. One can in principle construct many-fermion states containing both fermions and anti-fermions
at given light-like 3-surface. The four-momenta of states related by super-symmetry need not
be same. Super-symmetry breaking is present and has as the space-time correlate the deviation
of the Kähler-Dirac gamma matrices from the ordinary M4 gamma matrices. In particular,
the fact that Γ̂α possesses CP2 part in general means that different M4 chiralities are mixed:
a space-time correlate for the massivation of the elementary particles.

2. For right-handed neutrino super-symmetry breaking is expected to be smallest but also in the
case of the right-handed neutrino mode mixing of M4 chiralities takes place and breaks the
TGD counterpart of super-symmetry.

3. The fact that all helicities in the state are physical for a given light-like 3-surface has important
implications. For instance, the addition of a right-handed antineutrino to right-handed (left-
handed) electron state gives scalar (spin 1) state. Also states with fermion number two are
obtained from fermions. For instance, for eR one obtains the states {eR, eRνRνR, eRνR, eRνR}
with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 0, 1). For eL one obtains the states
{eL, eLνRνR, eLνR, eLνR} with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 1, 0). In the
case of gauge boson and Higgs type particles -allowed by TGD but not required by p-adic
mass calculations- gauge boson has 15 super partners with fermion numbers [2, 1, 0,−1,−2].

The cautious conclusion is that the recent view about quantum TGD allows the analog of
super-symmetry which is necessary broken and for which the multiplets are much more general
than for the ordinary super-symmetry. Right-handed neutrinos might however define something
resembling ordinary super-symmetry to a high extent. The question is how strong prediction one
can deduce using quantum TGD and proposed super-symmetry.

1. For a minimal breaking of super-symmetry only the p-adic length scale characterizing the
super-partner differs from that for partner but the mass of the state is same. This would allow
only a discrete set of masses for various super-partners coming as half octaves of the mass of
the particle in question. A highly predictive model results.

2. The quantum field theoretic description should be based on QFT limit of TGD formulated in
terms of bosonic emergence . This formulation should allow to calculate the propagators of
the super-partners in terms of fermionic loops.

3. This TGD variant of space-time super-symmetry resembles ordinary super-symmetry in the
sense that selection rules due to the right-handed neutrino number conservation and analogous
to the conservation of R-parity hold true. The states inside super-multiplets have identical
electro-weak and color quantum numbers but their p-adic mass scales can be different. It
should be possible to estimate reaction reaction rates using rules very similar to those of
super-symmetric gauge theories.

4. It might be even possible to find some simple generalization of standard super-symmetric
gauge theory to get rough estimates for the reaction rates. There are however problems. The
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fact that spins J = 0, 1, 2, 3/2, 2 are possible for super-partners of gauge bosons forces to ask
whether these additional states define an analog of non-stringy strong gravitation. Note that
graviton in TGD framework corresponds to a pair of wormhole throats connected by flux tube
(counterpart of string) and for gravitons one obtains 28-fold degeneracy.

To sum up, this approach does not suggest that particles and sparticles should have different
p-adic mass scales. A possible way out of the problem is that the p-adic mass scales are same but
sparticles have different heff and dark relative to particles so that they are not observable in
particle physics experiments. The breaking of super-conformal symmetry indeed occurs and could
mean a transformation of super-conformal gauge degrees of freedom to dynamical ones and increase
of heff/h = n characterizing the breaking of the conformal symmetry.

13.3.6 What Could Be The Generalization Of Yangian Symmetry Of
N = 4 SUSY In TGD Framework?

There has been impressive steps in the understanding of N = 4 maximally sypersymmetric YM
theory possessing 4-D super-conformal symmetry. This theory is related by AdS/CFT duality to
certain string theory in AdS5 × S5 background. Second stringy representation was discovered by
Witten and is based on 6-D Calabi-Yau manifold defined by twistors. The unifying proposal is
that so called Yangian symmetry is behind the mathematical miracles involved.

The notion of Yangian symmetry would have a generalization in TGD framework obtained by
replacing conformal algebra with appropriate super-conformal algebras. Also a possible realization
of twistor approach and the construction of scattering amplitudes in terms of Yangian invariants
defined by Grassmannian integrals is considered in TGD framework and based on the idea that in
zero energy ontology one can represent massive states as bound states of massless particles. There
is also a proposal for a physical interpretation of the Cartan algebra of Yangian algebra allowing
to understand at the fundamental level how the mass spectrum of n-particle bound states could
be understood in terms of the n-local charges of the Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s
equations. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred
extremals allow a very concrete interpretation in terms of modes of massless non-linear field. Both
conformally compactified Minkowski space identifiable as so called causal diamond and CP2 allow
a description in terms of twistors. These observations inspire the proposal that a generalization of
Witten’s twistor string theory relying on the identification of twistor string world sheets with certain
holomorphic surfaces assigned with Feynman diagrams could allow a formulation of quantum TGD
in terms of 3-dimensional holomorphic surfaces of CP3 × CP3 mapped to 6-surfaces dual CP3 ×
CP3, which are sphere bundles so that they are projected in a natural manner to 4-D space-time
surfaces. Very general physical and mathematical arguments lead to a highly unique proposal for
the holomorphic differential equations defining the complex 3-surfaces conjectured to correspond
to the preferred extremals of Kähler action.

Background

I am outsider as far as concrete calculations in N = 4 SUSY are considered and the following
discussion of the background probably makes this obvious. My hope is that the reader had patience
to not care about this and try to see the big pattern.

The developments began from the observation of Parke and Taylor [B38] that n-gluon tree
amplitudes with less than two negative helicities vanish and those with two negative helicities have
unexpectedly simple form when expressed in terms of spinor variables used to represent light-like
momentum. In fact, in the formalism based on Grassmanian integrals the reduced tree amplitude
for two negative helicities is just “1” and defines Yangian invariant. The article Perturbative Gauge
Theory As a String Theory In Twistor Space [B19] by Witten led to so called Britto-Cachazo-Feng-
Witten (BCFW) recursion relations for tree level amplitudes [B14, B15, B14] allowing to construct
tree amplitudes using the analogs of Feynman rules in which vertices correspond to maximally
helicity violating tree amplitudes (2 negative helicity gluons) and propagator is massless Feynman
propagator for boson. The progress inspired the idea that the theory might be completely integrable
meaning the existence of infinite-dimensional un-usual symmetry. This symmetry would be so
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called Yangian symmetry [K100] assigned to the super counterpart of the conformal group of 4-D
Minkowski space.

Drumond, Henn, and Plefka represent in the article Yangian symmetry of scattering ampli-
tudes in N = 4 super Yang-Mills theory [B18] an argument suggesting that the Yangian invariance
of the scattering amplitudes ins an intrinsic property of planar N = 4 super Yang Mills at least at
tree level.

The latest step in the progress was taken by Arkani-Hamed, Bourjaily, Cachazo, Carot-
Huot, and Trnka and represented in the article Yangian symmetry of scattering amplitudes in
N = 4 super Yang-Mills theory [B25]. At the same day there was also the article of Rutger
Boels entitled On BCFW shifts of integrands and integrals [B39] in the archive. Arkani-Hamed
et al argue that a full Yangian symmetry of the theory allows to generalize the BCFW recursion
relation for tree amplitudes to all loop orders at planar limit (planar means that Feynman diagram
allows embedding to plane without intersecting lines). On mass shell scattering amplitudes are in
question.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group in the
study of integrable systems. Yangians are Hopf algebras which can be assigned with Lie algebras
as the deformations of their universal enveloping algebras. The elegant but rather cryptic looking
definition is in terms of the modification of the relations for generating elements [K100]. Besides
ordinary product in the enveloping algebra there is co-product ∆ which maps the elements of the
enveloping algebra to its tensor product with itself. One can visualize product and co-product is
in terms of particle reactions. Particle annihilation is analogous to annihilation of two particle so
single one and co-product is analogous to the decay of particle to two. ∆ allows to construct higher
generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody al-
gebra or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for super-
conformal algebra in very elegant andconcrete manner in the article Yangian Symmetry in D=4
superconformal Yang-Mills theory [B17]. Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced
with a continuous one. Discrete index poses conditions on the Lie group and its representation
(adjoint representation in the case of N = 4 SUSY). One of the conditions conditions is that the
tensor product R⊗R∗ for representations involved contains adjoint representation only once. This
condition is non-trivial. For SU(n) these conditions are satisfied for any representation. In the
case of SU(2) the basic branching rule for the tensor product of representations implies that the
condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra.
Now however the generators are labelled by non-negative integers labeling the light-like incoming
and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra
also negative values are allowed. Note that only the generators with non-negative conformal
weight appear in the construction of states of Kac-Moody and Virasoro representations so that the
extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be labelled
by conformal weights n = 0 and n = 1 and and their mutual commutation relations are same as for
Kac-Moody algebra. The commutators of n = 1 generators with themselves are however something
different for a non-vanishing deformation parameter h. Serre’s relations characterize the difference
and involve the deformation parameter h. Under repeated commutations the generating elements
generate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just one half
of the Virasoro algebra or Kac-Moody algebra. The generators with n > 0 are n + 1-local in the
sense that they involve n + 1-forms of local generators assignable to the ordered set of incoming
particles of the scattering amplitude. This non-locality generalizes the notion of local symmetry
and is claimed to be powerful enough to fix the scattering amplitudes completely.
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How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, I have nothing to say. I am just perplexed. It is
however possible to keep discussion at general level and still say something interesting (as I hope!).
The key question is whether it could be possible to generalize the proposed Yangian symmetry and
geometric picture behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question is quite
too limited since it allows only single representation of the gauge group and requires massless
particles. One must allow all representations and massive particles so that the representation
of symmetry algebra must involve states with different masses, in principle arbitrary spin and
arbitrary internal quantum numbers. The candidates are obvious: Kac-Moody algebras [A11]
and Virasoro algebras [A23] and their super counterparts. Yangians indeed exist for arbitrary
super Lie algebras. In TGD framework conformal algebra of Minkowski space reduces to
Poincare algebra and its extension to Kac-Moody allows to have also massive states.

2. The formal generalization looks surprisingly straightforward at the formal level. In zero en-
ergy ontology one replaces point like particles with partonic two-surfaces appearing at the
ends of light-like orbits of wormhole throats located to the future and past light-like bound-
aries of causal diamond (CD × CP2 or briefly CD). Here CD is defined as the intersection
of future and past directed light-cones. The polygon with light-like momenta is naturally
replaced with a polygon with more general momenta in zero energy ontology and having par-
tonic surfaces as its vertices. Non-point-likeness forces to replace the finite-dimensional super
Lie-algebra with infinite-dimensional Kac-Moody algebras and corresponding super-Virasoro
algebras assignable to partonic 2-surfaces.

3. This description replaces disjoint holomorphic surfaces in twistor space with partonic 2-surfaces
at the boundaries of CD×CP2 so that there seems to be a close analogy with Cachazo-Svrcek-
Witten picture. These surfaces are connected by either light-like orbits of partonic 2-surface
or space-like 3-surfaces at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated
with isometries of M4 × CP2 annihilating the scattering amplitudes must be extended to a
co-algebras with a non-trivial deformation parameter. Kac-Moody group is thus the product
of Poincare and color groups. This algebra acts as deformations of the light-like 3-surfaces
representing the light-like orbits of particles which are extremals of Chern-Simon action with
the constraint that weak form of electric-magnetic duality holds true. I know so little about the
mathematical side that I cannot tell whether the condition that the product of the represen-
tations of Super-Kac-Moody and Super-Virasoro algebras ontains adjoint representation only
once, holds true in this case. In any case, it would allow all representations of finite-dimensional
Lie group in vertices whereas N = 4 SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody
algebra associated with the light-cone boundary which is metrically 3-dimensional. The finite-
dimensional Lie group is in this case replaced with infinite-dimensional group of symplecto-
morphisms of δM4

+/− made local with respect to the internal coordinates of partonic 2-surface.
A coset construction is applied to these two Virasoro algebras so that the differences of the cor-
responding Super-Virasoro generators and Kac-Moody generators annihilate physical states.
Contrary to the original belief, this construction does not provide a realization of Equivalence
Principle at quantum level. The proper realization of EP at quantum level seems to be based
on the identification of classical Noether charges in Cartan algebra with the eigenvalues of their
quantum counterparts assignable to Kähler-Dirac action. At classical level EP follows at GRT
limit obtained by lumping many-sheeted space-time to M4 with effective metric satisfying
Einstein’s equations as a reflection of the underlying Poincare invariance.

3. The construction of TGD leads also to other super-conformal algebras and the natural guess
is that the Yangians of all these algebras annihilate the scattering amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still act on single
partonic surface only. The discrete Yangian associated with this algebra associated with the
closed polygon defined by the incoming momenta and the negatives of the outgoing momenta
acts in multi-local manner on scattering amplitudes. It might make sense to speak about
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polygons defined also by other conserved quantum numbers so that one would have generalized
light-like curves in the sense that state are massless in 8-D sense.

Is there any hope about description in terms of Grassmannians?

At technical level the successes of the twistor approach rely on the observation that the amplitudes
can be expressed in terms of very simple integrals over sub-manifolds of the space consisting of
k-dimensional planes of n-dimensional space defined by delta function appearing in the integrand.
These integrals define super-conformal Yangian invariants appearing in twistorial amplitudes and
the belief is that by a proper choice of the surfaces of the twistor space one can construct all
invariants. One can construct also the counterparts of loop corrections by starting from tree
diagrams and annihilating pair of particles by connecting the lines and quantum entangling the
states at the ends in the manner dictated by the integration over loop momentum. These operations
can be defined as operations for Grassmannian integrals in general changing the values of n and
k. This description looks extremely powerful and elegant and nosta importantly involves only the
external momenta.

The obvious question is whether one could use similar invariants in TGD framework to
construct the momentum dependence of amplitudes.

1. The first thing to notice is that the super algebras in question act on infinite-dimensional
representations and basically in the world of classical worlds assigned to the partonic 2-surfaces
correlated by the fact that they are associated with the same space-time surface. This does
not promise anything very practical. On the other hand, one can hope that everything related
to other than M4 degrees of freedom could be treated like color degrees of freedom in N = 4
SYM and would boil down to indices labeling the quantum states. The Yangian conditions
coming from isometry quantum numbers, color quantum numbers, and electroweak quantum
numbers are of course expected to be highly non-trivial and could fix the coefficients of various
singlets resulting in the tensor product of incoming and outgoing states.

2. The fact that incoming particles can be also massive seems to exclude the use of the twistor
space. The following observation however raises hopes. The Dirac propagator for wormhole
throat is massless propagator but for what I call pseudo momentum. It is still unclear how
this momentum relates to the actual four-momentum. Could it be actually equal to it? The
recent view about pseudo-momentum does not support this view but it is better to keep mind
open. In any case this finding suggests that twistorial approach could work in in more or
less standard form. What would be needed is a representation for massive incoming particles
as bound states of massless partons. In particular, the massive states of super-conformal
representations should allow this kind of description.

Could zero energy ontology allow to achieve this dream?

1. As far as divergence cancellation is considered, zero energy ontology suggests a totally new ap-
proach producing the basic nice aspects of QFT approach, in particular unitarity and coupling
constant evolution. The big idea related to zero energy ontology is that all virtual particle
particles correspond to wormhole throats, which are pairs of on mass shell particles. If their
momentum directions are different, one obtains time-like continuum of virtual momenta and if
the signs of energy are opposite one obtains also space-like virtual momenta. The on mass shell
property for virtual partons (massive in general) implies extremely strong constraints on loops
and one expect that only very few loops remain and that they are finite since loop integration
reduces to integration over much lower-dimensional space than in the QFT approach. There
are also excellent hopes about Cutkoski rules.

2. Could zero energy ontology make also possible to construct massive incoming particles from
massless ones? Could one construct the representations of the super conformal algebras using
only massless states so that at the fundamental level incoming particles would be massless and
one could apply twistor formalism and build the momentum dependence of amplitudes using
Grassmannian integrals.
One could indeed construct on mass shell massive states from massless states with momenta
along the same line but with three-momenta at opposite directions. Mass squared is given by
M2 = 4E2 in the coordinate frame, where the momenta are opposite and of same magnitude.
One could also argue that partonic 2-surfaces carrying quantum numbers of fermions and
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their superpartners serve as the analogs of point like massless particles and that topologically
condensed fermions and gauge bosons plus their superpartners correspond to pairs of wormhole
throats. Stringy objects would correspond to pairs of wormhole throats at the same space-time
sheet in accordance with the fact that space-time sheet allows a slicing by string worlds sheets
with ends at different wormhole throats and defining time like braiding.

The weak form of electric magnetic duality indeed supports this picture. To understand
how, one must explain a little bit what the weak form of electric magnetic duality means.

1. Elementary particles correspond to light-like orbits of partonic 2-surfaces identified as 3-D
surfaces at which the signature of the induced metric of space-time surface changes from
Euclidian to Minkowskian and 4-D metric is therefore degenerate. The analogy with black
hole horizon is obvious but only partial. Weak form of electric-magnetic duality states that
the Kähler electric field at the wormhole throat and also at space-like 3-surfaces defining
the ends of the space-time surface at the upper and lower light-like boundaries of the causal
diamond is proportonial to Kähler magnetic field so that Kähler electric flux is proportional
Kähler magnetic flux. This implies classical quantization of Kähler electric charge and fixes
the value of the proportionality constant.

2. There are also much more profound implications. The vision about TGD as almost topological
QFT suggests that Kähler function defining the Kähler geometry of the “world of classical
worlds” ( WCW ) and identified as Kähler action for its preferred extremal reduces to the
3-D Chern-Simons action evaluated at wormhole throats and possible boundary components.
Chern-Simons action would be subject to constraints. Wormhole throats and space-like 3-
surfaces would represent extremals of Chern-Simons action restricted by the constraint force
stating electric-magnetic duality (and realized in terms of Lagrange multipliers as usual).
If one assumes that Kähler current and other conserved currents are proportional to current
defining Beltrami flow whose flow lines by definition define coordinate curves of a globally
defined coordinate, the Coulombic term of Kähler action vanishes and it reduces to Chern-
Simons action if the weak form of electric-magnetic duality holds true. One obtains almost
topological QFT. The absolutely essential attribute “almost” comes from the fact that Chern-
Simons action is subject to constraints. As a consequence, one obtains non-vanishing four-
momenta and WCW geometry is non-trivial in M4 degrees of freedom. Otherwise one would
have only topological QFT not terribly interesting physically.

Consider now the question how one could understand stringy objects as bound states of
massless particles.

1. The observed elementary particles are not Kähler monopoles and there much exist a mechanism
neutralizing the monopole charge. The only possibility seems to be that there is opposite
Kähler magnetic charge at second wormhole throat. The assumption is that in the case of color
neutral particles this throat is at a distance of order intermediate gauge boson Compton length.
This throat would carry weak isospin neutralizing that of the fermion and only electromagnetic
charge would be visible at longer length scales. One could speak of electro-weak confinement.
Also color confinement could be realized in analogous manner by requiring the cancellation of
monopole charge for many-parton states only. What comes out are string like objects defined
by Kähler magnetic fluxes and having magnetic monopoles at ends. Also more general objects
with three strings branching from the vertex appear in the case of baryons. The natural guess
is that the partons at the ends of strings and more general objects are massless for incoming
particles but that the 3-momenta are in opposite directions so that stringy mass spectrum and
representations of relevant super-conformal algebras are obtained. This description brings in
mind the description of hadrons in terms of partons moving in parallel apart from transversal
momentum about which only momentum squared is taken as observable.

2. Quite generally, one expects for the preferred extremals of Kähler action the slicing of space-
time surface with string world sheets with stringy curves connecting wormhole throats. The
ends of the stringy curves can be identified as light-like braid strands. Note that the strings
themselves define a space-like braiding and the two braidings are in some sense dual. This
has a concrete application in TGD inspired quantum biology, where time-like braiding defines
topological quantum computer programs and the space-like braidings induced by it its storage
into memory. Stringlike objects defining representations of super-conformal algebras must
correspond to states involving at least two wormhole throats. Magnetic flux tubes connecting
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the ends of magnetically charged throats provide a particular realization of stringy on mass
shell states. This would give rise to massless propagation at the parton level. The stringy
quantization condition for mass squared would read as 4E2 = n in suitable units for the
representations of super-conformal algebra associated with the isometries. For pairs of throats
of the same wormhole contact stringy spectrum does not seem plausible since the wormhole
contact is in the direction of CP2. One can however expect generation of small mass as
deviation of vacuum conformal weight from half integer in the case of gauge bosons.

If this picture is correct, one might be able to determine the momentum dependence of the
scattering amplitudes by replacing free fermions with pairs of monopoles at the ends of string and
topologically condensed fermions gauge bosons with pairs of this kind of objects with wormhole
throat replaced by a pair of wormhole throats. This would mean suitable number of doublings of
the Grassmannian integrations with additional constraints on the incoming momenta posed by the
mass shell conditions for massive states.

Could zero energy ontology make possible full Yangian symmetry?

The partons in the loops are on mass shell particles have a discrete mass spectrum but both signs
of energy are possible for opposite wormhole throats. This implies that in the rules for constructing
loop amplitudes from tree amplitudes, propagator entanglement is restricted to that corresponding
to pairs of partonic on mass shell states with both signs of energy. As emphasized in [B25], it is
the Grassmannian integrands and leading order singularities of N = 4 SYM, which possess the full
Yangian symmetry. The full integral over the loop momenta breaks the Yangian symmetry and
brings in IR singularities. Zero energy ontologist finds it natural to ask whether QFT approach
shows its inadequacy both via the UV divergences and via the loss of full Yangian symmetry.
The restriction of virtual partons to discrete mass shells with positive or negative sign of energy
imposes extremely powerful restrictions on loop integrals and resembles the restriction to leading
order singularities. Could this restriction guarantee full Yangian symmetry and remove also IR
singularities?

Could Yangian symmetry provide a new view about conserved quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound states.
The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute. Since the
co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to generators with
high value of n, it seems that they commute also with n ≥ 1 generators. This applies to four-
momentum, color isospin and color hyper charge, and also to the Virasoro generator L0 acting on
Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum
of contributions from various levels? If so, the four momentum and mass squared would involve
besides the local term assignable to wormhole throats also n-local contributions. The interpretation
in terms of n-parton bound states would be extremely attractive. n-local contribution would involve
interaction energy. For instance, string like object would correspond to n = 1 level and give
n = 2-local contribution to the momentum. For baryonic valence quarks one would have 3-local
contribution corresponding to n = 2 level. The Yangian view about quantum numbers could give
a rigorous formulation for the idea that massive particles are bound states of massless particles.

13.4 Weak Form Electric-Magnetic Duality And Its Impli-
cations

The notion of electric-magnetic duality [B4] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
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rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K31] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that
this concept leads to precise predictions. The point is that elementary particles do not generate
monopole fields in macroscopic length scales: at least when one considers visible matter. The first
question is whether elementary particles could have vanishing magnetic charges: this turns out to
be impossible. The next question is how the screening of the magnetic charges could take place and
leads to an identification of the physical particles as string like objects identified as pairs magnetic
charged wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.
The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively this pic-
ture is attractive. A more general ansatz would allow several Beltrami flows meaning multi-
hydrodynamics. The integrability conditions boil down to two scalar functions: the first one
satisfies massless d’Alembert equation in the induced metric and the gradients of the scalar
functions are orthogonal. The interpretation in terms of momentum and polarization directions
is natural.

13.4.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the embedding space coordinates
in the space-time regions with Minkowskian resp. Euclidian signature of the induced metric.
This is a condition on modified gamma matrices and hyper-quaternionicity states that they span
a hyper-quaternionic sub-space.
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Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent space
of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification
of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the
induced metric is however troublesome since the presence of the induced metric means that
the simple transformation properties of flux Hamiltonians under symplectic transformations
-in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This approach
involves also quaternions. These arguments suggest that the duality in some form might work.
The full electric magnetic duality is certainly too strong and implies that space-time surface at
the partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in
the deep interior of the region with Euclidian signature. In the region surrounding wormhole
throat at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional
to Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (13.4.1)

A more general form of this duality is suggested by the considerations of [K52] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B2] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (13.4.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric at
wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (13.4.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
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Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X2 depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L2] , [L2]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (13.4.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (13.4.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (13.4.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L+sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.
The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (13.4.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the Kähler-Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic
2-surface. The assumption of standard quantized values for Qem and QZ would be also seen
as the identification of the fine structure constants αem and αZ . This however requires weak
isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.
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1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum crit-
icality. Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where
αem is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the “Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [K77] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (13.4.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and anti-fermion numbers (for both leptons
and quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the
vanishing of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux
contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the
wormhole throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (13.4.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at
the Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (gαβgµν − gανgµβ)/

√
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.
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Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR12 ,

Z0 = 2R03 . (13.4.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L2]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to the
fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the
Minkowskian side of the wormhole throat. One can argue that Weinberg angle must increase
smoothly from a vanishing value at both sides of wormhole throat to its value in the deep
interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively absent.
Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [K82]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would natu-
rally correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing
only in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are
allowed as simplest possible solutions of field equations [K106]. The extremely small value
of the observed cosmological constant needed in GRT type cosmology could be equal to the
large cosmological constant associated with CP2 metric multiplied with the 3-volume fraction
of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guaran-
tee also now the preferred extremal property and prevent the reduction to a mere topological
QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

13.4.2 Magnetic Confinement, The Short Range Of Weak Forces, And
Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
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macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3

V cancel each other at both space-time sheets involved so that one obtains at both space-
time sheets magnetic dipoles of size of weak boson Compton length. The proposed magnetic
character of fundamental particles should become visible at TeV energies so that LHC might
have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W
boson fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition
- at least in scales above weak scale. In the generic case this requires that the spinor mode is
restricted to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies
that TGD reduces to string model in fermionic sector. Even for preferred extremals with 2-D
projecting the modes are expected to allow restriction to 2-surfaces. This localization is possible
only for Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
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quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 − X∓1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum
of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 × S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of

dark variants of particles suggest the existence of scaled up copies of QCD type physics and weak
physics. For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in

the most general case. The dark variants of the particle would have the same mass as the original
one. In particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1
has been proposed to define zoomed copies of these physics. At the level of magnetic confinement
this would mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant
of the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89−61)/2 = 214 higher and about 1.6 × 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D11] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole
contacts is that one cannot construct spin two objects using only single fermion states at wormhole
throats. Of course, also super partners of these states with higher spin obtained by adding fermions
and anti-fermions at the wormhole throat but these do not give rise to graviton like states [?] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below
this length scale the charges of the fermions become visible. Mersenne hypothesis suggests that
some Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.
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What happens to the generalized Feynman diagrams is an interesting question. It is not at
all clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready
to assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies ZEO. A highly
attractive assumption is that the particles appearing at wormhole throats are on mass shell
particles. For incoming and outgoing elementary bosons and their super partners they would
be positive it resp. negative energy states with parallel on mass shell momenta. For virtual
bosons they the wormhole throats would have opposite sign of energy and the sum of on mass
shell states would give virtual net momenta. This would make possible twistor description
of virtual particles allowing only massless particles (in 4-D sense usually and in 8-D sense
in TGD framework). The notion of virtual fermion makes sense only if one assumes in the
interaction region a topological condensation creating another wormhole throat having no
fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [K63] . If
this kind of states are in question the description of virtual states in terms of on mass shell
states is not lost. Of course, one cannot exclude the possibility that there is infinite number
of this kind of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are
possible. If this picture is correct, the situation would not change in an essential manner from
the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K64] .

13.4.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement h → n × h would effectively describe this. Boundary conditions would however
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give 1/n factor so that ~ would disappear from the Kähler function! It is somewhat surprising
that Kähler action gives Chern-Simons action in the vacuum sector defined as sector for which
Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish.
This kind of dimensional reduction would mean an enormous simplification since TGD would
reduce to an almost topological QFT. The attribute “almost” would come from the fact that one
has non-vanishing classical Noether charges defined by Kähler action and non-trivial quantum
dynamics in M4 degrees of freedom. One could also assign to space-time surfaces conserved four-
momenta which is not possible in topological QFTs. For this reason the conditions guaranteeing
the vanishing of Coulomb interaction term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (“massless extremals” for which
weak self-duality condition does not make sense [K17] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original näıve conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW metric
would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum classical
correspondence and was indeed too hasty. The point is that the allowed variations of Kähler
function must respect the weak electro-magnetic duality which relates Kähler electric field
depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term∫

Λα(Jnα −KεnαβγJβ gamma)
√
g4d

3x . (13.4.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification
of the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the
Kähler form assignable to the light-cone boundary reducing to that for rM = constant sphere
- call it J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ +
εJ1
γδ). This form implies that the boundary term gives a non-trivial contribution to the M4

part of the WCW metric even without the constraint from electric-magnetic duality. Kähler
charge is not affected unless the partonic 2-surface contains the tip of CD in its interior. In
this case the value of Kähler charge is shifted by a topological contribution. Whether this
term can survive depends on whether the resulting vacuum extremals are consistent with the
basic facts about classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (13.4.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (13.4.13)

jK is a four-dimensional counterpart of Beltrami field [B8] and could be called generalized
Beltrami field.
The integrability conditions follow also from the construction of the extremals of Kähler action
[K17] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
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dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated
if the integrability condition jI ∧ djI = 0 holds true implying the same condition for jK .
By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that the
contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function φ. These
functions define families of conserved currents jαKφ and jαI φ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A→
A + ∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a

giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is
satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (13.4.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over worm-

hole throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the Kähler-Dirac in-
teraction corresponds to a critical deformation of the space-time sheet and is realized as an
addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to iden-
tify this gauge transformation giving rise to a conserved charge so that the conserved charges
would provide a representation for the charges associated with the infinitesimal critical defor-
mations not affecting Kähler action. The gauge transformed Kähler gauge potential couples
to the Kähler-Dirac equation and its effect could be visible in the value of Kähler function and
therefore also in the properties of the preferred extremal. The effect on WCW metric would
however vanish since K would transform only by an addition of a real part of a holomorphic
function.

7. A first guess for the explicit realization of the quantum classical correspondence between quan-
tum numbers and space-time geometry is that the deformation of the preferred extremal due
to the addition of the measurement interaction term is induced by a U(1) gauge transformation
induced by a transformation of δCD×CP2 generating the gauge transformation represented by
φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding Hamiltonians
affect only zero modes rather than quantum fluctuating degrees of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as
boundary term.
Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.
One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M4 Dirac operator. C-S-
D Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.
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To sum up, one could understand the basic properties of WCW metric in this framework.
Effective 2-dimensionality would result from the existence of an infinite number of conserved
charges in two different time directions (genuine conservation laws plus gauge fixing). The infinite-
dimensional symmetric space for given values of zero modes corresponds to the Cartesian product
of the WCWs associated with the partonic 2-surfaces at both ends of CD and the generalized
Chern-Simons term decomposes into a sum of terms from the ends giving single particle Kähler
functions and to the terms from light-like wormhole throats giving interaction term between pos-
itive and negative energy parts of the state. Hence Kähler function could be calculated without
any knowledge about the interior of the space-time sheets and TGD would reduce to almost topo-
logical QFT as speculated earlier. Needless to say this would have immense boost to the program
of constructing WCW Kähler geometry.

13.5 Quantum TGD Very Briefly

13.5.1 Two Approaches To Quantum TGD

There are two basic approaches to the construction of quantum TGD. The first approach relies
on the vision of quantum physics as infinite-dimensional Kähler geometry [A12] for the “world of
classical worlds” (WCW) identified as the space of 3-surfaces in in certain 8-dimensional space.
Essentially a generalization of the Einstein’s geometrization of physics program is in question.
The second vision is the identification of physics as a generalized number theory involving p-adic
number fields and the fusion of real numbers and p-adic numbers to a larger structure, classical
number fields, and the notion of infinite prime.

With a better resolution one can distinguish also other visions crucial for quantum TGD.
Indeed, the notion of finite measurement resolution realized in terms of hyper-finite factors, TGD
as almost topological quantum field theory, twistor approach, ZEO, and weak form of electric-
magnetic duality play a decisive role in the actual construction and interpretation of the theory.
One can however argue that these visions are not so fundamental for the formulation of the theory
than the first two.

Physics as infinite-dimensional geometry

It is good to start with an attempt to give overall view about what the dream about physics
as infinite-dimensional geometry is. The basic vision is generalization of the Einstein’s program
for the geometrization of classical physics so that entire quantum physics would be geometrized.
Finite-dimensional geometry is certainly not enough for this purposed but physics as infinite-
dimensional geometry of what might be called world of classical worlds (WCW) -or more neutrally
WCW of some higher-dimensional imbeddign space- might make sense. The requirement that the
Hermitian conjugation of quantum theories has a geometric realization forces Kähler geometry
for WCW. WCW defines the fixed arena of quantum physics and physical states are identified as
spinor fields in WCW. These spinor fields are classical and no second quantization is needed at this
level. The justification comes from the observation that infinite-dimensional Clifford algebra [A3]
generated by gamma matrices allows a natural identification as fermionic oscillator algebra.

The basic challenges are following.

1. Identify WCW.

2. Provide WCW with Kähler metric and spinor structure

3. Define what spinors and spinor fields in WCW are.

There is huge variety of finite-dimensional geometries and one might think that in infinite-
dimensional case one might be drowned with the multitude of possibilities. The situation is however
exactly opposite. The loop spaces associated with groups have a unique Kähler geometry due to the
simple condition that Riemann connection exists mathematically [A44]. This condition requires
that the metric possesses maximal symmetries. Thus raises the vision that infinite-dimensional
Kähler geometric existence is unique once one poses the additional condition that the resulting
geometry satisfies some basic constraints forced by physical considerations.

The observation about the uniqueness of loop geometries leads also to a concrete vision about
what this geometry could be. Perhaps WCW could be regarded as a union of symmetric spaces
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[A24] for which every point is equivalent with any other. This would simplify the construction of
the geometry immensely and would mean a generalization of cosmological principle to infinite-D
context [K52, K85], [L7].

This still requires an answer to the question why H = M4 × CP2 is so unique. Something
in the structure of this space must distinguish it in a unique manner from any other candidate.

1. The uniqueness of M4 factor can be understood from the miraculous conformal symmetries of
the light-cone boundary but in the case of CP2 there is no obvious mathematical argument of
this kind although physically CP2 is unique [L16].

2. The observation that M4 × CP2 has dimension 8, the space-time surfaces have dimension 4,
and partonic 2-surfaces, which are the fundamental objects by holography have dimension 2,
suggests that classical number fields [A16, A5, A21] are involved and one can indeed end up to
the choice M4 × CP2 from physics as generalized number theory vision by simple arguments
[K96], [L9]. In particular, the choices M8 -a subspace of complexified octonions (for octonions
see [A16] ), which I have used to call hyper-octonions- and M4 × CP2 can be regarded as
physically equivalent: this “number theoretical compactification” is analogous to spontaneous
compactification in M-theory. No dynamical compactification takes place so that M8 − H
duality is a more appropriate term. Octonionic spinor structure required to be equivalent with
the ordinary one makes also possible to generalize the twistors from 4-D to 8-D context and
replaced 4-D light-likeness with 8-D one.

3. A further powerful argument in favor of H is that M4 and CP2 are the only twistor spaces with
Kähler structure. The twistor lift of space-time surfaces to their twistor spaces with twistor
structure induced from that of M4 × CP2 indeed provides a new approach to TGD allowing
to utilize powerful tools of algebraic geometry [K100].

Physics as generalized number theory

Physics as a generalized number theory (for an overview about number theory see [A15] ) program
consists of three separate threads: various p-adic physics and their fusion together with real number
based physics to a larger structure [K95] , [L12], the attempt to understand basic physics in terms
of classical number fields [K96], [L9] (in particular, identifying associativity condition as the basic
dynamical principle), and infinite primes [K94] , [L5], whose construction is formally analogous to
a repeated second quantization of an arithmetic quantum field theory. In this article a summary of
the philosophical ideas behind this dream and a summary of the technical challenges and proposed
means to meet them are discussed.

The construction of p-adic physics and real physics poses formidable looking technical chal-
lenges: p-adic physics should make sense both at the level of the embedding space, the “world
of classical worlds” (WCW), and space-time and these physics should allow a fusion to a larger
coherent whole. This forces to generalize the notion of number by fusing reals and p-adics along
rationals and common algebraic numbers. The basic problem that one encounters is definition of
the definite integrals and harmonic analysis [A8] in the p-adic context [K69]. It turns out that
the representability of WCW as a union of symmetric spaces [A24] provides a universal group
theoretic solution not only to the construction of the Kähler geometry of WCW but also to this
problem. The p-adic counterpart of a symmetric space is obtained from its discrete invariant by
replacing discrete points with p-adic variants of the continuous symmetric space. Fourier anal-
ysis [A8] reduces integration to summation. If one wants to define also integrals at space-time
level, one must pose additional strong constraints which effectively reduce the partonic 2-surfaces
and perhaps even space-time surfaces to finite geometries and allow assign to a given partonic
2-surface a unique power of a unique p-adic prime characterizing the measurement resolution in
angle variables. These integrals might make sense in the intersection of real and p-adic worlds
defined by algebraic surfaces.

The dimensions of partonic 2-surface, space-time surface, and embedding space suggest that
classical number fields might be highly relevant for quantum TGD. The recent view about the
connection is based on hyper-octonionic representation of the embedding space gamma matrices,
and the notions of associative and co-associative space-time regions defined as regions for which
the Kähler-Dirac gamma matrices span quaternionic or co-quaternionic plane at each point of the
region. A further condition is that the tangent space at each point of space-time surface contains
a preferred hyper-complex (and thus commutative) plane identifiable as the plane of non-physical
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polarizations so that gauge invariance has a purely number theoretic interpretation. WCW can be
regarded as the space of sub-algebras of the local octonionic Clifford algebra [A3] of the embedding
space defined by space-time surfaces with the property that the local sub-Clifford algebra spanned
by Clifford algebra valued functions restricted at them is associative or co-associative in a given
region.

The recipe for constructing infinite primes is structurally equivalent with a repeated second
quantization of an arithmetic super-symmetric quantum field theory. At the lowest level one has
fermionic and bosonic states labeled by finite primes and infinite primes correspond to many particle
states of this theory. Also infinite primes analogous to bound states are predicted. This hierarchy
of quantizations can be continued indefinitely by taking the many particle states of the previous
level as elementary particles at the next level. Construction could make sense also for hyper-
quaternionic and hyper-octonionic primes although non-commutativity and non-associativity pose
technical challenges. One can also construct infinite number of real units as ratios of infinite
integers with a precise number theoretic anatomy. The fascinating finding is that the quantum
states labeled by standard model quantum numbers allow a representation as wave functions in
the discrete space of these units. Space-time point becomes infinitely richly structured in the sense
that one can associate to it a wave function in the space of real (or octonionic) units allowing to
represent the WCW spinor fields. One can speak about algebraic holography or number theoretic
Brahman=Atman identity and one can also say that the points of embedding space and space-time
surface are subject to a number theoretic evolution.

One fascinating aspect of infinite primes is that besides the simplest infinite primes analogous
to Fock states of a supersymmetric arithmetic QFT constructed from single particle states labelled
by primes, also infinite primes having interpretation as bound states emerge. They correspond to
polynomials characterized by degree n. Since the formation of bound states in TGD framework
corresponds to a hierarchy of conformal symmetry breakings labelled by integer n = heff/h, the
natural question is whether these two integers correspond to each other.

Questions

The experience has shown repeatedly that a correct question and identification of some weakness
of existing vision is what can only lead to a genuine progress. In the following I discuss the basic
questions, which have stimulated progress in the challenge of constructing WCW geometry.

1. What is WCW?

Concerning the identification of WCW I have made several guesses and the progress has been
basically due to the gradual realization of various physical constraints and the fact that standard
physics ontology is not enough in TGD framework.

1. The first guess was that WCW corresponds to all possible space-like 3-surfaces in H = M4 ×
CP2, where M4 denotes Minkowski space and CP2 denotes complex projective space of two
complex dimensions having also representation as coset space SU(3)/U(2) (see the separate
article summarizing the basic facts about CP2 and how it codes for standard model symmetries
[L2], [L10, L2] ). What led to the this particular choice H was the observation that the
geometry of H codes for standard model quantum numbers and that the generalization of
particle from point like particle to 3-surface allows to understand also remaining quantum
numbers having no obvious explanation in standard model (family replication phenomenon).
What is important to notice is that Poincare symmetries act as exact symmetries of M4 rather
than space-time surface itself: this realizes the basic vision about Poincare invariant theory of
gravitation. This lifting of symmetries to the level of embedding space and the new dynamical
degrees of freedom brought by the sub-manifold geometry of space-time surface are absolutely
essential for entire quantum TGD and distinguish it from general relativity and string models.
There is however a problem: it is not obvious how to get cosmology.

2. The second guess was that WCW consists of space-like 3-surfaces in H+ = M4
+ ×CP2, where

M4
+ future light-cone having interpretation as Big Bang cosmology at the limit of vanish-

ing mass density with light-cone property time identified as the cosmic time. One obtains
cosmology but loses exact Poincare invariance in cosmological scales since translations lead
out of future light-cone. This as such has no practical significance but due to the met-
ric 2-dimensionality of light-cone boundary δM4

+ the conformal symmetries of string model
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assignable to finite-dimensional Lie group generalize to conformal symmetries assignable to
an infinite-dimensional symplectic group of S2 × CP2 and also localized with respect to the
coordinates of 3-surface. These symmetries are simply too beautiful to be important only at
the moment of Big Bang and must be present also in elementary particle length scales. Note
that these symmetries are present only for 4-D Minkowski space so that a partial resolution
of the old conundrum about why space-time dimension is just four emerges.

3. The third guess was that the light-like 3-surfaces inside CD are more attractive than space-like
3-surfaces. The reason is that the infinite-D conformal symmetries characterize also light-like
3-surfaces because they are metrically 2-dimensional. This leads to a generalization of Kac-
Moody symmetries [A11] of super string models with finite-dimensional Lie group replaced
with the group of isometries of H. The natural identification of light-like 3-surfaces is as
3-D surfaces defining the regions at which the signature of the induced metric changes from
Minkowskian (1,−1,−1,−1) to Euclidian (−1−1−1−1)- I will refer these surfaces as throats
or wormhole throats in the sequel. Light-like 3-surfaces are analogous to blackhole horizons
and are static because strong gravity makes them light-like. Therefore also the dimension 4
for the space-time surface is unique.
This identification leads also to a rather unexpected physical interpretation. Single light-like
wormhole throat carriers elementary particle quantum numbers. Fermions and their super-
partners are obtained by glueing Euclidian regions (deformations of so called CP2 type vacuum
extremals of Kähhler action) to the background with Minkowskian signature. Bosons are iden-
tified as wormhole contacts with two throats carrying fermion resp. anti-fermionic quantum
numbers. These can be identified as deformations of CP2 vacuum extremals between between
two parallel Minkowskian space-time sheets. One can say that bosons and their superpartners
emerge. This has dramatic implications for quantum TGD [K29] and QFT limit of TGD .
The question is whether one obtains also a generalization of Feynman diagrams. The answer
is affirmative. Light-like 3-surfaces or corresponding Euclidian regions of space-time are anal-
ogous to the lines of Feynman diagram and vertices are replaced by 2-D surface at which these
surfaces glued together. One can speak about Feynman diagrams with lines thickened to light-
like 3-surfaces and vertices to 2-surfaces. The generalized Feynman diagrams are singular as
3-manifolds but the vertices are non-singular as 2-manifolds. Same applies to the correspond-
ing space-time surfaces and space-like 3-surfaces. Therefore one can say that WCW consists
of generalized Feynman diagrams- something rather different from the original identification
as space-like 3-surfaces and one can wonder whether these identification could be equivalent.

4. The fourth guess was a generalization of the WCW combining the nice aspects of the identifi-
cations H = M4×CP2 (exact Poincare invariance) and H = M4

+×CP2 (Big Bang cosmology).
The idea was to generalize WCW to a union of basic building bricks -causal diamonds (CDs)
- which themselves are analogous to Big Bang-Big Crunch cosmologies breaking Poincare in-
variance, which is however regained by the allowance of union of Poincare transforms of the
causal diamonds.
The starting point is General Coordinate Invariance (GCI). It does not matter, which 3-D slice
of the space-time surface one choose to represent physical data as long as slices are related by
a diffeomorphism of the space-time surface. This condition implies holography in the sense
that 3-D slices define holograms about 4-D reality.
The question is whether one could generalize GCI in the sense that the descriptions using
space-like and light-like 3-surfaces would be equivalent physically. This requires that finite-
sized space-like 3-surfaces are somehow equivalent with light-like 3-surfaces. This suggests that
the light-like 3-surfaces must have ends. Same must be true for the space-time surfaces and
must define preferred space-like 3-surfaces just like wormhole throats do. This makes sense
only if the 2-D intersections of these two kinds of 3-surfaces -call them partonic 2-surfaces-
and their 4-D tangent spaces carry the information about quantum physics. A strengthening
of holography principle would be the outcome. The challenge is to understand, where the
intersections defining the partonic 2-surfaces are located.
ZEO (ZEO) allows to meet this challenge.

(a) Assume that WCW is union of sub-WCWs identified as the space of light-like 3-surfaces
assignable to CD × CP2 with given CD defined as an intersection of future and past
directed light-cones of M4. The tips of CDs have localization in M4 and one can perform
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for CD both translations and Lorentz boost for CDs. Space-time surfaces inside CD define
the basic building brick of WCW. Also unions of CDs allowed and the CDs belonging to
the union can intersect. One can of course consider the possibility of intersections and
analogy with the set theoretic realization of topology.

(b) ZEO property means that the light-like boundaries of these objects carry positive and
negative energy states, whose quantum numbers are opposite. Everything can be created
from vacuum and can be regarded as quantum fluctuations in the standard vocabulary of
quantum field theories.

(c) Space-time surfaces inside CDs begin from the lower boundary and end to the upper
boundary and in ZEO it is natural to identify space-like 3-surfaces as pairs of space-like
3-surfaces at these boundaries. Light-like 3-surfaces connect these boundaries.

(d) The generalization of GCI states that the descriptions based on space-like 3-surfaces must
be equivalent with that based on light-like 3-surfaces. Therefore only the 2-D intersections
of light-like and space-like 3-surfaces - partonic 2-surfaces- and their 4-D tangent spaces
(4-surface is there!) matter. Effective 2-dimensionality means a strengthened form of
holography but does not imply exact 2-dimensionality, which would reduce the theory to
a mere string model like theory. Once these data are given, the 4-D space-time surface is
fixed and is analogous to a generalization of Bohr orbit to infinite-D context. This is the
first guess. The situation is actually more delicate due to the non-determinism of Kähler
action motivating the interaction of the hierarchy of CDs within CDs.

In this framework one obtains cosmology: CDs represent a fractal hierarchy of big bang-big
crunch cosmologies. One obtains also Poincare invariance. One can also interpret the non-
conservation of gravitational energy in cosmology which is an empirical fact but in conflict with
exact Poincare invariance as it is realized in positive energy ontology [K106, K90]. The reason
is that energy and four-momentum in ZEO correspond to those assignable to the positive
energy part of the zero energy state of a particular CD. The density of energy as cosmologist
defines it is the statistical average for given CD: this includes the contributions of sub-CDs.
This average density is expected to depend on the size scale of CD density is should therefore
change as quantum dispersion in the moduli space of CDs takes place and leads to large time
scale for any fixed sub-CD.
Even more, one obtains actually quantum cosmology! There is large variety of CDs since they
have position in M4 and Lorentz transformations change their shape. The first question is
whether the M4 positions of both tips of CD can be free so that one could assign to both tips
of CD momentum eigenstates with opposite signs of four-momentum. The proposal, which
might look somewhat strange, is that this not the case and that the proper time distance
between the tips is quantized as integer multiples of a fundamental time scale T = R/c defined
by CP2 size R.
A stronger - maybe un-necessarily strong - condition would be that the quantization is in
octaves. This would explain p-adic length scale hypothesis, which is behind most quantitative
predictions of TGD. That the time scales assignable to the CD of elementary particles corre-
spond to biologically important time scales [K38] forces to take this hypothesis very seriously.
The interpretation for T could be as a cosmic time. Even more general quantization is proposed
to take place. The relative position of the second tip with respect to the first defines a point of
the proper time constant hyperboloid of the future light cone. The hypothesis is that one must
replace this hyperboloid with a lattice like structure. This implies very powerful cosmological
predictions finding experimental support from the quantization of redshifts for instance [K90].
For quite recent further empirical support see [E30].
One should not take this argument without a grain of salt. Can one really realize ZEO in
this framework? The geometric picture is that translations correspond to translations of CDs.
Translations should be done independently for the upper and lower tip of CD if one wants to
speak about zero energy states but this is not possible if the proper time distance is quantized.
If the relative M4

+ coordinate is discrete, this pessimistic conclusion is strengthened further.
The manner to get rid of problem is to assume that translations are represented by quantum
operators acting on states at the light-like boundaries. This is just what standard quantum
theory assumes. An alternative- purely geometric- way out of difficulty is the Kac-Moody
symmetry associated with light-like 3-surfaces meaning that local M4 translations depending
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on the point of partonic 2-surface are gauge symmetries. For a given translation leading out
of CD this gauge symmetry allows to make a compensating transformation which allows to
satisfy the constraint.

This picture is roughly the recent view about WCW . What deserves to be emphasized is
that a very concrete connection with basic structures of quantum field theory emerges already at
the level of basic objects of the theory and GCI implies a strong form of holography and almost
stringy picture.

2.Some Why’s

In the following I try to summarize the basic motivations behind quantum TGD in form of
various Why’s.

1. Why WCW?
Einstein’s program has been extremely successful at the level of classical physics. Fusion of
general relativity and quantum theory has however failed. The generalization of Einstein’s
geometrization program of physics from classical physics to quantum physics gives excellent
hopes about the success in this project. Infinite-dimensional geometries are highly unique
and this gives hopes about fixing the physics completely from the uniqueness of the infinite-
dimensional Kähler geometric existence.

2. Why spinor structure in WCW?
Gamma matrices defining the Clifford algebra [A3] of WCW are expressible in terms of
fermionic oscillator operators. This is obviously something new as compared to the view about
gamma matrices as bosonic objects. There is however no deep reason denying this kind of
identification. As a consequence, a geometrization of fermionic oscillator operator algebra and
fermionic statistics follows as also geometrization of super-conformal symmetries [A23, A11]
since gamma matrices define super-generators of the algebra of WCW isometries extended to
a super-algebra.

3. Why Kähler geometry?
Geometrization of the bosonic oscillator operators in terms of WCW vector fields and fermionic
oscillator operators in terms of gamma matrices spanning Clifford algebra. Gamma matrices
span hyper-finite factor of type II1 and the extremely beautiful properties of these von Neuman
algebras [A60] (one of the three von Neumann algebras that von Neumann suggests as possible
mathematical frameworks behind quantum theory) lead to a direct connection with the basic
structures of modern physics (quantum groups, non-commutative geometries, .. [A37]).
A further reason why is the finiteness of the theory.

(a) In standard QFTs there are two kinds of infinities. Action is a local functional of fields
in 4-D sense and one performs path integral over all 4-surfaces to construct S-matrix.
Mathematically path integration is a poorly defined procedure and one obtains diverging
Gaussian determinants and divergences due to the local interaction vertices. Regularization
provides the manner to get rid of the infinities but makes the theory very ugly.

(b) Kähler function defining the Kähler geometry is a expected to be non-local functional
of the space-like 3-surfaces at the ends of space-time surface reducing by strong form of
holography to a functional of partonic 2-surfaces and their 4-D tangent space data (Kähler
action for the Euclidian regions of the preferred extremal and having as interpretation in
terms of generalized Feynman diagram).
Path integral is replaced with a functional integral, which is mathematically well-defined
procedure and one performs functional integral only over the unions of 3-surfaces at op-
posite boundaries of CD and having vanishing super-conformal charges for a sub-algebras
of conformal algebras with conformal weights coming as multiples of integer h = heff/h.
This realizes the strong form of holography. The exponent of Kähler function - Kähler
action for the Euclidian space-time regions - defines a unique vacuum functional whereas
Minkowskian contribution to Kähler action gives the analog of ordinary imaginary expo-
nent of action.
The local divergences of local quantum field theories are expected t be absent since there
are no local interaction vertices. Also the divergences associated with the Gaussian deter-
minant and metric determinant cancel since these two determinants cancel each other in
the integration over WCW. As a matter fact, symmetric space property suggest a much
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more elegant manner to perform the functional integral by reducing it to harmonic analysis
in infinite-dimensional symmetric space [K113].

(c) One can imagine also the possibility of divergences in fermionic degrees of freedom but the
generalization of the twistor approach to 8-D context [K100] suggests that the generalized
Feynman diagrams in ZEO are manifestly finite: in particular IR divergences plaguing
ordinary twistor approach should be absent by 8-D masslessness. The only fermionic
interaction vertex is 2- vertex associated with the discontinuity of K-D operator assignable
to string world sheet boundary at partonic 2-surfaces serving as geometric vertices. At
fermionic level scattering amplitudes describe braiding and OZI rule is satisfied so that
the analog of topological QFT is obtained. The topological vertices describing the joining
of incoming light-like orbits of partonic 2-surface at the vertices imply the non-triviality
of the scattering amplitudes.

4. Why infinite-dimensional symmetries?
WCW must be a union of symmetric spaces in order that the Riemann connection exists (this
generalizes the finding of Freed for loop groups [A44] ). Since the points of symmetric spaces
are metrically equivalent, the geometrization becomes tractable although the dimension is
infinite. A union of symmetric spaces is required because 3-surfaces with a size of galaxy and
electron cannot be metrically equivalent. Zero modes distinguish these surfaces and can be
regarded as purely classical degrees of freedom whereas the degrees of freedom contributing to
the WCW line element are quantum fluctuating degrees of freedom.
One immediate implication of the symmetric space property is constant curvature space prop-
erty meaning that the Ricci tensor proportional to metric tensor. Infinite-dimensionality means
that Ricci scalar either vanishes or is infinite. This implies vanishing of Ricci tensor and vac-
uum Einstein equations for WCW.

5. Why ZEO and why causal diamonds?
The consistency between Poincare invariance and GRT requires ZEO. In positive energy ontol-
ogy only one of the infinite number of classical solutions is realized and partially fixed by the
values of conserved quantum numbers so that the theory becomes obsolete. Even in quantum
theory conservation laws mean that only those solutions of field equations with the quantum
numbers of the initial state of the Universe are interesting and one faces the problem of un-
derstanding what the the initial state of the universe was. In ZEO these problems disappear.
Everything is creatable from vacuum: if the physical state is mathematically realizable it is in
principle reachable by a sequence of quantum jumps. There are no physically non-reachable
entities in the theory. ZEO leads also to a fusion of thermodynamics with quantum theory.
Zero energy states ae defined as entangled states of positive and negative energy states and
entanglement coefficients define what I call M -matrix identified as “complex square root”
of density matrix expressible as a product of diagonal real and positive density matrix and
unitary S-matrix [K29].
There are several good reasons why for causal diamonds. ZEO requires CDs, the generalized
form of GCI and strong form of holography (light-like and space-like 3-surfaces are physically
equivalent representations) require CDs, and also the view about light-like 3-surfaces as gen-
eralized Feynman diagrams requires CDs. Also the classical non-determinism of Kähler action
can be understood using the hierarchy CDs and the addition of CDs inside CDs to obtain a
fractal hierarchy of them provides an elegant manner to undersand radiative corrections and
coupling constant evolution in TGD framework.
A strong physical argument in favor of CDs is the finding that the quantized proper time
distance between the tips of CD fixed to be an octave of a fundamental time scale defined by
CP2 happens to define fundamental biological time scale for electron, u quark and d quark
[K38]: there would be a deep connection between elementary particle physics and living matter
leading to testable predictions.

13.5.2 Overall View About Kähler Action And Kähler Dirac Action

In the following the most recent view about Kähler action and the Kähler-Dirac action (Kähler-
Dirac action) is explained in more detail. The proposal is one of the many that I have considered.

1. The minimal formulation involves in the bosonic case only 4-D Kähler action. The action could
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contain also Chern-Simons boundary term localized to partonic orbits at which the signature of
the induced metric changes. The coefficient of Chern-Simons term could be chosen so that this
contribution to bosonic action cancels the Chern-Simons term coming from Kähler action (by
weak form of electric-magnetic duality) so that for preferred extremals Kähler action reduces to
Chern-Simons terms at the ends of space-time surface at boundaries of causal diamond (CD).
For Euclidian wormhole contacts Chern-Simons term need not reduce to a mere boundary
terms since the gauge potential is not globally defined. One can also consider the possibility
that only Minkowskian regions involve the Chern-Simons boundary term. One can also argue
that Chern-Simons term is actually an un-necessary complication not needed in the recent
interpretation of TGD.
There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kähler-Dirac action in Cartan algebra to be identical
with total classical charges for Kähler action. This realizes quantum classical correspondence.
The constraints do not affect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.
The vanishing of conformal Noether charges for sub-algebras of various conformal algebras are
also posed. They could be also realized as Lagrange multiplied terms at the ends of 3-surface.

2. By supersymmetry requirement the Kähler-Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with embedding space gamma matrices to obtain K-D gamma
matrices. This gives rise to Kähler-Dirac equation in the interior of space-time surface. As
explained, it is assumed that localiztion to 2-D string world sheets occurs. At the light-like
boundaries the limit of K-D equation gives K-D equation at the ferminonic liness expressing
8-D light-likeness or 4-D light-likeness in effective metric.

Lagrange multiplier terms in Kähler action

Weak form of E-M duality can be realized by adding to Kähler action 3-D constraint terms realized
in terms of Lagrange multipliers. These contribute to the Chern-Simons Dirac action too by
modifying the definition of the modified gamma matrices.

Quantum classical correspondence (QCC) is the principle motivating further additional
terms in Kähler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kähler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.

3. The consistency with Kähler-Dirac equation for which Chern-Simons boundary term at parton
orbits (not genuine boundaries) seems necessary suggests that also Kähler action has Chern-
Simons term as a boundary term at partonic orbits. Kähler action would thus reduce to
contributions from the space-like ends of the space-time surface. This however leads to an
unphysical outcome.

Boundary terms for Kähler-Dirac action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having



13.5. Quantum TGD Very Briefly 635

vanishing determinant of induced 4-metric. The näıve guess has been that consistency requires
Kähler-Dirac-Chern Simons equation at partonic orbits. This is however a mere guess and need
not be correct. The outcome is actually that the limit of K-D equation at string world sheets
defines the Dirac equation at the boundaries of string world sheets.

One should try to make first clear what one really wants.

1. What one wants are generalized Feynman diagrams demanding massless Dirac propagators
in 8-D sense at the light-like boundaries of string world sheets interpreted as fermionic lines
of generalized Feynman diagrams. This gives hopes that 8-D generalization of the twistor
Grassmannian approach works. The localization of spinors at string world sheets is crucial for
achieving this.
In ordinary QFT fermionic propagator results from the kinetic term in Dirac action. Could
the situation be same also now at the boundary of string world sheet associated with parton
orbit? One can consider the Dirac action

Lind =

∫
ΨΓtind∂tΨ

√
g1dt

defined by the induced gamma matrix Γtind and induced 1-metric. This action need to be
associated only to the Minkowskian side of the space-surface. By supersymmetry Dirac action
must be accompanied by a bosonic action

∫ √
g1dt. It forces the boundary line to be a geodesic

line. Dirac equation gives

ΓtindDtΨ = ipk(M8)γkΨ = 0 .

The square of the Dirac operator gives (Γtind)
2 = 0 for geodesic lines (the components of the

second fundamental form vanish) so that one obtains 8-D light-likeness.
Boundary line would behave like point-like elementary particle for which conserved 8-momentum
is conserved and light-like: just as twistor diagrammatics suggests. 8-momentum must be real
since otherwise the particle orbit would belong to the complexification of H. These conditions
can be regarded as boundary conditions on the string world sheet and spinor modes. There
would be no additional contribution to the Kähler action.

2. The special points are the ends of the fermion lines at incoming and outgoing partonic 2-
surfaces and at these points M4 mass squared is assigned to the embedding space spinor
harmonic associated with the incoming fermion. CP2 mass squared corresponds to the eigen-
value of CP2 spinor d’Alembertian for the spinor harmonic.
At the end of the fermion line p(M4)k corresponds to the incoming fermionic four-momentum.
The direction of p(E4)k is not fixed and one has SO(4) harmonic at the mass shell p(E4)2 = m2,
m the mass of the incoming particle. At embedding space level color partial waves correspond
to SO(4) partial waves (SO(4) could be seen as the symmetry group of low energy hadron
physics giving rise to vectorial and axial isospin).

Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic duality
holds true and also from the condition that classical charges for the space-time sheets in the
superposition are identical with quantal charges which are net fermionic charges assignable to the
strings.

These terms give additional contribution to the algebraic equation ΓnΨ = 0 making in
partial differential equation reducing to ordinary differential equation if induced spinor fields are
localized at 2-D surfaces. These terms vanish if Ψ is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.

Associativity (co-associativity) and quantum criticality

Quantum criticality is one of the basic notions of TGD. It was originally introduced to fix the
value(s) of Kähler coupling strength as the analog of critical temperature. Quantum criticality
implies that second variation of Kähler action vanishes for critical deformations and the existence
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of conserved current: this current vanishes for Cartan algebra of isometries. A clearer formulation
of criticality is as a condition that the various conformal charges vanish for 3-surfaces at the
ends of space-time surface for conformal weights coming as multiples of integer n. The natural
expectation is that the numbers of critical deformations is infinite and corresponds to conformal
symmetries naturally assignable to criticality. The number n of conformal equivalence classes
of the deformations is finite and n would naturally relate to the hierarchy of Planck constants
heff = n×h. p-Adic coupling constant evolution can be understood also and corresponds to scale
hierarchy for the sizes of causal diamonds (CDs).

The conjecture is that quantum critical space-time surfaces are associative (co-associative)
in the sense that the tangent vectors span a associative (co-associative) subspace of complexified
octonions at each point of the space-time surface is consistent with what is known about preferred
extremals. The notion of octonionic tangent space can be expressed by introducing octonionic
structure realized in terms of vielbein in manner completely analogous to that for the realization
of gamma matrices.

One can also introduce octonionic representations of gamma matrices but this is not ab-
solutely necessarily. The condition that both the Kähler-Dirac gamma matrices and spinors are
quaternionic at each point of the space-time surface leads to a precise ansatz for the general solution
of the Kähler-Dirac equation making sense also in the real context. The octonionic version of the
Kähler-Dirac equation is very simple since SO(7, 1) as vielbein group is replaced with G2 acting
as automorphisms of octonions so that only the neutral Abelian part of the classical electro-weak
gauge fields survives the map.

This condition is analogous to what happens for the spinor modes when they are restricted
at string worlds sheets carrying vanishing induced W fields (and also Z0 fields above weak length
scale) to guarantee well-definedness of em charge and it might be that this strange looking condition
makes sense. The possibility to define G2 structure would thus be due to the well-definedness of
em charge and in the generic case possible only for string world sheets and possibly also partonic
2-surfaces.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version
of Pauli sigma matrices and encourage the identification of 8-D tangent space twistors as pairs
of octonionic spinors conjectured to be highly relevant also for quantum TGD. Quaternionicity
condition implies that octo-twistors reduce to something closely related to ordinary twistors.

The sigma matrices are however an obvious problem since their commutators are propor-
tional to M4 sigma matrices. This raises the question whether the equivalence with ordinary
Kähler-Dirac equation should be assumed. This assumption very strongly suggests a localization
string world sheets implied also by the condition that electromagnetic charge is well-defined for the
spinor modes. The weakest manner to satisfy the equivalence would be for Dirac equation restricted
to the light-like boundaries of string world sheets and giving just 8-D light-likeness condition but
with random direction of light-like momentum.

The analog AdS/CFT duality

Although quantum criticality in principle predicts the possible values of Kähler coupling strength
coming as a series of critical temperatures αK = g2

K/4π~eff , ~eff/h = n characterizing quan-
tum criticalities, one might hope that there exists even more fundamental approach involving no
coupling constants and predicting even quantum criticality and realizing quantum gravitational
holography.

Since WCW Kähler metric can be defined as anti-commutators of WCW gamma matrices
identified as super-conformal super-charges for the K-D action, one would have the analog of
AdS/CFT duality between bosonic definition of Kähler metric in terms of Kähler function defined
by Euclidian contribution to Kähler action and fermionic definition in terms of anti-commutator
of conformal supercharges.

This encourages to ask whether Dirac determinant - if it can be defined - could be identified
as exponent of Kähler function or Kähler action. This might be of course un-necessary and highly
unpractical outcome: it seems Kähler function is easy to obtain as Kähher action and Kähler
metric as anti-commutators of super-charges. This is discussed in [K3].
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13.5.3 Various Dirac Operators And Their Interpretation

The physical interpretation of Kähler Dirac equation is not at all straightforward. The following ar-
guments inspired by effective 2-dimensionality suggest that the Kähler-Dirac gamma matrices and
corresponding effective metric could allow dual gravitational description of the physics associated
with wormhole throats. This applies in particular to condensed matter physics.

Four Dirac equations

To begin with, Dirac equation appears in four forms in TGD.

1. The Dirac equation in the world of classical worlds codes (WCW) for the super Virasoro con-
ditions for the super Kac-Moody and similar representations formed by the states of wormhole
contacts forming the counterpart of string like objects (throats correspond to the ends of the
string. WCW Dirac operator generalizes the Dirac operator of 8-D embedding space by bring-
ing in vibrational degrees of freedom. This Dirac equation should give as its solutions zero
energy states and corresponding M-matrices generalizing S-matrix.
The unitary U-matrix realizing discrete time evolution in the moduli space of CDs can be
constructed as an operator in the space of zero energy states relating M-matrices [K67]. The
natural application of U-matrix appears in consciousness theory as a coder of what Penrose calls
U-process. The ground states to which super-conformal algebras act correspond to embedding
space spinor modes in accordance with the idea that point like limit gives QFT in embedding
space.

2. The analog of massless Dirac equation at the level of 8-D embedding space and satisfied by
fermionic ground states of super-conformal representations.

3. Kähler Dirac equation is satisfied in the interior of space-time. In this equation the gamma
matrices are replaced with Kähler-Dirac gamma matrices defined by the contractions of canon-
ical momentum currents Tαk = ∂L/∂αh

k with embedding space gamma matrices Γk. This
replacement is required by internal consistency and by super-conformal symmetries. The well-
definedness of em charge implies that the modes of induced spinor field are localized at 2-D
surfaces so that a connection with string theory type approach emerges.

4. At the light-like boundaries of string world sheets K-D equation gives rise to an analog of 4-D
massless Dirac equation also one has light-like 8-momentum corresponding to the light-like
tangent vector of the fermion carrying line. This equation is equivalent with its octonionic
counterpart.

Kähler-Dirac equation defines Dirac equation at space-time level. Consider first K-D equa-
tion in the interior of space-time surface.

1. The condition that electromagnetic charge operator defined in terms of em charge expressed in
terms of Clifford algebra is well defined for spinor modes (completely analogous to spin defined
in terms of sigma matrices) leads to the proposal that induced spinor fields are necessarily
localized at 2-dimensional string worlds sheets [K113]. Only the covariantly constant right
handed neutrino and its modes assignable to massless extremals (at least) generating super-
symmetry (super-conformal symmetries) would form an exception since electroweak couplings
would vanish. Note that the Kähler-Dirac gamma matrices possess CP2 and this must vanish
in order to have de-localization.

2. This picture implies stringy realization of super Kac-Moody symmetry elementary particles
can be identified as string like objects albeit in different sense than in string models. At
light-like 3-surfaces defining the orbits of partonic 2-surfaces spinor fields carrying electroweak
quantum numbers would be located at braid strands as also the notion of finite measurement
resolution requires.

3. Could Kähler Dirac equation provide a first principle justification for the light-hearted use of
effective mass and the analog of Dirac equation in condensed manner physics? This would
conform with the holographic philosophy. Partonic 2-surfaces with tangent space data and
their light-like orbits would give hologram like representation of physics and the interior of
space-time the 4-D representation of physics. Holography would have in the recent situation
interpretation also as quantum classical correspondence between representations of physics in
terms of quantized spinor fields at the light-like 3-surfaces on one hand and in terms of classical
fields on the other hand.
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4. The resulting dispersion relation for the square of the Kähler-Dirac operator assuming that
induced like metric, Kähler field, etc. are very slowly varying contains quadratic and linear
terms in momentum components plus a term corresponding to magnetic moment coupling.
In general massive dispersion relation is obtained as is also clear from the fact that Kähler
Dirac gamma matrices are combinations of M4 and CP2 gammas so that modified Dirac mixes
different M4 chiralities (basic signal for massivation). If one takes into account the dependence
of the induced geometric quantities on space-time point dispersion relations become non-local.

5. Sound as a concept is usually assigned with a rather high level of description. Stringy world
sheets could however dramatically raise the status of sound in this respect. The oscillations
of string world sheets connecting wormhole throats describe non-local 2-particle interactions.
Holography suggests that this interaction just “gravitational” dual for electroweak and color
interactions. Could these oscillations inducing the oscillation of the distance between wormhole
throats be interpreted at the limit of weak “gravitational” coupling as analogs of sound waves,
and could sound velocity correspond to maximal signal velocity assignable to the effective
metric?

6. The latest progress in the understanding of quantum TGD imply that the area of string world
sheet in the effective metric defined by the K-D gamma matrices indeed plays a fundamental
role in quantum TGD (of course, WCW Kähler metric also involves this effective metric).
By conformal invariance this metric could be equivalent with the induced metric. The string
tension would be dynamical and the conjecture is that one can express Kähler action as
total effective area of string world sheets. The hierarchy of Planck constants is essential in
making possible to understand the description of not only gravitational but all bound states
in terms of strings connecting partonic 2-surfaces. This description is analogous to AdS/CFT
correspondence. That the string tension is defined by the Kähler action rather than assumed
to be determined by Newton’s constants allows to avoid divergences.

The status of the Chern-Simons counterpart of K-D action has remained unclear. K-D
action reduces to Chern-Simons boundary terms in Minkowskian space-time regions at least. I have
considered Chern-Simons boundary term as an additional term in Kähler action and considered also
Chern-Simons-Dirac operator. The localization of spinors to string world sheets however suggests
that its introduction produces more problems than solves them. One reason is that C-S-D action
involves only CP2 gamma matrices so that one cannot realize 8-D masslessness for the spinor
localized at fermion line defining the boundary of string world sheet.

Does energy metric provide the gravitational dual for condensed matter systems?

The Kähler-Dirac gamma matrices define an effective metric via their anti-commutators quadratic
in components of energy momentum tensor (canonical momentum densities). This effective metric
vanishes for vacuum extremals. Note that the use of the Kähler-Dirac gamma matrices guarantees
among other things internal consistency and super-conformal symmetries of the theory.

If the above argument is on the right track, this effective metric should have applications
in condensed matter theory. The energy metric has a natural interpretation in terms of effective
light velocities which depend on direction of propagation. One can diagonalize the energy metric
gαβe (contravariant form results from the anti-commutators) and one can denote its eigenvalues
by (v0, vi) in the case that the signature of the effective metric is (1,−1,−1,−1). The 3-vector
vi/v0 has interpretation as components of effective light velocity in various directions as becomes
clear by thinking the d’Alembert equation for the energy metric. This velocity field could be
interpreted as that of hydrodynamic flow. The study of the extremals of Kähler action shows
that if this flow is actually Beltrami flow so that the flow parameter associated with the flow
lines extends to global coordinate, Kähler action reduces to a 3-D Chern-Simons action and one
obtains effective topological QFT. The conserved fermion current ΨΓαeΨ has interpretation as
incompressible hydrodynamical flow.

This would give also a nice analogy with AdS/CFT correspondence allowing to describe
various kinds of physical systems in terms of higher-dimensional gravitation and black holes are
introduced quite routinely to describe condensed matter systems. In TGD framework one would
have an analogous situation but with 10-D space-time replaced with the interior of 4-D space-time
and the boundary of AdS representing Minkowski space with the light-like 3-surfaces carrying
matter. The effective gravitation would correspond to the “energy metric”. One can associate



13.5. Quantum TGD Very Briefly 639

with it analogs of curvature tensor, Ricci tensor and Einstein tensor using standard formulas and
identify effective energy momentum tensor associated as Einstein tensor with effective Newton’s
constant appearing as constant of proportionality. Note however that the besides ordinary metric
and “energy” metric one would have also the induced classical gauge fields having purely geometric
interpretation and action would be Kähler action. This 4-D holography could provide a precise,
dramatically simpler, and also a very concrete dual description. This cannot be said about model
of graphene based on the introduction of 10-dimensional black holes, branes, and strings chosen in
more or less ad hoc manner.

This raises questions. Could this give a general dual gravitational description of dissipative
effects in terms of the “energy” metric and induced gauge fields? Does one obtain the analogs
of black holes? Do the general theorems of general relativity about the irreversible evolution
leading to black holes generalize to describe analogous fate of condensed matter systems caused
by dissipation? Can one describe non-equilibrium thermodynamics and self-organization in this
manner?

One might argue that the incompressible Beltrami flow defined by the dynamics of the
preferred extremals is dissipationless and viscosity must therefore vanish locally. The failure of
complete determinism for Kähler action however means generation of entropy since the knowledge
about the state decreases gradually. This in turn should have a phenomenological local description
in terms of viscosity, which characterizes the transfer of energy to shorter scales and eventually to
radiation. The deeper description should be non-local and basically topological and might lead to
quantization rules. For instance, one can imagine the quantization of the ratio η/s of the viscosity
to entropy density as multiples of a basic unit defined by its lower bound (note that this would be
analogous to Quantum Hall effect). For the first M-theory inspired derivation of the lower bound
of η/s [D7] . The lower bound for η/s is satisfied in good approximation by what should have been
QCD plasma but found to be something different (RHIC and the first evidence for new physics
from LHC [K64] ).

An encouraring sign comes from the observation that for so called massless extremals rep-
resenting classically arbitrarily shaped pulses of radiation propagating without dissipation and
dispersion along single direction the canonical momentum currents are light-like. The effective
contravariant metric vanishes identically so that fermions cannot propate in the interior of mass-
less extremals! This is of course the case also for vacuum extremals. Massless extremals are purely
bosonic and represent bosonic radiation. Many-sheeted space-time decomposes into matter con-
taining regions and radiation containing regions. Note that when wormhole contact (particle) is
glued to a massless extremal, it is deformed so that CP2 projection becomes 4-D guaranteeing that
the weak form of electric magnetic duality can be satisfied. Therefore massless extremals can be
seen as asymptotic regions. Perhaps one could say that dissipation corresponds to a de-coherence
process creating space-time sheets consisting of matter and radiation. Those containing matter
might be even seen as analogs blackholes as far as energy metric is considered.

Preferred extremals as perfect fluids

Almost perfect fluids seems to be abundant in Nature. For instance, QCD plasma was originally
thought to behave like gas and therefore have a rather high viscosity to entropy density ratio
x = η/s. Already RHIC found that it however behaves like almost perfect fluid with x near
to the minimum predicted by AdS/CFT. The findings from LHC gave additional conform the
discovery [C14]. Also Fermi gas is predicted on basis of experimental observations to have at
low temperatures a low viscosity roughly 5-6 times the minimal value [D6] . In the following the
argument that the preferred extremals of Kähler action are perfect fluids apart from the symmetry
breaking to space-time sheets is developed. The argument requires some basic formulas summarized
first.

The detailed definition of the viscous part of the stress energy tensor linear in velocity
(oddness in velocity relates directly to second law) can be found in [D3] .

1. The symmetric part of the gradient of velocity gives the viscous part of the stress-energy tensor
as a tensor linear in velocity. Velocity gradient decomposes to a term traceless tensor term
and a term reducing to scalar.
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∂ivj + ∂jvi =
2

3
∂kv

kgij + (∂ivj + ∂jvi −
2

3
∂kv

kgij) . (13.5.1)

The viscous contribution to stress tensor is given in terms of this decomposition as

σvisc;ij = ζ∂kv
kgij + η(∂ivj + ∂jvi −

2

3
∂kv

kgij) . (13.5.2)

From dF i = T ijSj it is clear that bulk viscosity ζ gives to energy momentum tensor a pres-
sure like contribution having interpretation in terms of friction opposing. Shear viscosity η
corresponds to the traceless part of the velocity gradient often called just viscosity. This
contribution to the stress tensor is non-diagonal and corresponds to momentum transfer in
directions not parallel to momentum and makes the flow rotational. This term is essential for
the thermal conduction and thermal conductivity vanishes for ideal fluids.

2. The 3-D total stress tensor can be written as

σij = ρvivj − pgij + σvisc;ij . (13.5.3)

The generalization to a 4-D relativistic situation is simple. One just adds terms corresponding
to energy density and energy flow to obtain

Tαβ = (ρ− p)uαuβ + pgαβ − σαβvisc . (13.5.4)

Here uα denotes the local four-velocity satisfying uαuα = 1. The sign factors relate to the
concentrations in the definition of Minkowski metric ((1,−1,−1,−1)).

3. If the flow is such that the flow parameters associated with the flow lines integrate to a global
flow parameter one can identify new time coordinate t as this flow parameter. This means a
transition to a coordinate system in which fluid is at rest everywhere (comoving coordinates
in cosmology) so that energy momentum tensor reduces to a diagonal term plus viscous term.

Tαβ = (ρ− p)gttδαt δ
β
t + pgαβ − σαβvisc . (13.5.5)

In this case the vanishing of the viscous term means that one has perfect fluid in strong sense.
The existence of a global flow parameter means that one has

vi = Ψ∂iΦ . (13.5.6)

Ψ and Φ depend on space-time point. The proportionality to a gradient of scalar Φ implies
that Φ can be taken as a global time coordinate. If this condition is not satisfied, the perfect
fluid property makes sense only locally.

AdS/CFT correspondence allows to deduce a lower limit for the coefficient of shear viscosity
as

x =
η

s
≥ ~

4π
. (13.5.7)

This formula holds true in units in which one has kB = 1 so that temperature has unit of energy.
What makes this interesting from TGD view is that in TGD framework perfect fluid property

in appropriately generalized sense indeed characterizes locally the preferred extremals of Kähler
action defining space-time surface.

1. Kähler action is Maxwell action with U(1) gauge field replaced with the projection of CP2

Kähler form so that the four CP2 coordinates become the dynamical variables at QFT limit.
This means enormous reduction in the number of degrees of freedom as compared to the
ordinary unifications. The field equations for Kähler action define the dynamics of space-
time surfaces and this dynamics reduces to conservation laws for the currents assignable to
isometries. This means that the system has a hydrodynamic interpretation. This is a consid-
erable difference to ordinary Maxwell equations. Notice however that the “topological” half
of Maxwell’s equations (Faraday’s induction law and the statement that no non-topological
magnetic are possible) is satisfied.
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2. Even more, the resulting hydrodynamical system allows an interpretation in terms of a perfect
fluid. The general ansatz for the preferred extremals of field equations assumes that vari-
ous conserved currents are proportional to a vector field characterized by so called Beltrami
property. The coefficient of proportionality depends on space-time point and the conserved
current in question. Beltrami fields by definition is a vector field such that the time parameters
assignable to its flow lines integrate to single global coordinate. This is highly non-trivial and
one of the implications is almost topological QFT property due to the fact that Kähler action
reduces to a boundary term assignable to wormhole throats which are light-like 3-surfaces
at the boundaries of regions of space-time with Euclidian and Minkowskian signatures. The
Euclidian regions (or wormhole throats, depends on one’s tastes ) define what I identify as
generalized Feynman diagrams.
Beltrami property means that if the time coordinate for a space-time sheet is chosen to be this
global flow parameter, all conserved currents have only time component. In TGD framework
energy momentum tensor is replaced with a collection of conserved currents assignable to
various isometries and the analog of energy momentum tensor complex constructed in this
manner has no counterparts of non-diagonal components. Hence the preferred extremals allow
an interpretation in terms of perfect fluid without any viscosity.

This argument justifies the expectation that TGD Universe is characterized by the presence
of low-viscosity fluids. Real fluids of course have a non-vanishing albeit small value of x. What
causes the failure of the exact perfect fluid property?

1. Many-sheetedness of the space-time is the underlying reason. Space-time surface decomposes
into finite-sized space-time sheets containing topologically condensed smaller space-time sheets
containing.... Only within given sheet perfect fluid property holds true and fails at wormhole
contacts and because the sheet has a finite size. As a consequence, the global flow parameter
exists only in given length and time scale. At embedding space level and in zero energy
ontology the phrasing of the same would be in terms of hierarchy of causal diamonds (CDs).

2. The so called eddy viscosity is caused by eddies (vortices) of the flow. The space-time sheets
glued to a larger one are indeed analogous to eddies so that the reduction of viscosity to eddy
viscosity could make sense quite generally. Also the phase slippage phenomenon of super-
conductivity meaning that the total phase increment of the super-conducting order parameter
is reduced by a multiple of 2π in phase slippage so that the average velocity proportional to
the increment of the phase along the channel divided by the length of the channel is reduced
by a quantized amount.
The standard arrangement for measuring viscosity involves a lipid layer flowing along plane.
The velocity of flow with respect to the surface increases from v = 0 at the lower boundary to
vupper at the upper boundary of the layer: this situation can be regarded as outcome of the
dissipation process and prevails as long as energy is fed into the system. The reduction of the
velocity in direction orthogonal to the layer means that the flow becomes rotational during
dissipation leading to this stationary situation.
This suggests that the elementary building block of dissipation process corresponds to a gener-
ation of vortex identifiable as cylindrical space-time sheets parallel to the plane of the flow and
orthogonal to the velocity of flow and carrying quantized angular momentum. One expects
that vortices have a spectrum labelled by quantum numbers like energy and angular momen-
tum so that dissipation takes in discrete steps by the generation of vortices which transfer
the energy and angular momentum to environment and in this manner generate the velocity
gradient.

3. The quantization of the parameter x is suggestive in this framework. If entropy density and
viscosity are both proportional to the density n of the eddies, the value of x would equal to
the ratio of the quanta of entropy and kinematic viscosity η/n for single eddy if all eddies are
identical. The quantum would be ~/4π in the units used and the suggestive interpretation is in
terms of the quantization of angular momentum. One of course expects a spectrum of eddies
so that this simple prediction should hold true only at temperatures for which the excitation
energies of vortices are above the thermal energy. The increase of the temperature would
suggest that gradually more and more vortices come into play and that the ratio increases
in a stepwise manner bringing in mind quantum Hall effect. In TGD Universe the value of
heff can be large in some situations so that the quantal character of dissipation could become
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visible even macroscopically. Whether this a situation with large heff is encountered even in
the case of QCD plasma is an interesting question.

The following poor man’s argument tries to make the idea about quantization a little bit
more concrete.

1. The vortices transfer momentum parallel to the plane from the flow. Therefore they must
have momentum parallel to the flow given by the total cm momentum of the vortex. Before
continuing some notations are needed. Let the densities of vortices and absorbed vortices be
n and nabs respectively. Denote by v‖ resp. v⊥ the components of cm momenta parallel to the
main flow resp. perpendicular to the plane boundary plane. Let m be the mass of the vortex.
Denote by S are parallel to the boundary plane.

2. The flow of momentum component parallel to the main flow due to the absorbed at S is

nabsmv‖v⊥S .

(13.5.8)

This momentum flow must be equal to the viscous force

Fvisc = η
v‖

d
× S .

(13.5.9)

From this one obtains

η = nabsmv⊥d .

(13.5.10)

If the entropy density is due to the vortices, it equals apart from possible numerical factors to

s = n

so that one has

η

s
= mv⊥d .

(13.5.11)

This quantity should have lower bound x = ~/4π and perhaps even quantized in multiples of
x, Angular momentum quantization suggests strongly itself as origin of the quantization.

3. Local momentum conservation requires that the comoving vortices are created in pairs with
opposite momenta and thus propagating with opposite velocities v⊥. Only one half of vortices
is absorbed so that one has nabs = n/2. Vortex has quantized angular momentum associated
with its internal rotation. Angular momentum is generated to the flow since the vortices
flowing downwards are absorbed at the boundary surface.
Suppose that the distance of their center of mass lines parallel to plane is D = εd, ε a numerical
constant not too far from unity. The vortices of the pair moving in opposite direction have
same angular momentum mv D/2 relative to their center of mass line between them. Angular
momentum conservation requires that the sum these relative angular momenta cancels the sum
of the angular momenta associated with the vortices themselves. Quantization for the total
angular momentum for the pair of vortices gives

η

s
=
n~
ε

(13.5.12)

Quantization condition would give

ε = 4π .

(13.5.13)

One should understand why D = 4πd - four times the circumference for the largest circle
contained by the boundary layer- should define the minimal distance between the vortices of
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the pair. This distance is larger than the distance d for maximally sized vortices of radius
d/2 just touching. This distance obviously increases as the thickness of the boundary layer
increases suggesting that also the radius of the vortices scales like d.

4. One cannot of course take this detailed model too literally. What is however remarkable that
quantization of angular momentum and dissipation mechanism based on vortices identified as
space-time sheets indeed could explain why the lower bound for the ratio η/s is so small.

Is the effective metric one- or two-dimensional?

The following argument suggests that the effective metric defined by the anti-commutators of the
Kähler-Dirac gamma matrices is effectively one- or two-dimensional. Effective one-dimensionality
would conform with the observation that the solutions of the modified Dirac equations can be
localized to one-dimensional world lines in accordance with the vision that finite measurement
resolution implies discretization reducing partonic many-particle states to quantum superpositions
of braids. The localization to 1-D curves occurs always at the 3-D orbits of the partonic 2-surfaces.
Note that the localization of induced spinor fields to string world sheets with 2-D CP2 projection
and carrying vanishing classical W fields would require only 2-D property.

The localization requires that the embedding space 1-forms associated with the K-D gamma
matrices define lower-dimensional linearly independent set with elements proportional to gradients
of embedding space coordinates defining coordinates for the lower-dimensional manifold. Therefore
Frobenius conditions would be satisfied.

The argument is based on the following assumptions.

1. The Kähler-Dirac gamma matrices for Kähler action are contractions of the canonical momen-
tum densities Tαk with the gamma matrices of H.

2. The strongest assumption is that the isometry currents

JAα = Tαk j
Ak

(13.5.14)

for the preferred extremals of Kähler action are of form

JAα = ΨA(∇Φ)α (13.5.15)

with a common function Φ guaranteeing that the flow lines of the currents integrate to coor-
dinate lines of single global coordinate variables (Beltrami property). Index raising is carried
out by using the ordinary induced metric.

3. A weaker assumption is that one has two functions Φ1 and Φ2 assignable to the isometry
currents of M4 and CP2 respectively.:

JAα1 = ΨA
1 (∇Φ1)α ,

JAα2 = ΨA
2 (∇Φ2)α .

(13.5.16)

The two functions Φ1 and Φ2 could define dual light-like curves spanning string world sheet.
In this case one would have effective 2-dimensionality and decomposition to string world sheets
[K54]. Isometry invariance does not allow more that two independent scalar functions Φi.

Consider now the argument.

1. One can multiply both sides of this equation with jAk and sum over the index A labeling
isometry currents for translations of M4 and SU(3) currents for CP2. The tensor quantity∑
A j

AkjAl is invariant under isometries and must therefore satisfy∑
A

ηABj
AkjAl = hkl , (13.5.17)

where ηAB denotes the flat tangent space metric of H. In M4 degrees of freedom this statement
becomes obvious by using linear Minkowski coordinates. In the case of CP2 one can first
consider the simpler case S2 = CP1 = SU(2)/U(1). The coset space property implies in
standard complex coordinate transforming linearly under U(1) that only the isometry currents
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belonging to the complement of U(1) in the sum contribute at the origin and the identity
holds true at the origin and by the symmetric space property everywhere. Identity can be
verified also directly in standard spherical coordinates. The argument generalizes to the case
of CP2 = SU(3)/U(2) in an obvious manner.

2. In the most general case one obtains

Tαk1 =
∑
A

ΨA
1 j

Ak × (∇Φ1)α ≡ fk1 (∇Φ1)α ,

Tαk2 =
∑
A

ΨA
1 j

Ak × (∇Φ2)α ≡ fk2 (∇Φ2)α . (13.5.18)

3. The effective metric given by the anti-commutator of the modified gamma matrices is in turn
is given by

Gαβ = mklf
k
1 f

l
1(∇Φ1)α(∇Φ1)β + sklf

k
2 f

l
2(∇Φ2)α(∇Φ2)β . (13.5.19)

The covariant form of the effective metric is effectively 1-dimensional for Φ1 = Φ2 in the sense
that the only non-vanishing component of the covariant metric Gαβ is diagonal component
along the coordinate line defined by Φ ≡ Φ1 = Φ2. Also the contravariant metric is effectively
1-dimensional since the index raising does not affect the rank of the tensor but depends on the
other space-time coordinates. This would correspond to an effective reduction to a dynamics
of point-like particles for given selection of braid points. For Φ1 6= Φ2 the metric is effectively
2-dimensional and would correspond to stringy dynamics.

One can also develop an objection to effective 1- or 2-dimensionality. The proposal for what
preferred extremals of Kähler action as deformations of the known extremals of Kähler action
could be leads to a beautiful ansatz relying on generalization of conformal invariance and minimal
surface equations of string model [K17]. The field equations of TGD reduce to those of classical
string model generalized to 4-D context.

If the proposed picture is correct, field equations reduce to purely algebraically conditions
stating that the Maxwellian energy momentum tensor for the Kähler action has no common index
pairs with the second fundamental form. For the deformations of CP2 type vacuum extremals T
is a complex tensor of type (1, 1) and second fundamental form Hk a tensor of type (2, 0) and (0,
2) so that Tr(THk) = is true. This requires that second light-like coordinate of M4 is constant
so that the M4 projection is 3-dimensional. For Minkowskian signature of the induced metric
Hamilton-Jacobi structure replaces conformal structure. Here the dependence of CP2 coordinates
on second light-like coordinate of M2(m) only plays a fundamental role. Note that now T vv is
non-vanishing (and light-like). This picture generalizes to the deformations of cosmic strings and
even to the case of vacuum extremals.

There is however an important consistency condition involved. The Maxwell energy mo-
mentum tensor for Kähler action must have vanishing covariant divergence. This is satisfied if it
is linear combination of Einstein tensor and metric. This gives Einstein’s equations with cosmo-
logical term in the general case. By the algebraic character of field equations also minimal surface
equations are satisfied and Einstein’s General Relativity would be exact part of TGD.

In the case of Kähler-Dirac equation the result means that modified gamma matrices are
contractions of linear combination of Einstein tensor and metric tensor with the induced gamma
matrices so that the TGD counterpart of ordinary Dirac equation would be modified by the addition
of a term proportional to Einstein tensor. The condition of effective 1- or 2-dimensionality seems
to pose too strong conditions on this combination.

13.6 Summary Of Generalized Feynman Diagrammatics

This section gives a summary about the recent view abot generalized Feynman diagrammatics,
which can be seen as a hybrid of Feynman diagrammatics and stringy diagrammatics. The analogs
of Feynman diagrams are realized at the level of space-time topology and geometry and the lines of
these diagrams are Euclidian space-time regions identifiable as wormhole contacts. For fundamental
fermions one has the usual 1-D propagator lines.
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Physical particles can be seen as bound state of massless fundamental fermions and involve
two wormhole contacts forming parts of closed Kähler magnetic flux tubes carrying monopole flux.
The orbits of wormhole throats are connected by fermionic string world sheets whose boundaries
correspond to massless fermion lines defining strands of braids. String world sheets in turn can
form 2-braids.

It is a little bit matter of taste whether one refers to these diagrams generalized Feynman
diagrams, generalized stringy diagrams, generalized Wilson loops or generalized twistor diagrams.
All these labels are partly misleading.

In the sequel the basic action principles - Kähler action and Kähler-Dirac action are discussed
first, and then a proposal for the diagrams describing M -matrix elements is discussed.

13.6.1 The Basic Action Principle

In the following the most recent view about Kähler action and the Kähler-Dirac action (Kähler-
Dirac action) is explained in more detail. The proposal is one of the many that I have considered.

1. The minimal formulation involves in the bosonic case only 4-D Kähler action. The action could
contain also Chern-Simons boundary term localized to partonic orbits at which the signature of
the induced metric changes. The coefficient of Chern-Simons term could be chosen so that this
contribution to bosonic action cancels the Chern-Simons term coming from Kähler action (by
weak form of electric-magnetic duality) so that for preferred extremals Kähler action reduces to
Chern-Simons terms at the ends of space-time surface at boundaries of causal diamond (CD).
For Euclidian wormhole contacts Chern-Simons term need not reduce to a mere boundary
terms since the gauge potential is not globally defined. One can also consider the possibility
that only Minkowskian regions involve the Chern-Simons boundary term. One can also argue
that Chern-Simons term is actually an un-necessary complication not needed in the recent
interpretation of TGD.
There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kähler-Dirac action in Cartan algebra to be identical
with total classical charges for Kähler action. This realizes quantum classical correspondence.
The constraints do not affect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.
The vanishing of conformal Noether charges for sub-algebras of various conformal algebras are
also posed. They could be also realized as Lagrange multiplied terms at the ends of 3-surface.

2. By supersymmetry requirement the Kähler-Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with embedding space gamma matrices to obtain K-D gamma
matrices. This gives rise to Kähler-Dirac equation in the interior of space-time surface. As
explained, it is assumed that localiztion to 2-D string world sheets occurs. At the light-like
boundaries the limit of K-D equation gives K-D equation at the ferminonic liness expressing
8-D light-likeness or 4-D light-likeness in effective metric.

Lagrange multiplier terms in Kähler action

Weak form of E-M duality can be realized by adding to Kähler action 3-D constraint terms realized
in terms of Lagrange multipliers. These contribute to the Chern-Simons Dirac action too by
modifying the definition of the modified gamma matrices.

Quantum classical correspondence (QCC) is the principle motivating further additional
terms in Kähler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kähler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
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boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.

3. The consistency with Kähler-Dirac equation for which Chern-Simons boundary term at parton
orbits (not genuine boundaries) seems necessary suggests that also Kähler action has Chern-
Simons term as a boundary term at partonic orbits. Kähler action would thus reduce to
contributions from the space-like ends of the space-time surface. This however leads to an
unphysical outcome.

Boundary terms for Kähler-Dirac action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The näıve guess has been that consistency requires
Kähler-Dirac-Chern Simons equation at partonic orbits. This is however a mere guess and need
not be correct. The outcome is actually that the limit of K-D equation at string world sheets
defines the Dirac equation at the boundaries of string world sheets.

One should try to make first clear what one really wants.

1. What one wants are generalized Feynman diagrams demanding massless Dirac propagators
in 8-D sense at the light-like boundaries of string world sheets interpreted as fermionic lines
of generalized Feynman diagrams. This gives hopes that 8-D generalization of the twistor
Grassmannian approach works. The localization of spinors at string world sheets is crucial for
achieving this.
In ordinary QFT fermionic propagator results from the kinetic term in Dirac action. Could
the situation be same also now at the boundary of string world sheet associated with parton
orbit? One can consider the Dirac action

Lind =

∫
ΨΓtind∂tΨ

√
g1dt

defined by the induced gamma matrix Γtind and induced 1-metric. This action need to be
associated only to the Minkowskian side of the space-surface. By supersymmetry Dirac action
must be accompanied by a bosonic action

∫ √
g1dt. It forces the boundary line to be a geodesic

line. Dirac equation gives

ΓtindDtΨ = ipk(M8)γkΨ = 0 .

The square of the Dirac operator gives (Γtind)
2 = 0 for geodesic lines (the components of the

second fundamental form vanish) so that one obtains 8-D light-likeness.
Boundary line would behave like point-like elementary particle for which conserved 8-momentum
is conserved and light-like: just as twistor diagrammatics suggests. 8-momentum must be real
since otherwise the particle orbit would belong to the complexification of H. These conditions
can be regarded as boundary conditions on the string world sheet and spinor modes. There
would be no additional contribution to the Kähler action.

2. The special points are the ends of the fermion lines at incoming and outgoing partonic 2-
surfaces and at these points M4 mass squared is assigned to the embedding space spinor
harmonic associated with the incoming fermion. CP2 mass squared corresponds to the eigen-
value of CP2 spinor d’Alembertian for the spinor harmonic.
At the end of the fermion line p(M4)k corresponds to the incoming fermionic four-momentum.
The direction of p(E4)k is not fixed and one has SO(4) harmonic at the mass shell p(E4)2 = m2,
m the mass of the incoming particle. At embedding space level color partial waves correspond
to SO(4) partial waves (SO(4) could be seen as the symmetry group of low energy hadron
physics giving rise to vectorial and axial isospin).
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Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic duality
holds true and also from the condition that classical charges for the space-time sheets in the
superposition are identical with quantal charges which are net fermionic charges assignable to the
strings.

These terms give additional contribution to the algebraic equation ΓnΨ = 0 making in
partial differential equation reducing to ordinary differential equation if induced spinor fields are
localized at 2-D surfaces. These terms vanish if Ψ is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.

13.6.2 A Proposal For M-Matrix

The proposed general picture reduces the core of U -matrix to the construction of S-matrix possibly
having the real square roots of density matrices as symmetry algebra. This structure can be taken
as a template as one tries to to imagine how the construction of M -matrix could proceed in
quantum TGD proper.

1. At the bosonic sector one would have converging functional integral over WCW . This is
analogous to the path integral over bosonic fields in QFTs. The presence of Kähler function
would make this integral well-defined and would not encounter the difficulties met in the case
of path integrals.

2. In fermionic sector 1-D Dirac action and its bosonic counterpart imply that spinors modes
localized at string world sheets are eigenstates of induced Dirac operator with generalized
eigenvalue pkγk defining light-like 8-D momentum so that one would obtain fermionic propa-
gators massless in 8-D sense at light-light geodesics of embedding space. The 8-D generalization
of twistor Grassmann approach is suggestive and would mean that the residue integral over
fermionic virtual momenta gives only integral over massless momenta and virtual fermions
differ from real fermions only in that they have non-physical polarizations so that massless
Dirac operator replacing the propagator does not annihilate the spinors at the other end of
the line.

3. Fundamental bosons (not elementary particles) correspond to wormhole contacts having fermion
and antifermion at opposite throats and bosonic propagators are composite of massless fermion
propagators. The directions of virtual momenta are obviously strongly correlated so that the
approximation as a gauge theory with gauge symmetry breaking in almost massless sector is
natural. Massivation follows necessary from the fact that also elementary particles are bound
states of two wormhole contacts.

4. Physical fermions and bosons correspond to pairs of wormhole contacts with throats carry-
ing Kähler magnetic charge equal to Kähler electric charge (dyon). The absence of Dirac
monopoles (as opposed to homological magnetic monopoles due to CP2 topology) implies that
wormhole contacts must appear as pairs (also large numbers of them are possible and 3 valence
quarks inside baryons could form Kähler magnetic tripole). Hence elementary particles would
correspond to pairs of monopoles and are accompanied by Kähler magnetic flux loop running
along the two space-time sheets involved as well as fermionic strings connecting the monopole
throats.
There seems to be no specific need to assign string to the wormhole contact and if is a piece
of deformed CP2 type vacuum extremal this might not be even possible: the Kähler-Dirac
gamma matrices would not span 2-D space in this case since the CP2 projection is 4-D. Hence
massless fermion propagators would be assigned only with the boundaries of string world
sheets at Minkowskian regions of space-time surface. One could say that physical particles are
bound states of massless fundamental fermions and the non-collinearity of their four-momenta
can make them massive. Therefore the breaking of conformal invariance would be due to the
bound state formation and this would also resolve the infrared divergence problems plaguing
Grassmann twistor approach by introducing natural length scale assignable to the size of
particles defined by the string like flux tube connecting the wormhole contacts. This point is
discussed in more detail in [K100].
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The bound states would form representations of super-conformal algebras so that stringy mass
formula would emerge naturally. p-Adic mass calculations indeed assume conformal invariance
in CP2 length scale assignable to wormhole contacts. Also the long flux tube strings contribute
to the particle masses and would explain gauge boson masses.

5. The interaction vertices would correspond topologically to decays of 3-surface by splitting
in complete analogy with ordinary Feynman diagrams. At the level of orbits of partonic 2-
surface the vertices would be represented by partonic 2-surfaces. In [K100] the interpretation of
scattering ampiltudes as sequences of algebraic operations for the Yangian of super-symplectic
algebra is proposed: product and co-product would define time 3-vertex and its time reversal.
At the level of fermions the diagrams reduce to braid diagrams since fermions are “free”. At
vertices fermions can however reflect in time direction so that fermion-antifermion annihilations
in classical fields can be said to appear in the vertices.
The Yangian is generated by super-symplectic fermionic Noether charges assignable to the
strings connecting partonic 2-surfaces. The interpretation of vertices as algebraic operations
implies that all sequences of operations connecting given collections of elements of Yangian at
the opposite boundaries of CD give rise to the same amplitude. This means a huge generaliza-
tion of the duality symmetry of hadronic string models that I have proposed already earlier:
the chapter [K15] is a remnant of an “idea that came too early”. The propagators are associ-
ated with the fermionic lines identifiable as boundaries of string world sheets. These lines are
light-like geodesics of H and fermion lines correspond topartial wave in the space S3 of light
like 8-momenta with fixed M4 momentum. For external lines M8 momentum corresponds to
the M4 × CP2 quantum numbers of a spinor harmonic.
The amplitudes can be formulated using only partonic 2-surfaces and string world sheets
and the algebraic continuation to achieve number theoretic Universality should be rather
straightforward: the parameters characterizing 2-surfaces - by conformal invariance various
conformal moduli - in the algebraic extension of rationals are replaced with real and various
p-adic numbers.

6. Wormhole contacts represent fundamental interaction vertex pairs and propagators between
them and one has stringy super-conformal invariance. Therefore there are excellent reasons to
expect that the perturbation theory is free of divergences. Without stringy contributions for
massive conformal excitations of wormhole contacts one would obtain the usual logarithmic
UV divergences of massless gauge theories. The fact that physical particles are bound states
of massless particles, gives good hopes of avoiding IR divergences of massless theories.

The figures ??, ?? (http://tgdtheory.fi/appfigures/elparticletgd.jpg http://tgdtheory.
fi/appfigures/tgdgrpahs.jpg) in the appendix of this book illustrate the relationship between
TGD diagrammatics, QFT diagrammatics and stringy diagrammatics. In [K100] a more detailed
construction based on the generalization of twistor approach and the idea that scattering ampli-
tudes represent sequences of algebraic operation in the Yangian of super-symplectic algebra, is
considered.

http://tgdtheory.fi/appfigures/elparticletgd.jpg
http://tgdtheory.fi/appfigures/tgdgrpahs.jpg
http://tgdtheory.fi/appfigures/tgdgrpahs.jpg


Chapter 14

Particle Massivation in TGD
Universe

14.1 Introduction

This chapter represents the most recent view about particle massivation in TGD framework. This
topic is necessarily quite extended since many several notions and new mathematics is involved.
Therefore the calculation of particle masses involves five chapters [K28, K60, K70, K64, K65]
of [K68]. In the following my goal is to provide an up-to-date summary whereas the chapters are
unavoidably a story about evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction of
massless states and the identification of the states which remain light in p-adic thermodynamics.
The latter task is relatively straightforward. The thorough understanding of the massless spectrum
requires however a real understanding of quantum TGD. It would be also highly desirable to
understand why p-adic thermodynamics combined with p-adic length scale hypothesis works. A
lot of progress has taken place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and fermions, the
generalization of S-matrix to what I call M -matrix, the notion of finite measurement resolution
characterized in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling
constant evolution and p-adic length scale hypothesis from the first principles, the realization
that the counterpart of Higgs mechanism involves generalized eigenvalues of the Kähler-Dirac
operator: these are represent important steps of progress during last years with a direct relevance
for the understanding of particle spectrum and massivation although the predictions of p-adic
thermodynamics are not affected.

Since 2010 a further progress took place. These steps of progress relate closely to ZEO,
bosonic emergence, the discovery of the weak form of electric-magnetic duality, the realization of
the importance of twistors in TGD, and the discovery that the well-definedness of em charge forces
the modes of Kähler-Dirac operator to 2-D surfaces - string world sheets and possibly also partonic
2-surfaces. This allows to assign to elementary particle closed string with pieces at two parallel
space-time sheets and accompanying a Kähler magnetic flux tube carrying monopole flux.

Twistor approach and the understanding of the solutions of Kähler-Dirac Dirac operator
served as a midwife in the process giving rise to the birth of the idea that all fundamental fermions
are massless and that both ordinary elementary particles and string like objects emerge from them.
Even more, one can interpret virtual particles as being composed of these massless on mass shell
particles assignable to wormhole throats. Four-momentum conservation poses extremely powerful
constraints on loop integrals but does not make them manifestly finite as believed first. String
picture is necessary for getting rid of logarithmic divergences.

The weak form of electric-magnetic duality led to the realization that elementary particles
correspond to bound states of two wormhole throats with opposite Kähler magnetic charges with
second throat carrying weak isospin compensating that of the fermion state at second wormhole
throat. Both fermions and bosons correspond to wormhole contacts: in the case of fermions
topological condensation generates the second wormhole throat. This means that altogether four
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wormhole throats are involved with both fermions, gauge bosons, and gravitons (for gravitons this
is unavoidable in any case). For p-adic thermodynamics the mathematical counterpart of string
corresponds to a wormhole contact with size of order CP2 size with the role of its ends played by
wormhole throats at which the signature of the induced 4-metric changes. The key observation
is that for massless states the throats of spin 1 particle must have opposite three-momenta so
that gauge bosons are necessarily massive, even photon and other particles usually regarded as
massless must have small mass which in turn cancels infrared divergences and give hopes about
exact Yangian symmetry generalizing that of N = 4 SYM. Besides this there is weak “stringy”
contribution to the mass assignable to the magnetic flux tubes connecting the two wormhole throats
at the two space-time sheets.

One cannot avoid the question about the relation between p-adic mass calculations and
Higgs mechanism. Higgs is predicted but does the analog of Higgs vacuum expectation emerge
as the existence of QFT limit would suggest? Boundary conditions for Kähler-Dirac action with
measurement interaction term for four-momentum lead to what looks like an as algebraic variant
of masssless Dirac equation in Minkowski space coupled to the analog of Higgs vacuum expectation
value restricted at fermionic strings. This equation does not however provide an analog of Higgs
mechanism but a space-time correlate for the stringy mass formula coming from the vanishing of
the scaling generator L0 of superconformal algbra. It could also give a first principle explanation
for the necessarily tachyonic ground state with half integer conformal weight.

For p-adic thermodynamics the mathematical counterpart of string corresponds to a worm-
hole contact with size of order CP2 size with the role of its ends played by wormhole throats at
which the signature of the induced 4-metric changes. The key observation is that for massless
states the throats of spin 1 particle must have opposite three-momenta so that gauge bosons are
necessarily massive, even photon and other particles usually regarded as massless must have small
mass which in turn cancels infrared divergences and give hopes about exact Yangian symmetry
generalizing that of N = 4 SYM.

Besides this there is weak “stringy” contribution to the mass assignable to the magnetic flux
tubes connecting the two wormhole throats at the two space-time sheets. In fact, this contribution
can be assigned to the additional conformal weight assignable to the stringy curve. The extension
of this conformal algebra to Yangian brings in third integer characterizing the poly-locality of
the Yangian generator (n-local generator acts on n partonic 2-surfaces simultaneously. Therefore
three integers would characterize the generators of the full symmetry algebra as the very naive
expectation on basis of 3-dimensionality of the fundamental objects would suggest. p-Adic mass
calculations should be carried out for Yangian generalization of p-adic thermodynamics.

14.1.1 Physical States As Representations Of Super-Symplectic And Su-
per Kac-Moody Algebras

Physical states belong to the representations of super-symplectic algebra and Super Kac-Moody
algebran. The precise identification of the two algebras has been rather tedious task but the recent
progress in the construction of WCW geometry and spinor structure led to a considerable progress
in this respect [K85].

1. In the generic case the generators of both algebras receive information from 1-D ends of
2-D string world sheets at which the modes of induced spinor fields are localized by the
condition that the modes are eigenstates of electromagnetic charge. Right-handed neutrino
is an exception since it has no electroweak couplings. One must however require that right-
handed neutrino does not mix with the left-handed one if the mode is de-localized at entire
space-time sheet.
Either the preferred extremal is such that Kähler-Dirac gamma matrices defined in terms of
canonical momentum currents of Kähler action consist of only M4 or CP2 type flat space
gammas so that there is no mixing with the left-handed neutrino. Or the CP2 and M4 parts
of the Kähler Dirac operator annihilate the right-handed neutrino mode separately. One can
of course have also modes which are mixtures of right- and left handed neutrinos but these are
necessarily localized at string world sheets.

2. The definition of super generator involves integration of string curve at the boundary of causal
diamond (CD) so that the generators are labelled by two conformal weights: that associated
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with the radial light-like coordinate and that assignable with the string curve. This strongly
suggests that the algebra extends to a 4-D Yangian involving multi-local generators (locus
means partonic surface now) assignable to various partonic surfaces at the boundaries of CD
- as indeed suggested [K100].

3. As before, the symplectic algebra corresponds to a super-symplectic algebra assignable to
symplectic transformations of δM4

±×CP2. One can regard this algebra as a symplectic algebra
of S2 × CP2 localized with respect to the light-like radial coordinate rM taking the role of
complex variable z in conformal field theories. Super-generators are linear in the modes of
right-handed neutrino. Covariantly constant mode and modes decoupling from left-handed
neutrino define the most important modes.

4. Second algebra corresponds to the Super Kac-Moody algebra. The corresponding Lie algebra
generates symplectic isometries of δM4

± × CP2. Fermionic generators are linear in the modes
of induced spinor field with non-vanishing electroweak quantum numbers: that is left-hand
neutrinos, charged leptons, and quarks.

5. The overall important conclusion is that overall Super Virasoro algebra has five tensor factors
corresponding to one tensor factor for super-symplectic algebra, and 4 tensor factors for Su-
per Kac-Moody algebra SO(2)× SU(3)× SU(2)rot × U(2)ew (CP2 isometries, S2 isometries,
electroweak SU(2)ew × U(1)). This is essential for mass calculations.

What looks like the most plausible option relies on the generalization of a coset construction
proposed already for years ago but badly mis-interpreted. The construction itself is strongly
supported and perhaps even forced by the vision that WCW is union of homogenous or even
symmetric spaces of form G/H [K85], where G is the isometry group of WCW and H its subgroup
leaving invariant the chosen point of WCW (say the 3-surface corresponding to a maximum of
Kähler function in Euclidian regions and stationary point of the Morse function defined by Kähler
action for Minkowskian space-time regions). It seems clear that only the Super Virasoro associated
with G can involve four-momentum so that the original idea that there are two identical four-
momenta identifiable as gravitational and inertial four-momenta must be given up. This boils dow
to the following picture.

1. Assume a generalization of the coset construction so that the differences of G and H super-
conformal generators On annihilate the physical states: (On(G)−On(H))|phys〉 = 0.

2. In zero energy ontology (ZEO) p-adic thermodynamics must be replaced with its square root
so that one consideres genuine quantum states rather than thermodynamical states. Hence the
system is quantum coherent. In the simplest situation this implies only that thermodynamical
weights are replaced by their square roots possibly multiplied by square roots irrelevant for
the mass squared expectation value.

3. Construct first ground states with negative conformal weight annihilated by G and H gen-
erators Gn, Ln, n < 0. Apply to these states generators of tensor factors of Super Viraroso
algebras to obtain states with vanishing G and H conformal weights. After this construct ther-
mal states as superpositions of states obtained by applying H generators and corresponding
G generators Gn,Ln, n > 0. Assume that these states are annihilated by G and H generators
Gn, Ln,n > 0 and by the differences of all G and H generators.

4. Super-symplectic algebra represents a completely new element and in the case of hadrons the
non-perturbative contribution to the mass spectrum is easiest to understand in terms of super-
symplectic thermal excitations contributing roughly 70 per cent to the p-adic thermal mass of
the hadron.

Yangian algebras associated with the super-conformal algebras and motivated by twistorial
approach generalize the already generalized super-conformal symmetry and make it multi-local in
the sense that generators can act on several partonic 2-surfaces simultaneously. These partonic
2-surfaces generalize the vertices for the external massless particles in twistor Grassmann diagrams
[K100]. The implications of this symmetry are yet to be deduced but one thing is clear: Yangians
are tailor made for the description of massive bound states formed from several partons identified
as partonic 2-surfaces. The preliminary discussion of what is involved can be found in [K100].
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14.1.2 Particle Massivation

Particle massivation can be regarded as a generation of thermal conformal weight identified as
mass squared and due to a thermal mixing of a state with vanishing conformal weight with those
having higher conformal weights. The observed mass squared is not p-adic thermal expectation of
mass squared but that of conformal weight so that there are no problems with Lorentz invariance.

One can imagine several microscopic mechanisms of massivation. The following proposal is
the winner in the fight for survival between several competing scenarios.

The original observation was that the pieces of CP2 type vacuum extremals representing
elementary particles have random light-like curve as an M4 projection so that the average mo-
tion correspond to that of massive particle. Light-like randomness gives rise to classical Virasoro
conditions. This picture generalizes since the basic dynamical objects are light-like but otherwise
random 3-surfaces. The identification of elementary particles developed in three steps.

1. Originally germions were identified as light-like 3-surfaces at which the signature of induced
metric of deformed CP2 type extremals changes from Euclidian to the Minkowskian signature
of the background space-time sheet. Gauge bosons and Higgs were identified as wormhole
contacts with light-like throats carrying fermion and anti-fermion quantum numbers. Gravi-
tons were identified as pairs of wormhole contacts bound to string like object by the fluxes
connecting the wormhole contacts. The randomness of the light-like 3-surfaces and associ-
ated super-conformal symmetries justify the use of thermodynamics and the question remains
why this thermodynamics can be taken to be p-adic. The proposed identification of bosons
means enormous simplification in thermodynamical description since all calculations reduced
to the calculations to fermion level. This picture generalizes to include super-symmetry. The
fermionic oscillator operators associated with the partonic 2-surfaces act as generators of badly
broken SUSY and right-handed neutrino gives to the not so badly broken N = 1 SUSY con-
sistent with empirical facts.
Of course, “badly” is relative notion. It is quite possible that the mixing of right-handed
neutrino with left-handed one becomes important only in CP2 scale and causes massivation.
Hence spartners might well have mass of order CP2 mass scale. The question about the mass
scale of right-handed neutrino remains open.

2. The next step was to realize that the topological condensation of fermion generates second
wormhole throat which carries momentum and symplectic quantum numbers but no fermionic
quantum numbers. This is also needed to the massivation by p-adic thermodynamics applied
to the analogs of string like objects defined by wormhole throats with throats taking the role
of string ends. p-Adic thermodynamics did not however allow a satisfactory understanding
of the gauge bosons masses and it became clear that some additional contribution - maybe
Higgsy or stringy contribution - dominates for weak gauge bosons. Gauge bosons should also
somehow obtain their longitudinal polarizations and here Higgs like particles indeed predicted
by the basic picture suggests itself strongly.

3. A further step was the discovery of the weak form of electric-magnetic duality, which led to the
realization that wormhole throats possess Kähler magnetic charge so that a wormole throat
with opposite magnetic charge is needed to compensate this charge. This wormhole throat can
also compensate the weak isospin of the second wormhole throat so that weak confinement
and massivation results. In the case of quarks magnetic confinement might take place in
hadronic rather than weak length scale. Second crucial observation was that gauge bosons are
necessarily massive since the light-like momenta at two throats must correspond to opposite
three-momenta so that no Higgs potential is needed. This leads to a picture in which gauge
bosons eat the Higgs scalars and also photon, gluons, and gravitons develop small mass.

4. A further step was the realization that although the existence of Higgs is established, it need
not contribute to neither fermion or gauge boson masses. CP2 geometry does not even allow
covariantly constant holomorphic vector field as a representation for the vacuum expectation
value of Higgs. Elementary particles are string like objects and string tension can give addi-
tional contribution to the mass squared. This would explain the large masses of weak bosons
as compared to the mass of photon predicted also to be non-vanishing in principle. Also a
small contribution to fermion masses is expected.
Higgs vacuum expectation would be replaced with the stringy contribution to the mass squared,
which by perturbative argument should apart from normalization factor have the form ∆m2 ∝
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g2T , where g is the gauge coupling assignable to the weak boson, and T is the analog of hadronic
string tension but in weak scale. This predicts correctly the ratio of W and Z boson masses
in terms of Weinberg angle.

5. The conformal weight characterizing fermionic masses in p-adic thermodynamics can be as-
signed to the very short piece of string connecting the opposite throats of wormhole contact.
The conformal weight associated with the long string connecting the throats of two wormhole
contacts should give the dominant contribution to the masses of weak gauge bosons. Five ten-
sor factors are needed in super-conformal algebra and super-symplectic and super-Kac Moody
contributions assignable to symplectic isometries give five factors.
One can assign conformal weights to both the light-like radial coordinate rM of δM4

± and
string. A third integer-valued quantum number comes from the extension of the extended
super-conformal algebra to multi-local Yangian algebra. Yangian extension should take place
for quark wormhole contacts inside hadrons and give non-perturbative multi-local contributions
to hadron masses and might explain most of hadronic mass since quark contribution is very
small. That three integers classify states conforms with the very naive first guess inspired by
3-dimensionality of the basic objects.
The details of the picture are however still fuzzy. Are the light-like radial and stringy con-
formal weights really independent quantum numbers as it seems? These conformal weights
however must be additive in the expression for mass squared to get five tensor factors. Could
one identify stringy coordinate with the light-like radial coordinate rM in Minkowskian space-
time regions to explain the additivity? The dominating contribution to the vacuum conformal
weight must be negative and half-integer valued. What is the origin of this tachyonic contri-
bution?

The fundamental parton level description of TGD is based on almost topological QFT for
light-like 3-surfaces.

1. Dynamics is constrained by the requirement that CP2 projection is for extremals of Chern-
Simons action 2-dimensional and for off-shell states light-likeness is the only constraint. Chern-
Simons action and its Dirac counterpart result as boundary terms of Kähler action and its
Dirac counterpart for preferred extremals. This requires that j · A contribution to Kähler
action vanishes for preferred extremals plus weak form of electric-magnetic duality.
The addition of 3-D measurement interaction term - essentially Dirac action associated with
3-D light-like orbits of partonic 2-surfaces implies that Chern-Simons Dirac operator plus La-
grangian multiplier term realizing the weak form of electric magnetic duality acts like massless
M4 Dirac operator assignable to the four-momentum propagating along the line of generalized
Feynman diagram. This simplifies enormously the definition of the Dirac propagator needed
in twistor Grassmannian approach [K100].

2. That mass squared, rather than energy, is a fundamental quantity at CP2 length scale is
besides Loretnz invariance suggested by a simple dimensional argument (Planck mass squared
is proportional to ~ so that it should correspond to a generator of some Lie-algebra (Virasoro
generator L0!)).
Mass squared is identified as the p-adic thermal expectation value of mass squared operator
m2 appearing as M4 contribution in the scaling generator L0(G) in the superposition of states
with vanishing total conformal weight but with varying mass squared eigenvalues associated
with the difference L0(G) − L0(H) annihilating the physical state. This definition does not
break Lorentz invariance in zero energy ontology. The states appearing in the superposition of
different states with vanishing total conformal weight give different contribution to the p-adic
thermodynamical expectation defining mass squared and the ability to physically observe this
as massivation might be perhaps interpreted as breaking of conformal invariance.

3. There is also a modular contribution to the mass squared, which can be estimated using
elementary particle vacuum functionals in the conformal modular degrees of freedom of the
partonic 2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both Virasoro
and modular contributions seem to be negligible and could be due to the smallness of the p-adic
temperature.

4. A long standing problem has been whether coupling to Higgs boson is needed to explain gauge
boson masses via a generation of Higgs vacuum expectation having possibly interpretation
in terms of a coherent state. Before the detailed model for elementary particles in terms of



654 Chapter 14. Particle Massivation in TGD Universe

pairs of wormhole contacts at the ends of flux tubes the picture about the situation was as
follows. From the beginning it was clear that is that ground state conformal weight must be
negative. Then it became clear that the ground state conformal weight need not be a negative
integer. The deviation ∆h of the total ground state conformal weight from negative integer
gives rise to stringy contribution to the thermal mass squared and dominates in case of gauge
bosons for which p-adic temperature is small. In the case of fermions this contribution to the
mass squared is small. The possible Higgs vacuum expectation makes sense only at QFT limit
perhaps allowing to describe the Yangian aspects, and would be naturally proportional to ∆h
so that the coupling to Higgs would only apparently cause gauge boson massivation.

5. A natural identification of the non-integer contribution to the conformal weight is as stringy
contribution to the vacuum conformal weight. In twistor approach the generalized eigenvalues
of Chern-Simons Dirac operator for external particles indeed correspond to light-like momenta
and when the three-momenta are opposite this gives rise to non-vanishing mass. Higgs is
necessary to give longitudinal polarizations for weak gauge bosons.

An important question concerns the justification of p-adic thermodynamics.

1. The underlying philosophy is that real number based TGD can be algebraically continued to
various p-adic number fields. This gives justification for the use of p-adic thermodynamics
although the mapping of p-adic thermal expectations to real counterparts is not completely
unique. The physical justification for p-adic thermodynamics is effective p-adic topology char-
acterizing the 3-surface: this is the case if real variant of light-like 3-surface has large number
of common algebraic points with its p-adic counterpart obeying same algebraic equations but
in different number field. In fact, there is a theorem stating that for rational surfaces the num-
ber of rational points is finite and rational (more generally algebraic points) would naturally
define the notion of number theoretic braid essential for the realization of number theoretic
universality.

2. The most natural option is that the descriptions in terms of both real and p-adic thermody-
namics make sense and are consistent. This option indeed makes if the number of generalized
eigen modes of Kähler-Dirac operator is finite. This is indeed the case if one accepts periodic
boundary conditions for the Chern-Simons Dirac operator. In fact, the solutions are localized
at the strands of braids. This makes sense because the theory has hydrodynamic interpreta-
tion. This reduces N = ∞ to finite SUSY and realizes finite measurement resolution as an
inherent property of dynamics.
The finite number of fermionic oscillator operators implies an effective cutoff in the number
conformal weights so that conformal algebras reduce to finite-dimensional algebras. The first
guess would be that integer label for oscillator operators becomes a number in finite field for
some prime. This means that one can calculate mass squared also by using real thermodynam-
ics but the consistency with p-adic thermodynamics gives extremely strong number theoretical
constraints on mass scale. This consistency condition allows also to solve the problem how to
map a negative ground state conformal weight to its p-adic counterpart. Negative conformal
weight is divided into a negative half odd integer part plus positive part ∆h, and negative
part corresponds as such to p-adic integer whereas positive part is mapped to p-adic number
by canonical identification.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1 whereas
Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length
scale R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger than

the naive guess. Hence p-adic thermodynamics describes the mixing of states with vanishing
conformal weights with their Super Kac-Moody Virasoro excitations having masses of order
10−3.5 Planck mass.

14.1.3 What Next?

The successes of p-adic mass calculations are basically due to the power of super-conformal sym-
metries and of number theory. One cannot deny that the description of the gauge boson and
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hadron massivation involves phenomenological elements. There are however excellent hopes that
it might be possible some day to calculate everything from first principles. The non-local Yangian
symmetry generalizing the super-conformal algebras suggests itself strongly as a fundamental sym-
metry of quantum TGD. The generalized of the Yangian symmetry replaces points with partonic
2-surfaces being multi-local with respect to them, and leads to general formulas for multi-local
operators representing four-momenta and other conserved charges of composite states.

In TGD framework even elementary particles involve two wormhole contacts having each
two wormhole throats identified as the fundamental partonic entities. Therefore Yangian approach
would naturally define the first principle approach to the understanding of masses of elementary
particles and their bound states (say hadrons). The power of this extended symmetry might be
enough to deduce universal mass formulas. One of the future challenges would therefore be the
mathematical and physical understanding of Yangian symmetry. This would however require the
contributions of professional mathematicians.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

14.2 Identification Of Elementary Particles

14.2.1 Partons As Wormhole Throats And Particles As Bound States
Of Wormhole Contacts

The assumption that partonic 2-surfaces correspond to representations of Super Virasoro algebra
has been an unchallenged assumption of the p-adic mass calculations for a long time although
one might argue that these objects do not possess stringy characteristics, in particular they do
not possess two ends. The progress in the understanding of the Kähler-Dirac equation and the
introduction of the weak form of electric magnetic duality [K113] however forces to modify the
picture about the origin of the string mass spectrum.

1. The weak form of electric-magnetic duality, the basic facts about Kähler-Dirac equation and
the proposed twistorialization of quantum TGD [K100] force to conclude that both strings
and bosons and their super-counterparts emerge from massless fermions moving collinearly at
partonic two-surfaces. Stringy mass spectrum is consistent with this only if p-adic thermo-
dynamics describes wormhole contacts as analogs of stringy objects having quantum numbers
at the throats playing the role of string ends. For instance, the three-momenta of massless
wormhole throats could be in opposite direction so that wormhole contact would become mas-
sive. The fundamental string like objects would therefore correspond to the wormhole contacts
with size scale of order CP2 length. Already these objects must have a correct correlation be-
tween color and electroweak quantum numbers. The colored super-generators taking care that
anomalous color is compensated can be assigned with purely bosonic quanta associated with
the wormhole throats which carry no fermion number.

2. Second modification comes from the necessity to assume weak confinement in the sense that
each wormhole throat carrying fermionic numbers is accompanied by a second wormhole throat
carrying neutrino pair cancelling the net weak isospin so that only electromagnetic charge
remains unscreened. This screening must take place in weak length scale so that ordinary
elementar particles are predicted to be string like objects. This string tension has however
nothing to do with the fundamental string tension responsible for the mass spectrum. This
picture is forced also by the fact that fermionic wormhole throats necessarily carry Kähler
magnetic charge [K113] so that in the case of leptons the second wormhole throat must carry
a compensating Kähler magnetic charge. In the case of quarks one can consider the possibility
that magnetic charges are not neutralized completely in weak scale and that the compensation
occurs in QCD length scale so that Kähler magnetic confinement would accompany color
confinement. This means color magnetic confinement since classical color gauge fields are
proportional to induced Kähler field.

These modifications do not seem to appreciably affect the results of calculations, which
depend only on the number of tensor factors in super Virasoro representation, they are not taken
explicitly into account in the calculations. The predictions of the general theory are consistent
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with the earliest mass calculations, and the earlier ad hoc parameters disappear. In particular,
optimal lowest order predictions for the charged lepton masses are obtained and photon, gluon and
graviton appear as essentially massless particles. What is new is the possibility to describe the
massivation of gauge bosons by including the contribution from the string tension of weak string
like objects: weak boson masses have indeed been the trouble makers and have forced to conclude
that Higgs expectation might be needed unless some other mechanism contributes to the conformal
vacuum weight of the ground state.

14.2.2 Family Replication Phenomenon Topologically

One of the basic ideas of TGD approach has been genus-generation correspondence: boundary
components of the 3-surface should be carriers of elementary particle numbers and the observed
particle families should correspond to various boundary topologies.

With the advent of ZEO this picture changed somewhat. It is the wormhole throats identified
as light-like 3-surfaces at with the induced metric of the space-time surface changes its signature
from Minkowskian to Euclidian, which correspond to the light-like orbits of partonic 2-surfaces.
One cannot of course exclude the possibility that also boundary components could allow to satisfy
boundary conditions without assuming vacuum extremal property of nearby space-time surface.
The intersections of the wormhole throats with the light-like boundaries of causal diamonds (CDs)
identified as intersections of future and past directed light cones (CD×CP2 is actually in question
but I will speak about CDs) define special partonic 2-surfaces and it is the moduli of these partonic
2-surfaces which appear in the elementary particle vacuum functionals naturally.

The first modification of the original simple picture comes from the identification of physical
particles as bound states of pairs of wormhole contacts and from the assumption that for generalized
Feynman diagrams stringy trouser vertices are replaced with vertices at which the ends of light-like
wormhole throats meet. In this picture the interpretation of the analog of trouser vertex is in terms
of propagation of same particle along two different paths. This interpretation is mathematically
natural since vertices correspond to 2-manifolds rather than singular 2-manifolds which are just
splitting to two disjoint components. Second complication comes from the weak form of electric-
magnetic duality forcing to identify physical particles as weak strings with magnetic monopoles at
their ends and one should understand also the possible complications caused by this generalization.

These modifications force to consider several options concerning the identification of light
fermions and bosons and one can end up with a unique identification only by making some assump-
tions. Masslessness of all wormhole throats- also those appearing in internal lines- and dynamical
SU(3) symmetry for particle generations are attractive general enough assumptions of this kind.
This means that bosons and their super-partners correspond to wormhole contacts with fermion and
anti-fermion at the throats of the contact. Free fermions and their superpartners could correspond
to CP2 type vacuum extremals with single wormhole throat. It turns however that dynamical
SU(3) symmetry forces to identify massive (and possibly topologically condensed) fermions as
(g, g) type wormhole contacts.

Do free fermions correspond to single wormhole throat or (g, g) wormhole?

The original interpretation of genus-generation correspondence was that free fermions correspond
to wormhole throats characterized by genus. The idea of SU(3) as a dynamical symmetry suggested
that gauge bosons correspond to octet and singlet representations of SU(3). The further idea that
all lines of generalized Feynman diagrams are massless poses a strong additional constraint and it
is not clear whether this proposal as such survives.

1. Twistorial program assumes that fundamental objects are massless wormhole throats carry-
ing collinearly moving many-fermion states and also bosonic excitations generated by super-
symplectic algebra. In the following consideration only purely bosonic and single fermion
throats are considered since they are the basic building blocks of physical particles. The
reason is that propagators for high excitations behave like p−n, n the number of fermions
associated with the wormhole throat. Therefore single throat allows only spins 0,1/2,1 as
elementary particles in the usual sense of the word.

2. The identification of massive fermions (as opposed to free massless fermions) as wormhole
contacts follows if one requires that fundamental building blocks are massless since at least
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two massless throats are required to have a massive state. Therefore the conformal excitations
with CP2 mass scale should be assignable to wormhole contacts also in the case of fermions.
As already noticed this is not the end of the story: weak strings are required by the weak form
of electric-magnetic duality.

3. If free fermions corresponding to single wormhole throat, topological condensation is an es-
sential element of the formation of stringy states. The topological condensation of fermions
by topological sum (fermionic CP2 type vacuum extremal touches another space-time sheet)
suggest (g, 0) wormhole contact. Note however that the identification of wormhole throat is as
3-surface at which the signature of the induced metric changes so that this conclusion might be
wrong. One can indeed consider also the possibility of (g, g) pairs as an outcome of topological
conensation. This is suggested also by the idea that wormhole throats are analogous to string
like objects and only this option turns out to be consistent with the BFF vertex based on the
requirement of dynamical SU(3) symmetry to be discussed later. The structure of reaction
vertices makes it possible to interpret (g, g) pairs as SU(3) triplet. If bosons are obtained as
fusion of fermionic and anti-fermionic throats (touching of corresponding CP2 type vacuum
extremals) they correspond naturally to (g1, g2) pairs.

4. p-Adic mass calculations distinguish between fermions and bosons and the identification of
fermions and bosons should be consistent with this difference. The maximal p-adic temperature
T = 1 for fermions could relate to the weakness of the interaction of the fermionic wormhole
throat with the wormhole throat resulting in topological condensation. This wormhole throat
would however carry momentum and 3-momentum would in general be non-parallel to that of
the fermion, most naturally in the opposite direction.
p-Adic mass calculations suggest strongly that for bosons p-adic temperature T = 1/n, n > 1,
so that thermodynamical contribution to the mass squared is negligible. The low p-adic tem-
perature could be due to the strong interaction between fermionic and anti-fermionic wormhole
throat leading to the “freezing” of the conformal degrees of freedom related to the relative mo-
tion of wormhole throats.

5. The weak form of electric-magnetic duality forces second wormhole throat with opposite mag-
netic charge and the light-like momenta could sum up to massive momentum. In this case
string tension corresponds to electroweak length scale. Therefore p-adic thermodynamics must
be assigned to wormhole contacts and these appear as basic units connected by Kähler mag-
netic flux tube pairs at the two space-time sheets involved. Weak stringy degrees of freedom
are however expected to give additional contribution to the mass, perhaps by modifying the
ground state conformal weight.

Dynamical SU(3) fixes the identification of fermions and bosons and fundamental
interaction vertices

For 3 light fermion families SU(3) suggests itself as a dynamical symmetry with fermions in funda-
mental N = 3-dimensional representation and N ×N = 9 bosons in the adjoint representation and
singlet representation. The known gauge bosons have same couplings to fermionic families so that
they must correspond to the singlet representation. The first challenge is to understand whether
it is possible to have dynamical SU(3) at the level of fundamental reaction vertices.

This is a highly non-trivial constraint. For instance, the vertices in which n wormhole
throats with same (g1, g2) glued along the ends of lines are not consistent with this symmetry.
The splitting of the fermionic worm-hole contacts before the proper vertices for throats might
however allow the realization of dynamical SU(3). The condition of SU(3) symmetry combined
with the requirement that virtual lines resulting also in the splitting of wormhole contacts are
always massless, leads to the conclusion that massive fermions correspond to (g, g) type wormhole
contacts transforming naturally like SU(3) triplet. This picture conformsl with the identification
of free fermions as throats but not with the näıve expectation that their topological condensation
gives rise to (g, 0) wormhole contact.

The argument leading to these conclusions runs as follows.

1. The question is what basic reaction vertices are allowed by dynamical SU(3) symmetry. FFB
vertices are in principle all that is needed and they should obey the dynamical symmetry. The
meeting of entire wormhole contacts along their ends is certainly not possible. The splitting
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of fermionic wormhole contacts before the vertices might be however consistent with SU(3)
symmetry. This would give two a pair of 3-vertices at which three wormhole lines meet along
partonic 2-surfaces (rather than along 3-D wormhole contacts).

2. Note first that crossing gives all possible reaction vertices of this kind from F (g1)F (g2) →
B(g1, g2) annihilation vertex, which is relatively easy to visualize. In this reaction F (g1)
and F (g2) wormhole contacts split first. If one requires that all wormhole throats involved
are massless, the two wormhole throats resulting in splitting and carrying no fermion number
must carry light-like momentum so that they cannot just disappear. The ends of the wormhole
throats of the boson must glued together with the end of the fermionic wormhole throat and
its companion generated in the splitting of the wormhole. This means that fermionic wormhole
first splits and the resulting throats meet at the partonic 2-surface.
his requires that topologically condensed fermions correspond to (g, g) pairs rather than (g, 0)
pairs. The reaction mechanism allows the interpretation of (g, g) pairs as a triplet of dynamical
SU(3). The fundamental vertices would be just the splitting of wormhole contact and 3-vertices
for throats since SU(3) symmetry would exclude more complex reaction vertices such as n-
boson vertices corresponding the gluing of n wormhole contact lines along their 3-dimensional
ends. The couplings of singlet representation for bosons would have same coupling to all
fermion families so that the basic experimental constraint would be satisfied.

3. Both fermions and bosons cannot correspond to octet and singlet of SU(3). In this case
reaction vertices should correspond algebraically to the multiplication of matrix elements eij :
eijekl = δjkeil allowing for instance F (g1, g2) + F (g2, g3) → B(g1, g3). Neither the fusion
of entire wormhole contacts along their ends nor the splitting of wormhole throats before
the fusion of partonic 2-surfaces allows this kind of vertices so that BFF vertex is the only
possible one. Also the construction of QFT limit starting from bosonic emergence led to the
formulation of perturbation theory in terms of Dirac action allowing only BFF vertex as
fundamental vertex [?] .

4. Weak electric-magnetic duality brings in an additional complication. SU(3) symmetry poses
also now strong constraints and it would seem that the reactions must involve copies of basic
BFF vertices for the pairs of ends of weak strings. The string ends with the same Kähler
magnetic charge should meet at the vertex and give rise to BFF vertices. For instance, FFB
annihilation vertex would in this manner give rise to the analog of stringy diagram in which
strings join along ends since two string ends disappear in the process.

If one accepts this picture the remaining question is why the number of genera is just three.
Could this relate to the fact that g ≤ 2 Riemann surfaces are always hyper-elliptic (have global Z2

conformal symmetry) unlike g > 2 surfaces? Why the complete bosonic de-localization of the light
families should be restricted inside the hyper-elliptic sector? Does the Z2 conformal symmetry
make these states light and make possible de-localization and dynamical SU(3) symmetry? Could
it be that for g > 2 elementary particle vacuum functionals vanish for hyper-elliptic surfaces?
If this the case and if the time evolution for partonic 2-surfaces changing g commutes with Z2

symmetry then the vacuum functionals localized to g ≤ 2 surfaces do not disperse to g > 2 sectors.

The notion of elementary particle vacuum functional

Obviously one must know something about the dependence of the elementary particle state func-
tionals on the geometric properties of the boundary component and in the sequel an attempt to
construct what might be called elementary particle vacuum functionals, is made.

The basic assumptions underlying the construction are the following ones:

1. Elementary particle vacuum functionals depend on the geometric properties of the two-surface
X2 representing elementary particle.

2. Vacuum functionals possess extended Diff invariance: all 2-surfaces on the orbit of the 2-surface
X2 correspond to the same value of the vacuum functional. This condition is satisfied if vacuum
functionals have as their argument, not X2 as such, but some 2- surface Y 2 belonging to the
unique orbit of X2 (determined by the principle selecting preferred extremal of the Kähler
action as a generalized Bohr orbit [K52] ) and determined in Diff3 invariant manner.

3. ZEO allows to select uniquely the partonic two surface as the intersection of the wormhole
throat at which the signature of the induced 4-metric changes with either the upper or lower
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boundary of CD×CP2. This is essential since otherwise one one could not specify the vacuum
functional uniquely.

4. Vacuum functionals possess conformal invariance and therefore for a given genus depend on a
finite number of variables specifying the conformal equivalence class of Y 2.

5. Vacuum functionals satisfy the cluster decomposition property: when the surface Y 2 degen-
erates to a union of two disjoint surfaces (particle decay in string model inspired picture),
vacuum functional decomposes into a product of the vacuum functionals associated with dis-
joint surfaces.

6. Elementary particle vacuum functionals are stable against the decay g → g1 + g2 and one
particle decay g → g − 1. This process corresponds to genuine particle decay only for stringy
diagrams. For generalized Feynman diagrams the interpretation is in terms of propagation
along two different paths simultaneously.

In [K28] the construction of elementary particle vacuum functionals is described in more
detail. This requires some basic concepts related to the description of the space of the conformal
equivalence classes of Riemann surfaces and the concept of hyper-ellipticity. Since theta functions
will play a central role in the construction of the vacuum functionals, also their basic properties
are needed. Also possible explanations for the experimental absence of the higher fermion families
are considered.

14.2.3 Critizing the view about elementary particles

The concrete model for elementary particles has developed gradually during years and is by no
means final. In the recent model elementary particle corresponds to a pair of wormhole contacts
and monopole flux runs between the throats of of the two contacts at the two space-time sheets
and through the contacts between space-time sheets.

The first criticism relates to twistor lift of TGD [L30]. In the case of Kähler action the
wormhole contacts correspond to deformations for pieces of CP2 type vacuum extremals for which
the 1-D M4 projection is light-like random curve. Twistor lift adds to Kähler action a volume term
proportional to cosmological constant and forces the vacuum extremal to be a minimal surface
carrying non-vanishing light-like momentum (this is of course very natural): one could call this
surface CP2 type extremal. This implies that M4 projection is light-like geodesic: this is physically
rather natural.

Twistor lift leads to a loss of the proposed space-time correlate of massivation used also to
justify p-adic thermodynamics: the average velocity for a light-like random curve is smaller than
maximal signal velocity - this would be a clear classical signal for massivation. One could however
conjecture that the M4 projection for the light-like boundaries of string world sheets becomes light-
like geodesic of M4 × CP2 instead light-like geodesic of M4 and that this serves as the correlate
for the massivation in 4-D sense.

Second criticism is that I have not considered in detail what the monopole flux hypothesis
really means at the level of detail. Since the monopole flux is due to the CP2 topology, there
must be a closed 2-surface which carries this flux. This implies that the flux tube cannot have
boundaries at larger space-time surface but one has just the flux tube with closed cross section
obtained as a deformation of a cosmic string like object X2 × Y 2, where X2 is minimal surface in
M4 and Y 2 a complex surface of CP2 characterized by genus. Deformation would have 4-D M4

projection instead of 2-D string world sheet.
Note: One can also consider objects for which the flux is not monopole flux: in this case

one would have deformations of surfaces of type X2×S2, S2 homologically trivial geodesic sphere:
these are non-vacuum extremals for the twistor lift of Kähler action (volume term). The net
magnetic flux would vanish - as a matter fact, the induced Kähler form would vanish identically
for the simplest situation. These objects might serve as correlates for gravitons since the induced
metric is the only field degree of freedom. One could also have non-vanishing fluxes for flux tubes
with disk-like cross section.

If this is the case, the elementary particles would be much simpler than I have though
hitherto.

1. Elementary particles would be simply closed flux tubes which look like very long flattened
squares. Short sides with length of order CP2 radius would be identifiable as pieces of deformed
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CP2 type extremals having Euclidian signature of the induced metric. Long sides would be
deformed cosmic strings with Minkowskian signature with apparent ends, which are light-like
3-surfaces at which the induced 4-metric is degenerate. Both Minkowskian and Euclidian
regions of closed flux tubes would be accompanied by fermionic strings. These objects would
topologically condense at larger space-time sheets with wormhole contacts that do not carry
monopole flux: touching the larger space-time surface but not sticking to it.

2. One could understand why the genus for all wormhole throats must be the same for the
simplest states as the TGD explanation of family replication phenomenon demands. Of course,
the change of the topology along string like object cannot be excluded but very probably
corresponds to an unstable higher mass excitation.

3. The basic particle reactions would include re-connections of closed string like objects and their
reversals. The replication of 3-surfaces would remain a new element brought by TGD. The
basic processes at fermionic level would be reconnections of closed fermionic strings. The new
element would be the presence of Euclidian regions allowing to talk about effective boundaries
of strings as boundaries between the Minkowskian or Euclidian regions. This would simplify
enormously the description of particle reactions by bringing in description topologically highly
analogous to that provided by closed strings.

4. The original picture need not of course be wrong: it is only slightly more complex than the
above proposal. One would have two space-time sheets connected by a pair of wormhole
contacts between, which most of the magnetic flux would flow like in flux tube. The flux
from the throat could emerges more or less spherically but eventually end up to the second
wormhole throat. The sheets would be connected along their boundaries so that 3-space would
be connected. The absence of boundary terms in the action implies this. The monopole fluxes
would sum up to a vanishing flux at the boundary, where gluing of the sheets of the covering
takes place.

There is a further question to be answered. Are the fermionic strings closed or not?
Fermionic strings have certainly the Minkowskian portions ending at the light-like partonic orbits
at Minkowskian-Euclidian boundaries. But do the fermionic strings have also Euclidian portions
so that the signature of particle would be 2+2 kinks of a closed fermionic string? If strong for of
holography is true in both Euclidian and Minkowskian regions, this is highly suggestive option.

If only Minkowskian portions are present, particles could be seen as pairs of open fermionic
strings and the counterparts of open string vertices would be possible besides reconnection of closed
strings. For this option one can also consider single fermionic open strings connecting wormhole
contacts: now possible flux tube would not carry monopole flux.

14.2.4 Basic Facts About Riemann Surfaces

In the following some basic aspects about Riemann surfaces will be summarized. The basic topo-
logical concepts, in particular the concept of the mapping class group, are introduced, and the
Teichmueller parameters are defined as conformal invariants of the Riemann surface, which in fact
specify the conformal equivalence class of the Riemann surface completely.

Mapping class group

The first homology group H1(X2) of a Riemann surface of genus g contains 2g generators [A33,
A51, A42] : this is easy to understand geometrically since each handle contributes two homology
generators. The so called canonical homology basis can be identified (see Fig. 14.1).

One can define the so called intersection J(a, b) for two elements a and b of the homology
group as the number of intersection points for the curves a and b counting the orientation. Since
J(a, b) depends on the homology classes of a and b only, it defines an antisymmetric quadratic
form in H1(X2). In the canonical homology basis the non-vanishing elements of the intersection
matrix are:

J(ai, bj) = −J(bj , ai) = δi,j . (14.2.1)

J clearly defines symplectic structure in the homology group.
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Figure 14.1: Definition of the canonical homology basis

The dual to the canonical homology basis consists of the harmonic one-forms αi, βi, i = 1, .., g
on X2. These 1-forms satisfy the defining conditions

∫
ai
αj = δi,j

∫
bi
αj = 0 ,∫

ai
βj = 0

∫
bi
βj = δi,j .

(14.2.2)

The following identity helps to understand the basic properties of the Teichmueller parameters

∫
X2

θ ∧ η =
∑

i=1,..,g

[

∫
ai

θ

∫
bi

η −
∫
bi

θ

∫
ai

η] . (14.2.3)

The existence of topologically nontrivial diffeomorphisms, when X2 has genus g > 0, plays
an important role in the sequel. Denoting by Diff the group of the diffeomorphisms of X2 and
by Diff0 the normal subgroup of the diffeomorphisms homotopic to identity, one can define the
mapping class group M as the coset group

M = Diff/Diff0 . (14.2.4)

The generators of M are so called Dehn twists along closed curves a of X2. Dehn twist is defined
by excising a small tubular neighborhood of a, twisting one boundary of the resulting tube by 2π
and gluing the tube back into the surface: see Fig. 14.2.

It can be shown that a minimal set of generators is defined by the following curves

a1, b1, a
−1
1 a−1

2 , a2, b2, a
−1
2 a−11

3 , ..., ag, bg . (14.2.5)

The action of these transformations in the homology group can be regarded as a symplectic
linear transformation preserving the symplectic form defined by the intersection matrix. Therefore



662 Chapter 14. Particle Massivation in TGD Universe

Figure 14.2: Definition of the Dehn twist

the matrix representing the action of Diff on H1(X2) is 2g × 2g matrix M with integer entries
leaving J invariant: MJMT = J . Mapping class group is often referred also and denoted by
Sp(2g, Z). The matrix representing the action of M in the canonical homology basis decomposes
into four g × g blocks A,B,C and D

M =

(
A B
C D

)
, (14.2.6)

where A and D operate in the subspaces spanned by the homology generators ai and bi respectively
and C and D map these spaces to each other. The notation D = [A,B;C,D] will be used in the
sequel: in this notation the representation of the symplectic form J is J = [0, 1;−1, 0].

Teichmueller parameters

The induced metric on the two-surface X2 defines a unique complex structure. Locally the metric
can always be written in the form

ds2 = e2φdzdz̄ . (14.2.7)

where z is local complex coordinate. When one covers X2 by coordinate patches, where the line
element has the above described form, the transition functions between coordinate patches are
holomorphic and therefore define a complex structure.

The conformal transformations ξ of X2 are defined as the transformations leaving invariant
the angles between the vectors of X2 tangent space invariant: the angle between the vectors X
and Y at point x is same as the angle between the images of the vectors under Jacobian map at
the image point ξ(x). These transformations need not be globally defined and in each coordinate
patch they correspond to holomorphic (anti-holomorphic) mappings as is clear from the diagonal
form of the metric in the local complex coordinates. A distinction should be made between local
conformal transformations and globally defined conformal transformations, which will be referred
to as conformal symmetries: for instance, for hyper-elliptic surfaces the group of the conformal
symmetries contains two-element group Z2.

Using the complex structure one can decompose one-forms to linear combinations of one-
forms of type (1, 0) (f(z, z̄)dz) and (0, 1) (f(z, z̄)dz̄). (1, 0) form ω is holomorphic if the function
f is holomorphic: ω = f(z)dz on each coordinate patch.

There are g independent holomorphic one forms ωi known also as Abelian differentials
Alvarez,Farkas,Mumford and one can fix their normalization by the condition

∫
ai

ωj = δij . (14.2.8)
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This condition completely specifies ωi.
Teichmueller parameters Ωij are defined as the values of the forms ωi for the homology

generators bj

Ωij =

∫
bj

ωi . (14.2.9)

The basic properties of Teichmueller parameters are the following:

1. The g× g matrix Ω is symmetric: this is seen by applying the formula (14.2.3) for θ = ωi and
η = ωj .

2. The imaginary part of Ω is positive: Im(Ω) > 0. This is seen by the application of the same
formula for θ = η. The space of the matrices satisfying these conditions is known as Siegel
upper half plane.

3. The space of Teichmueller parameters can be regarded as a coset space Sp(2g,R)/U(g) [A42]
: the action of Sp(2g,R) is of the same form as the action of Sp(2g, Z) and U(g) ⊂ Sp(2g,R)
is the isotropy group of a given point of Teichmueller space.

4. Teichmueller parameters are conformal invariants as is clear from the holomorphy of the defin-
ing one-forms.

5. Teichmueller parameters specify completely the conformal structure of Riemann surface [A51]
.

Although Teichmueller parameters fix the conformal structure of the 2-surface completely,
they are not in one-to-one correspondence with the conformal equivalence classes of the two-
surfaces:
i) The dimension for the space of the conformal equivalence classes is D = 3(g − 1), when g > 1
and smaller than the dimension of Teichmueller space given by d = (g × g + g)/2 for g > 3: all
Teichmueller matrices do not correspond to a Riemann surface. Note that for g = 2 the two di-
mensions are same so that the 3 lowest genera are special. In TGD approach this does not produce
any problems as will be found later.
ii) The action of the topologically nontrivial diffeomorphisms on Teichmueller parameters is non-
trivial and can be deduced from the action of the diffeomorphisms on the homology (Sp(2g, Z)
transformation) and from the defining condition

∫
ai
ωj = δi,j : diffeomorphisms correspond to

elements [A,B;C,D] of Sp(2g, Z) and act as generalized Möbius transformations

Ω→ (AΩ +B)(CΩ +D)−1 . (14.2.10)

All Teichmueller parameters related by Sp(2g, Z) transformations correspond to the same Riemann
surface.
iii) The definition of the Teichmueller parameters is not unique since the definition of the canonical
homology basis involves an arbitrary numbering of the homology basis. The permutation S of the
handles is represented by same g×g orthogonal matrix both in the basis {ai} and {bi} and induces
a similarity transformation in the space of the Teichmueller parameters

Ω→ SΩS−1 . (14.2.11)

Clearly, the Teichmueller matrices related by a similarity transformations correspond to the same
conformal equivalence class. It is easy to show that handle permutations in fact correspond to
Sp(2g, Z) transformations.

Hyper-ellipticity

The motivation for considering hyper-elliptic surfaces comes from the fact, that g > 2 elementary
particle vacuum functionals turn out to be vanishing for hyper-elliptic surfaces and this in turn
will be later used to provide a possible explanation the non-observability of g > 2 particles.

Hyper-elliptic surface X can be defined abstractly as two-fold branched cover of the sphere
having the group Z2 as the group of conformal symmetries (see [A74, A51, A42] . Thus there exists
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a map π : X → S2 so that the inverse image π−1(z) for a given point z of S2 contains two points
except at a finite number (say p) of points zi (branch points) for which the inverse image contains
only one point. Z2 acts as conformal symmetries permuting the two points in π−1(z) and branch
points are fixed points of the involution.

The concept can be generalized [A74] : g-hyper-elliptic surface can be defined as a 2-fold
covering of genus g surface with a finite number of branch points. One can consider also p-fold
coverings instead of 2-fold coverings: a common feature of these Riemann surfaces is the existence
of a discrete group of conformal symmetries.

A concrete representation for the hyper-elliptic surfaces [A42] is obtained by studying the
surface of C2 determined by the algebraic equation

w2 − Pn(z) = 0 , (14.2.12)

where w and z are complex variables and Pn(z) is a complex polynomial. One can solve w from
the above equation

w± = ±
√
Pn(z) , (14.2.13)

where the square root is determined so that it has a cut along the positive real axis. What happens
that w has in general two roots (two-fold covering property), which coincide at the roots zi of Pn(z)
and if n is odd, also at z =∞: these points correspond to branch points of the hyper-elliptic surface
and their number r is always even: r = 2k. w is discontinuous at the cuts associated with the
square root in general joining two roots of Pn(z) or if n is odd, also some root of Pn and the point
z =∞. The representation of the hyper-elliptic surface is obtained by identifying the two branches
of w along the cuts. From the construction it is clear that the surface obtained in this manner
has genus k− 1. Also it is clear that Z2 permutes the different roots w± with each other and that
r = 2k branch points correspond to fixed points of the involution.

The following facts about the hyper-elliptic surfaces [A51, A42] turn out to be important in
the sequel:
i) All g < 3 surfaces are hyper-elliptic.
ii) g ≥ 3 hyper-elliptic surfaces are not in general hyper-elliptic and form a set of codimension 2
in the space of the conformal equivalence classes [A42] .

Theta functions

An extensive and detailed account of the theta functions and their applications can be found in the
book of Mumford [A42] . Theta functions appear also in the loop calculations of string [J5] [A33]
. In the following the so called Riemann theta function and theta functions with half integer
characteristics will be defined as sections (not strictly speaking functions) of the so called Jacobian
variety.

For a given Teichmueller matrix Ω, Jacobian variety is defined as the 2g-dimensional torus
obtained by identifying the points z of Cg ( vectors with g complex components) under the equiv-
alence

z ∼ z + Ωm+ n , (14.2.14)

where m and n are points of Zg (vectors with g integer valued components) and Ω acts in Zg by
matrix multiplication.

The definition of Riemann theta function reads as

Θ(z|Ω) =
∑
n

exp(iπn · Ω · n+ i2πn · z) . (14.2.15)

Here · denotes standard inner product in Cg. Theta functions with half integer characteristics are
defined in the following manner. Let a and b denote vectors of Cg with half integer components
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(component either vanishes or equals to 1/2). Theta function with characteristics [a, b] is defined
through the following formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(14.2.16)

A brief calculation shows that the following identity is satisfied

Θ[a, b](z|Ω) = exp(iπa · Ω · a+ i2πa · b)×Θ(z + Ωa+ b|Ω)

(14.2.17)

Theta functions are not strictly speaking functions in the Jacobian variety but rather sections in
an appropriate bundle as can be seen from the identities

Θ[a, b](z +m|Ω) = exp(i2πa ·m)Θ[a, b](zΩ) ,

Θ[a, b](z + Ωm|Ω) = exp(α)Θ[a, b](z|Ω) ,

exp(α) = exp(−i2πb ·m)exp(−iπm · Ω ·m− 2πm · z) .

(14.2.18)

The number of theta functions is 22g and same as the number of nonequivalent spinor
structures defined on two-surfaces. This is not an accident [A33] : theta functions with given
characteristics turn out to be in a close relation to the functional determinants associated with
the Dirac operators defined on the two-surface. It is useful to divide the theta functions to even
and odd theta functions according to whether the inner product 4a · b is even or odd integer. The
numbers of even and odd theta functions are 2g−1(2g + 1) and 2g−1(2g − 1) respectively.

The values of the theta functions at the origin of the Jacobian variety understood as functions
of Teichmueller parameters turn out to be of special interest in the following and the following
notation will be used:

Θ[a, b](Ω) ≡ Θ[a, b](0|Ω) , (14.2.19)

Θ[a, b](Ω) will be referred to as theta functions in the sequel. From the defining properties of odd
theta functions it can be found that they are odd functions of z and therefore vanish at the origin
of the Jacobian variety so that only even theta functions will be of interest in the sequel.

An important result is that also some even theta functions vanish for g > 2 hyper-elliptic
surfaces : in fact one can characterize g > 2 hyper-elliptic surfaces by the vanishing properties
of the theta functions [A51, A42] . The vanishing property derives from conformal symmetry
(Z2 in the case of hyper-elliptic surfaces) and the vanishing phenomenon is rather general [A74]
: theta functions tend to vanish for Riemann surfaces possessing discrete conformal symmetries.
It is not clear (to the author) whether the presence of a conformal symmetry is in fact equivalent
with the vanishing of some theta functions. As already noticed, spinor structures and the theta
functions with half integer characteristics are in one-to-one correspondence and the vanishing of
theta function with given half integer characteristics is equivalent with the vanishing of the Dirac
determinant associated with the corresponding spinor structure or equivalently: with the existence
of a zero mode for the Dirac operator Alvarez . For odd characteristics zero mode exists always: for
even characteristics zero modes exist, when the surface is hyper-elliptic or possesses more general
conformal symmetries.

14.2.5 Elementary Particle Vacuum Functionals

The basic assumption is that elementary particle families correspond to various elementary parti-
cle vacuum functionals associated with the 2-dimensional boundary components of the 3-surface.
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These functionals need not be localized to a single boundary topology. Neither need their depen-
dence on the boundary component be local. An important role in the following considerations is
played by the fact that the minimization requirement of the Kähler action associates a unique 3-
surface to each boundary component, the “Bohr orbit” of the boundary and this surface provides a
considerable (and necessarily needed) flexibility in the definition of the elementary particle vacuum
functionals. There are several natural constraints to be satisfied by elementary particle vacuum
functionals.

Extended Diff invariance and Lorentz invariance

Extended Diff invariance is completely analogous to the extension of 3-dimensional Diff invariance
to four-dimensional Diff invariance in the interior of the 3-surface. Vacuum functional must be
invariant not only under diffeomorphisms of the boundary component but also under the diffeo-
morphisms of the 3- dimensional “orbit” Y 3 of the boundary component. In other words: the value
of the vacuum functional must be same for any time slice on the orbit the boundary component.
This is guaranteed if vacuum functional is functional of some two-surface Y 2 belonging to the orbit
and defined in Diff3 invariant manner.

An additional natural requirement is Poincare invariance. In the original formulation of the
theory only Lorentz transformations of the light cone were exact symmetries of the theory. In this
framework the definition of Y 2 as the intersection of the orbit with the hyperboloid

√
mklmkml = a

is Diff3 and Lorentz invariant.

1. Interaction vertices as generalization of stringy vertices

For stringy diagrams Poincare invariance of conformal equivalence class and general co-
ordinate invariance are far from being a trivial issues. Vertices are now not completely unique
since there is an infinite number of singular 3-manifolds which can be identified as vertices even if
one assumes space-likeness. One should be able to select a unique singular 3-manifold to fix the
conformal equivalence class.

One might hope that Lorentz invariant invariant and general coordinate invariant definition
of Y 2 results by introducing light cone proper time a as a height function specifying uniquely
the point at which 3-surface is singular (stringy diagrams help to visualize what is involved), and
by restricting the singular 3-surface to be the intersection of a = constant hyperboloid of M4

containing the singular point with the space-time surface. There would be non-uniqueness of the
conformal equivalence class due to the choice of the origin of the light cone but the decomposition
of the configuration space of 3-surfaces to a union of WCWs characterized by unions of future and
past light cones could resolve this difficulty.

2. Interaction vertices as generalization of ordinary ones

If the interaction vertices are identified as intersections for the ends of space-time sheets
representing particles, the conformal equivalence class is naturally identified as the one associated
with the intersection of the boundary component or light like causal determinant with the vertex.
Poincare invariance of the conformal equivalence class and generalized general coordinate invariance
follow trivially in this case.

Conformal invariance

Conformal invariance implies that vacuum functionals depend on the conformal equivalence class of
the surface Y 2 only. What makes this idea so attractive is that for a given genus g WCW becomes
effectively finite-dimensional. A second nice feature is that instead of trying to find coordinates for
the space of the conformal equivalence classes one can construct vacuum functionals as functions
of the Teichmueller parameters.

That one can construct this kind of functions as suitable functions of the Teichmueller pa-
rameters is not trivial. The essential point is that the boundary components can be regarded as
sub-manifolds of M4

+ ×CP2: as a consequence vacuum functional can be regarded as a composite
function:
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2-surface → Teichmueller matrix Ω determined by the induced metric → Ωvac(Ω)

Therefore the fact that there are Teichmueller parameters which do not correspond to any Riemann
surface, doesn’t produce any trouble. It should be noticed that the situation differs from that in the
Polyakov formulation of string models, where one doesn’t assume that the metric of the two-surface
is induced metric (although classical equations of motion imply this).

Diff invariance

Since several values of the Teichmueller parameters correspond to the same conformal equivalence
class, one must pose additional conditions on the functions of the Teichmueller parameters in order
to obtain single valued functions of the conformal equivalence class.

The first requirement of this kind is the invariance under topologically nontrivial Diff trans-
formations inducing Sp(2g, Z) transformation (A,B;C,D) in the homology basis. The action of
these transformations on Teichmueller parameters is deduced by requiring that holomorphic one-
forms satisfy the defining conditions in the transformed homology basis. It turns out that the
action of the topologically nontrivial diffeomorphism on Teichmueller parameters can be regarded
as a generalized Möbius transformation:

Ω→ (AΩ +B)(CΩ +D)−1 . (14.2.20)

Vacuum functional must be invariant under these transformations. It should be noticed that the
situation differs from that encountered in the string models. In TGD the integration measure over
WCW is Diff invariant: in string models the integration measure is the integration measure of the
Teichmueller space and this is not invariant under Sp(2g, Z) but transforms like a density: as a
consequence the counterpart of the vacuum functional must be also modular covariant since it is
the product of vacuum functional and integration measure, which must be modular invariant.

It is possible to show that the quantities

(Θ[a, b]/Θ[c, d])4 . (14.2.21)

and their complex conjugates are Sp(2g, Z) invariants [A42] and therefore can be regarded as basic
building blocks of the vacuum functionals.

Teichmueller parameters are not uniquely determined since one can always perform a per-
mutation of the g handles of the Riemann surface inducing a redefinition of the canonical homology
basis (permutation of g generators). These transformations act as similarities of the Teichmueller
matrix:

Ω→ SΩS−1 , (14.2.22)

where S is the g × g matrix representing the permutation of the homology generators understood
as orthonormal vectors in the g- dimensional vector space. Therefore the Teichmueller parameters
related by these similarity transformations correspond to the same conformal equivalence class of
the Riemann surfaces and vacuum functionals must be invariant under these similarities.

It is easy to find out that these similarities permute the components of the theta charac-
teristics: [a, b]→ [S(a), S(b)]. Therefore the invariance requirement states that the handles of the
Riemann surface behave like bosons: the vacuum functional constructed from the theta functions
is invariant under the permutations of the theta characteristics. In fact, this requirement brings
in nothing new. Handle permutations can be regarded as Sp(2g, Z) transformations so that the
modular invariance alone guarantees invariance under handle permutations.

Cluster decomposition property

Consider next the behavior of the vacuum functional in the limit, when boundary component with
genus g splits to two separate boundary components of genera g1 and g2 respectively. The splitting
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into two separate boundary components corresponds to the reduction of the Teichmueller matrix
Ωg to a direct sum of g1 × g1 and g2 × g2 matrices (g1 + g2 = g):

Ωg = Ωg1 ⊕ Ωg2 , (14.2.23)

when a suitable definition of the Teichmueller parameters is adopted. The splitting can also take
place without a reduction to a direct sum: the Teichmueller parameters obtained via Sp(2g, Z)
transformation from Ωg = Ωg1 ⊕ Ωg2 do not possess direct sum property in general.

The physical interpretation is obvious: the non-diagonal elements of the Teichmueller matrix
describe the geometric interaction between handles and at this limit the interaction between the
handles belonging to the separate surfaces vanishes. On the physical grounds it is natural to require
that vacuum functionals satisfy cluster decomposition property at this limit: that is they reduce
to the product of appropriate vacuum functionals associated with the composite surfaces.

Theta functions satisfy cluster decomposition property [A33, A42] . Theta characteristics
reduce to the direct sums of the theta characteristics associated with g1 and g2 (a = a1 ⊕ a2,
b = b1 ⊕ b2) and the dependence on the Teichmueller parameters is essentially exponential so that
the cluster decomposition property indeed results:

Θ[a, b](Ωg) = Θ[a1, b1](Ωg1)Θ[a2, b2](Ωg2) . (14.2.24)

Cluster decomposition property holds also true for the products of theta functions. This property
is also satisfied by suitable homogenous polynomials of thetas. In particular, the following quantity
playing central role in the construction of the vacuum functional obeys this property

Q0 =
∑
[a,b]

Θ[a, b]4Θ̄[a, b]4 , (14.2.25)

where the summation is over all even theta characteristics (recall that odd theta functions vanish
at the origin of Cg).

Together with the Sp(2g, Z) invariance the requirement of cluster decomposition property
implies that the vacuum functional must be representable in the form

Ωvac = PM,N (Θ4, Θ̄4)/QMN (Θ4, Θ̄4) (14.2.26)

where the homogenous polynomials PM,N and QM,N have same degrees (M and N as polynomials
of Θ[a, b]4 and Θ̄[a, b]4.

Finiteness requirement

Vacuum functional should be finite. Finiteness requirement is satisfied provided the numerator
QM,N of the vacuum functional is real and positive definite. The simplest quantity of this type
is the quantity Q0 defined previously and its various powers. Sp(2g, Z) invariance and finiteness
requirement are satisfied provided vacuum functionals are of the following general form

Ωvac =
PN,N (Θ4, Θ̄4)

QN0
, (14.2.27)

where PN,N is homogenous polynomial of degree N with respect to Θ[a, b]4 and Θ̄[a, b]4. In
addition PN,N is invariant under the permutations of the theta characteristics and satisfies cluster
decomposition property.
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Stability against the decay g → g1 + g2

Elementary particle vacuum functionals must be stable against the genus conserving decays g →
g1 + g2. This decay corresponds to the limit at which Teichmueller matrix reduces to a direct sum
of the matrices associated with g1 and g2 (note however the presence of Sp(2g, Z) degeneracy). In
accordance with the topological description of the particle reactions one expects that this decay
doesn’t occur if the vacuum functional in question vanishes at this limit.

In general the theta functions are non-vanishing at this limit and vanish provided the theta
characteristics reduce to a direct sum of the odd theta characteristics. For g < 2 surfaces this
condition is trivial and gives no constraints on the form of the vacuum functional. For g = 2 surfaces
the theta function Θ(a, b), with a = b = (1/2, 1/2) satisfies the stability criterion identically (odd
theta functions vanish identically), when Teichmueller parameters separate into a direct sum. One
can however perform Sp(2g, Z) transformations giving new points of Teichmueller space describing
the decay. Since these transformations transform theta characteristics in a nontrivial manner to
each other and since all even theta characteristics belong to same Sp(2g, Z) orbit [A33, A42] , the
conclusion is that stability condition is satisfied provided g = 2 vacuum functional is proportional
to the product of fourth powers of all even theta functions multiplied by its complex conjugate.

If g > 2 there always exists some theta functions, which vanish at this limit and the minimal
vacuum functional satisfying this stability condition is of the same form as in g = 2 case, that
is proportional to the product of the fourth powers of all even Theta functions multiplied by its
complex conjugate:

Ωvac =
∏
[a,b]

Θ[a, b]4Θ̄[a, b]4/QN0 , (14.2.28)

where N is the number of even theta functions. The results obtained imply that genus-generation
correspondence is one to one for g > 1 for the minimal vacuum functionals. Of course, the multi-
plication of the minimal vacuum functionals with functionals satisfying all criteria except stability
criterion gives new elementary particle vacuum functionals: a possible physical identification of
these vacuum functionals is most naturally as some kind of excited states.

One of the questions posed in the beginning was related to the experimental absence of
g > 0, possibly massless, elementary bosons. The proposed stability criterion suggests a nice
explanation. The point is that elementary particles are stable against decays g → g1 + g2 but not
with respect to the decay g → g + sphere. As a consequence the direct emission of g > 0 gauge
bosons is impossible unlike the emission of g = 0 bosons: for instance the decay muon → electron
+(g = 1) photon is forbidden.

Stability against the decay g → g − 1

This stability criterion states that the vacuum functional is stable against single particle decay
g → g− 1 and, if satisfied, implies that vacuum functional vanishes, when the genus of the surface
is smaller than g. In stringy framework this criterion is equivalent to a separate conservation
of various lepton numbers: for instance, the spontaneous transformation of muon to electron is
forbidden. Notice that this condition doesn’t imply that that the vacuum functional is localized to
a single genus: rather the vacuum functional of genus g vanishes for all surfaces with genus smaller
than g. This hierarchical structure should have a close relationship to Cabibbo-Kobayashi-Maskawa
mixing of the quarks.

The stability criterion implies that the vacuum functional must vanish at the limit, when
one of the handles of the Riemann surface suffers a pinch. To deduce the behavior of the theta
functions at this limit, one must find the behavior of Teichmueller parameters, when i:th handle
suffers a pinch. Pinch implies that a suitable representative of the homology generator ai or bi
contracts to a point.

Consider first the case, when ai contracts to a point. The normalization of the holomorphic
one-form ωi must be preserved so that that ωi must behaves as 1/z, where z is the complex
coordinate vanishing at pinch. Since the homology generator bi goes through the pinch it seems
obvious that the imaginary part of the Teichmueller parameter Ωii =

∫
bi
ωi diverges at this limit

(this conclusion is made also in [A42] ): Im(Ωii)→∞.
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Of course, this criterion doesn’t cover all possible ways the pinch can occur: pinch might
take place also, when the components of the Teichmueller matrix remain finite. In the case of
torus topology one finds that Sp(2g, Z) element (A,B;C,D) takes Im(Ω) =∞ to the point C/D
of real axis. This suggests that pinch occurs always at the boundary of the Teichmueller space:
the imaginary part of Ωij either vanishes or some matrix element of Im(Ω) diverges.

Consider next the situation, when bi contracts to a point. From the definition of the Teich-
mueller parameters it is clear that the matrix elements Ωkl, with k, l 6= i suffer no change. The
matrix element Ωki obviously vanishes at this limit. The conclusion is that i:th row of Teichmueller
matrix vanishes at this limit. This result is obtained also by deriving the Sp(2g, Z) transformation
permuting ai and bi with each other: in case of torus this transformation reads Ω→ −1/Ω.

Consider now the behavior of the theta functions, when pinch occurs. Consider first the
limit, when Im(Ωii) diverges. Using the general definition of Θ[a, b] it is easy to find out that
all theta functions for which the i:th component ai of the theta characteristic is non-vanishing
(that is ai = 1/2) are proportional to the exponent exp(−πΩii/4) and therefore vanish at the
limit. The theta functions with ai = 0 reduce to g − 1 dimensional theta functions with theta
characteristic obtained by dropping i:th components of ai and bi and replacing Teichmueller matrix
with Teichmueller matrix obtained by dropping i:th row and column. The conclusion is that all
theta functions of type Θ(a, b) with a = (1/2, 1/2, ...., 1/2) satisfy the stability criterion in this
case.

What happens for the Sp(2g, Z) transformed points on the real axis? The transformation
formula for theta function is given by [A33, A42]

Θ[a, b]((AΩ +B)(CΩ +D)−1) = exp(iφ)det(CΩ +D)1/2Θ[c, d](Ω) ,

(14.2.29)

where

(
c
d

)
=

(
A B
C D

)((
a
b

)
−
(

(CDT )d/2
(ABT )d/2

))
.

(14.2.30)

Here φ is a phase factor irrelevant for the recent purposes and the index d refers to the diagonal
part of the matrix in question.

The first thing to notice is the appearance of the diverging square root factor, which however
disappears from the vacuum functionals (P and Q have same degree with respect to thetas). The
essential point is that theta characteristics transform to each other: as already noticed all even
theta characteristics belong to the same Sp(2g, Z) orbit. Therefore the theta functions vanishing
at Im(Ωii) = ∞ do not vanish at the transformed points. It is however clear that for a given
Teichmueller parameterization of pinch some theta functions vanish always.

Similar considerations in the case Ωik = 0, i fixed, show that all theta functions with
b = (1/2, ...., 1/2) vanish identically at the pinch. Also it is clear that for Sp(2g, Z) transformed
points one can always find some vanishing theta functions. The overall conclusion is that the
elementary particle vacuum functionals obtained by using g → g1 + g2 stability criterion satisfy
also g → g − 1 stability criterion since they are proportional to the product of all even theta
functions. Therefore the only nontrivial consequence of g → g − 1 criterion is that also g = 1
vacuum functionals are of the same general form as g > 1 vacuum functionals.

A second manner to deduce the same result is by restricting the consideration to the hyper-
elliptic surfaces and using the representation of the theta functions in terms of the roots of the
polynomial appearing in the definition of the hyper-elliptic surface [A42] . When the genus of the
surface is smaller than three (the interesting case), this representation is all what is needed since
all surfaces of genus g < 3 are hyper-elliptic.

Since hyper-elliptic surfaces can be regarded as surfaces obtained by gluing two compactified
complex planes along the cuts connecting various roots of the defining polynomial it is obvious
that the process g → g − 1 corresponds to the limit, when two roots of the defining polynomial
coincide. This limit corresponds either to disappearance of a cut or the fusion of two cuts to a
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single cut. Theta functions are expressible as the products of differences of various roots (Thomae’s
formula [A42] )

Θ[a, b]4 ∝
∏

i<j∈T
(zi − zj)

∏
k<l∈CT

(zk − zl) , (14.2.31)

where T denotes some subset of {1, 2, ..., 2g} containing g + 1 elements and CT its complement.
Hence the product of all even theta functions vanishes, when two roots coincide. Furthermore,
stability criterion is satisfied only by the product of the theta functions.

Lowest dimensional vacuum functionals are worth of more detailed consideration.
i) g = 0 particle family corresponds to a constant vacuum functional: by continuity this vacuum
functional is constant for all topologies.
ii) For g = 1 the degree of P and Q as polynomials of the theta functions is 24: the critical number
of transversal degrees of freedom in bosonic string model! Probably this result is not an accident.
ii) For g = 2 the corresponding degree is 80 since there are 10 even genus 2 theta functions.

There are large numbers of vacuum functionals satisfying the relevant criteria, which do
not satisfy the proposed stability criteria. These vacuum functionals correspond either to many
particle states or to unstable single particle states.

Continuation of the vacuum functionals to higher genus topologies

From continuity it follows that vacuum functionals cannot be localized to single boundary topology.
Besides continuity and the requirements listed above, a natural requirement is that the continuation
of the vacuum functional from the sector g to the sector g+k reduces to the product of the original
vacuum functional associated with genus g and g = 0 vacuum functional at the limit when the
surface with genus g+ k decays to surfaces with genus g and k: this requirement should guarantee
the conservation of separate lepton numbers although different boundary topologies suffer mixing
in the vacuum functional. These requirements are satisfied provided the continuation is constructed
using the following rule:

Perform the replacement

Θ[a, b]4 →
∑
c,d

Θ[a⊕ c, b⊕ d]4 (14.2.32)

for each fourth power of the theta function. Here c and d are Theta characteristics associated with
a surface with genus k. The same replacement is performed for the complex conjugates of the
theta function. It is straightforward to check that the continuations of elementary particle vacuum
functionals indeed satisfy the cluster decomposition property and are continuous.

To summarize, the construction has provided hoped for answers to some questions stated
in the beginning: stability requirements explain the separate conservation of lepton numbers and
the experimental absence of g > 0 elementary bosons. What has not not been explained is the
experimental absence of g > 2 fermion families. The vanishing of the g > 2 elementary particle
vacuum functionals for the hyper-elliptic surfaces however suggest a possible explanation: under
some conditions on the surface X2 the surfaces Y 2 are hyper-elliptic or possess some conformal
symmetry so that elementary particle vacuum functionals vanish for them. This conjecture indeed
might make sense since the surfaces Y 2 are determined by the asymptotic dynamics and one might
hope that the surfaces Y 2 are analogous to the final states of a dissipative system.

14.2.6 Explanations For The Absence Of The g > 2 ElementaryParticles
From Spectrum

The decay properties of the intermediate gauge bosons [C37] are consistent with the assumption
that the number of the light neutrinos is N = 3. Also cosmological considerations pose upper
bounds on the number of the light neutrino families and N = 3 seems to be favored [C37]. It must
be however emphasized that p-adic considerations [K64] encourage the consideration the existence
of higher genera with neutrino masses such that they are not produced in the laboratory at present
energies. In any case, for TGD approach the finite number of light fermion families is a potential
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difficulty since genus-generation correspondence suggests that the number of the fermion (and
possibly also boson) families is infinite. Therefore one had better to find a good argument showing
that the number of the observed neutrino families, or more generally, of the observed elementary
particle families, is small also in the world described by TGD.

It will be later found that also TGD inspired cosmology requires that the number of the
effectively massless fermion families must be small after Planck time. This suggests that boundary
topologies with handle number g > 2 are unstable and/or very massive so that they, if present in
the spectrum, disappear from it after Planck time, which correspond to the value of the light cone
proper time a ' 10−11 seconds.

In accordance with the spirit of TGD approach it is natural to wonder whether some ge-
ometric property differentiating between g > 2 and g < 3 boundary topologies might explain
why only g < 3 boundary components are observable. One can indeed find a good candidate for
this kind of property: namely hyper-ellipticity, which states that Riemann surface is a two-fold
branched covering of sphere possessing two-element group Z2 as conformal automorphisms. All
g < 3 Riemann surfaces are hyper-elliptic unlike g > 2 Riemann surfaces, which in general do not
posses this property. Thus it is natural to consider the possibility that hyper-ellipticity or more
general conformal symmetries might explain why only g < 2 topologies correspond to the observed
elementary particles.

As regards to the present problem the crucial observation is that some even theta functions
vanish for the hyper-elliptic surfaces with genus g > 2 [A42] . What is essential is that these surfaces
have the group Z2 as conformal symmetries. Indeed, the vanishing phenomenon is more general.
Theta functions tend to vanish for g > 2 two-surfaces possessing discrete group of conformal
symmetries [A74] : for instance, instead of sphere one can consider branched coverings of higher
genus surfaces.

From the general expression of the elementary particle vacuum functional it is clear that
elementary particle vacuum functionals vanish, when Y 2 is hyper-elliptic surface with genus g > 2
and one might hope that this is enough to explain why the number of elementary particle families
is three.

Hyper-ellipticity implies the separation of g ≤ 2 and g > 2 sectors to separate worlds

If the vertices are defined as intersections of space-time sheets of elementary particles and if elemen-
tary particle vacuum functionals are required to have Z2 symmetry, the localization of elementary
particle vacuum functionals to g ≤ 2 topologies occurs automatically. Even if one allows as limiting
case vertices for which 2-manifolds are pinched to topologies intermediate between g > 2 and g ≤ 2
topologies, Z2 symmetry present for both topological interpretations implies the vanishing of this
kind of vertices. This applies also in the case of stringy vertices so that also particle propagation
would respect the effective number of particle families. g > 2 and g ≤ 2 topologies would behave
much like their own worlds in this approach. This is enough to explain the experimental findings
if one can understand why the g > 2 particle families are absent as incoming and outgoing states
or are very heavy.

What about g > 2 vacuum functionals which do not vanish for hyper-elliptic surfaces?

The vanishing of all g ≥ 2 vacuum functionals for hyper-elliptic surfaces cannot hold true generally.
There must exist vacuum functionals which do satisfy this condition. This suggest that elementary
particle vacuum functionals for g > 2 states have interpretation as bound states of g handles and
that the more general states which do not vanish for hyper-elliptic surfaces correspond to many-
particle states composed of bound states g ≤ 2 handles and cannot thus appear as incoming and
outgoing states. Thus g > 2 elementary particles would decouple from g ≤ 2 states.

Should higher elementary particle families be heavy?

TGD predicts an entire hierarchy of scaled up variants of standard model physics for which particles
do not appear in the vertices containing the known elementary particles and thus behave like dark
matter [K112] . Also g > 2 elementary particles would behave like dark matter and in principle
there is no absolute need for them to be heavy.
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The safest option would be that g > 2 elementary particles are heavy and the breaking of
Z2 symmetry for g ≥ 2 states could guarantee this. p-Adic considerations lead to a general mass
formula for elementary particles such that the mass of the particle is proportional to 1√

p [K68]

. Also the dependence of the mass on particle genus is completely fixed by this formula. What
remains however open is what determines the p-adic prime associated with a particle with given
quantum numbers. Of course, it could quite well occur that p is much smaller for g > 2 genera
than for g ≤ 2 genera.

14.3 Non-Topological Contributions To Particle masses From
P-Adic Thermodynamics

In TGD framework p-adic thermodynamics provides a microscopic theory of particle massivation
in the case of fermions. The idea is very simple. The mass of the particle results from a thermal
mixing of the massless states with CP2 mass excitations of super-conformal algebra. In p-adic
thermodynamics the Boltzmann weight exp(−E/T ) does not exist in general and must be replaced
with pL0/Tp which exists for Virasoro generator L0 if the inverse of the p-adic temperature is integer
valued Tp = 1/n. The expansion in powers of p converges extremely rapidly for physical values
of p, which are rather large. Therefore the three lowest terms in expansion give practically exact
results. Thermal massivation does not not necessarily lead to light states and this drops a large
number of exotic states from the spectrum of light particles. The partition functions of N-S and
Ramond type representations are not changed in TGD framework despite the fact that fermionic
super generators carry fermion numbers and are not Hermitian. Thus the practical calculations
are relatively straightforward albeit tedious.

In free fermion picture the p-adic thermodynamics in the boson sector is for fermion-anti-
fermion states associated with the two throats of the bosonic wormhole. The question is whether
the thermodynamical mass squared is just the sum of the two independent fermionic contributions
for Ramond representations or should one use N-S type representation resulting as a tensor product
of Ramond representations.

The overall conclusion about p-adic mass calculations is that fermionic mass spectrum is
predicted in an excellent accuracy but that the thermal masses of the intermediate gauge bosons
come 20-30 per cent to large for Tp = 1 and are completely negligible for Tp = 1/2. The bound
state character of the boson states could be responsible for Tp < 1 and for extremely small ther-
modynamical contribution to the masses (present also for photon).

This forces to consider seriously the possibility that thermal contribution to the bosonic
mass is negligible and that TGD can, contrary to the original expectations, provide dynamical
Higgs field as a fundamental field and that even Higgs mechanism could contribute to the particle
masses.

Higgs mechanism is probably the only viable description of Higgs mechanism in QFT ap-
proach, where particles are point-like but not in TGD, where particles are replaced by string like
objects consisting of two wormhole contacts with monopole Kähler magnetic flux flowing between
“upper” throats and returning back along “lower” space-time sheets. In this framework the as-
sumption that fermion masses would result from p-adic thermodynamics but boson masses from
Higgs couplings looks like an ugly idea. A more plausible vision is that the dominating contribu-
tion to gauge boson masses comes from the two flux tubes connecting the two wormhole contacts
defining boson. This contribution would be present also for fermions but would be small. The
correct W/Z mass ratio is obtained if the string tension is proportional to weak gauge coupling
squared. The nice feature of this scenario is that naturalness is not lost: the dimensional gradient
coupling of fermion to Higgs is same for all fermions.

The stringy contribution to mass squared could be expressed in terms of the deviation of
the ground state conformal weight from negative half integer.

The problem is to understand how the negative value of the ground state conformal weight
emerges. This negative conformal weight compensated by the action of Super Virasoro generators
is necessary for the success of p-adic mass calculations. The intuitive expectation is that the
solution of this problem must relate to the Euclidian signature of the regions representing lines of
generalized Feynman diagrams.
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14.3.1 Partition Functions Are Not Changed

One must write Super Virasoro conditions for Ln and both Gn and G†n rather than for Ln and Gn
as in the case of the ordinary Super Virasoro algebra, and it is a priori not at all clear whether the
partition functions for the Super Virasoro representations remain unchanged. This requirement is
however crucial for the construction to work at all in the fermionic sector, since even the slightest
changes for the degeneracies of the excited states can change light state to a state with mass of
order m0 in the p-adic thermodynamics.

Super conformal algebra

Super Virasoro algebra is generated by the bosonic the generators Ln (n is an integer valued index)
and by the fermionic generators Gr, where r can be either integer (Ramond) or half odd integer
(NS). Gr creates quark/lepton for r > 0 and antiquark/antilepton for r < 0. For r = 0, G0 creates
lepton and its Hermitian conjugate anti-lepton. The defining commutation and anti-commutation
relations are the following:

[Lm, Ln] = (m− n)Lm+n +
c

2
m(m2 − 1)δm,−n ,

[Lm, Gr] = (
m

2
− r)Gm+r ,[

Lm, G
†
r

]
= (

m

2
− r)G†m+r ,

{Gr, G†s} = 2Lr+s +
c

3
(r2 − 1

4
)δm,−n ,

{Gr, Gs} = 0 ,

{G†r, G†s} = 0 . (14.3.1)

By the inspection of these relations one finds some results of a great practical importance.

1. For the Ramond algebra G0, G1 and their Hermitian conjugates generate the r ≥ 0, n ≥ 0 part
of the algebra via anti-commutations and commutations. Therefore all what is needed is to
assume that Super Virasoro conditions are satisfied for these generators in case that G0 and
G†0 annihilate the ground state. Situation changes if the states are not annihilated by G0 and

G†0 since then one must assume the gauge conditions for both L1, G1 and G†1 besides the mass

shell conditions associated with G0 and G†0, which however do not affect the number of the
Super Virasoro excitations but give mass shell condition and constraints on the state in the
cm spin degrees of freedom. This will be assumed in the following. Note that for the ordinary
Super Virasoro only the gauge conditions for L1 and G1 are needed.

2. NS algebra is generated by G1/2 and G3/2 and their Hermitian conjugates (note that G3/2

cannot be expressed as the commutator of L1 and G1/2) so that only the gauge conditions as-
sociated with these generators are needed. For the ordinary Super Virasoro only the conditions
for G1/2 and G3/2 are needed.

Conditions guaranteeing that partition functions are not changed

The conditions guaranteeing the invariance of the partition functions in the transition to the
modified algebra must be such that they reduce the number of the excitations and gauge conditions
for a given conformal weight to the same number as in the case of the ordinary Super Virasoro.

1. The requirement that physical states are invariant under G ↔ G† corresponds to the charge
conjugation symmetry and is very natural. As a consequence, the gauge conditions for G and
G† are not independent and their number reduces by a factor of one half and is the same as
in the case of the ordinary Super Virasoro.

2. As far as the number of the thermal excitations for a given conformal weight is considered,
the only remaining problem are the operators GnG

†
n, which for the ordinary Super Virasoro

reduce to GnGn = L2n and do not therefore correspond to independent degrees of freedom.
In present case this situation is achieved only if one requires
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(GnG
†
n −G†nGn)|phys〉 = 0 . (14.3.2)

It is not clear whether this condition must be posed separately or whether it actually follows
from the representation of the Super Virasoro algebra automatically.

Partition function for Ramond algebra

Under the assumptions just stated, the partition function for the Ramond states not satisfying any
gauge conditions

Z(t) = 1 + 2t+ 4t2 + 8t3 + 14t4 + .... , (14.3.3)

which is identical to that associated with the ordinary Ramond type Super Virasoro.
For a Super Virasoro representation with N = 5 sectors, of main interest in TGD, one has

ZN (t) = ZN=5(t) =
∑

D(n)tn

= 1 + 10t+ 60t2 + 280t3 + ... . (14.3.4)

The degeneracies for the states satisfying gauge conditions are given by

d(n) = D(n)− 2D(n− 1) . (14.3.5)

corresponding to the gauge conditions for L1 and G1. Applying this formula one obtains for N = 5
sectors

d(0) = 1 , d(1) = 8 , d(2) = 40 , d(3) = 160 . (14.3.6)

The lowest order contribution to the p-adic mass squared is determined by the ratio

r(n) =
D(n+ 1)

D(n)
,

where the value of n depends on the effective vacuum weight of the ground state fermion. Light
state is obtained only provided the ratio is integer. The remarkable result is that for lowest lying
states the ratio is integer and given by

r(1) = 8 , r(2) = 5 , r(3) = 4 . (14.3.7)

It turns out that r(2) = 5 gives the best possible lowest order prediction for the charged lepton
masses and in this manner one ends up with the condition hvac = −3 for the tachyonic vacuum
weight of Super Virasoro.

Partition function for NS algebra

For NS representations the calculation of the degeneracies of the physical states reduces to the
calculation of the partition function for a single particle Super Virasoro

ZNS(t) =
∑
n

z(n/2)tn/2 . (14.3.8)

Here z(n/2) gives the number of Super Virasoro generators having conformal weight n/2. For a
state with N active sectors (the sectors with a non-vanishing weight for a given ground state) the
degeneracies can be read from the N-particle partition function expressible as
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ZN (t) = ZN (t) . (14.3.9)

Single particle partition function is given by the expression

Z(t) = 1 + t1/2 + t+ 2t3/2 + 3t2 + 4t5/2 + 5t3 + ... . (14.3.10)

Using this representation it is an easy task to calculate the degeneracies for the operators of
conformal weight ∆ acting on a state having N active sectors.

One can also derive explicit formulas for the degeneracies and calculation gives

D(0, N) = 1 , D(1/2, N) = N ,

D(1, N) = N(N+1)
2 , D(3/2, N) = N

6 (N2 + 3N + 8) ,
D(2, N) = N

2 (N2 + 2N + 3) , D(5/2, N) = 9N(N − 1) ,
D(3, N) = 12N(N − 1) + 2N(N − 1) .

(14.3.11)

as a function of the conformal weight ∆ = 0, 1/2, ..., 3.
The number of states satisfying Super Virasoro gauge conditions created by the operators

of a conformal weight ∆, when the number of the active sectors is N , is given by

d(∆, N) = D(∆, N)−D(∆− 1/2, N)−D(∆− 3/2, N) . (14.3.12)

The expression derives from the observation that the physical states satisfying gauge conditions
for G1/2, G3/2 satisfy the conditions for all Super Virasoro generators. For Tp = 1 light bosons
correspond to the integer values of d(∆ + 1, N)/d(∆, N) in case that massless states correspond
to thermal excitations of conformal weight ∆: they are obtained for ∆ = 0 only (massless ground
state). This is what is required since the thermal degeneracy of the light boson ground state
would imply a corresponding factor in the energy density of the black body radiation at very high
temperatures. For the physically most interesting nontrivial case with N = 2 two active sectors
the degeneracies are

d(0, 2) = 1 , d(1, 2) = 1 , d(2, 2) = 3 , d(3, 2) = 4 . (14.3.13)

N,∆ 0 1/2 1 3/2 2 5/2 3
2 1 1 1 3 3 4 4
3 1 2 3 9 11
4 1 3 5 19 26
5 1 4 10 24 150

Table 14.1: Degeneracies d(∆, N) of the operators satisfying NS type gauge conditions as a
function of the number N of the active sectors and of the conformal weight ∆ of the operator.
Only those degeneracies, which are needed in the mass calculation for bosons assuming that they
correspond to N-S representations are listed.

14.3.2 Fundamental Length And Mass Scales

The basic difference between quantum TGD and super-string models is that the size of CP2 is not
of order Planck length but much larger: of order 103.5 Planck lengths. This conclusion is forced by
several consistency arguments, the mass scale of electron, and by the cosmological data allowing to
fix the string tension of the cosmic strings which are basic structures in TGD inspired cosmology.
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The relationship between CP2 radius and fundamental p-adic length scale

One can relate CP2 “cosmological constant” to the p-adic mass scale: for kL = 1 one has

m2
0 =

m2
1

kL
= m2

1 = 2Λ . (14.3.14)

kL = 1 results also by requiring that p-adic thermodynamics leaves charged leptons light and leads
to optimal lowest order prediction for the charged lepton masses. Λ denotes the “cosmological
constant” of CP2 (CP2 satisfies Einstein equations Gαβ = Λgαβ with cosmological term).

The real counterpart of the p-adic thermal expectation for the mass squared is sensitive to
the choice of the unit of p-adic mass squared which is by definition mapped as such to the real
unit in canonical identification. Thus an important factor in the p-adic mass calculations is the
correct identification of the p-adic mass squared scale, which corresponds to the mass squared unit
and hence to the unit of the p-adic numbers. This choice does not affect the spectrum of massless
states but can affect the spectrum of light states in case of intermediate gauge bosons.

1. For the choice

M2 = m2
0 ↔ 1 (14.3.15)

the spectrum of L0 is integer valued.

2. The requirement that all sufficiently small mass squared values for the color partial waves are
mapped to real integers, would fix the value of p-adic mass squared unit to

M2 =
m2

0

3
↔ 1 . (14.3.16)

For this choice the spectrum of L0 comes in multiples of 3 and it is possible to have a first
order contribution to the mass which cannot be of thermal origin (say m2 = p). This indeed
seems to happen for electro-weak gauge bosons.

p-Adic mass calculations allow to relate m0 to electron mass and to Planck mass by the
formula

m0

mPl
=

1√
5 + Ye

× 2127/2 × me

mPl
,

mPl =
1√
~G

. (14.3.17)

For Ye = 0 this gives m0 = .2437× 10−3mPl.

This means that CP2 radius R defined by the length L = 2πR of CP2 geodesic is roughly
103.5 times the Planck length. More precisely, using the relationship

Λ =
3

2R2
= M2 = m2

0 ,

one obtains for

L = 2πR = 2π

√
3

2

1

m0
' 3.1167× 104

√
~G for Ye = 0 . (14.3.18)

The result came as a surprise: the first belief was that CP2 radius is of order Planck length. It
has however turned out that the new identification solved elegantly some long standing problems
of TGD. Table 14.2 gives the value of the scale parameter KR.

The value of top quark mass favors Ye = 0 and Ye = .5 is largest value of Ye marginally
consistent with the limits on the value of top quark mass.
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Ye 0 .5 .7798
(m0/mPl)103 .2437 .2323 .2266
KR × 10−7 2.5262 2.7788 2.9202

(LR/
√
~G)× 10−4 3.1580 3.3122 3.3954

K × 10−7 2.4606 2.4606 2.4606

(L/
√
~G)× 10−4 3.1167 3.1167 3.1167

KR/K 1.0267 1.1293 1.1868

Table 14.2: Table gives the values of the ratio KR = R2/G and CP2 geodesic length L = 2πR
for Ye ∈ {0, 0.5, 0.7798}. Also the ratio of KR/K, where K = 2× 3× 5× 7× 11× 13× 17× 19×
23× 2−3 ∗ (15/17) is rational number producing R2/G approximately is given.

CP2 radius as the fundamental p-adic length scale

The identification of CP2 radius as the fundamental p-adic length scale is forced by the Super
Virasoro invariance. The pleasant surprise was that the identification of the CP2 size as the
fundamental p-adic length scale rather than Planck length solved many long standing problems of
older TGD.

1. The earliest formulation predicted cosmic strings with a string tension larger than the critical
value giving the angle deficit 2π in Einstein’s equations and thus excluded by General Rela-
tivity. The corrected value of CP2 radius predicts the value k/G for the cosmic string tension
with k in the range 10−7 − 10−6 as required by the TGD inspired model for the galaxy
formation solving the galactic dark matter problem.

2. In the earlier formulation there was no idea as how to derive the p-adic length scale L ∼
103.5

√
~G from the basic theory. Now this problem becomes trivial and one has to predict

gravitational constant in terms of the p-adic length scale. This follows in principle as a
prediction of quantum TGD. In fact, one can deduce G in terms of the p-adic length scale and
the action exponential associated with the CP2 type extremal and gets a correct value if αK
approaches fine structure constant at electron length scale (due to the fact that electromagnetic
field equals to the Kähler field if Z0 field vanishes).
Besides this, one obtains a precise prediction for the dependence of the Kähler coupling strength
on the p-adic length scale by requiring that the gravitational coupling does not depend on the
p-adic length scale. p-Adic prime p in turn has a nice physical interpretation: the critical
value of αK is same for the zero modes with given p. As already found, the construction of
graviton state allows to understand the small value of the gravitational constant in terms of
a de-coherence caused by multi-p fractality reducing the value of the gravitational constant
from L2

p to G.

3. p-Adic length scale is also the length scale at which super-symmetry should be restored in
standard super-symmetric theories. In TGD this scale corresponds to the transition to Euclid-
ian field theory for CP2 type extremals. There are strong reasons to believe that sparticles are
however absent and that super-symmetry is present only in the sense that super-generators
have complex conformal weights with Re(h) = ±1/2 rather than h = 0. The action of this
super-symmetry changes the mass of the state by an amount of order CP2 mass.

14.4 Color Degrees Of Freedom

The ground states for the Super Virasoro representations correspond to spinor harmonics in M4×
CP2 characterized by momentum and color quantum numbers. The correlation between color and
electro-weak quantum numbers is wrong for the spinor harmonics and these states would be also
hyper-massive. The super-symplectic generators allow to build color triplet states having negative
vacuum conformal weights, and their values are such that p-adic massivation is consistent with
the predictions of the earlier model differing from the recent one in the quark sector. In the
following the construction and the properties of the color partial waves for fermions and bosons
are considered. The discussion follows closely to the discussion of [A39] .
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14.4.1 SKM Algebra And Counterpart Of Super Virasoro Conditions

There have been a considerable progress also in the understanding of super-conformal symmetries
[K113, K30].

1. Super-symplectic algebra corresponds to the isometries of WCW constructed in terms covari-
antly constant right handed neutrino mode and second quantized induced spinor field Ψ and
the corresponding Super-Kac-Moody algebra restricted to symplectic isometries and realized
in terms of all spinor modes and Ψ is the most plausible identification of the superconformal
algebras when the constraints from p-adic mass calculations are taken into account. These
algebras act as dynamical rather than gauge algebras and related to the isometries of WCW.

2. One expects also gauge symmetries due to the non-determinism of Kähler action. They trans-
form to each other preferred extremals having fixed 3-surfaces as ends at the boundaries of the
causal diamond. They preserve the value of Kähler action and those of conserved charges. The
assumption is that there are n gauge equivalence classes of these surfaces and that n defines
the value of the effective Planck constant heff = n× h in the effective GRT type description
replacing many-sheeted space-time with single sheeted one. Note that the geometric part of
SKM algebra must respect the light-likeness of the partonic 3-surface.

3. An interesting question is whether the symplectic isometries of δM4
±×CP2 should be extended

to include all isometries of δM4
± = S2 ×R+ in one-one correspondence with conformal trans-

formations of S2.The S2 local scaling of the light-like radial coordinate rM of R+ compensates
the conformal scaling of the metric coming from the conformal transformation of S2. Also
light-like 3-surfaces allow the analogs of these isometries.

The requirement that symplectic generators have well defined radial conformal weight with
respect to the light-like coordinate r of X3 restricts M4 conformal transformations to the group
SO(3) × E3. This involves choice of preferred time coordinate. If the preferred M4 coordinate
is chosen to correspond to a preferred light-like direction in δM4

± characterizing the theory, a
reduction to SO(2) × E2 more familiar from string models occurs. SKM algebra contains also
U(2)ew Kac-Moody algebra acting as holonomies of CP2 and having no bosonic counterpart.

p-Adic mass calculations require N = 5 sectors of super-conformal algebra. These sectors
correspond to the 5 tensor factors for the SO(3)×E3×SU(3)×U(2)ew (or SO(2)×E2×SU(3)×
U(2)ew ) decomposition of the SKM algebra to gauge symmetries of gravitation, color and electro-
weak interactions.

For symplectic isometries (Super-Kac-Moody algebra) fermionic algebra is realized in terms
second quantized induced spinor field Ψ and spinor modes with well-defined em charge restricted
to 2-D surfaces: string world sheets and possibly also partonic 2-surfaces. The full symplectic
algebra is realized in terms of Ψ and covariantly constant right handed neutrino mode. One can
consider also the possiblity of extended the symplectic isometries of δM4

± = S2 × R+ to include
all isometries which act as conformal transformations of S2 and for which conformal scaling of the
metric is compensated by S2 local scaling of the light-like radial coordinate rM of R+.

The algebra differs from the standard one in that super generators G(z) carry lepton and
quark numbers are not Hermitian as in super-string models (Majorana conditions are not satisfied).
The counterparts of Ramond representations correspond to zero modes of a second quantized spinor
field with vanishing radial conformal weight.

The Ramond or N-S type Virasoro conditions satisfied by the physical states in string model
approach are replaced by the formulas expressing mass squared as a conformal weight. The con-
dition is not equivalent with super Virasoro conditions since four-momentum does not appear in
super Virasoro generators. It seems possible to assume that the commutator algebra [SKM,SC]
and the commutator of [SKMV,SSV ] of corresponding Super Virasoro algebras annihilate physi-
cal states. This would give rise to the analog of Super Virasoro conditions which could be seen as
a Dirac equation in the world of classical worlds.

CP2 CM degrees of freedom

Important element in the discussion are center of mass degrees of freedom parameterized by embed-
ding space coordinates. By the effective 2-dimensionality it is indeed possible to assign to partons
momenta and color partial waves and they behave effectively as free particles. In fact, the technical
problem of the earlier scenario was that it was not possible to assign symmetry transformations
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acting only on the light-like 3-surfaces at which the signature of the induced metric transforms
from Minkowskian to Euclidian.

The original assumption was that 3-surface has boundary components to which elementary
particle quantum numbers were assigned. It however became clear that boundary conditions at
boundaries probably fail to be satisfied. Hence the above described light-like 3-surfaces took the
role the boundary components. Space-time sheets were replaced with surfaces looking like double-
sheeted (at least) structures from M4 perspective with sheets meeting along 3-D surfaces. Sphere
in Euclidian 3-space is the simplest analog for this kind of structure.

One can assign to each eigen state of color quantum numbers a color partial wave in CP2

degrees of freedom. Thus color quantum numbers are not spin like quantum numbers in TGD
framework except effectively in the length scales much longer than CP2 length scale. The corre-
lation between color partial waves and electro-weak quantum numbers is not physical in general:
only the covariantly constant right handed neutrino has vanishing color.

Mass formula, and condition determining the effective string tension

Mass squared eigenvalues are given by

M2 = m2
CP2

+ kL0 . (14.4.1)

The contribution of CP2 spinor Laplacian to the mass squared operator is in general not integer
valued.

The requirement that mass squared spectrum is integer valued for color partial waves pos-
sibly representing light states fixes the possible values of k determining the effective string tension
modulo integer. The value k = 1 is the only possible choice. The earlier choice kL = 1 and
kq = 2/3, kB = 1 gave integer conformal weights for the lowest possible color partial waves. The
assumption that the total vacuum weight hvac is conserved in particle vertices implied kB = 1.

14.4.2 General Construction Of Solutions Of Dirac Operator Of H

The construction of the solutions of massless spinor and other d’Alembertians in M4
+ × CP2 is

based on the following observations.

1. d’Alembertian corresponds to a massless wave equation M4 × CP2 and thus Kaluza-Klein
picture applies, that is M4

+ mass is generated from the momentum in CP2 degrees of freedom.
This implies mass quantization:

M2 = M2
n ,

where M2
n are eigenvalues of CP2 Laplacian. Here of course, ordinary field theory is considered.

In TGD the vacuum weight changes mass squared spectrum.

2. In order to get a respectable spinor structure in CP2 one must couple CP2 spinors to an odd
integer multiple of the Kähler potential. Leptons and quarks correspond to n = 3 and n = 1
couplings respectively. The spectrum of the electromagnetic charge comes out correctly for
leptons and quarks.

3. Right handed neutrino is covariantly constant solution of CP2 Laplacian for n = 3 coupling
to Kähler potential whereas right handed “electron” corresponds to the covariantly constant
solution for n = −3. From the covariant constancy it follows that all solutions of the spinor
Laplacian are obtained from these two basic solutions by multiplying with an appropriate
solution of the scalar Laplacian coupled to Kähler potential with such a coupling that a correct
total Kähler charge results. Left handed solutions of spinor Laplacian are obtained simply by
multiplying right handed solutions with CP2 Dirac operator: in this operation the eigenvalues
of the mass squared operator are obviously preserved.

4. The remaining task is to solve scalar Laplacian coupled to an arbitrary integer multiple of
Kähler potential. This can be achieved by noticing that the solutions of the massive CP2

Laplacian can be regarded as solutions of S5 scalar Laplacian. S5 can indeed be regarded as
a circle bundle over CP2 and massive solutions of CP2 Laplacian correspond to the solutions
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of S5 Laplacian with exp(isτ) dependence on S1 coordinate such that s corresponds to the
coupling to the Kähler potential:

s = n/2 .

Thus one obtains

D2
5 = (Dµ − iAµ∂τ )(Dµ − iAµ∂τ ) + ∂2

τ (14.4.2)

so that the eigen values of CP2 scalar Laplacian are

m2(s) = m2
5 + s2 (14.4.3)

for the assumed dependence on τ .

5. What remains to do, is to find the spectrum of S5 Laplacian and this is an easy task. All
solutions of S5 Laplacian can be written as homogenous polynomial functions of C3 complex
coordinates Zk and their complex conjugates and have a decomposition into the representations
of SU(3) acting in natural manner in C3.

6. The solutions of the scalar Laplacian belong to the representations (p, p+ s) for s ≥ 0 and to
the representations (p+ |s|, p) of SU(3) for s ≤ 0. The eigenvalues m2(s) and degeneracies d
are

m2(s) =
2Λ

3
[p2 + (|s|+ 2)p+ |s|] , p > 0 ,

d =
1

2
(p+ 1)(p+ |s|+ 1)(2p+ |s|+ 2) . (14.4.4)

Λ denotes the “cosmological constant” of CP2 (Rij = Λsij).

14.4.3 Solutions Of The Leptonic Spinor Laplacian

Right handed solutions of the leptonic spinor Laplacian are obtained from the asatz of form

νR = Φs=0ν
0
R ,

where uR is covariantly constant right handed neutrino and Φ scalar with vanishing Kähler charge.
Right handed “electron” is obtained from the ansats

eR = Φs=3e
0
R ,

where e0
R is covariantly constant for n = −3 coupling to Kähler potential so that scalar function

must have Kähler coupling s = n/2 = 3 a in order to get a correct Kähler charge. The d’Alembert
equation reduces to

(DµD
µ − (1− ε)Λ)Φ = −m2Φ ,

ε(ν) = 1 , ε(e) = −1 . (14.4.5)

The two additional terms correspond to the curvature scalar term and JklΣ
kl terms in spinor

Laplacian. The latter term is proportional to Kähler coupling and of different sign for ν and e,
which explains the presence of the sign factor ε in the formula.

Right handed neutrinos correspond to (p, p) states with p ≥ 0 with mass spectrum

m2(ν) =
m2

1

3

[
p2 + 2p

]
, p ≥ 0 ,

m2
1 ≡ 2Λ . (14.4.6)

Right handed “electrons” correspond to (p, p+ 3) states with mass spectrum

m2(e) =
m2

1

3

[
p2 + 5p+ 6

]
, p ≥ 0 . (14.4.7)
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Left handed solutions are obtained by operating with CP2 Dirac operator on right handed solutions
with one exception: the action of the Dirac operator on the covariantly constant right handed
neutrino ((p = 0, p = 0) state) annihilates it.

14.4.4 Quark Spectrum

Quarks correspond to the second conserved H-chirality of H-spinors. The construction of the
color partial waves for quarks proceeds along similar lines as for leptons. The Kähler coupling
corresponds to n = 1 (and s = 1/2) and right handed U type quark corresponds to a right handed
neutrino. U quark type solutions are constructed as solutions of form

UR = uRΦs==1 ,

where uR possesses the quantum numbers of covariantly constant right handed neutrino with
Kähler charge n = 3 (s = 3/2). Hence Φs has s = −1. For DR one has

DR = drΦs=2 .

dR has s = −3/2 so that one must have s = 2. For UR the representations (p+ 1, p) with triality
one are obtained and p = 0 corresponds to color triplet. For DR the representations (p, p+ 2) are
obtained and color triplet is missing from the spectrum (p = 0 corresponds to 6̄).

The CP2 contributions to masses are given by the formula

m2(U, p) =
m2

1

3

[
p2 + 3p+ 2

]
, p ≥ 0 ,

m2(D, p) =
m2

1

3

[
p2 + 4p+ 4

]
, p ≥ 0 . (14.4.8)

Left handed quarks are obtained by applying Dirac operator to right handed quark states and
mass formulas and color partial wave spectrum are the same as for right handed quarks.

The color contributions to p-adic mass squared are integer valued if m2
0/3 is taken as a

fundamental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since canonical identification does not commute with a division by integer. More
precisely, the images of number xp in canonical identification has a value of order 1 when x is
a non-trivial rational whereas for x = np the value is n/p and extremely is small for physically
interesting primes. This choice does not however affect the spectrum of massless states but can
affect the spectrum of light states in case of electro-weak gauge bosons.

14.4.5 Spectrum Of Elementary Particles

The assumption that k = 1 holds true for all particles forces to modify the earlier construction of
quark states. This turns out to be possible without affecting the p-adic mass calculations whose
outcome depend in an essential manner on the ground state conformal weights hgr of the fermions
(which can be negative).

Leptonic spectrum

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying

p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) rep-
resentations with p ≥ 1 whereas charged leptons correspond to (p, p + 3) representations. The
earlier mass calculations demonstrate that leptonic masses can be understood if the ground state
conformal weight is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 + 2p)/3, p ≥ 1, for
neutrinos and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2
for p = 0 (decouplet). In both cases super-symplectic operator O must have a net conformal
weight hsc = −3 to produce a correct conformal weight for the ground state. p-adic considerations
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suggests the use of operators O with super-symplectic conformal weight z = −1/2 − i
∑
nkyk,

where sk = 1/2 + iyk corresponds to zero of Riemann ζ. If the operators in question are color
Hamiltonians in octet representation net super-symplectic conformal weight hsc = −3 results. The
tensor product of two octets with conjugate super-symplectic conformal weights contains both octet
and decouplet so that singlets are obtained. What strengthens the hopes that the construction is
not ad hoc is that the same operator appears in the construction of quark states too.

Right handed neutrino remains essentially massless. p = 0 right handed neutrino does not
however generate N = 1 space-time (or rather, embedding space) super symmetry so that no
sparticles are predicted. The breaking of the electro-weak symmetry at the level of the masses
comes out basically from the anomalous color electro-weak correlation for the Kaluza-Klein partial
waves implying that the weights for the ground states of the fermions depend on the electromagnetic
charge of the fermion. Interestingly, TGD predicts lepto-hadron physics based on color excitations
of leptons and color bound states of these excitations could correspond topologically condensed on
string like objects but not fundamental string like objects.

Spectrum of quarks

Earlier arguments [K70] related to a model of CKM matrix as a rational unitary matrix suggested
that the string tension parameter k is different for quarks, leptons, and bosons. The basic mass
formula read as

M2 = m2
CP2

+ kL0 .

The values of k were kq = 2/3 and kL = kB = 1. The general theory however predicts that k = 1
for all particles.

1. By earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for
the eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as unit, color conformal
weight hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p + 1, p) type

representation and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark
belonging (p, p + 2) type representation and obeying hc(D) = (p2 + 4p + 4)/3. Only these
states can be massless since color Hamiltonians have integer valued conformal weights.

2. In the recent case p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) = −1 and
hgr(D) = 0 reproduce the previous results for quark masses required by the construction of
CKM matrix. This forces the super-symplectic operator O to compensate the anomalous color
to have a net conformal weight hsc = −3 just as in the leptonic case. The facts that the
values of p are minimal for spinor harmonics and the super-symplectic operator is same for
both quarks and leptons suggest that the construction is not had hoc. The real justification
would come from the demonstration that hsc = −3 defines null state for SSV: this would also
explain why hsc would be same for all fermions.

3. It would seem that the tensor product of the spinor harmonic of quarks (as also leptons)
with Hamiltonians gives rise to a large number of exotic colored states which have same
thermodynamical mass as ordinary quarks (and leptons). Why these states have smaller values
of p-adic prime that ordinary quarks and leptons, remains a challenge for the theory. Note that
the decay widths of intermediate gauge bosons pose strong restrictions on the possible color
excitations of quarks. On the other hand, the large number of fermionic color exotics can spoil
the asymptotic freedom, and it is possible to have and entire p-adic length scale hierarchy of
QCDs existing only in a finite length scale range without affecting the decay widths of gauge
bosons.

Table 14.3 summarizes the color conformal weights and super-symplectic vacuum conformal
weights for the elementary particles.

Photon, graviton and gluon

For photon, gluon and graviton the conformal weight of the p = 0 ground state is hgr = hvac = 0.
The crucial condition is that h = 0 ground state is non-degenerate: otherwise one would obtain
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.
L νL U D W γ,G, g

hvac -3 -3 -3 -3 -2 0
hc 2 1 2 3 2 0

Table 14.3: The values of the parameters hvac and hc assuming that k = 1. The value of
hvac ≤ −hc is determined from the requirement that p-adic mass calculations give best possible fit
to the mass spectrum.

several physically more or less identical photons and this would be seen in the spectrum of black-
body radiation. This occurs if one can construct several ground states not expressible in terms of
the action of the Super Virasoro generators.

Masslessness or approximate masslessness requires low enough temperature Tp = 1/n, n > 1
at least and small enough value of the possible contribution coming from the ground state conformal
weight.

In NS thermodynamics the only possibility to get exactly massless states in thermal sense
is to have ∆ = 0 state with one active sector so that NS thermodynamics becomes trivial due
to the absence of the thermodynamical excitations satisfying the gauge conditions. For neutral
gauge bosons this is indeed achieved. For Tp = 1/2, which is required by the mass spectrum of
intermediate gauge bosons, the thermal contribution to the mass squared is however extremely
small even for W boson.

14.5 Modular Contribution To The Mass Squared

The success of the p-adic mass calculations gives convincing support for the generation-genus
correspondence. The basic physical picture is following.

1. Fermionic mass squared is dominated by partonic contribution, which is sum of cm and mod-
ular contributions: M2 = M2(cm) +M2(mod). Here “cm” refers to the thermal contribution.
Modular contribution can be assumed to depend on the genus of the boundary component
only.

2. If Higgs contribution for diagonal (g, g) bosons (singlets with respect to “topological” SU(3))
dominates, the genus dependent contribution can be assumed to be negligible. This should be
due to the bound state character of the wormhole contacts reducing thermal motion and thus
the p-adic temperature.

3. Modular contribution to the mass squared can be estimated apart from an overall propor-
tionality constant. The mass scale of the contribution is fixed by the p-adic length scale
hypothesis. Elementary particle vacuum functionals are proportional to a product of all even
theta functions and their conjugates, the number of even theta functions and their conjugates
being 2N(g) = 2g(2g + 1). Also the thermal partition function must also be proportional to
2N(g):th power of some elementary partition function. This implies that thermal/ quantum
expectation M2(mod) must be proportional to 2N(g). Since single handle behaves effectively
as particle, the contribution must be proportional to genus g also. The success of the resulting
mass formula encourages the belief that the argument is essentially correct.

The challenge is to construct theoretical framework reproducing the modular contribution
to mass squared. There are two alternative ways to understand the origin modular contribution.

1. The realization that super-symplectic algebra is relevant for elementary particle physics leads
to the idea that two thermodynamics are involved with the calculation of the vacuum conformal
weight as a thermal expectation. The first thermodynamics corresponds to Super Kac-Moody
algebra and second thermodynamics to super-symplectic algebra. This approach allows a first
principle understanding of the origin and general form of the modular contribution without
any need to introduce additional structures in modular degrees of freedom. The very fact that
super-symplectic algebra does not commute with the modular degrees of freedom explains the
dependence of the super-symplectic contribution on moduli.
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2. The earlier approach was based on the idea that he modular contribution could be regarded as a
quantum mechanical expectation value of the Virasoro generator L0 for the elementary particle
vacuum functional. Quantum treatment would require generalization the concepts of the
moduli space and theta function to the p-adic context and finding an acceptable definition of
the Virasoro generator L0 in modular degrees of freedom. The problem with this interpretation
is that it forces to introduce, not only Virasoro generator L0, but the entire super Virasoro
algebra in modular degrees of freedom. One could also consider of interpreting the contribution
of modular degrees of freedom to vacuum conformal weight as being analogous to that of CP2

Laplacian but also this would raise the challenge of constructing corresponding Dirac operator.
Obviously this approach has become obsolete.

The thermodynamical treatment taking into account the constraints from that p-adicization
is possible might go along following lines.

1. In the real case the basic quantity is the thermal expectation value h(M) of the conformal
weight as a function of moduli. The average value of the deviation ∆h(M) = h(M)− h(M0)
over moduli space M must be calculated using elementary particle vacuum functional as
a modular invariant partition function. Modular invariance is achieved if this function is
proportional to the logarithm of elementary particle vacuum functional: this reproduces the
qualitative features basic formula for the modular contribution to the conformal weight. p-
Adicization leads to a slight modification of this formula.

2. The challenge of algebraically continuing this calculation to the p-adic context involves several
sub-tasks. The notions of moduli space Mp and theta function must be defined in the p-
adic context. An appropriately defined logarithm of the p-adic elementary particle vacuum
functional should determine ∆h(M). The average of ∆h(M) requires an integration overMp.
The problems related to the definition of this integral could be circumvented if the integral in
the real case could be reduced to an algebraic expression, or if the moduli space is discrete in
which case integral could be replaced by a sum.

3. The number theoretic existence of the p-adic Θ function leads to the quantization of the moduli
so that the p-adic moduli space is discretized. Accepting the sharpened form of Riemann
hypothesis [K86] , the quantization means that the imaginary resp. real parts of the moduli
are proportional to integers resp. combinations of imaginary parts of zeros of Riemann Zeta.
This quantization could occur also for the real moduli for the maxima of Kähler function.
This reduces the problematic p-adic integration to a sum and the resulting sum defining 〈∆h〉
converges extremely rapidly for physically interesting primes so that only the few lowest terms
are needed.

14.5.1 Conformal Symmetries And Modular Invariance

The full SKM invariance means that the super-conformal fields depend only on the conformal
moduli of 2-surface characterizing the conformal equivalence class of the 2-surface. This means
that all induced metrics differing by a mere Weyl scaling have same moduli. This symmetry is
extremely powerful since the space of moduli is finite-dimensional and means that the entire infinite-
dimensional space of deformations of parton 2-surface X2 degenerates to a finite-dimensional mod-
uli spaces under conformal equivalence. Obviously, the configurations of given parton correspond
to a fiber space having moduli space as a base space. Super-symplectic degrees of freedom could
break conformal invariance in some appropriate sense.

Conformal and SKM symmetries leave moduli invariant

Conformal transformations and super Kac Moody symmetries must leave the moduli invariant.
This means that they induce a mere Weyl scaling of the induced metric of X2 and thus preserve
its non-diagonal character ds2 = gzzdzdz. This is indeed true if

1. the Super Kac Moody symmetries are holomorphic isometries of X7 = δM4
±×CP2 made local

with respect to the complex coordinate z of X2, and

2. the complex coordinates of X7 are holomorphic functions of z.

Using complex coordinates for X7 the infinitesimal generators can be written in the form
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JAn = znjAkDk + znjAkDk . (14.5.1)

The intuitive picture is that it should be possible to choose X2 freely. It is however not always
possible to choose the coordinate z of X2 in such a way that X7 coordinates are holomorphic
functions of z since a consistency of inherent complex structure of X2 with that induced from X7

is required. Geometrically this is like meeting of two points in the space of moduli.
Lorentz boosts produce new inequivalent choices of S2 with their own complex coordinate:

this set of complex structures is parameterized by the hyperboloid of future light cone (Lobatchevski
space or mass shell), but even this is not enough. The most plausible manner to circumvent the
problem is that only the maxima of Kähler function correspond to the holomorphic situation so
that super-symplectic algebra representing quantum fluctuations would induce conformal anomaly.

The isometries of δM4
+ are in one-one correspondence with conformal transformations

For CP2 factor the isometries reduce to SU(3) group acting also as symplectic transformations.
For δM4

+ = S2×R+ one might expect that isometries reduce to Lorentz group containing rotation
group of SO(3) as conformal isometries. If rM corresponds to a macroscopic length scale, then X2

has a finite sized S2 projection which spans a rather small solid angle so that group SO(3) reduces
in a good approximation to the group E2 × SO(2) of translations and rotations of plane.

This expectation is however wrong! The light-likeness of δM4
+ allows a dramatic general-

ization of the notion of isometry. The point is that the conformal transformations of S2 induce
a conformal factor |df/dw|2 to the metric of δM4

+ and the local radial scaling rM → rM/|df/dw|
compensates it. Hence the group of conformal isometries consists of conformal transformations of
S2 with compensating radial scalings. This compensation of two kinds of conformal transforma-
tions is the deep geometric phenomenon which translates to the condition LSC − LSKM = 0 in
the sub-space of physical states. Note that an analogous phenomenon occurs also for the light-like
CDs X3

l with respect to the metrically 2-dimensional induced metric.
The X2-local radial scalings rM → rM (z, z) respect the conditions gzz = gzz = 0 so that a

mere Weyl scaling leaving moduli invariant results. By multiplying the conformal isometries of δM4
+

by zn (z is used as a complex coordinate for X2 and w as a complex coordinate for S2) a conformal
localization of conformal isometries would result. Kind of double conformal transformations would
be in question. Note however that this requires that X7 coordinates are holomorphic functions
of X2 coordinate. These transformations deform X2 unlike the conformal transformations of X2.
For X3

l similar local scalings of the light like coordinate leave the moduli invariant but lead out of
X7.

Symplectic transformations break the conformal invariance

In general, infinitesimal symplectic transformations induce non-vanishing components gzz, gzz of
the induced metric and can thus change the moduli of X2. Thus the quantum fluctuations rep-
resented by super-symplectic algebra and contributing to the WCW metric are in general moduli
changing. It would be interesting to know explicitly the conditions (the number of which is the
dimension of moduli space for a given genus), which guarantee that the infinitesimal symplectic
transformation is moduli preserving.

14.5.2 The Physical Origin Of The Genus Dependent Contribution To
The Mass Squared

Different p-adic length scales are not enough to explain the charged lepton mass ratios and an
additional genus dependent contribution in the fermionic mass formula is required. The general
form of this contribution can be guessed by regarding elementary particle vacuum functionals in
the modular degrees of freedom as an analog of partition function and the modular contribution to
the conformal weight as an analog of thermal energy obtained by averaging over moduli. p-Adic
length scale hypothesis determines the overall scale of the contribution.

The exact physical origin of this contribution has remained mysterious but super-symplectic
degrees of freedom represent a good candidate for the physical origin of this contribution. This
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would mean a sigh of relief since there would be no need to assign conformal weights, super-algebra,
Dirac operators, Laplacians, etc.. with these degrees of freedom.

Thermodynamics in super-symplectic degrees of freedom as the origin of the modular
contribution to the mass squared

The following general picture is the simplest found hitherto.

1. Elementary particle vacuum functionals are defined in the space of moduli of surfaces X2

corresponding to the maxima of Kähler function. There some restrictions on X2. In particular,
p-adic length scale poses restrictions on the size of X2. There is an infinite hierarchy of
elementary particle vacuum functionals satisfying the general constraints but only the lowest
elementary particle vacuum functionals are assumed to contribute significantly to the vacuum
expectation value of conformal weight determining the mass squared value.

2. The contribution of Super-Kac Moody thermodynamics to the vacuum conformal weight h
coming from Virasoro excitations of the h = 0 massless state is estimated in the previous
calculations and does not depend on moduli. The new element is that for a partonic 2-surface
X2 with given moduli, Virasoro thermodynamics is present also in super-symplectic degrees
of freedom.
Super-symplectic thermodynamics means that, besides the ground state with hgr = −hSC
with minimal value of super-symplectic conformal weight hSC , also thermal excitations of
this state by super-symplectic Virasoro algebra having hgr = −hSC − n are possible. For
these ground states the SKM Virasoro generators creating states with net conformal weight
h = hSKM − hSC − n ≥ 0 have larger conformal weight so that the SKM thermal average
h depends on n. It depends also on the moduli M of X2 since the Beltrami differentials
representing a tangent space basis for the moduli space M do not commute with the super-
symplectic algebra. Hence the thermally averaged SKM conformal weight hSKM for given
values of moduli satisfies

hSKM = h(n,M) . (14.5.2)

3. The average conformal weight induced by this double thermodynamics can be expressed as a
super-symplectic thermal average 〈·〉SC of the SKM thermal average h(n,M):

h(M) = 〈h(n,M)〉SC =
∑

pn(M)h(n) , (14.5.3)

where the moduli dependent probability pn(M) of the super-symplectic Virasoro excitation
with conformal weight n should be consistent with the p-adic thermodynamics. It is convenient
to write h(M) as

h(M) = h0 + ∆h(M) , (14.5.4)

where h0 is the minimum value of h(M) in the space of moduli. The form of the elementary
particle vacuum functionals suggest that h0 corresponds to moduli with Im(Ωij) = 0 and thus
to singular configurations for which handles degenerate to one-dimensional lines attached to a
sphere.

4. There is a further averaging of ∆h(M) over the moduli spaceM by using the modulus squared
of elementary particle vacuum functional so that one has

h = h0 + 〈∆h(M)〉M . (14.5.5)

Modular invariance allows to pose very strong conditions on the functional form of ∆h(M).
The simplest assumption guaranteeing this and thermodynamical interpretation is that ∆h(M)
is proportional to the logarithm of the vacuum functional Ω:

∆h(M) ∝ −log(
Ω(M)

Ωmax
) . (14.5.6)

Here Ωmax corresponds to the maximum of Ω for which ∆h(M) vanishes.
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Justification for the general form of the mass formula

The proposed general ansatz for ∆h(M) provides a justification for the general form of the mass
formula deduced by intuitive arguments.

1. The factorization of the elementary particle vacuum functional Ω into a product of 2N(g) =
2g(2g+1) terms and the logarithmic expression for ∆h(M) imply that the thermal expectation
values is a sum over thermal expectation values over 2N(g) terms associated with various even
characteristics (a, b), where a and b are g-dimensional vectors with components equal to 1/2
or 0 and the inner product 4a · b is an even integer. If each term gives the same result in the
averaging using Ωvac as a partition function, the proportionality to 2Ng follows.

2. For genus g ≥ 2 the partition function defines an average in 3g − 3 complex-dimensional
space of moduli. The analogy of 〈∆h〉 and thermal energy suggests that the contribution is
proportional to the complex dimension 3g − 3 of this space. For g ≤ 1 the contribution the
complex dimension of moduli space is g and the contribution would be proportional to g.

〈∆h〉 ∝ g ×X(g) for g ≤ 1 ,

〈∆h〉 ∝ (3g − 3)×X(g) for g ≥ 2 ,

X(g) = 2g(2g + 1) . (14.5.7)

If X2 is hyper-elliptic for the maxima of Kähler function, this expression makes sense only for
g ≤ 2 since vacuum functionals vanish for hyper-elliptic surfaces.

3. The earlier argument, inspired by the interpretation of elementary particle vacuum functional
as a partition function, was that each factor of the elementary particle vacuum functional
gives the same contribution to 〈∆h〉, and that this contribution is proportional to g since each
handle behaves like a particle:

〈∆h〉 ∝ g ×X(g) . (14.5.8)

The prediction following from the previous differs by a factor (3g − 3)/g for g ≥ 2. This
would scale up the dominant modular contribution to the masses of the third g = 2 fermionic
generation by a factor

√
3/2 ' 1.22. One must of course remember, that these rough arguments

allow g− dependent numerical factors of order one so that it is not possible to exclude either
argument.

14.5.3 Generalization Of Θ Functions And Quantization Of P-Adic Mod-
uli

The task is to find p-adic counterparts for theta functions and elementary particle vacuum func-
tionals. The constraints come from the p-adic existence of the exponentials appearing as the
summands of the theta functions and from the convergence of the sum. The exponentials must be
proportional to powers of p just as the Boltzmann weights defining the p-adic partition function.
The outcome is a quantization of moduli so that integration can be replaced with a summation
and the average of ∆h(M) over moduli is well defined.

It is instructive to study the problem for torus in parallel with the general case. The
ordinary moduli space of torus is parameterized by single complex number τ . The points related
by SL(2, Z) are equivalent, which means that the transformation τ → (Aτ+B)/(Cτ+D) produces
a point equivalent with τ . These transformations are generated by the shift τ → τ + 1 and
τ → −1/τ . One can choose the fundamental domain of moduli space to be the intersection of the
slice Re(τ) ∈ [−1/2, 1/2] with the exterior of unit circle |τ | = 1. The idea is to start directly from
physics and to look whether one might some define p-adic version of elementary particle vacuum
functionals in the p-adic counterpart of this set or in some modular invariant subset of this set.

Elementary particle vacuum functionals are expressible in terms of theta functions using the

functions Θ4[a, b]Θ
4
[a, b] as a building block. The general expression for the theta function reads

as

Θ[a, b](Ω) =
∑
n

exp(iπ(n+ a) · Ω · (n+ a))exp(2iπ(n+ a) · b) . (14.5.9)



14.5. Modular Contribution To The Mass Squared 689

The latter exponential phase gives only a factor ±i or ±1 since 4a · b is integer. For p mod 4 = 3
imaginary unit exists in an algebraic extension of p-adic numbers. In the case of torus (a, b) has
the values (0, 0), (1/2, 0) and (0, 1/2) for torus since only even characteristics are allowed.

Concerning the p-adicization of the first exponential appearing in the summands in Eq.
14.5.9, the obvious problem is that π does not exists p-adically unless one allows infinite-dimensional
extension.

1. Consider first the real part of Ω. In this case the proper manner to treat the situation is
to introduce and algebraic extension involving roots of unity so that Re(Ω) rational. This
approach is proposed as a general approach to the p-adicization of quantum TGD in terms
of harmonic analysis in symmetric spaces allowing to define integration also in p-adic context
in a physically acceptable manner by reducing it to Fourier analysis. The simplest situation
corresponds to integer values for Re(Ω) and in this case the phase are equal to ±i or ±1 since
a is half-integer valued. One can consider a hierarchy of variants of moduli space characterized
by the allowed roots of unity. The physical interpretation for this hierarchy would be in terms
of a hierarchy of measurement resolutions. Note that the real parts of Ω can be assumed to
be rationals of form m/n where n is constructed as a product of finite number of primes and
therefore the allowed rationals are linear combinations of inverses 1/pi for a subset {pi} of
primes.

2. For the imaginary part of Ω different approach is required. One wants a rapid convergence of
the sum formula and this requires that the exponents reduces in this case to positive powers
of p. This is achieved if one has

Im(Ω) = −nlog(p)

π)
, (14.5.10)

Unfortunately this condition is not consistent with the condition Im(Ω) > 0. a way to circum-
vent the difficulty is to replace Ω with its complex conjugate. Second approach is to define the
real discretized variant of theta function first and then map it by canonical identification to
its p-adic counterpart: this would map phase to phases and powers of p to their inverses. Note
that a similar change of sign must be performed in p-adic thermodynamics for powers of p to

map p-adic probabilities to real ones. By rescaling Im(Ω)→ log(p)
π) Im(Ω) one has non-negative

integer valued spectrum for Im(Ω) making possible to reduce integration in moduli space to
a summation over finite number of rationals associated with the real part of Ω and powers of
p associated with the imaginary part of Ω.

3. Since the exponents appearing in

p(n+a)·Im(Ωij,p)·(n+a) = pa·Im(Ω)·a × p2a·Im(Ω·n × p+n·Im(Ωij,p)·n

are positive integers valued, Θ[a,b] exist in Rp and converges. The problematic factor is the
first exponent since the components of the vector a can have values 1/2 and 0 and its existence
implies a quantization of Im(Ωij) as

Im(Ω) = −Knlog(p)

p
, n ∈ Z , n ≥ 1 , (14.5.11)

In p-adic context this condition must be formulated for the exponent of Ω defining the natural
coordinate. K = 4 guarantees the existence of Θ functions and K = 1 the existence of the

building blocks Θ4[a, b]Θ
4
[a, b] of elementary particle vacuum functionals in Rp. The extension

to higher genera means only replacement of Ω with the elements of a matrix.

4. One can criticize this approach for the loss of the full modular covariance in the definition
of theta functions. The modular transformations Ω → Ω + n are consistent with the number
theoretic constraints but the transformations Ω → −1/Ω do not respect them. It seem that
one can circumvent the difficulty by restricting the consideration to a fundamental domain
satisfying the number theoretic constraints.

This variant of moduli space is discrete and p-adicity is reflected only in the sense that the
moduli space makes sense also p-adically. One can consider also a continuum variant of the p-adic
moduli space using the same prescription as in the construction of p-adic symmetric spaces [K95] .
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1. One can introduce exp(iπRe(Ω)) as the counterpart of Re(Ω) as a coordinate of the Te-
ichmueller space. This coordinate makes sense only as a local coordinate since it does not
differentiate between Re(Ω) and Re(Ω + 2n). On the other hand, modular invariance states
that Ω abd Ω+n correspond to the same moduli so that nothing is lost. In the similar manner
one can introduce exp(πIm(Ω)) ∈ {pn, n > 0} as the counterpart of discretized version of
Im(Ω).

2. The extension to continuum would mean in the case of Re(Ω) the extension of the phase
exp(iπRe(Ω)) to a product exp(iπRe(Ω))exp(ipx) = exp(iπRe(Ω) + exp(ipx), where x is p-
adic integer which can be also infinite as a real integer. This would mean that each root of
unity representing allowed value Re(Ω) would have a p-adic neighborhood consisting of p-adic
integers. This neighborhood would be the p-adic counterpart for the angular integral ∆φ for
a given root of unity and would not make itself visible in p-adic integration.

3. For the imaginary part one can also consider the extension of exp(πIm(Ω)) to pn × exp(npx)
where x is a p-adic integer. This would assign to each point pn a p-adic neighborhood defined
by p-adic integers. This neighborhood is same all integers n with same p-adic norm. When n
is proportional to pk one has exp(npx)− 1 ∝ pk.

The quantization of moduli characterizes precisely the conformal properties of the partonic
2-surfaces corresponding to different p-adic primes. In the real context -that is in the intersection
of real and p-adic worlds- the quantization of moduli of torus would correspond to

τ = K

[∑
q + i× nlog(p)

π

]
, (14.5.12)

where q is a rational number expressible as linear combination of inverses of a finite fixed set of
primes defining the allowed roots of unity. K = 1 guarantees the existence of elementary particle
vacuum functionals and K = 4 the existence of Theta functions. The ratio for the complex vectors
defining the sides of the plane parallelogram defining torus via the identification of the parallel
sides is quantized. In other words, the angles Φ between the sides and the ratios of the sides given
by |τ | have quantized values.

The quantization rules for the moduli of the higher genera is of exactly same form

Ωij = K

[∑
qij + i× nij ×

log(p)

π

]
,

(14.5.13)

If the quantization rules hold true also for the maxima of Kähler function in the real context or
more precisely- in the intersection of real and p-adic variants of the “world of classical worlds”
identified as partonic 2-surfaces at the boundaries of causal diamond plus the data about their 4-D
tangent space, there are good hopes that the p-adicized expression for ∆h is obtained by a simple
algebraic continuation of the real formula. Thus p-adic length scale would characterize partonic
surface X2 rather than the light like causal determinant X3

l containing X2. Therefore the idea
that various p-adic primes label various X3

l connecting fixed partonic surfaces X2
i would not be

correct.
Quite generally, the quantization of moduli means that the allowed 2-dimensional shapes

form a lattice and are thus additive. It also means that the maxima of Kähler function would obey a
linear superposition in an extreme abstract sense. The proposed number theoretical quantization
is expected to apply for any complex space allowing some preferred complex coordinates. In
particular, WCW of 2-surfaces could allow this kind of quantization in the complex coordinates
naturally associated with isometries and this could allow to define WCW integration, at least the
counterpart of integration in zero mode degrees of freedom, as a summation.

Number theoretic vision leads to the notion of multi-p-p-adicity in the sense that the same
partonic 2-surface can correspond to several p-adic primes and that infinite primes code for these
primes [K113, K94] . At the level of the moduli space this corresponds to the replacement of p with
an integer in the formulas so that one can interpret the formulas both in real sense and p-adic sense
for the primes p dividing the integer. Also the exponent of given prime in the integer matters.
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14.5.4 The Calculation Of The Modular Contribution 〈∆H〉 To The Con-
formal Weight

The quantization of the moduli implies that the integral over moduli can be defined as a sum
over moduli. The theta function Θ[a, b](Ω)p(τp) is proportional to pa·aIm(Ωij,p) = pKnijm(a)/4 for
a · a = m(a)/4, where K = 1 resp. K = 4 corresponds to the existence existence of elementary
particle vacuum functionals resp. theta functions in Rp. These powers of p can be extracted
from the thetas defining the vacuum functional. The numerator of the vacuum functional gives
(pn)2K

∑
a,bm(a). The numerator gives (pn)2K

∑
a,bm(a0), where a0 corresponds to the minimum

value of m(a). a0 = (0, 0, .., 0) is allowed and gives m(a0) = 0 so that the p-adic norm of the
denominator equals to one. Hence one has

|Ωvac(Ωp)|p = p−2nK
∑
a,bm(a) (14.5.14)

The sum converges extremely rapidly for large values of p as function of n so that in practice only
few moduli contribute.

The definition of log(Ωvac) poses however problems since in log(p) does not exist as a p-adic
number in any p-adic number field. The argument of the logarithm should have a unit p-adic
norm. The simplest manner to circumvent the difficulty is to use the fact that the p-adic norm
|Ωp|p is also a modular invariant, and assume that the contribution to conformal weight depends
on moduli as

∆hp(Ωp) ∝ log(
Ωvac
|Ωvac|p

) . (14.5.15)

The sum defining 〈∆hp〉 converges extremely rapidly and gives a result of order O(p) p-adically as
required.

The p-adic expression for 〈∆hp〉 should result from the corresponding real expression by an
algebraic continuation. This encourages the conjecture that the allowed moduli are quantized for
the maxima of Kähler function, so that the integral over the moduli space is replaced with a sum
also in the real case, and that ∆h given by the double thermodynamics as a function of moduli
can be defined as in the p-adic case. The positive power of p multiplying the numerator could be
interpreted as a degeneracy factor. In fact, the moduli are not primary dynamical variables in the
case of the induced metric, and there must be a modular invariant weight factor telling how many
2-surfaces correspond to given values of moduli. The power of p could correspond to this factor.

14.6 The Contributions Of P-Adic Thermodynamics To Par-
ticle Masses

In the sequel various contributions to the mass squared are discussed.

14.6.1 General Mass Squared Formula

The thermal independence of Super Virasoro and modular degrees of freedom implies that mass
squared for elementary particle is the sum of Super Virasoro, modular and Higgsy contributions:

M2 = M2(color) +M2(SV ) +M2(mod) +M2(Higgsy) . (14.6.1)

Also small renormalization correction contributions might be possible.
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14.6.2 Color Contribution To The Mass Squared

The mass squared contains a non-thermal color contribution to the ground state conformal weight
coming from the mass squared of CP2 spinor harmonic. The color contribution is an integer
multiple of m2

0/3, where m2
0 = 2Λ denotes the “cosmological constant” of CP2 (CP2 satisfies

Einstein equations Gαβ = Λgαβ).
The color contribution to the p-adic mass squared is integer valued only if m2

0/3 is taken
as a fundamental p-adic unit of mass squared. This choice has an obvious relevance for p-adic
mass calculations since the simplest form of the canonical identification does not commute with
a division by integer. More precisely, the image of number xp in canonical identification has a
value of order 1 when x is a non-trivial rational number whereas for x = np the value is n/p and
extremely is small for physically interesting primes.

The choice of the p-adic mass squared unit are no effects on zeroth order contribution which
must vanish for light states: this requirement eliminates quark and lepton states for which the
CP2 contribution to the mass squared is not integer valued using m2

0 as a unit. There can be a
dramatic effect on the first order contribution. The mass squared m2 = p/3 using m2

0/3 means
that the particle is light. The mass squared becomes m2 = p/3 when m2

0 is used as a unit and the
particle has mass of order 10−4 Planck masses. In the case of W and Z0 bosons this problem is
actually encountered. For light states using m2

0/3 as a unit only the second order contribution to
the mass squared is affected by this choice.

14.6.3 Modular Contribution To The Mass Of Elementary Particle

The general form of the modular contribution is derivable from p-adic partition function for con-
formally invariant degrees of freedom associated with the boundary components. The general form
of the vacuum functionals as modular invariant functions of Teichmueller parameters was derived
in [K28] and the square of the elementary particle vacuum functional can be identified as a partition
function. Even theta functions serve as basic building blocks and the functionals are proportional
to the product of all even theta functions and their complex conjugates. The number of theta
functions for genus g > 0 is given by

N(g) = 2g−1(2g + 1) . (14.6.2)

One has N(1) = 3 for muon and N(2) = 10 for τ .

1. Single theta function is analogous to a partition function. This implies that the modular
contribution to the mass squared must be proportional to 2N(g). The factor two follows from
the presence of both theta functions and their conjugates in the partition function.

2. The factorization properties of the vacuum functionals imply that handles behave effectively
as particles. For example, at the limit, when the surface splits into two pieces with g1 and
g−g1 handles, the partition function reduces to a product of g1 and g−g1 partition functions.
This implies that the contribution to the mass squared is proportional to the genus of the
surface. Altogether one has

M2(mod, g) = 2k(mod)N(g)g
m2

0

p
,

k(mod) = 1 . (14.6.3)

Here k(mod) is some integer valued constant (in order to avoid ultra heavy mass) to be
determined. k(mod) = 1 turns out to be the correct choice for this parameter.

Summarizing, the real counterpart of the modular contribution to the mass of a particle
belonging to g + 1:th generation reads as

M2(mod) = 0 for e, νe, u, d ,

M2(mod) = 9
m2

0

p(X))
for X = µ, νµ, c, s ,

M2(mod) = 60
m2

0

p(X)
for X = τ, ντ , t, b . (14.6.4)
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The requirement that hadronic mass spectrum and CKM matrix are sensible however forces the
modular contribution to be the same for quarks, leptons and bosons. The higher order modular
contributions to the mass squared are completely negligible if the degeneracy of massless state is
D(0,mod, g) = 1 in the modular degrees of freedom as is in fact required by k(mod) = 1.

14.6.4 Thermal Contribution To The Mass Squared

One can deduce the value of the thermal mass squared in order O(p2) (an excellent approxima-
tion) using the general mass formula given by p-adic thermodynamics. Assuming maximal p-adic
temperature Tp = 1 one has

M2 = k(sp+Xp2 +O(p3)) ,

s∆ =
D(∆ + 1)

D(∆)
,

X∆ = 2
D(∆ + 2)

D(∆)
− D2(∆ + 1)

D2(∆)
,

k = 1 . (14.6.5)

∆ is the conformal weight of the operator creating massless state from the ground state.
The ratios rn = D(n+1)/D(n) allowing to deduce the values of s and X have been deduced

from p-adic thermodynamics in [K60] . Light state is obtained only provided r(∆) is an integer.
The remarkable result is that for lowest lying states this is the case. For instance, for Ramond
representations the values of rn are given by

(r0, r1, r2, r3) = (8, 5, 4,
55

16
) . (14.6.6)

The values of s and X are

(s0, s1, s2) = (8, 5, 4) ,

(X0, X1, X2) = (16, 15, 11 + 1/2)) . (14.6.7)

The result means that second order contribution is extremely small for quarks and charged leptons
having ∆ < 2. For neutrinos having ∆ = 2 the second order contribution is non-vanishing.

14.6.5 The Contribution From The Deviation Of Ground StateConfor-
mal Weight From Negative Integer

The interpretation inspired by p-adic mass calculations is that the squares λ2
i of the eigenvalues of

the Kähler-Dirac operator correspond to the conformal weights of ground states. Another natural
physical interpretation of λ is as an analog of the Higgs vacuum expectation. The instability
of the Higgs=0 phase would corresponds to the fact that λ = 0 mode is not localized to any
region in which ew magnetic field or induced Kähler field is non-vanishing. A good guess is that
induced Kähler magnetic field BK dictates the magnitude of the eigenvalues which is thus of order
h0 =

√
BKR, R CP2 radius. The first guess is that eigenvalues in the first approximation come as

(n+1/2)h0. Each region where induced Kähler field is non-vanishing would correspond to different
scale mass scale h0.

1. The vacuum expectation value of Higgs is only proportional to an eigenvalue λ, not equal to
it. Indeed, Higgs and gauge bosons as elementary particles correspond to wormhole contacts
carrying fermion and anti-fermion at the two wormhole throats and must be distinguished
from the space-time correlate of its vacuum expectation as something proportional to λ. In
the fermionic case the vacuum expectation value of Higgs does not seem to be even possible
since fermions do not correspond to wormhole contacts between two space-time sheets but
possess only single wormhole throat (p-adic mass calculations are consistent with this).
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2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of Kähler-Dirac operator so that the eigenvalues λi would define TGD
counterparts for the minima of Higgs potential. Since the vacuum expectation of Higgs cor-
responds to a condensate of wormhole contacts giving rise to a coherent state, the vacuum
expectation cannot be present for topologically condensed CP2 type vacuum extremals repre-
senting fermions since only single wormhole throat is involved. This raises a hen-egg question
about whether Higgs contributes to the mass or whether Higgs is only a correlate for massi-
vation having description using more profound concepts. From TGD point of view the most
elegant option is that Higgs does not give rise to mass but Higgs vacuum expectation value
accompanies bosonic states and is naturally proportional to λi. With this interpretation λi
could give a contribution to both fermionic and bosonic masses.

3. p-Adic mass calculations require negative ground state conformal weight compensated by
Super Virasoro generators in order to obtain massless states. The tachyonicity of the ground
states would mean a close analogy with both string models and Higgs mechanism. λ2

i is very
natural candidate for the ground state conformal weights identified but would have wrong sign
if the effective metric of X3

l defined by the inner products T kαK T lβK hkl of the Kähler energy
momentum tensor T kα = hkl∂LK/∂h

l
α and appearing in the Kähler-Dirac operator DK has

Minkowskian signature.
The situation changes if the effective metric has Euclidian signature. This seems to be the case
for the light-like surfaces assignable to the known extremals such as MEs and cosmic strings.
In this kind of situation light-like coordinate possesses Euclidian signature and real eigenvalue
spectrum is replaced with a purely imaginary one. Since Dirac operator is in question both
signs for eigenvalues are possible and one obtains both exponentially increasing and decreasing
solutions. This is essential for having solutions extending from the past end of X3

l to its future
end. Non-unitary time evolution is possible because X3

l does not strictly speaking represent
the time evolution of 2-D dynamical object but actual dynamical objects (by light-likeness
both interpretation as dynamical evolution and dynamical object are present). The Euclidian
signature of the effective metric would be a direct analog for the tachyonicity of the Higgs
in unstable minimum and the generation of Higgs vacuum expectation would correspond to
the compensation of ground state conformal weight by conformal weights of Super Virasoro
generators.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = λ2

i = −1/2−n+∆hc so that lowest ground state conformal weight would be hc = −1/2 in
the first approximation. The negative integer part of the net conformal weight can be canceled
using Super Virasoro generators but ∆hc would give to mass squared a contribution analogous
to Higgs contribution. The mapping of the real ground state conformal weight to a p-adic
number by canonical identification involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond
to pairs of wormhole throats.

14.6.6 General Mass Formula For Ramond Representations

By taking the modular contribution from the boundaries into account the general p-adic mass for-
mulas for the Ramond type states read for states for which the color contribution to the conformal
weight is integer valued as
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m2(∆ = 0)

m2
0

= (8 + n(g))p+ Y p2 ,

m2(∆ = 1)

m2
0

= (5 + n(g)p+ Y p2 ,

m2(∆ = 2)

m2
0

= (4 + n(g))p+ (Y +
23

2
)p2 ,

n(g) = 3g · 2g−1(2g + 1) . (14.6.8)

Here ∆ denotes the conformal weight of the operators creating massless states from the ground
state and g denotes the genus of the boundary component. The values of n(g) for the three lowest
generations are n(0) = 0, n(1) = 9 and n(2) = 60. The value of second order thermal contribution
is nontrivial for neutrinos only. The value of the rational number Y can, which corresponds to the
renormalization correction to the mass, can be determined using experimental inputs.

Using m2
0 as a unit, the expression for the mass of a Ramond type state reads in terms of

the electron mass as

M(∆, g, p)R = K(∆, g, p)

√
M127

p
me

K(0, g, p) =

√
n(g) + 8 + YR

X

K(1, g, p) =

√
n(g) + 5 + YR

X

K(2, g, p) =

√
n(g) + 4 + YR

X
,

X =
√

5 + Y (e)R . (14.6.9)

Y can be assumed to depend on the electromagnetic charge and color representation of the state
and is therefore same for all fermion families. Mathematica provides modules for calculating the
real counterpart of the second order contribution and for finding realistic values of Y .

14.6.7 General Mass Formulas For NS Representations

Using m2
0/3 as a unit, the expression for the mass of a light NS type state for Tp = 1 ad kB = 1

reads in terms of the electron mass as

M(∆, g, p,N)R = K(∆, g, p,N)

√
M127

p
me

K(0, g, p, 1) =

√
n(g) + YR

X
,

K(0, g, p, 2) =

√
n(g) + 1 + YR

X
,

K(1, g, p, 3) =

√
n(g) + 3 + YR

X
,

K(2, g, p, 4) =

√
n(g) + 5 + YR

X
,

K(2, g, p, 5) =

√
n(g) + 10 + YR

X
,

X =
√

5 + Y (e)R . (14.6.10)
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Here N is the number of the “active” NS sectors (sectors for which the conformal weight of the
massless state is non-vanishing). Y denotes the renormalization correction to the boson mass and
in general depends on the electro-weak and color quantum numbers of the boson.

The thermal contribution to the mass of W boson is too large by roughly a factor
√

3 for
Tp = 1. Hence Tp = 1/2 must hold true for gauge bosons and their masses must have a non-
thermal origin perhaps analogous to Higgs mechanism. Alternatively, the non-covariant constancy
of charge matrices could induce the boson mass [K60] .

It is interesting to notice that the minimum mass squared for gauge boson corresponds to
the p-adic mass unit M2 = m2

0p/3 and this just what is needed in the case of W boson. This
forces to ask whether m2

0/3 is the correct choice for the mass squared unit so that non-thermally
induced W mass would be the minimal m2

W = p in the lowest order. This choice would mean the
replacement

YR →
(3Y )R

3

in the preceding formulas and would affect only neutrino mass in the fermionic sector. m2
0/3 option

is excluded by charged lepton mass calculation. This point will be discussed later.

14.6.8 Primary Condensation Levels From P-Adic Length ScaleHypoth-
esis

p-Adic length scale hypothesis states that the primary condensation levels correspond to primes
near prime powers of two p ' 2k, k integer with prime values preferred. Black hole-elementary
particle analogy [K72] suggests a generalization of this hypothesis by allowing k to be a power of
prime. The general number theoretical vision discussed in [K95] provides a first principle justifi-
cation for p-adic length scale hypothesis in its most general form. The best fit for the neutrino
mass squared differences is obtained for k = 132 = 169 so that the generalization of the hypothesis
might be necessary.

A particle primarily condensed on the level k can suffer secondary condensation on a level
with the same value of k: for instance, electron (k = 127) suffers secondary condensation on
k = 127 level. u, d, s quarks (k = 107) suffer secondary condensation on nuclear space-time sheet
having k = 113). All quarks feed their color gauge fluxes at k = 107 space-time sheet. There is
no deep reason forbidding the condensation of p on p. Primary and secondary condensation levels
could also correspond to different but nearly identical values of p with the same value of k.

14.7 Fermion Masses

In the earlier model the coefficient of M2 = kL0 had to be assumed to be different for various
particle states. k = 1 was assumed for bosons and leptons and k = 2/3 for quarks. The fact that
k = 1 holds true for all particles in the model including also super-symplectic invariance forces to
modify the earlier construction of quark states. This turns out to be possible without affecting the
earlier p-adic mass calculations whose outcome depend in an essential manner on the ground state
conformal weights hgr of the fermions (hgr can be negative). The structure of lepton and quark
states in color degrees of freedom was discussed in [K60] .

14.7.1 Charged Lepton Mass Ratios

The overall mass scale for lepton and quark masses is determined by the condensation level given
by prime p ' 2k, k prime by length scale hypothesis. For charged leptons k must correspond to
k = 127 for electron, k = 113 for muon and k = 107 for τ . For muon p = 2113−1−4∗378 is assumed
(smallest prime below 2113 allowing

√
2 but not

√
3). So called Gaussian primes are to complex

integers what primes are for the ordinary integers and the Gaussian counterparts of the Mersenne
primes are Gaussian primes of form (1 ± i)k − 1. Rather interestingly, k = 113 corresponds to a
Gaussian Mersenne so that all charged leptons correspond to generalized Mersenne primes.

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states

satisfying
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p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) rep-
resentations with p ≥ 1 whereas charged leptons correspond to (p, p + 3) representations. The
earlier mass calculations demonstrate that leptonic masses can be understood if the ground state
conformal weight is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 + 2p)/3, p ≥ 1, for
neutrinos and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2
for p = 0 (decouplet). In both cases super-symplectic operator O must have a net conformal
weight hsc = −3 to produce a correct conformal weight for the ground state. p-adic considerations
suggests the use of operators O with super-symplectic conformal weight z = −1/2 − i

∑
nkyk,

where sk = 1/2 + iyk corresponds to zero of Riemann ζ. If the operators in question are color
Hamiltonians in octet representation net super-symplectic conformal weight hsc = −3 results. The
tensor product of two octets with conjugate super-symplectic conformal weights contains both octet
and decouplet so that singlets are obtained. What strengthens the hopes that the construction is
not ad hoc is that the same operator appears in the construction of quark states too.

Using CP2 mass scale m2
0 [K60] as a p-adic unit, the mass formulas for the charged leptons

read as

M2(L) = A(ν)
m2

0

p(L)
,

A(e) = 5 +X(p(e)) ,

A(µ) = 14 +X(p(µ)) ,

A(τ) = 65 +X(p(τ)) . (14.7.1)

X(·) corresponds to the yet unknown second order corrections to the mass squared.

Table 14.4 gives the basic parameters as determined from the mass of electron for some
values of Ye. The mass of top quark favors as maximal value of CP2 mass which corresponds to
Ye = 0.

Ye 0 .5 .7798
(m0/mPl)× 103 .2437 .2323 .2266
K × 10−7 2.5262 2.7788 2.9202

(LR/
√
G)× 10−4 3.1580 3.3122 3.3954

Table 14.4: Table gives the values of CP2 mass m0 using Planck mass mPl = 1/
√
G as unit, the

ratio K = R2/G and CP2 geodesic length L = 2πR for Ye ∈ {0, 0.5, 0.7798}.

Table 14.5 lists the lower and upper bounds for the charged lepton mass ratios obtained
by taking second order contribution to zero or allowing it to have maximum possible value. The
values of lepton masses are me = .510999 MeV, mµ = 105.76583 MeV, mτ = 1775 MeV.

For the maximal value of CP2 mass the predictions for the mass ratio are systematically too large
by a few per cent. From the formulas above it is clear that the second order corrections to mass
squared can be such that correct masses result.

τ mass is least sensitive to X(p(e)) ≡ Ye and the maximum value of Ye ≡ Ye,max consistent
with τ mass corresponds to Ye,max = .7357 and Yτ = 1. This means that the CP2 mass is at least
a fraction .9337 of its maximal value. If YL is same for all charged leptons and has the maximal
value Ye,max = .7357, the predictions for the mass ratios are
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m(µ)+

m(µ)
=

√
15

5
27me

(µ)
' 1.0722 ,

m(µ)−
m(µ)

=

√
14

6
27 me

m(µ)
' 0.9456 ,

m(τ)+

m(τ)
=

√
66

5
210 me

m(τ)
' 1.0710 ,

m(τ)−
m(τ)

=

√
65

6
210 me

m(τ)
' .9703 .

(14.7.2)

Table 14.5: Lower and upper bounds for the charged lepton mass ratios obtained by taking
second order contribution to zero or allowing it to have maximum possible value.

m(µ)pr
m(µ)

=

√
14 + Ye,max
5 + Ye,max

× 27 me

m(µ)
' .9922 ,

m(τ)pr
m(τ)

=

√
65 + Ye,max
5 + Ye,max

× 210 me

m(τ)
' .9980 .

(14.7.3)

The error is .8 per cent resp. .2 per cent for muon resp. τ .
The argument leading to estimate for the modular contribution to the mass squared [K60]

leaves two options for the coefficient of the modular contribution for g = 2 fermions: the value
of coefficient is either X = g for g ≤ 1, X = 3g − 3 for g ≥ 2 or X = g always. For g = 2
the predictions are X = 2 and X = 3 in the two cases. The option X = 3 allows slightly larger

maximal value of Ye equal to Y
1)
e,max = Ye,max + (5 + Ye,max)/66.

14.7.2 Neutrino Masses

The estimation of neutrino masses is difficult at this stage since the prediction of the primary
condensation level is not yet possible and neutrino mixing cannot yet be predicted from the basic
principles. The cosmological bounds for neutrino masses however help to put upper bounds on the
masses. If one takes seriously the LSND data on neutrino mass measurement of [C67, C22] and the
explanation of the atmospheric ν-deficit in terms of νµ−ντ mixing [C40, C33] one can deduce that
the most plausible condensation level of µ and τ neutrinos is k = 167 or k = 132 = 169 allowed by
the more general form of the p-adic length scale hypothesis suggested by the blackhole-elementary
particle analogy. One can also deduce information about the mixing matrix associated with the
neutrinos so that mass predictions become rather precise. In particular, the mass splitting of µ
and τ neutrinos is predicted correctly if one assumes that the mixing matrix is a rational unitary
matrix.

Super Virasoro contribution

Using m2
0/3 as a p-adic unit, the expression for the Super Virasoro contribution to the mass squared

of neutrinos is given by the formula

M2(SV ) = (s+ (3Y p)R/3)
m2

0

p
,

s = 4 or 5 ,

Y =
23

2
+ Y1 , (14.7.4)
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where m2
0 is universal mass scale. One can consider two possible identifications of neutrinos cor-

responding to s(ν) = 4 with ∆ = 2 and s(ν) = 5 with ∆ = 1. The requirement that CKM matrix
is sensible forces the asymmetric scenario in which quarks and, by symmetry, also leptons corre-
spond to lowest possible excitation so that one must have s(ν) = 4. Y1 represents second order
contribution to the neutrino mass coming from renormalization effects coming from self energy
diagrams involving intermediate gauge bosons. Physical intuition suggest that this contribution is
very small so that the precise measurement of the neutrino masses should give an excellent test
for the theory.

With the above described assumptions and for s = 4, one has the following mass formula
for neutrinos

M2(ν) = A(ν)
m2

0

p(ν))
,

A(νe) = 4 +
(3Y (p(νe)))R

3
,

A(νµ) = 13 +
(3Y (p(νµ)))R

3
,

A(ντ ) = 64 +
(3Y (p(ντ )))R

3
,

3Y ' 1

2
. (14.7.5)

The predictions must be consistent with the recent upper bounds [C24]
of order 10 eV , 270 keV and 0.3 MeV for νe, νµ and ντ respectively. The recently reported results
of LSND measurement [C22] for νe− > νµ mixing gives string limits for ∆m2(νe, νµ) and the
parameter sin2(2θ) characterizing the mixing: the limits are given in the figure 30 of [C22]. The
results suggests that the masses of both electron and muon neutrinos are below 5 eV and that
mass squared difference ∆m2 = m2(νµ)−m2(νe) is between .25−25 eV 2. The simplest possibility
is that νµ and νe have common condensation level (in analogy with d and s quarks). There are
three candidates for the primary condensation level: namely k = 163, 167 and k = 169. The p-adic
prime associated with the primary condensation level is assumed to be the nearest prime below 2k

allowing p-adic
√

2 but not
√

3 and satisfying p mod 4 = 3. The Table 14.6 gives the values of
various parameters and unmixed neutrino masses in various cases of interest.

k p (3Y )R/3 m(νe)/eV m(νµ)/eV m(ντ )/eV
163 2163 − 4 ∗ 144− 1 1.36 1.78 3.16 6.98
167 2167 − 4 ∗ 144− 1 .34 .45 .79 1.75

169 2169 − 4 ∗ 210− 1 .17 .22 .40 .87

Table 14.6: The values of various parameters and unmixed neutrino masses in various cases of
interest.

Could neutrino topologically condense also in other p-adic length scales than k = 169?

One must keep mind open for the possibility that there are several p-adic length scales at which
neutrinos can condense topologically. Biological length scales are especially interesting in this
respect. In fact, all intermediate p-adic length scales k = 151, 157, 163, 167 could correspond to
metastable neutrino states. The point is that these p-adic lengths scales are number theoretically
completely exceptional in the sense that there exist Gaussian Mersenne 2k± i (prime in the ring of
complex integers) for all these values of k. Since charged leptons, atomic nuclei (k = 113) , hadrons
and intermediate gauge bosons correspond to ordinary or Gaussian Mersennes, it would not be
surprising if the biologically important Gaussian Mersennes would correspond to length scales
giving rise to metastable neutrino states. Of course, one can keep mind open for the possibility
that k = 167 rather than k = 132 = 169 is the length scale defining the stable neutrino physics.
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Neutrino mixing

Consider next the neutrino mixing. A quite general form of the neutrino mixing matrix D given
by Table 14.7 will be considered.

νe νµ ντ
νe c1 s1c3 s1s3

νµ −s1c2 c1c2c3 − s2s3exp(iδ) c1c2s3 + s2c3exp(iδ)
ντ −s1s2 c1s2c3 + c2s3exp(iδ) c1s2s3 − c2c3exp(iδ)

Table 14.7: General form of neutrino mixing matrix.

Physical intuition suggests that the angle δ related to CP breaking is small and will be
assumed to be vanishing. Topological mixing is active only in modular degrees of freedom and one
obtains for the first order terms of mixed masses the expressions

s(νe) = 4 + 9|U12|2 + 60|U13|2 = 4 + n1 ,

s(νµ) = 4 + 9|U22|2 + 60|U23|2 = 4 + n2 ,

s(ντ ) = 4 + 9|U32|2 + 60|U33|2 = 4 + n3 .

(14.7.6)

The requirement that resulting masses are not ultra heavy implies that s(ν) must be small integers.
The condition n1 +n2 +n3 = 69 follows from unitarity. The simplest possibility is that the mixing
matrix is a rational unitary matrix. The same ansatz was used successfully to deduce information
about the mixing matrices of quarks. If neutrinos are condensed on the same condensation level,
rationality implies that νµ−ντ mass squared difference must come from the first order contribution
to the mass squared and is therefore quantized and bounded from below.

The first piece of information is the atmospheric νµ/νe ratio, which is roughly by a factor
2 smaller than predicted by standard model [C40]. A possible explanation is the CKM mixing
of muon neutrino with τ -neutrino, whereas the mixing with electron neutrino is excluded as an
explanation. The latest results from Kamiokande [C40] are in accordance with the mixing m2(ντ )−
m2(νµ) ' 1.6 · 10−2 eV 2 and mixing angle sin2(2θ) = 1.0: also the zenith angle dependence of the
ratio is in accordance with the mixing interpretation. If mixing matrix is assumed to be rational
then only k = 169 condensation level is allowed for νµ and ντ . For this level νµ − ντ mass squared
difference turns out to be ∆m2 ' 10−2 eV 2 for ∆s ≡ s(ντ )−s(νµ) = 1, which is the only acceptable
possibility and predicts νµ−ντ mass squared difference correctly within experimental uncertainties!
The fact that the predictions for mass squared differences are practically exact, provides a precision
test for the rationality assumption.

What is measured in LSND experiment is the probability P (t, E) that νµ transforms to νe
in time t after its production in muon decay as a function of energy E of νµ. In the limit that ντ
and νµ masses are identical, the expression of P (t, E) is given by

P (t, E) = sin2(2θ)sin2(
∆Et

2
) ,

sin2(2θ) = 4c21s
2
1c

2
2 , (14.7.7)

where ∆E is energy difference of νµ and νe neutrinos and t denotes time. LSND experiment gives
stringent conditions on the value of sin2(2θ) as the figure 30 of [C22] shows. In particular, it seems
that sin2(2θ) must be considerably below 10−1 and this implies that s2

1 must be small enough.

The study of the mass formulas shows that the only possibility to satisfy the constraints
for the mass squared and sin2(2θ) given by LSND experiment is to assume that the mixing of the
electron neutrino with the tau neutrino is much larger than its mixing with the muon neutrino. This
means that s3 is quite near to unity. At the limit s3 = 1 one obtains the following (nonrational)
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solution of the mass squared conditions for n3 = n2 + 1 (forced by the atmospheric neutrino data)

s2
1 =

69− 2n2 − 1

60
,

c22 =
n2 − 9

2n2 − 17
,

sin2(2θ) =
4(n2 − 9)

51

(34− n2)(n2 − 4)

302
,

s(νµ)− s(νe) = 3n2 − 68 . (14.7.8)

The study of the LSND data shows that there is only one acceptable solution to the conditions
obtained by assuming maximal mass squared difference for νe and νµ

n1 = 2 n2 = 33 n3 = 34 ,

s2
1 =

1

30
c22 =

24

49
,

sin2(2θ) =
24

49

2

15

29

30
' .0631 ,

s(νµ)− s(νe)) = 31↔ .32 eV 2 . (14.7.9)

That c22 is near 1/2 is not surprise taking into account the almost mass degeneracy of νmu and ντ .
From the figure 30 of [C22] it is clear that this solution belongs to 90 per cent likelihood region of
LSND experiment but sin2(2θ) is about two times larger than the value allowed by Bugey reactor
experiment. The study of various constraints given in [C22] shows that the solution is consistent
with bounds from all other experiments. If one assumes that k > 169 for νe νµ−νe mass difference
increases, implying slightly poorer consistency with LSND data.

There are reasons to hope that the actual rational solution can be regarded as a small
deformation of this solution obtained by assuming that c3 is non-vanishing. s2

1 = 69−2n2−1
60−51c23

increases

in the deformation by O(c23) term but if c3 is positive the value of c22 '
24−102c01c

0
2s

0
2c3

49 ∼ 24−61c3
49

decreases by O(c3) term so that it should be possible to reduce the value of sin2(2θ). Consistency
with Bugey reactor experiment requires .030 ≤ sin2(2θ) < .033. sin2(2θ) = .032 is achieved for
s2

1 ' .035,s2
2 ' .51 and c23 ' .068. The construction of U and D matrices for quarks shows that very

stringent number theoretic conditions are obtained and as in case of quarks it might be necessary
to allow complex CP breaking phase in the mixing matrix. One might even hope that the solution
to the conditions is unique.

For the minimal rational mixing one has s(νe) = 5, s(νµ) = 36 and s(ντ ) = 37 if unmixed
νe corresponds to s = 4. For s = 5 first order contributions are shifted by one unit. The masses
(s = 4 case) and mass squared differences are given by Table 14.8.

k m(νe) m(νµ) m(ντ ) ∆m2(νµ − νe) ∆m2(ντ − νµ)
169 .27 eV .66 eV .67 eV .32 eV 2 .01 eV 2

Table 14.8: Mass squared differences for neutrinos.

Predictions for neutrino masses and mass squared splittings for k = 169 case.

Evidence for the dynamical mass scale of neutrinos

In recent years (I am writing this towards the end of year 2004 and much later than previous lines)
a great progress has been made in the understanding of neutrino masses and neutrino mixing.
The pleasant news from TGD perspective is that there is a strong evidence that neutrino masses
depend on environment [C55]. In TGD framework this translates to the statement that neutrinos
can suffer topological condensation in several p-adic length scales. Not only in the p-adic length
scales suggested by the number theoretical considerations but also in longer length scales, as will
be found.
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The experiments giving information about mass squared differences can be divided into three
categories [C55].

1. There along baseline experiments, which include solar neutrino experiments [C29, C44, C54]
and [C61] as well as earlier studies of solar neutrinos. These experiments see evidence for
the neutrino mixing and involve significant propagation through dense matter. For the solar
neutrinos and KamLAND the mass splittings are estimated to be of order O(8 × 10−5) eV2

or more cautiously 8× 10−5 eV2 < δm2 < 2× 10−3 eV2. For K2K and atmospheric neutrinos
the mass splittings are of order O(2× 10−3)eV 2 or more cautiously δm2 > 10−3eV2. Thus the
scale of mass splitting seems to be smaller for neutrinos in matter than in air, which would
suggest that neutrinos able to propagate through a dense matter travel at space-time sheets
corresponding to a larger p-adic length scale than in air.

2. There are null short baseline experiments including CHOOZ, Bugey, and Palo Verde reactor
experiments, and the higher energy CDHS, JARME, CHORUS, and NOMAD experiments,
which involve muonic neutrinos (for references see [C55]. No evidence for neutrino oscillations
have been seen in these experiments.

3. The results of LSND experiment [C22] are consistent with oscillations with a mass splitting
greater than 3×10−2eV 2. LSND has been generally been interpreted as necessitating a mixing
with sterile neutrino. If neutrino mass scale is dynamical, situation however changes.

If one assumes that the p-adic length scale for the space-time sheets at which neutrinos
can propagate is different for matter and air, the situation changes. According to [C55] a mass
3 × 10−2 eV in air could explain the atmospheric results whereas mass of of order .1 eV and
.07eV 2 < δm2 < .26eV 2 would explain the LSND result. These limits are of the same order as the
order of magnitude predicted by k = 169 topological condensation.

Assuming that the scale of the mass splitting is proportional to the p-adic mass scale squared,
one can consider candidates for the topological condensation levels involved.

1. Suppose that k = 169 = 132 is indeed the condensation level for LSND neutrinos. k = 173
would predict mνe ∼ 7× 10−2 eV and δm2 ∼ .02 eV2. This could correspond to the masses of
neutrinos propagating through air. For k = 179 one has mνe ∼ .8×10−2 eV and δm2 ∼ 3×10−4

eV2 which could be associated with solar neutrinos and KamLAND neutrinos.

2. The primes k = 157, 163, 167 associated with Gaussian Mersennes would give δm2(157) =
26δm2(163) = 210δm2(167) = 212δm2(169) and mass scales m(157) ∼ 22.8 eV, m(163) ∼
3.6 eV, m(167) ∼ .54 eV. These mass scales are unrealistic or propagating neutrinos. The
interpretation consistent with TGD inspired model of condensed matter in which neutrinos
screen the classical Z0 force generated by nucleons would be that condensed matter neutrinos
are confined inside these space-time sheets whereas the neutrinos able to propagate through
condensed matter travel along k > 167 space-time sheets.

The results of MiniBooNE group as a support for the energy dependence of p-adic
mass scale of neutrino

The basic prediction of TGD is that neutrino mass scale can depend on neutrino energy and the
experimental determinations of neutrino mixing parameters support this prediction. The newest
results (11 April 2007) about neutrino oscillations come from MiniBooNE group which has pub-
lished its first findings [C19] concerning neutrino oscillations in the mass range studied in LSND
experiments [C18].

1. The motivation for MiniBooNE

Neutrino oscillations are not well-understood. Three experiments LSND, atmospheric neu-
trinos, and solar neutrinos show oscillations but in widely different mass regions (1 eV2 , 3× 10−3

eV2, and 8× 10−5 eV2).
In TGD framework the explanation would be that neutrinos can appear in several p-adically

scaled up variants with different mass scales and therefore different scales for the differences ∆m2

for neutrino masses so that one should not try to try to explain the results of these experiments
using single neutrino mass scale. In single-sheeted space-time it is very difficult to imagine that
neutrino mass scale would depend on neutrino energy since neutrinos interact so extremely weakly
with matter. The best known attempt to assign single mass to all neutrinos has been based on the
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use of so called sterile neutrinos which do not have electro-weak couplings. This approach is an ad
hoc trick and rather ugly mathematically and excluded by the results of MiniBooNE experiments.

2. The result of MiniBooNE experiment

The purpose of the MiniBooNE experiment was to check whether LSND result ∆m2 = 1eV 2

is genuine. The group used muon neutrino beam and looked whether the transformations of muonic
neutrinos to electron neutrinos occur in the mass squared region ∆m2 ' 1 eV2. No such transitions
were found but there was evidence for transformations at low neutrino energies.

What looks first as an over-diplomatic formulation of the result was MiniBooNE researchers
showed conclusively that the LSND results could not be due to simple neutrino oscillation, a phe-
nomenon in which one type of neutrino transforms into another type and back again. rather than
direct refutation of LSND results.

3. LSND and MiniBooNE are consistent in TGD Universe

The habitant of the many-sheeted space-time would not regard the previous statement as a
mere diplomatic use of language. It is quite possible that neutrinos studied in MiniBooNE have
suffered topological condensation at different space-time sheet than those in LSND if they are in
different energy range (the preferred rest system fixed by the space-time sheet of the laboratory or
Earth). To see whether this is the case let us look more carefully the experimental arrangements.

1. In LSND experiment 800 MeV proton beam entering in water target and the muon neutrinos
resulted in the decay of produced pions. Muonic neutrinos had energies in 60-200 MeV range
[C18].

2. In MiniBooNE experiment [C19] 8 GeV muon beam entered Beryllium target and muon neu-
trinos resulted in the decay of resulting pions and kaons. The resulting muonic neutrinos had
energies the range 300-1500 GeV to be compared with 60-200 MeV.

Let us try to make this more explicit.

1. Neutrino energy ranges are quite different so that the experiments need not be directly com-
parable. The mixing obeys the analog of Schrödinger equation for free particle with energy
replaced with ∆m2/E, where E is neutrino energy. The mixing probability as a function of
distance L from the source of muon neutrinos is in 2-component model given by

P = sin2(θ)sin2(1.27∆m2L/E) .

The characteristic length scale for mixing is L = E/∆m2. If L is sufficiently small, the mixing
is fifty-fifty already before the muon neutrinos enter the system, where the measurement is
carried out and no mixing is detected. If L is considerably longer than the size of the measuring
system, no mixing is observed either. Therefore the result can be understood if ∆m2 is much
larger or much smaller than E/L, where L is the size of the measuring system and E is the
typical neutrino energy.

2. MiniBooNE experiment found evidence for the appearance of electron neutrinos at low neutrino
energies (below 500 MeV) which means direct support for the LSND findings and for the
dependence of neutron mass scale on its energy relative to the rest system defined by the
space-time sheet of laboratory.

3. Uncertainty Principle inspires the guess Lp ∝ 1/E implying mp ∝ E. Here E is the energy of
the neutrino with respect to the rest system defined by the space-time sheet of the laboratory.
Solar neutrinos indeed have the lowest energy (below 20 MeV) and the lowest value of ∆m2.
However, atmospheric neutrinos have energies starting from few hundreds of MeV and ∆;m2

is by a factor of order 10 higher. This suggests that the growth of ∆m2 with E2 is slower than
linear. It is perhaps not the energy alone which matters but the space-time sheet at which
neutrinos topologically condense. For instance, MiniBooNE neutrinos above 500 MeV would
topologically condense at space-time sheets for which the p-adic mass scale is higher than in
LSND experiments and one would have ∆m2 >> 1 eV2 implying maximal mixing in length
scale much shorter than the size of experimental apparatus.

4. One could also argue that topological condensation occurs in condensed matter and that no
topological condensation occurs for high enough neutrino energies so that neutrinos remain
massless. One can even consider the possibility that the p-adic length scale Lp is proportional
to E/m2

0, where m0 is proportional to the mass scale associated with non-relativistic neutrinos.
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The p-adic mass scale would obey mp ∝ m2
0/E so that the characteristic mixing length would

be by a factor of order 100 longer in MiniBooNE experiment than in LSND.

Comments

Some comments on the proposed scenario are in order: some of the are written much later than
the previous text.

1. Mass predictions are consistent with the bound ∆m(νµ, νe) < 2 eV 2 coming from the require-
ment that neutrino mixing does not spoil the so called r-process producing heavy elements in
Super Novae [C58].

2. TGD neutrinos cannot solve the dark matter problem: the total neutrino mass required by
the cold+hot dark matter models would be about 5 eV . In [K32] a model of galaxies based
on string like objects of galaxy size and providing a more exotic source of dark matter, is
discussed.

3. One could also consider the explanation of LSND data in terms of the interaction of νµ and
nucleon via the exchange of g = 1 W boson. The fraction of the reactions ν̄µ + p→ e+ + n is

at low neutrino energies P ∼ m4
W (g=0)

m4
W (g=1)

sin2(θc), where θc denotes Cabibbo angle. Even if the

condensation level of W (g = 1) is k = 89, the ratio is by a factor of order .05 too small to
explain the average νµ → νe transformation probability P ' .003 extracted from LSND data.

4. The predicted masses exclude MSW and vacuum oscillation solutions to the solar neutrino
problem unless one assumes that several condensation levels and thus mass scales are possible
for neutrinos. This is indeed suggested by the previous considerations.

14.7.3 Quark Masses

The prediction or quark masses is more difficult due the facts that the deduction of even the
p-adic length scale determining the masses of these quarks is a non-trivial task, and the original
identification was indeed wrong. Second difficulty is related to the topological mixing of quarks.
The new scenario leads to a unique identification of masses with top quark mass as an empirical
input and the thermodynamical model of topological mixing as a new theoretical input. Also CKM
matrix is predicted highly uniquely.

Basic mass formulas

By the earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for the
eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as a unit, color conformal weight
hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p+ 1, p) type representation

and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark belonging (p, p + 2)
type representation and obeying hc(D) = (p2 + 4p+ 4)/3. Only these states can be massless since
color Hamiltonians have integer valued conformal weights.

In the recent case the minimal p = 1 states correspond to hc(U) = 2 and hc(D) = 3.
hgr(U) = −1 and hgr(D) = 0 reproduce the previous results for quark masses required by the
construction of CKM matrix. This requires super-symplectic operators O with a net conformal
weight hsc = −3 just as in the leptonic case. The facts that the values of p are minimal for spinor
harmonics and the super-symplectic operator is same for both quarks and leptons suggest that
the construction is not had hoc. The real justification would come from the demonstration that
hsc = −3 defines null state for SCV: this would also explain why hsc would be same for all fermions.

Consider now the mass squared values for quarks. For h(D) = 0 and h(U) = −1 and using
m2

0/3 as a unit the expression for the thermal contribution to the mass squared of quark is given
by the formula
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M2 = (s+X)
m2

0

p
,

s(U) = 5 , s(D) = 8 ,

X ≡ (3Y p)R
3

, (14.7.10)

where the second order contribution Y corresponds to renormalization effects coming and depend-
ing on the isospin of the quark. When m2

0 is used as a unit X is replaced by X = (Yp)R.
With the above described assumptions one has the following mass formula for quarks

M2(q) = A(q)
m2

0

p(q) ,

A(u) = 5 +XU (p(u) , A(c) = 14 +XU (p(c)) , A(t) = 65 +XU (p(t)) ,
A(d) = 8 +XD(p(d)) , A(s) = 17 +XD(p(s)) , A(b) = 68 +XD(p(b)) .

(14.7.11)

p-Adic length scale hypothesis allows to identify the p-adic primes labelling quarks whereas
topological mixing of U and D quarks allows to deduce topological mixing matrices U and D and
CKM matrix V and precise values of the masses apart from effects like color magnetic spin orbit
splitting, color Coulomb energy, etc..

Integers nqi satisfying
∑
i n(Ui) =

∑
i n(Di) = 69 characterize the masses of the quarks

and also the topological mixing to high degree. The reason that modular contributions remain
integers is that in the p-adic context non-trivial rationals would give CP2 mass scale for the real
counterpart of the mass squared. In the absence of mixing the values of integers are nd = nu = 0,
ns = nc = 9, nb = nt = 60.

The fact that CKM matrix V expressible as a product V = U†D of topological mixing ma-
trices is near to a direct sum of 2×2 unit matrix and 1×1 unit matrix motivates the approximation
nb ' nt. The large masses of top quark and of tt meson encourage to consider a scenario in which
nt = nb = n ≤ 60 holds true.

The model for topological mixing matrices and CKM matrix predicts U and D matrices
highly uniquely and allows to understand quark and hadron masses in surprisingly detailed level.

1. nd = nu = 60 is not allowed by number theoretical conditions for U and D matrices and by
the basic facts about CKM matrix but nt = nb = 59 allows almost maximal masses for b and
t. This is not yet a complete hit. The unitarity of the mixing matrices and the construction
of CKM matrix to be discussed in the next section forces the assignments

(nd, ns, nb) = (5, 5, 59) , (nu, nc, nt) = (5, 6, 58) . (14.7.12)

fixing completely the quark masses apart possible Higgs contribution [K70] . Note that top
quark mass is still rather near to its maximal value.

2. The constraint that valence quark contribution to pion mass does not exceed pion mass implies
the constraint n(d) ≤ 6 and n(u) ≤ 6 in accordance with the predictions of the model of
topological mixing. u−d mass difference does not affect π+−π0 mass difference and the quark
contribution to m(π) is predicted to be

√
(nd + nu + 13)/24×136.9 MeV for the maximal value

of CP2 mass (second order p-adic contribution to electron mass squared vanishes).

The p-adic length scales associated with quarks and quark masses

The identification of p-adic length scales associated with the quarks has turned to be a highly non-
trivial problem. The reasons are that for light quarks it is difficult to deduce information about
quark masses for hadron masses and that the unknown details of the topological mixing (unknown
until the advent of the thermodynamical model [K70] ) made possible several p-adic length scales
for quarks. It has also become clear that the p-adic length scale can be different form free quark
and bound quark and that bound quark p-adic scale can depend on hadron.

Two natural constraints have however emerged from the recent work.
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1. Quark contribution to the hadron mass cannot be larger than color contribution and for quarks
having kq 6= 107 quark contribution to mass is added to color contribution to the mass. For
quarks with same value of k conformal weight rather than mass is additive whereas for quarks
with different value of k masses are additive. An important implication is that for diagonal
mesons M = qq having k(q) 6= 107 the condition m(M) ≥

√
2mq must hold true. This gives

strong constraints on quark masses.

2. The realization that scaled up variants of quarks explain elegantly the masses of light hadrons
allows to understand large mass splittings of light hadrons without the introduction of strong
isospin-isospin interaction.

The new model for quark masses is based on the following identifications of the p-adic length
scales.

1. The nuclear p-adic length scale Le(k), k = 113, corresponds to the p-adic length scale deter-
mining the masses of u, d, and s quarks. Note that k = 113 corresponds to a so called Gaussian
Mersenne. The interpretation is that quark massivation occurs at nuclear space-time sheet at
which quarks feed their em fluxes. At k = 107 space-time sheet, where quarks feed their
color gauge fluxes, the quark masses are vanishing in the first p-adic order. This could be
due to the fact that the p-adic temperature is Tp = 1/2 at this space-time sheet so that the
thermal contribution to the mass squared is negligible. This would reflect the fact that color
interactions do not involve any counterpart of Higgs mechanism.
p-Adic mass calculations turn out to work remarkably well for massive quarks. The reason
could be that M107 hadron physics means that allb quarks feed their color gauge fluxes to
k = 107 space-time sheets so that color contribution to the masses becomes negligible for
heavy quarks as compared to Super-Kac Moody and modular contributions corresponding to
em gauge flux fed to k > 107 space-time sheets in case of heavy quarks. Note that Z0 gauge
flux is fed to space-time sheets at which neutrinos reside and screen the flux and their size
corresponds to the neutrino mass scale. This picture might throw some light to the question
of whether and how it might be possible to demonstrate the existence of M89 hadron physics.
One might argue that k = 107 is not allowed as a condensation level in accordance with the
idea that color and electro-weak gauge fluxes cannot be fed at the space-time space time sheet
since the classical color and electro-weak fields are functionally independent. The identification
of η′ meson as a bound state of scaled up k = 107 quarks is not however consistent with this
idea unless one assumes that k = 107 space-time sheets in question are separate.

2. The requirement that the masses of diagonal pseudo-scalar mesons of type M = qq are larger
but as near as possible to the quark contribution

√
2mq to the valence quark mass, fixes the

p-adic primes p ' 2k associated with c, b quarks but not t since toponium does not exist.
These values of k are “nominal” since k seems to be dynamical. c quark corresponds to the
p-adic length scale k(c) = 104 = 23 × 13. b quark corresponds to k(b) = 103 for n(b) = 5.
Direct determination of p-adic scale from top quark mass gives k(t) = 94 = 2 × 47 so that
secondary p-adic length scale is in question.
Top quark mass tends to be slightly too low as compared to the most recent experimental value
of m(t) = 169.1 GeV with the allowed range being [164.7, 175.5] GeV [C62] . The optimal
situation corresponds to Ye = 0 and Yt = 1 and happens to give top mass exactly equal to the
most probable experimental value. It must be emphasized that top quark is experimentally in
a unique position since toponium does not exist and top quark mass is that of free top.

In the case of light quarks there are good reasons to believe that the p-adic mass scale of
quark is different for free quark and bound state quark and that in case of bound quark it can
also depend on hadron. This would explain the notions of valence (constituent) quark and current
quark mass as masses of bound state quark and free quark and leads also to a TGD counterpart
of Gell-Mann-Okubo mass formula [K70] .

1. Constituent quark masses

Constituent quark masses correspond to masses derived assuming that they are bound to
hadrons. If the value of k is assumed to depend on hadron one obtains nice mass formula for light
hadrons as will be found later. Table 14.10 summarizes constituent quark masses as predicted
by this model.

2. Current quark masses
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Current quark masses would correspond to masses of free quarks which tend to be lower
than valence quark masses. Hence k could be larger in the case of light quarks. The table of quark
masses in Wikipedia [?]ives the value ranges for current quark masses depicted in Table 14.9
together with TGD predictions for the spectrum of current quark masses.

q d u s
m(q)exp/MeV 4-8 1.5-4 80-130

k(q) (122,121,120) (125,124,123,122) (114,113,112)
m(q)/MeV (4.5,6.6,9.3) (1.4,2.0,2.9,4.1) (74,105,149)

q c b t
m(q)exp/MeV 1150-1350 4100-4400 1691

k(q) (106,105) (105,104) 92
m(q)/MeV (1045,1477) (3823,5407) 167.8× 103

Table 14.9: The experimental value ranges for current quark masses [?]nd TGD predictions for
their values assuming (nd, ns, nb) = (5, 5, 59), (nu, nc, nt) = (5, 6, 58), and Ye = 0. For top quark
Yt = 0 is assumed. Yt = 1 would give 169.2 GeV.

Some comments are in order.

1. The long p-adic length associated with light quarks seem to be in conflict with the idea that
quarks have sizes smaller than hadron size. The paradox disappears when one realized that
k(q) characterizes the electromagnetic “field body” of quark having much larger size than
hadron.

2. u and d current quarks correspond to a mass scale not much higher than that of elec-
tron and the ranges for mass estimates suggest that u could correspond to scales k(u) ∈
(125, 124, 123, 122) = (53, 4 × 31, 3 × 41, 2 × 61), whereas d would correspond to k(d) ∈
(122, 121, 120) = (2× 61, 112, 3× 5× 8).

3. The TGD based model for nuclei based on the notion of nuclear string leads to the conclusion
that exotic copies of k = 113 quarks having k = 127 are present in nuclei and are responsible
for the color binding of nuclei [K93, L3] , [L3] .

4. The predicted values for c and b masses are slightly too low for (k(c), k(b)) = (106, 105) =
(2× 53, 3× 5× 7). Second order Higgs contribution could increase the c mass into the range
given in [C5] but not that of b.

5. The mass of top quark has been slightly below the experimental estimate for long time. The
experimental value has been coming down slowly and the most recent value obtained by CDF
[C63] is mt = 165.1± 3.3± 3.1 GeV and consistent with the TGD prediction for Ye = Yt = 0.

One can talk about constituent and current quark masses simultaneously only if they cor-
respond to dual descriptions. M8 −H duality [K60] has been indeed suggested to relate the old
fashioned low energy description of hadrons in terms of SO(4) symmetry (Skyrme model) and
higher energy description of hadrons based on QCD. In QCD description the mass of say baryon
would be dominated by the mass associated with super-symplectic quanta carrying color. In SO(4)
description constituent quarks would carry most of the hadron mass.

Can Higgs field develop a vacuum expectation in fermionic sector at all?

An important conclusion following from the calculation of lepton and quark masses is that if Higgs
contribution is present, it can be of second order p-adically and even negligible, perhaps even
vanishing. There is indeed an argument forcing to consider this possibility seriously. The recent
view about elementary particles is following.

1. Fermions correspond to CP2 type vacuum extremals topologically condensed at positive/negative
energy space-time sheets carrying quantum numbers at light-like wormhole throat. Higgs and
gauge bosons correspond to wormhole contacts connecting positive and negative energy space-
time sheets and carrying fermion and anti-fermion quantum numbers at the two light-like
wormhole throats.
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2. If the values of p-adic temperature are Tp = 1 and Tp = 1/n, n > 1f or fermions and bosons
the thermodynamical contribution to the gauge boson mass is negligible.

3. Different p-adic temperatures and Kähler coupling strengths for fermions and bosons make
sense if bosonic and fermionic partonic 3-surfaces meet only along their ends at the vertices
of generalized Feynman diagrams but have no other common points [K29] . This forces to
consider the possibility that fermions cannot develop Higgs vacuum expectation value although
they can couple to Higgs. This is not in contradiction with the modification of sigma model of
hadrons based on the assumption that vacuum expectation of σ field gives a small contribution
to hadron mass [K64] since this field can be assigned to some bosonic space-time sheet pair
associated with hadron.

4. Perhaps the most elegant interpretation is that ground state conformal is equal to the square of
the eigenvalue of the modified Dirac operator. The ground state conformal weight is negative
and its deviation from half odd integer value gives contribution to both fermion and boson
masses. The Higgs expectation associated with coherent state of Higgs like wormhole contacts
is naturally proportional to this parameter since no other parameter with dimensions of mass
is present. Higgs vacuum expectation determines gauge boson masses only apparently if this
interpretation is correct. The contribution of the ground state conformal weight to fermion
mass square is near to zero. This means that λ is very near to negative half odd integer and
therefore no significant difference between fermions and gauge bosons is implied.

q d u s c b t
nq 4 5 6 6 59 58
sq 12 10 14 11 67 63
k(q) 113 113 113 104 103 94

m(q)/GeV .105 .092 .105 2.191 7.647 167.8

Table 14.10: Constituent quark masses predicted for diagonal mesons assuming (nd, ns, nb) =
(5, 5, 59) and (nu, nc, nt) = (5, 6, 58), maximal CP2 mass scale(Ye = 0), and vanishing of second
order contributions.

14.8 About The Microscopic Description Of Gauge Boson
Massivation

The conjectured QFT limit allows to estimate the quantitative predictions of the theory. This is
not however enough. One should identify the microscopic TGD counterparts for various aspects
of gauge boson massivation. There is also the question about the consistency of the gauge theory
limit with the ZEO inspired view about massivation. The basic challenge are obvious: one should
translate notions like Higgs vacuum expectation, massivation of gauge bosons, and finite range of
weak interactions to the language of wormhole throats, Kähler magnetic flux tubes, and string
world sheets. The proposal is that generalization of super-conformal symmetries to their Yangian
counterparts is needed to meet this challenge in mathematically satisfactory manner.

14.8.1 Can P-Adic Thermodynamics Explain The Masses Of Interme-
diate Gauge Bosons?

The requirement that the electron-intermediate gauge boson mass ratios are sensible, serves as
a stringent test for the hypothesis that intermediate gauge boson masses result from the p-adic
thermodynamics. It seems that the only possible option is that the parameter k has same value
for both bosons, leptons, and quarks:

kB = kL = kq = 1 .

In this case all gauge bosons have D(0) = 1 and there are good changes to obtain boson masses
correctly. k = 1 together with Tp = 1 implies that the thermal masses of very many boson states
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are extremely heavy so that the spectrum of the boson exotics is reduced drastically. For Tp = 1/2
the thermal contribution to the mass squared is completely negligible.

Contrary to the original optimistic beliefs based on calculational error, it turned out impos-
sible to predict W/e and Z/e mass ratios correctly in the original p-adic thermodynamics scenario.
Although the errors are of order 20-30 percent, they seemed to exclude the explanation for the
massivation of gauge bosons using p-adic thermodynamics.

1. The thermal mass squared for a boson state with N active sectors (non-vanishing vacuum
weight) is determined by the partition function for the tensor product of N NS type Super
Virasoro algebras. The degeneracies of the excited states as a function of N and the weight ∆
of the operator creating the massless state are given in the table below.

2. Both W and Z must correspond to N = 2 active Super Virasoro sectors for which D(1) = 1
and D(2) = 3 so that (using the formulas of p-adic thermodynamics the thermal mass squared
is m2 = kB(p + 5p2) for Tp = 1. The second order contribution to the thermal mass squared
is extremely small so that Weinberg angle vanishes in the thermal approximation. kB = 1
gives Z/e mass-ratio which is about 22 per cent too high. For Tp = 1/2 thermal masses are
completely negligible.

3. The thermal prediction for W-boson mass is the same as for Z0 mass and thus even worse
since the two masses are related M2

W = M2
Zcos

2(θW ).

The conclusion is that p-adic thermodynamics does not produce a natural description for the
massivation of weak bosons. For p = M89 the mass scale is somewhat too small even if the second
order contribution is maximal. If it is characterized by small integer, the contribution is extremely
small. An explanation for the value of Weinberg angle is also missing. Hence some additional
contribution to mass must be present. Higgsy contribution is not natural in TGD framework but
stringy contribution looks very natural.

14.8.2 The Counterpart Of Higgs Vacuum Expectation In TGD

The development of the TGD view about Higgs involves several wrong tracks involving a lot of
useless calculation. All this could have been avoided with more precise definition of basic notions.
The following view has distilled through several failures and might be taken as starting point.

The basic challenge is to translate the QFT description of gauge boson massivation to
microscopic description.

1. One can say that gauge bosons “eat” the components of Higgs. In unitary gauge one gauge
rotates Higgs field to electromagnetically neutral direction defined by the vacuum expectation
value of Higgs. The rotation matrix codes for the degrees of freedom assignable to non-neutral
part of Higgs and they are transferred to the longitudinal components of Higgs in gauge
transformation. This gives rise to the third polarization direction for gauge boson. Photon
remains massless because em charge commutes with Higgs.

2. The generation of vacuum expectation value has two functions: to make weak gauge bosons
massive and to define the electromagnetically neutral direction to which Higgs field is rotated
in the transition to the unitary gauge. In TGD framework only the latter function remains
for Higgs if p-adic thermodynamics takes care of massivation. The notion of induced gauge
field together with CP2 geometry uniquely defines the electromagnetically neutral direction so
that vacuum expectation is not needed. Of course, the essential element is gauge invariance of
the Higgs gauge boson couplings. In twistor Grassmann approach gauge invariance is replaced
with Yangian symmetry, which is excellent candidate also for basic symmetry of TGD.

3. The massivation of gauge bosons (all particles) involves two contributions. The contribution
from p-adic thermodynamics in CP2 scale (wormhole throat) and the stringy contribution in
weak scale more generally, in hadronic scale. The latter contribution cannot be calculated yet.
The generalization of p-adic thermodynamics to that for Yangian symmetry instead of mere
super-conformal symmetry is probably necessary to achieve this and the construction WCW
geometry and spinor structure strongly supports the interpretation in terms of Yangian.

One can look at the situation also at quantitative level.

1. W/Z mass ratio is extremely sensitive test for any model for massivation. In the recent case
this requires that string tension for weak gauge boson depends on boson and is proportional



710 Chapter 14. Particle Massivation in TGD Universe

to the appropriate gauge coupling strength depending on Weinberg angle. This is natural if
the contribution to mass squared can be regarded as perturbative.

2. Higgs mechanism is characterized by the parameter m2
0 defining the originally tachyonic mass

of Higgs, the dimensionless coupling constant λ defining quartic self-interaction of Higgs. Higgs
vacuum expectation is given by µ2 = m2

0/λ, Higgs mass squared by m2
0 = µ2λ, and weak boson

mass squared is proportional g2µ2. In TGD framework λ takes the role of g2 in stringy picture
and the string tensions of bosons are proportional to g2

w, g
2
Z , λ respectively.

3. Whether λ in TGD framework actually corresponds to the quartic self-coupling of Higgs or just
to the numerical factor in Higgs string tension, is not clear. The problem of Higgs mechanism
is that the mass of observed Higgs is somewhat too low. This requires fine tuning of the
parameters of the theory and SUSY, which was hoped to come in rescue, did not solve the
problem. TGD approach promises to solve the problem.

14.8.3 Elementary Particles In ZEO

Let us first summarize what kind of picture ZEO suggests about elementary particles.

1. Kähler magnetically charged wormhole throats are the basic building bricks of elementary
particles. The lines of generalized Feynman diagrams are identified as the Euclidian regions
of space-time surface. The weak form of electric magnetic duality forces magnetic monopoles
and gives classical quantization of the Kähler electric charge. Wormhole throat is a carrier of
many-fermion state with parallel momenta and the fermionic oscillator algebra gives rise to a
badly broken large N SUSY [?].

2. The first guess would be that elementary fermions correspond to wormhole throats with unit
fermion number and bosons to wormhole contacts carrying fermion and anti-fermion at op-
posite throats. The magnetic charges of wormhole throats do not however allow this op-
tion. The reason is that the field lines of Kähler magnetic monopole field must close. Both
in the case of fermions and bosons one must have a pair of wormhole contacts (see Fig.
http://tgdtheory.fi/appfigures/wormholecontact.jpg or Fig. ?? in the appendix of
this book) connected by flux tubes. The most general option is that net quantum numbers are
distributed amongst the four wormhole throats. A simpler option is that quantum numbers
are carried by the second wormhole: fermion quantum numbers would be carried by its second
throat and bosonic quantum numbers by fermion and anti-fermion at the opposite throats. All
elementary particles would therefore be accompanied by parallel flux tubes and string world
sheets.

3. A cautious proposal in its original form was that the throats of the other wormhole contact
could carry weak isospin represented in terms of neutrinos and neutralizing the weak isospin
of the fermion at second end. This would imply weak neutrality and weak confinement above
length scales longer than the length of the flux tube. This condition might be un-necessarily
strong.
The realization of the weak neutrality using pair of left handed neutrino and right handed
antineutrino or a conjugate of this state is possible if one allows right-handed neutrino to have
also unphysical helicity. The weak screening of a fermion at wormhole throat is possible if νR
is a constant spinor since in this case Dirac equation trivializes and allows both helicities as
solutions. The new element from the solution of the Kähler-Dirac equation is that νR would
be interior mode de-localized either to the other wormhole contact or to the Minkowskian flux
tube. The state at the other end of the flux tube is spartner of left-handed neutrino.
It must be emphasized that weak confinement is just a proposal and looks somewhat complex:
Nature is perhaps not so complex at the basic level. To understand this better, one can think
about how M89 mesons having quark and antiquark at the ends of long flux tube returning
back along second space-time sheet could decay to ordinary quark and antiquark.

14.8.4 Virtual And Real Particles And Gauge Conditions In ZEO

ZEO and twistor Grassmann approach force to build a detailed view about real and virtual particles.
ZEO suggests also new approaches to gauge conditions in the attempts to build detailed connection
between QFT picture and that provided by TGD. The following is the most conservative one. Of
course, also this proposal must be taken with extreme cautiousness.

http://tgdtheory.fi/appfigures/wormholecontact.jpg
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1. In ZEO all wormhole throats - also those associated with virtual particles - can be regarded as
massless. In twistor Grassmann approach [K100] this means that the fermionic propagators
can be by residue integration transformed to their inverses which correspond to online massless
states but having an unphysical polarization so that the internal lines do not vanish identically.

2. This picture inspired by twistorial considerations is consistent with the simplest picture about
Kähler-Dirac action. The boundary term for K-D action is

√
g4ΨΓnK−DΨd3x and due to the

localization of spinor modes to 2-D surfaces reduces to a term localized at the boundaries
of string world sheets. The normal component ΓnK−D of the Kähler-Dirac gamma matrices
defined by the canonical momentum currents of Kähler action should define the inverse of
massless fermionic propagator. If the action of this operator on the induced spinor mode at
stringy curves satisfies

√
g4ΓnΨ = pkγkΨ ,

this reduction is achieved. One can pose the condition g4 = constant as a coordinate condition
on stringy curves at the boundaries of CD and the condition would correlate the spinor modes
at stringy curve with incoming quantum numbers. This is extremely powerful simplification
giving hopes about calculable theory. The residue integral for virtual momenta reduces the
situation to integral over on mass shell momenta and only non-physical helicities contribute
in internal lines. This would generalize twistorial formulas to fermionic context.

One however ends up with an unexpected prediction which has bothered me for a long time.
Consider the representation of massless spin 1 gauge bosons as pairs as wormhole throat carrying
fermion and antifermion having net quantum numbers of the boson. Neglect the effects of the
second wormhole throat. The problem is that for on-mass shell massless fermion and antifermion
with physical helicities the boson has spin 0. Helicity 1 state would require that second fermion
has unphysical helicity. What does this mean?

1. Are all on mass shell gauge bosons - including photon - massive? Or is on mass shell massless
propagation impossible? Massivation is achieved if the fermion and antifermion have different
momentum directions: for instance opposite 3-momen but same sign of energy. Higher order
contributions in p-adic thermodynamics could make also photon massive. The 4-D world-lines
of fermion and antifermion would not be however parallel, which does not conform with the
geometric optics based prejudices.

2. Or could on mass shell gauge bosons have opposite four-momenta so that the second gauge
boson would have negative energy? In this manner one could have massless on mass shell
states. ZEO ontology certainly allows the identification massless gauge bosons as on mass shell
states with opposite directions of four-momenta. This would however require the weakening
of the hypothesis that all incoming (outgoing) fundamental fermions have positive (negative)
energies to the assumption that only the incoming (outgoing) particles have positive (negative)
energies. In the case of massless gauge boson the gauge condition p · ε = 0 would be satisfied
by the momenta of both fermion and antifermion. With opposite 3-momenta (massivation)
but same energy the condition ptot · ε = 0 is satisfied for three polarization since in cm system
ptot has only time component.

3. The problem is present also for internal lines. Since by residue argument only the unphysical
fermion helicities contribute in internal lines, both fermion and antifermion must have unphys-
ical helicity. For the same sign of energy the wormhole throat would behave as scalar particle.
Therefore it seems that the energies must have different sign or momenta cannot be strictly
parallel. This is required also by the possibility of space-like momenta for virtual bosons.

14.8.5 The Role Of String World Sheets And Magnetic Flux Tubes In
Massivation

What is the role of string world sheets and flux tubes in the massivation? At the fundamental level
one studies correlation functions for particles and finite correlation length means massivation.

1. String world sheets define as essential element in 4-D description. All particles are basically
bi-local objects: pairs of string at parallel space-time sheets extremely near to each other
and connected by wormhole contacts at ends. String world sheets are expected to represent
correlations between wormhole throats.
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2. Correlation length for the propagator of the gauge boson characterizes its mass. Correlation
length can be estimated by calculating the correlation function. For bosons this reduces to the
calculation of fermionic correlations functions assignable to string world sheets connecting the
upper and lower boundaries of CD and having four external fermions at the ends of CD. The
perturbation theory reduces to functional integral over space-time sheets and deformation
of the space-time sheet inducing the deformation of the induced spinor field expressible as
convolution of the propagator associated with the Kähler-Dirac operator with vertex factor
defined by the deformation multiplying the spinor field. The external vertices are braid ends
at partonic 2-surfaces and internal vertices are in the interior of string world sheet. Recall
that the conjecture is that the restriction to the wormhole throat orbits implies the reduction
to diagrams involving only propagators connecting braid ends. The challenge is to understand
how the coherent state assigned to the Euclidian pion field induces the finite correlation length
in the case of gauge bosons other than photon.

3. The non-vanishing commutator of the gauge boson charge matrix with the vacuum expectation
assigned to the Euclidian pion must play a key role. The study of the Kähler-Dirac operator
suggests that the braid strands contain the Abelianized variant of non-integrable phase factor
defined as exp(i

∫
Adx). If A is identified as string world sheet Hodge dual of Kac-Moody

charge the opposite edges of string world sheet with geometry of square given contributions
which compensate each other by conservation of Kac-Moody charge if A commutes with the
operators building the coherent Higgs state. For photon this would be true. For weak gauge
bosons this would not be the case and this gives hopes about obtaining destructive interference
leading to a finite correlation length.

One can also consider try to build more concrete ways to understand the finite correlation
length.

1. Quantum classical correspondence suggests that string with length of order L ∼ ~/E, E =√
p2 +m2 serves as a correlate for particle defined by a pair of wormhole contacts. For massive

particle wave length satisfies L ≤ ~/m. Here (p,m) must be replaced with (pL,mL) if one
takes the notion of longitudinal mass seriously. For photon standard option gives L = λ or
L = λL and photon can be a bi-local object connecting arbitrarily distant objects. For the
second option small longitudinal mass of photon gives an upper bound for the range of the
interaction. Also gluon would have longitudinal mass: this makes sense in QCD where the
decomposition M4 = M2 × E2 is basic element of the theory.

2. The magnetic flux tube associated with the particle carries magnetic energy. Magnetic energy
grows as the length of flux tube increases. If the flux is quantized magnetic field behaves
like 1/S, where S is the area of the cross section of the flux tube, the total magnetic energy
behaves like L/S. The dependence of S on L determines how the magnetic energy depends on
L. If the magnetic energy increases as function of L the probability of long flux tubes is small
and the particle cannot have large size and therefore mediates short range interactions. For
S ∝ Lα ∼ λα, α > 1, the magnetic energy behaves like λ−α+1 and the thickness of the flux
tube scales like

√
λα. In case of photon one might expect this option to be true. Note that for

photon string world sheet one can argue that the natural choice of string is as light-like string
so that its length vanishes.

What kind of string world sheets are possible? One can imagine two options.

1. All strings could connect only the wormhole contacts defining a particle as a bi-local object so
that particle would be literally the geometric correlate for the interaction between two objects.
The notion of free particle would be figment of imagination. This would lead to a rather stringy
picture about gauge interactions. The gauge interaction between systems S1 and S2 would
mean the emission of gauge bosons as flux tubes with charge carrying end at S1 and neutral
end. Absorption of the gauge boson would mean that the neutral end of boson and neutral
end of charge particle fuse together line the lines of Feynman diagram at 3-vertex.

2. Second option allows also string world sheets connecting wormhole contacts of different parti-
cles so that there is no flux tube accompanying the string world sheet. In this case particles
would be independent entities interacting via string world sheets. In this case one could con-
sider the possibility that photon corresponds to string world sheet (or actually parallel pair of
them) not accompanied by a magnetic flux tube and that this makes the photon massless at
least in excellent approximation.
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The first option represents the ontological minimum.
Super-conformal symmetry involves two conformal weight like integers and these correspond

to the conformal weight assignable to the radial light-like coordinate appearing in the role of com-
plex coordiante in super-symplectic Hamiltonians and to the spinorial conformal weight assignable
to the solutions of Kähler Dirac equation localized to string world sheets. These conformal weights
are independent quantum numbers unless one can use the light-like radial coordinate as string
coordinate, which is certainly not possible always. The latter conformal weight should correspond
to the stringy contribution to the masses of elementary particles and hadron like states. In fact, it
is difficult to distinguish between elementary particles and hadrons at the fundamental level since
both involve the stringy aspect.

The Yangian symmetry variant of conformal symmetry is highly suggestive and brings in
poly-locality with respect to partonic 2-surfaces. This integer would count the number of partonic
2-surfaces to which the generator acts and need not correspond to spinorial conformal weight as
one might think first. In any case, Yangian variant of p-adic termodynamics provides an attractive
approach concerning the mathematical realization of this vision.

14.8.6 Weak Regge Trajectories

The weak form of electric-magnetic duality suggests strongly the existence of weak Regge trajec-
tories.

1. The most general mass squared formula with spin-orbit interaction term M2
L−SL · S reads as

M2 = nM2
1 +M2

0 +M2
L−SL · S , n = 0, 2, 4 or n = 1, 3, 5, ..., . (14.8.1)

M2
1 corresponds to string tension and M2

0 corresponds to the thermodynamical mass squared
and possible other contributions. For a given trajectory even (odd) values of n have same parity
and can correspond to excitations of same ground state. From ancient books written about
hadronic string model one vaguely recalls that one can have several trajectories (satellites) and
if one has something called exchange degeneracy, the even and odd trajectories define single
line in M2−J plane. As already noticed TGD variant of Higgs mechanism combines together
n = 0 states and n = 1 states to form massive gauge bosons so that the trajectories are not
independent.

2. For fermions, possible Higgs, and pseudo-scalar Higgs and their super partners also p-adic
thermodynamical contributions are present. M2

0 must be non-vanishing also for gauge bosons
and be equal to the mass squared for the n = L = 1 spin singlet. By applying the formula to
h = ±1 states one obtains

M2
0 = M2(boson) . (14.8.2)

The mass squared for transversal polarizations with (h, n, L) = (±1, n = L = 0, S = 1) should
be same as for the longitudinal polarization with (h = 0, n = L = 1, S = 1, J = 0) state. This
gives

M2
1 +M2

0 +M2
L−SL · S = M2

0 . (14.8.3)

From L · S = [J(J + 1)− L(L+ 1)− S(S + 1)] /2 = −2 for J = 0, L = S = 1 one has

M2
L−S = −M

2
1

2
. (14.8.4)

Only the value of weak string tension M2
1 remains open.

3. If one applies this formula to arbitrary n = L one obtains total spins J = L + 1 and L − 1
from the tensor product. For J = L− 1 one obtains

M2 = (2n+ 1)M2
1 +M2

0 .

For J = L+ 1 only M2
0 contribution remains so that one would have infinite degeneracy of the

lightest states. Therefore stringy mass formula must contain a non-linear term making Regge
trajectory curved. The simplest possible generalization which does not affect n=0 and n=1
states is of from
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M2 = n(n− 1)M2
2 + (n− L · S

2
)M2

1 +M2
0 . (14.8.5)

The challenge is to understand the ratio of W and Z0 masses, which is purely group theoretic
and provides a strong support for the massivation by Higgs mechanism.

1. The above formula and empirical facts require

M2
0 (W )

M2
0 (Z)

=
M2(W )

M2(Z)
= cos2(θW ) . (14.8.6)

in excellent approximation. Since this parameter measures the interaction energy of the
fermion and anti-fermion decomposing the gauge boson depending on the net quantum num-
bers of the pair, it would look very natural that one would have

M2
0 (W ) = g2

WM
2
SU(2) , M2

0 (Z) = g2
ZM

2
SU(2) . (14.8.7)

Here M2
SU(2) would be the fundamental mass squared parameter for SU(2) gauge bosons. p-

Adic thermodynamics of course gives additional contribution which is vanishing or very small
for gauge bosons.

2. The required mass ratio would result in an excellent approximation if one assumes that the
mass scales associated with SU(2) and U(1) factors suffer a mixing completely analogous to
the mixing of U(1) gauge boson and neutral SU(2) gauge boson W3 leading to γ and Z0.
Also Higgs, which consists of SU(2) triplet and singlet in TGD Universe, would very naturally
suffer similar mixing. Hence M0(B) for gauge boson B would be analogous to the vacuum
expectation of corresponding mixed Higgs component. More precisely, one would have

M0(W ) = MSU(2) ,

M0(Z) = cos(θW )MSU(2) + sin(θW )MU(1) ,

M0(γ) = −sin(θW )MSU(2) + cos(θW )MU(1) . (14.8.8)

The condition that photon mass is very small and corresponds to IR cutoff mass scale gives
M0(γ) = εcos(θW )MSU(2), where ε is very small number, and implies

MU(1)

M(W )
= tan(θW ) + ε ,

M(γ)

M(W )
= ε× cos(θW ) ,

M(Z)

M(W )
=

1 + ε× sin(θW )cos(θW )

cos(θW )
. (14.8.9)

There is a small deviation from the prediction of the standard model for W/Z mass ratio but
by the smallness of photon mass the deviation is so small that there is no hope of measuring
it. One can of course keep mind open for ε = 0. The formulas allow also an interpretation
in terms of Higgs vacuum expectations as it must. The vacuum expectation would most
naturally correspond to interaction energy between the massless fermion and anti-fermion
with opposite 3-momenta at the throats of the wormhole contact and the challenge is to show
that the proposed formulas characterize this interaction energy. Since CP2 geometry codes for
standard model symmetries and their breaking, it would not be surprising if this would happen.
One cannot exclude the possibility that p-adic thermodynamics contributes to M2

0 (boson). For
instance, ε might characterize the p-adic thermal mass of photon.
If the mixing applies to the entire Regge trajectories, the above formulas would apply also
to weak string tensions, and also photons would belong to Regge trajectories containing high
spin excitations.

3. What one can one say about the value of the weak string tension M2
1 ? The näıve order of

magnitude estimate is M2
1 ' m2

W ' 104 GeV2 is by a factor 1/25 smaller than the direct scaling
up of the hadronic string tension about 1 GeV2 scaled up by a factor 218. The above argument
however allows also the identification as the scaled up variant of hadronic string tension in
which case the higher states at weak Regge trajectories would not be easy to discover since
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the mass scale defined by string tension would be 512 GeV to be compared with the recent
beam energy 7 TeV. Weak string tension need of course not be equal to the scaled up hadronic
string tension. Weak string tension - unlike its hadronic counterpart- could also depend on
the electromagnetic charge and other characteristics of the particle.

14.8.7 Low Mass Exotic Mesonic Structures As Evidence For Dark Scaled
Down Variants Of Weak Bosons?

During last years reports about low mass exotic mesonic structures have appeared. It is interesting
to combine these bits of data with the recent view about TGD analog of Higgs mechanism and
find whether new predictions become possible. The basic idea is to derive understanding of the
low mass exotic structures from LHC data by scaling and understanding of LHC data from data
about mesonic structures by scaling back.

1. The article Search for low-mass exotic mesonic structures: II. attempts to understand the ex-
perimental results by Taticheff and Tomasi-Gustafsson (see http://tinyurl.com/ybq323yy)
[C65] mentions evidence for exotic mesonic structures. The motivation came from the observa-
tion of a narrow range of dimuon masses in Σ+ → pP 0, P 0 → µ−µ+ in the decays of P 0 with
mass of 214.3± .5 MeV: muon mass is 105.7 MeV giving 2mµ = 211.4 MeV. Mesonlike exotic
states with masses M = 62, 80, 100, 181, 198, 215, 227.5, and 235 MeV are reported. This fine
structure of states with mass difference 20-40 MeV between nearby states is reported for also
for some baryons.

2. The preprint Observation of the E(38) boson by Kh.U. Abraamyan et al (see http://tinyurl.
com/y7zer8dw) [C11, C12, C27] reports the observation of what they call E(38) boson decaying
to gamma pair observed in d(2.0 GeV/n)+C,d(3.0 GeV/n)+Cu and p(4.6 GeV)+C reactions
in experiments carried in JINR Nuclotron.

If these results can be replicated they mean a revolution in nuclear and hadron physics. What
strongly suggests itself is a fine structure for ordinary hadron states in much smaller energy scale
than characterizing hadronic states. Unfortunately the main stream, in particular the theoreticians
interested in beyond standard model physics, regard the physics of strong interactions and weak
interactions as closed chapters of physics, and are not interested on results obtained in nuclear
collisions.

In TGD framework situation is different. The basic characteristic of TGD Universe is frac-
tality. This predicts new physics in all scales although standard model symmetries are fundamental
unlike in GUTs and are reduced to number theory. p-Adic length scale hypothesis characterizes
the fractality.

1. In TGD Universe p-adic length scale hypothesis predicts the possibility of scaled versions of
both strong and weak interactions. The basic objection against new light bosons is that the
decay widths of weak bosons do not allow them. A possible manner to circumvent the objection
is that the new light states correspond to dark matter in the sense that the value of Planck
constant is not the standard one but its integer multiple [K42].
The assumption that only particles with the same value of Planck constant can appear in the
vertex, would explain why weak bosons do not decay directly to light dark particles. One must
however allow the transformation of gauge bosons to their dark counterparts. The 2-particle
vertex is characterized by a coupling having dimensions of mass squared in the case of bosons,
and p-adic length scale hypothesis suggests that the primary p-adic mass scale characterizes the
parameter (the secondary p-adic mass scale is lower by factor 1/

√
p and would give extremely

small transformation rate).

2. Ordinary strong interactions correspond to Mersenne prime Mn, n = 2107−1, in the sense that
hadronic space-time sheets correspond to this p-adic prime. Light quarks correspond to space-
time sheets identifiable as color magnetic flux tubes, which are much larger than hadron itself.
M89 hadron physics has hadronic mass scale 512 times higher than ordinary hadron physics
and should be observed at LHC. There exist some pieces of evidence for the mesons of this
hadron physics but masked by the Higgsteria. The expectation is that Minkowskian M89 pion
has mass around 140 GeV assigned to CDF bump (see http://tinyurl.com/yc98cau6) [C16].

3. In the leptonic sector there is evidence for lepto-hadron physics for all charged leptons la-
belled by Mersenne primes M127, MG,113 (Gaussian Mersenne), and M107 [K104]. One can

http://tinyurl.com/ybq323yy
http://tinyurl.com/y7zer8dw
http://tinyurl.com/y7zer8dw
http://tinyurl.com/yc98cau6
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ask whether the above mentioned resonance P 0 decaying to µ−µ+ pair motivating the work
described in [C65] could correspond to pion of muon-hadron physics consisting of a pair of
color octet excitations of muon. Its production would presumably take place via production
of virtual gluon pair decaying to a pair of color octet muons.

Returning to the observations of [C65]: the reported meson-like exotic states seem to be
arranged along Regge trajectories but with string tension lower than that for the ordinary Regge
trajectories with string tension T = .9 GeV2. String tension increases slowly with mass of meson
like state and has three values T/GeV 2 ∈ {1/390, 1/149.7, 1/32.5} in the piecewise linear fit dis-
cussed in the article. The TGD inspired proposal is that IR Regge trajectories assignable to the
color magnetic flux tubes accompanying quarks are in question. For instance, in hadrons u and d
quarks - understood as constituent quarks - would have k = 113 quarks and string tension would
be by näıve scaling by a factor 2107−113 = 1/64 lower: as a matter of fact, the largest value of
the string tension is twice this value. For current quark with mass scale around 5 MeV the string
tension would be by a factor of order 2107−121 = 2−16 lower.

Clearly, a lot of new physics is predicted and it begins to look that fractality - one of the key
predictions of TGD - might be realized both in the sense of hierarchy of Planck constants (scaled
variants with same mass) and p-adic length scale hypothesis (scaled variants with varying masses).
Both hierarchies would represent dark matter if one assumes that the values of Planck constant
and p-adic length scale are same in given vertex. The testing of predictions is not however expected
to be easy since one must understand how ordinary matter transforms to dark matter and vice
versa. Consider only the fact, that only recently the exotic meson like states have been observed
and modern nuclear physics regarded often as more or less trivial low energy phenomenology was
born born about 80 years ago when Chadwick discovered neutron.

14.8.8 Cautious Conclusions

The discussion of TGD counterpart of Higgs mechanism gives support for the following general
picture.

1. p-Adic thermodynamics for wormhole contacts contributes to the masses of all particles in-
cluding photon and gluons: in these cases the contributions are however small. For fermions
they dominate. For weak bosons the contribution from string tension of string connecting
wormhole contacts as the correct group theoretical prediction for the W/Z mass ratio demon-
strates. The mere spin 1 character for gauge bosons implies that they are massive in 4-D
sense unless massless fermion and anti-fermion have opposite signs of energy. Higgs provides
the longitudinal components of weak bosons by gauge invariance and CP2 geometry defines
unitary gauge so that Higgs vacuum expectation value is not needed. The non-existence of
covariantly constant CP2 vector field does not mean absence of Higgs like particle as believed
first but only the impossibility of Higgs vacuum expectation value.
The usual space-time SUSY associated with embedding space in TGD framework is not needed,
and there are strong arguments suggesting that it is not present [?] For space-time regarded as
4-surfaces one obtains 2-D super-conformal invariance for fermions localized at 2-surfaces and
for right-handed neutrino it extends to 4-D superconformal symmetry generalizing ordinary
SUSY to infinite-D symmetry.

2. The basic predictions to LHC are following. M89 hadron physics, whose pion was first proposed
to be identifiable as Higgs like particle, will be discovered. The findings from RHIC and LHC
concerning collisions of heavy ions and protons and heavy ions already provide support for
the existence of string like objects identifiable as mesons of M89 physics. Fermi satellite has
produced evidence for a particle with mass around 140 GeV and this particle could correspond
to the pion of M89 physics. This particle should be observed also at LHC and CDF reported
already earlier evidence for it. There has been also indications for other mesons of M89 physics
from LHC discussed in [K64].

3. Fermion and boson massivation by Higgs mechanism could emerge unavoidably as a theoretical
artefact if one requires the existence of QFT limit leading unavoidably to a description in terms
of Higgs mechanism. In the real microscopic theory p-adic thermodynamics for wormhole
contacts and strings connecting them would describe fermion massivation, and might describe
even boson massivation in terms of long parts of flux tubes. Situation remains open in this
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respect. Therefore the observation of decays of Higgs at expected rate to fermion pairs cannot
kill TGD based vision.

The new view about Higgs combined with the stringy vision about twistor Grassmannian
[K100] allows to see several conjectures related to ZEO in new light and also throw away some
conjectures such as the idea about restriction of virtual momenta to plane M2 ⊂M4.

1. The basic conjecture related to the perturbation theory is that wormhole throats are massless
on mass shell states in embedding space sense: this would hold true also for virtual particles
and brings in mind what happens in twistor program. The recent progress [K113] in the
construction of n-point functions leads to explicit general formulas for them expressing them
in terms of a functional integral over four-surfaces. The deformation of the space-time surface
fixes the deformation of basis for induced spinor fields and one obtains a perturbation theory in
which correlation functions for embedding space coordinates and fermionic propagator defined
by the inverse of the Kähler-Dirac operator appear as building bricks and the electroweak
gauge coupling of the Kähler-Dirac operator define the basic vertex. This operator is indeed
2-D for all other fermions than right-handed neutrino.

2. The functional integral gives some expressions for amplitudes which resemble twistor ampli-
tudes in the sense that the vertices define polygons and external fermions are massless al-
though gauge bosons as their bound states are massive. This suggests a stringy generalization
of twistor Grassmannian approach [K100]. The residue integral would replace 4-D integrations
of virtual fermion momenta to integrals over massless momenta. The outcome would be non-
vanishing for non-physical helicities of virtual fermion. Also the problem due to the fact that
fermionic Super Virasoro generator carries fermion number in TGD framework disappears.

3. There are two conformal weights involved. The conformal weight associated with the light-like
radial coordinate of δM4

± and the spinorial conformal weight associated with the fermionic
string connecting wormhole throats and throats of wormhole contact. Are these conformal
weights independent or not? For instance, could one use radial light-like coordinate as string
coordinate in the generic situation so that the conformal weights would not define indepen-
dent quantum numbers? This does not look feasible. The Yangian variant of conformal
algebra [A29] [B25, B17, B18] involves two integers. Second integer would naturally be the
number of partonic 2-surfaces acted by the generator characterizing the poly-locality of Yan-
gian generators, and it is not clear whether it has anything to do with the spinorial conformal
weight. One can of course consider also three integers! This would be in accordance with the
idea that the basic objects are 3-dimensional.
If the conjecture that Yangian invariance realized in terms of Grassmannians makes sense,
it could allow to deduce the outcome of the functional integral over four-surfaces and one
could hope that TGD can be transformed to a calculable theory. Also p-adic mass calcula-
tions should be formulated using p-adic thermodynamics assuming Yangian invariance and
enlargened conformal algebra.

14.9 Calculation Of Hadron Masses And Topological Mix-
ing Of Quarks

The calculation of quark masses is not enough since one must also understand CKM mixing of
quarks in order to calculate hadron massess. A model for CKM matrix and hadron masses is
constructed in [K70] and here only a brief summary about basic ideas involved is given.

14.9.1 Topological Mixing Of Quarks

In TGD framework CKM mixing is induced by topological mixing of quarks (that is 2-dimensional
topologies characterized by genus). The strongest number theoretical constraint on mixing matrices
would be that they are rational. Perhaps a more natural constraint is that they are expressible in
terms of roots of unity for some finite dimensional algebraic extension of rationals and therefore
also p-adic numbers.

Number theoretical constraints on topological mixing can be realized by assuming that
topological mixing leads to a thermodynamical equilibrium subject to constraints from the integer
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valued modular contributions remaing integer valued in the mixing. This gives an upper bound of
1200 for the number of different U and D matrices and the input from top quark mass and π+−π0

mass difference implies that physical U and D matrices can be constructed as small perturbations
of matrices expressible as direct sum of essentially unique 2×2 and 1×1 matrices. The maximally
entropic solutions can be found numerically by using the fact that only the probabilities p11 and
p21 can be varied freely. The solutions are unique in the accuracy used, which suggests that the
system allows only single thermodynamical phase.

The matrices U and D associated with the probability matrices can be deduced straightfor-
wardly in the standard gauge. The U and D matrices derived from the probabilities determined
by the entropy maximization turn out to be unitary for most values of integers n1 and n2 charac-
terizing the lowest order contribution to quark mass. This is a highly non-trivial result and means
that mass and probability constraints together with entropy maximization define a sub-manifold of
SU(3) regarded as a sub-manifold in 9-D complex space. The choice (n(u), n(c)) = (4, n), n < 9,
does not allow unitary U whereas (n(u), n(c)) = (5, 6) does. This choice is still consistent with top
quark mass and together with n(d) = n(s) = 5 it leads to a rather reasonable CKM matrix with a
value of CP breaking invariant within experimental limits. The elements Vi3 and V3i, i = 1, 2 are
however roughly twice larger than their experimental values deduced assuming standard model.
V31 is too large by a factor 1.6. The possibility of scaled up variants of light quarks could lead to
too small experimental estimates for these matrix elements. The whole parameter space has not
been scanned so that better candidates for CKM matrices might well exist.

14.9.2 Higgsy Contribution To Fermion Masses Is Negligible

There are good reasons to believe that Higgs expectation for the fermionic space-time sheets is
vanishing although fermions couple to Higgs. Thus p-adic thermodynamics would explain fermion
masses completely. This together with the fact that the prediction of the model for the top quark
mass is consistent with the most recent limits on it, fixes the CP2 mass scale with a high accuracy to
the maximal one obtained if second order contribution to electron’s p-adic mass squared vanishes.
This is very strong constraint on the model.

14.9.3 The P-Adic Length Scale Of Quark Is Dynamical

The assumption about the presence of scaled up variants of light quarks in light hadrons leads
to a surprisingly successful model for pseudo scalar meson masses using only quark masses and
the assumption mass squared is additive for quarks with same p-adic length scale and mass for
quarks labelled by different primes p. This conforms with the idea that pseudo scalar mesons are
Goldstone bosons in the sense that color Coulombic and magnetic contributions to the mass cancel
each other. Also the mass differences between hadrons containing different numbers of strange and
heavy quarks can be understood if s, b and c quarks appear as several scaled up versions.

This hypothesis yields surprisingly good fit for meson masses but for some mesons the
predicted mass is slightly too high. The reduction of CP2 mass scale to cure the situation is not
possible since top quark mass would become too low. In case of diagonal mesons for which quarks
correspond to same p-adic prime, quark contribution to mass squared can be reduced by ordinary
color interactions and in the case of non-diagonal mesons one can require that quark contribution
is not larger than meson mass.

It should be however made clear that the notion of quark mass is problematic. One can
speak about current quark masses and constituent quark masses. For u and d quarks constituent
quark masses have scale 102 GeV are much higher than current quark masses having scale 10 GeV.
For current quarks the dominating contribution to hadron mass would come from super-symplectic
bosons at quantum level and at more phenomenological level from hadronic string tension. The
open question is which option to choose or whether one should regard the two descriptions as
duals of each other based on M8 − H duality. M8 description would be natural at low energies
since SO(4) takes the role of color group. One could also say that current quarks are created in
de-confinement phase transition which involves change of the p-adic length scale characterizing
the quark. Somewhat counter intuitively but in accordance with Uncertainty Principle this length
scale would increase but one could assign it the color magnetic field body of the quark.
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14.9.4 Super-Symplectic Bosons At Hadronic Space-Time Sheet Can
Explain The Constant Contribution To Baryonic Masses

Current quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution should
correspond to the non-perturbative aspects of QCD which could be characterized in terms of
constituent quark masses in M8 picture and in terms of current quark masses and string tension
or super-symplectic bosons in M4 × CP2 picture.

Super-symplectic gluons provide an attractive description of this contribution. They need
not exclude more phenomenological description in terms of string tension. Baryonic space-time
sheet with k = 107 would contain a many-particle state of super-symplectic gluons with net
conformal weight of 16 units. This leads to a model of baryons masses in which masses are
predicted with an accuracy better than 1 per cent. Super-symplectic gluons also provide a possible
solution to the spin puzzle of proton.

Hadronic string model provides a phenomenological description of non-perturbative aspects
of QCD and a connection with the hadronic string model indeed emerges. Hadronic string tension is
predicted correctly from the additivity of mass squared for J = 2 bound states of super-symplectic
quanta. If the topological mixing for super-symplectic bosons is equal to that for U type quarks
then a 3-particle state formed by 2 super-symplectic quanta from the first generation and 1 quantum
from the second generation would define baryonic ground state with 16 units of conformal weight.

In the case of mesons pion could contain super-symplectic boson of first generation preventing
the large negative contribution of the color magnetic spin-spin interaction to make pion a tachyon.
For heavier bosons super-symplectic boson need not to be assumed. The preferred role of pion
would relate to the fact that its mass scale is below QCD Λ.

14.9.5 Description Of Color Magnetic Spin-Spin Splitting In Terms Of
Conformal Weight

What remains to be understood are the contributions of color Coulombic and magnetic inter-
actions to the mass squared. There are contributions coming from both ordinary gluons and
super-symplectic gluons and the latter is expected to dominate by the large value of color coupling
strength.

Conformal weight replaces energy as the basic variable but group theoretical structure of
color magnetic contribution to the conformal weight associated with hadronic space-time sheet
(k = 107) is same as in case of energy. The predictions for the masses of mesons are not so good
than for baryons, and one might criticize the application of the format of perturbative QCD in an
essentially non-perturbative situation.

The comparison of the super-symplectic conformal weights associated with spin 0 and spin
1 states and spin 1/2 and spin 3/2 states shows that the different masses of these states could
be understood in terms of the super-symplectic particle contents of the state correlating with the
total quark spin. The resulting model allows excellent predictions also for the meson masses and
implies that only pion and kaon can be regarded as Goldstone boson like states. The model based
on spin-spin splittings is consistent with the model.

To sum up, the model provides an excellent understanding of baryon and meson masses.
This success is highly non-trivial since the fit involves only the integers characterizing the p-adic
length scales of quarks and the integers characterizing color magnetic spin-spin splitting plus p-adic
thermodynamics and topological mixing for super-symplectic gluons. The next challenge would be
to predict the correlation of hadron spin with super-symplectic particle content in case of long-lived
hadrons.



Chapter 15

New Physics Predicted by TGD

15.1 Introduction

TGD predicts a lot of new physics and it is quite possible that this new physics becomes visible
at LHC. Although calculational formalism is still lacking, p-adic length scale hypothesis allows
to make precise quantitative predictions for particle masses by using simple scaling arguments.
Actually there is already now evidence for effects providing further support for TGD based view
about QCD and first rumors about super-symmetric particles have appeared.

Before detailed discussion it is good to summarize what elements of quantum TGD are
responsible for new physics.

1. The new view about particles relies on their identification as partonic 2-surfaces (plus 4-D
tangent space data to be precise). This effective metric 2-dimensionality implies generalization
of the notion of Feynman diagram and holography in strong sense. One implication is the
notion of field identity or field body making sense also for elementary particles and the Lamb
shift anomaly of muonic hydrogen could be explained in terms of field bodies of quarks.

2. The topological explanation for family replication phenomenon implies genus generation cor-
respondence and predicts in principle infinite number of fermion families. One can however
develop a rather general argument based on the notion of conformal symmetry known as hyper-
ellipticity stating that only the genera g = 0, 1, 2 are light [?] What “light” means is however
an open question. If light means something below CP2 mass there is no hope of observing new
fermion families at LHC. If it means weak mass scale situation changes.
For bosons the implications of family replication phenomenon can be understood from the
fact that they can be regarded as pairs of fermion and anti-fermion assignable to the opposite
wormhole throats of wormhole throat. This means that bosons formally belong to octet and
singlet representations of dynamical SU(3) for which 3 fermion families define 3-D represen-
tation. Singlet would correspond to ordinary gauge bosons. Also interacting fermions suffer
topological condensation and correspond to wormhole contact. One can either assume that
the resulting wormhole throat has the topology of sphere or that the genus is same for both
throats.

3. The view about space-time supersymmetry differs from the standard view in many respects.
First of all, the super symmetries are not associated with Majorana spinors. Super generators
correspond to the fermionic oscillator operators assignable to leptonic and quark-like induced
spinors and there is in principle infinite number of them so that formally one would have
N = ∞ SUSY. I have discussed the required modification of the formalism of SUSY theories
in [?]nd it turns out that effectively one obtains just N = 1 SUSY required by experimental
constraints. The reason is that the fermion states with higher fermion number define only
short range interactions analogous to van der Waals forces. Right handed neutrino generates
this super-symmetry broken by the mixing of the M4 chiralities implied by the mixing of
M4 and CP2 gamma matrices for induced gamma matrices. The simplest assumption is that
particles and their superpartners obey the same mass formula but that the p-adic length scale
can be different for them.

4. The new view about particle massivation based on p-adic thermodynamics raises the question

720
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about the role of Higgs field. The vacuum expectation value (VEV) of Higgs is not feasible in
TGD since CP2 does not allow covariantly constant holomorphic vector fields. The original
too strong conclusion from this was that TGD does not allow Higgs. Higgs VEV is not needed
for the selection of preferred electromagnetic direction in electro-weak gauge algebra (unitary
gauge) since CP2 geometry does that. p-Adic thermodynamics explains fermion masses bout
the masses of weak bosons cannot be understood on basis of p-adic thermodynamics alone
giving extremely small second order contribution only and failing to explain W/Z mass ratio.
Weak boson mass can be associated to the string tension of the strings connecting the throats
of two wormhole contacts associated with elementary particle (two of them are needed since
the monopole magnetic flux must have closed field lines).
At M4 QFT limit Higgs VEV is the only possible description of massivation. Dimensional
gradient coupling to Higgs field developing VEV explains fermion masses at this limit. The
dimensional coupling is same for all fermions so that one avoids the loss of “naturalness” due
to the huge variation of Higgs-fermion couplings in the usual description.
The stringy contribution to elementary particle mass cannot be calculated from the first
principles. A generalization of p-adic thermodynamics based on the generalization of super-
conformal algebra is highly suggestive. There would be two conformal weights corresponding
the the conformal weight assignable to the radial light-like coordinate of light-cone boundary
and to the stringy coordinate and third integer characterizing the poly-locality of the gener-
ator of Yangian associated with this algebra (n-local generator acts on n partonic 2-surfaces
simultaneously).

5. One of the basic distinctions between TGD and standard model is the new view about color.

(a) The first implication is separate conservation of quark and lepton quantum numbers im-
plying the stability of proton against the decay via the channels predicted by GUTs. This
does not mean that proton would be absolutely stable. p-Adic and dark length scale hierar-
chies indeed predict the existence of scale variants of quarks and leptons and proton could
decay to hadons of some zoomed up copy of hadrons physics. These decays should be slow
and presumably they would involve phase transition changing the value of Planck constant
characterizing proton. It might be that the simultaneous increase of Planck constant for
all quarks occurs with very low rate.

(b) Also color excitations of leptons and quarks are in principle possible. Detailed calculations
would be required to see whether their mass scale is given by CP2 mass scale. The so
called lepto-hadron physics proposed to explain certain anomalies associated with both
electron, muon, and τ lepton could be understood in terms of color octet excitations of
leptons [?]

6. Fractal hierarchies of weak and hadronic physics labelled by p-adic primes and by the levels of
dark matter hierarchy are highly suggestive. Ordinary hadron physics corresponds to M107 =
2107−1 One especially interesting candidate would be scaled up hadronic physics which would
correspond toM89 = 289−1 defining the p-adic prime of weak bosons. The corresponding string
tension is about 512 GeV and it might be possible to see the first signatures of this physics
at LHC. Nuclear string model in turn predicts that nuclei correspond to nuclear strings of
nucleons connected by colored flux tubes having light quarks at their ends. The interpretation
might be in terms of M127 hadron physics. In biologically most interesting length scale range 10
nm-2.5 µm contains four electron Compton lengths Le(k) =

√
5L)k) associated with Gaussian

Mersennes and the conjecture is that these and other Gaussian Mersennes are associated with
zoomed up variants of hadron physics relevant for living matter. Cosmic rays might also reveal
copies of hadron physics corresponding to M61 and M31

The well-definedness of em charge for the modes of induced spinor fields localizes them at
2-D surfaces with vanishing W fields and also Z0 field above weak scale. This allows to avoid
undesirable parity breaking effects.

7. Weak form of electric magnetic duality implies that the fermions and anti-fermions associated
with both leptons and bosons are Kähler magnetic monopoles accompanied by monopoles of
opposite magnetic charge and with opposite weak isospin. For quarks Kähler magnetic charge
need not cancel and cancellation might occur only in hadronic length scale. The magnetic flux
tubes behave like string like objects and if the string tension is determined by weak length
scale, these string aspects should become visible at LHC. If the string tension is 512 GeV the
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situation becomes less promising.

In this chapter the predicted new elementary particle physics and possible indications for it
are discussed. Second chapter is devoted to new hadron physics and scaled up variants of hardon
physics in both quark and lepton sector.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L22].

15.2 Scaled Variants Of Quarks And Leptons

15.2.1 Fractally Scaled Up Versions Of Quarks

The strange anomalies of neutrino oscillations [C55] suggesting that neutrino mass scale depends
on environment can be understood if neutrinos can suffer topological condensation in several p-adic
length scales [K60] . The obvious question whether this could occur also in the case of quarks led
to a very fruitful developments leading to the understanding of hadronic mass spectrum in terms of
scaled up variants of quarks. Also the mass distribution of top quark candidate exhibits structure
which could be interpreted in terms of heavy variants of light quarks. The ALEPH anomaly [C8],
which I first erratically explained in terms of a light top quark has a nice explanation in terms of b
quark condensed at k = 97 level and having mass ∼ 55 GeV. These points are discussed in detail
in [K70] .

The emergence of ALEPH results [C8] meant a an important twist in the development of
ideas related to the identification of top quark. In the LEP 1.5 run with Ecm = 130 − 140 GeV ,
ALEPH found 14 e+e− annihilation events, which pass their 4-jet criteria whereas 7.1 events
are expected from standard model physics. Pairs of dijets with vanishing mass difference are in
question and dijets could result from the decay of a new particle with mass about 55 GeV .

The data do not allow to conclude whether the new particle candidate is a fermion or boson.
Top quark pairs produced in e+e− annihilation could produce 4-jets via gluon emission but this
mechanism does not lead to an enhancement of 4-jet fraction. No bb̄bb̄ jets have been observed and
only one event containing b has been identified so that the interpretation in terms of top quark is
not possible unless there exists some new decay channel, which dominates in decays and leads to
hadronic jets not initiated by b quarks. For option 2), which seems to be the only sensible option,
this kind of decay channels are absent.

Super symmetrized standard model suggests the interpretation in terms of super partners
of quarks or/and gauge bosons [C48] . It seems now safe to conclude that TGD does not predict
sparticles. If the exotic particles are gluons their presence does not affect Z0 and W decay widths.
If the condensation level of gluons is k = 97 and mixing is absent the gluon masses are given by
mg(0) = 0, mg(1) = 19.2 GeV and mg(2) = 49.5 GeV for option 1) and assuming k = 97 and
hadronic mass renormalization. It is however very difficult to understand how a pair of g = 2
gluons could be created in e+e− annihilation. Moreover, for option 2), which seems to be the only
sensible option, the gluon masses are mg(0) = 0, mg(1) = mg(2) = 30.6 GeV for k = 97. In this
case also other values of k are possible since strong decays of quarks are not possible.

The strong variations in the order of magnitude of mass squared differences between neutrino
families [C55] can be understood if they can suffer a topological condensation in several p-adic
length scales. One can ask whether also t and b quark could do the same. In absence of mixing
effects the masses of k = 97 t and b quarks would be given by mt ' 48.7 GeV and mb ' 52.3 GeV
taking into account the hadronic mass renormalization. Topological mixing reduces the masses
somewhat. The fact that b quarks are not observed in the final state leaves only b(97) as a realistic
option. Since Z0 boson mass is ∼ 94 GeV, b(97) does not appreciably affect Z0 boson decay
width. The observed anomalies concentrate at cm energy about 105 GeV . This energy is 15
percent smaller than the total mass of top pair. The discrepancy could be understood as resulting
from the binding energy of the b(97)b̄(97) bound states. Binding energy should be a fraction of
order αs ' .1 of the total energy and about ten per cent so that consistency is achieved.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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15.2.2 Toponium at 30.4 GeV?

Prof. Matt Strassler tells about a gem found from old data files of ALEPH experiment (see
http://tinyurl.com/ze6l5wr) by Arno Heisner [C7](see http://tinyurl.com/hy8ugf4). The
3-sigma bump appears at 30.40 GeV and could be a statistical fluctuation and probably is so. It
has been found to decay to muon pairs and b-quark pairs. The particle that Strassler christens V
(V for vector) would have spin 1.

Years ago [K64] I have commented a candidate for scaled down top quark reported by Aleph:
this had mass around 55 GeV and the proposal was that it corresponds to p-adically scaled up b
quark with estimated mass of 52.3 GeV.

Could TGD allow to identify V as a scaled up variant of some spin 1 meson?

1. p-Adic length scale hypothesis states that particle mass scales correspond to certain primes
p ' 2k, k > 0 integer. Prime values of k are of special interest. Ordinary hadronic space-time
sheets would correspond to hadronic space-time sheets labelled by Mersenne prime p = M107 =
2107 − 1 and quarks would be labelled by corresponding integers k.

2. For low mass mesons the contribution from color magnetic flux tubes to mass dominates
whereas for higher mass mesons consisting of heavy quarks heavy quark contribution is domi-
nant. This suggests that the large mass of V must result by an upwards scaling of some light
quark mass or downwards scaling of top quark mass by a power of square root of 2.

3. The mass of b quark is around 4.2-4.6 GeV and Upsilon meson has mass about 9.5 GeV so
that at most about 1.4 GeV from total mass would correspond to the non-perturbative color
contribution partially from the magnetic body. Top quark mass is about 172.4 GeV and p-adic
mass calculations suggest k = 94 (M89) for top. If the masses for heavy quark mesons are
additive as the example of Upsilon suggests, the non-existing top pair vector meson (toponium)
(see http://tinyurl.com/nfzhnej) would have mass about m(toponium) = 2 × 172.4 GeV
= 344.8 GeV.

4. Could the observed bump correspond to p-adically scaled down version of toponium with
k = 94 + 7 = 101, which is prime? The mass of toponium would be 30.47 GeV, which
is consistent with the mass of the bump. If this picture is correct, V would be premature
toponium able to exist for prime k = 101. Its decays to b quark pair are consistent with this.

5. Tommaso Dorigo (see http://tinyurl.com/zhgyecd) argues that the signal is spurious since
the produced muons tend to be parallel to b quarks in cm system of Z0. Matt Strassler identifies
the production mechanism as a direct decay of Z0 and in this case Tommaso would be right:
the direct 3-particle decay of Z0 → b+ b+ V would produce different angular distribution for
V . One cannot of course exclude the possibility that the interpretation of Tommaso is that
muon pairs are from decays of V in its own rest frame in which case they certainly cannot be
parallel to b quarks. So elementary mistake from a professional particle physicist looks rather
implausible. The challenge of the experiments was indeed to distinguish the muon pairs from
muons resulting from b quarks decaying semileptonically and being highly parallel to b quarks.
A further objection of Tommaso is that the gluons should have roughly opposite momenta
and fusion seems highly implausible classically since the gluons tend to be emitted in opposite
directions. Quantally the argument does not look so lethal if one thinks in terms of plane
waves rather than wave packets. Also fermion exchange is involved so that the fusion is not
local process.

6. How the bump appearing in Z0 → b + b + V would be produced if toponium is in question?
The mechanism would be essentially the same as in the production of Ψ/J meson by a c + c
pair. The lowest order diagram would correspond to gluon fusion. Both b and b emit gluon
and these could annihilate to a top pair and these would form the bound state. Do virtual t
and t have ordinary masses 172 GeV or scaled down masses of about 15 GeV? The checking
which option is correct would require numerical calculation and a model for the fusion of the
pair to toponium.
That the momenta of muons are parallel to those of b and b might be understood. One can ap-
proximate gluons with energy about 15 GeV as a brehmstrahlung almost parallel/antiparallel
to the direction of b /b both having energy about 45 GeV in the cm system of Z0. In cm they
would combine to V with helicity in direction of axis nearly parallel to the direction defined by
the opposite momenta of b and b. The V with spin 1 would decay to a muon pair with helicities

http://tinyurl.com/ze6l5wr
http://tinyurl.com/hy8ugf4
http://tinyurl.com/nfzhnej
http://tinyurl.com/zhgyecd
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in the direction of this axis, and since relativistic muons are in question, the momenta would
by helicity conservation tend to be in the direction of this axis as observed.

Are there other indications for scaled variants of quarks?

1. Tony Smith [C64] has talked about indications for several mass peaks for top quark. I have
discussed this in [K70] in terms of p-adic length scale hypothesis. There is evidence for a sharp
peak in the mass distribution of the top quark in 140-150 GeV range). There is also a peak
slightly below 120 GeV, which could correspond to a p-adically scaled down variant t quark
with k = 93 having mass 121.6 GeV for (Ye = 0, Yt = 1). There is also a small peak also
around 265 GeV which could relate to m(t(95)) = 243.2 GeV. Therefore top could appear at
least at p-adic scales k = 93, 94, 95. This argument does not explain the peak in 140-150 GeV
range rather near to top quark mass.

2. What about Aleph anomaly? The value of k(b) in pb ' 2kb uncertain. k(b) = 103 is one
possible value. In [K64]. I have considered the explanation of Aleph anomaly in terms of
k = 96 variant of b quark. The mass scaling would be by factor of 27/2, which would assign
to mass mb = 4.6 GeV mass of about 52 GeV to be compared with 55 GeV.

To sum up, the objections of Tommasso Dorigo might well kill the toponium proposal and
the bump is probably a statistical fluctuation. It is however amazing that its mass comes out
correctly from p-adic length scale hypothesis which does not allow fitting.

Aleph anomaly just refuses to disappear

I learned about evidence for a bump around 28 GeV (see https://arxiv.org/abs/1808.01890).
The title of the preprint is “Search for resonances in the mass spectrum of muon pairs produced in
association with b quark jets in proton-proton collisions at

√
s= 8 and 13 TeV”. An excess of events

above the background near a dimuon mass of 28 GeV is observed in the 8 TeV data, corresponding
to local significances of 4.2 and 2.9 standard deviations for the first and second event categories,
respectively. At 13 TeV data the excess is milder. This induced two dejavu experiences.

1. First dejavu

Last year (2018) came a report from Aleph titled ”Observation of an excess at 30 GeV in
the opposite sign di-muon spectra of Z → bb + X events recorded by the ALEPH experiment at
LEP” (see https://arxiv.org/pdf/1610.06536.pdf). The article represents re-analysis of data
from 1991-1992. The energy brings strongly in mind 28 GeV bump.

TGD - or more precisely p-adic fractality - suggests the existence of p-adically scaled variants
of quarks and leptons with masses coming as powers of 2 (or perhaps even

√
2. They would be

like octaves of a fundamental tone represented by the particle. Neutrino physics is plagued by
anomalies and octaves of neutrino could resolve these problems.

Could one understand 30 GeV bump - possibly same as 28 GeV bump in TGD framework?
b quark has mass 4.12 GeV or 4.65 GeV depending on the scheme used to estimate it. b quark
could correspond to p-adic length scale L(k) for k = 103 but the identification of the p-adic scale
is not quite clear. p-Adically scaling b-quark mass taken to be 4.12 GeV by factor 4 gives about
16.5 GeV (k = 103− 4 = 99), which is one half of 32 GeV: could this correspond to the proposed
30 GeV resonance or even 28 GeV resonance? One must remember that these estimates are rough
since already QCD estimates for b quark mass vary about 10 per cent.

28 GeV bump could correspond to p-adically scaled variant of b with k = 99. b quark would
indeed appear as octaves. But how to understand the discrepancy: could one imagine that there
are actually two mesons involved and analogous to pion and rho meson?

2. Second dejavu

Concerning quarks, I remember an old anomaly reported by Aleph at 56 GeV. This anomaly
is mentioned in a preprint published last year (see https://arxiv.org/pdf/hep-ph/9608264.

pdf) and there is reference to old paper: ALEPH Collaboration, D. Buskulic et al., CERN preprint
PPE/96–052.. What was observed was 4-jet events consisting of dijets with invariant mass around
55 GeV. What makes this interesting is that the mass of 28 GeV particle candidate would be one
half of the mass of a particle with mass of mass of 56 GeV particle, quite near to 55 GeV.

My proposal for the identification of the 55 GeV bump was as a meson formed from scaled
variants b and b corresponding to p-adic prime p ' 2k, k = 96. The above argument suggests

https://arxiv.org/abs/1808.01890
https://arxiv.org/pdf/1610.06536.pdf
https://arxiv.org/pdf/hep-ph/9608264.pdf
https://arxiv.org/pdf/hep-ph/9608264.pdf
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k = 99 − 2 = 97. Note that the production of the 28 GeV bump decaying to muon pair is
associated with production of b quark and second jet.

3. What the resonance are and how could they be produced?

The troubling question is why the two masses around 28 GeV ad 30 GeV? Even worse: for
30 GeV candidate a dip is reported in at 28 GeV! Could the two candidates correspond to π(28)
and ρ(30) having slightly different masses by color-magnetc spin-spin splitting?

The production mechanism should explain why the resonance is associated with b-quark
and jet and also why two different mass values suggest themselves.

1. If one has 56 GeV pseudo-scalar resonance consisting mostly of bb - call it π(56), it could couple
to Z0 by standard instanton density coupling, and one could have the decay Z → Z + π(56).
The final state virtual Z would produce the b-tag in its decay.

2. π(56) in turn would decay strongly to π(28) + ρ(30) with spin 1 and analogous to the rho
meson partner of ordinary pion. Masses would be naturally different for π and ρ.

It is easy to check that the observed spin-spin splitting is consistent with the simplest model
for the spin-spin splitting obtained by extrapolating the for ordinary π − ρ system.

1. At these mass scales the spin-spin splitting proportional to color magnetic moments and thus
to inverses of the b quark masses should be small and indeed is.

2. Consider first ordinary π − ρ system. The predicted masses due to spin-spin splitting are
m(π) = m − ∆/2 and m(ρ) = m + 3∆/2), where one has m = (3m(π) + m(ρ))/4 and
∆ = (m(ρ)−m(π))/2. For π − ρ system one has r1 = ∆m/m ' .5.
∆m/m is due to the interaction of color magnetic moments and of form xr, rα2

sm
2(π)/m2(d).

The small masses of u and d quarks - m(d) ' 4.8 MeV (Wikipedia value, the estimate vary
widely) - implies that m(π)/m(d) ' 28.2 is rather large. The value of αs is larger than αs = .1
achieved at higher energies, which gives r2 = α2

sm
2(π)/m2(d) > .28. One has r1/r2 ' .57.

3. For π(28) − ρ(30) system the values of the parameters are m ' 29 GeV and ∆m = 2 GeV
and r1 = ∆m/m ' .07. The mass ratio is roughly m(π)/m(b) = 2 for heavy mesons for
which quark mass dominates in the meson mass. For αs = .1 the order of magnitude for
r2 = α2

sm
2(π(28))/m2(b) is r2 ' .04 and one has r1/r2 = .57 to be compared with r1/r2 = .56

for ordinary π(28)− ρ(30) system so that the model looks realistic.
Interestingly, the same value of αs works in both cases: does this provide support for the TGD
view about renormalization group invariance of coupling strengths [L63, L71]? This invariance
is not global but implies discrete coupling constant evolution.

15.2.3 Could Neutrinos Appear In Several P-Adic Mass Scales?

There are some indications that neutrinos can appear in several mass scales from neutrino os-
cillations [C4]. These oscillations can be classified to vacuum oscillations and to solar neutrino
oscillations believed to be due to the so called MSW effect in the dense matter of Sun. There are
also indications that the mixing is different for neutrinos and antineutrinos [C23, C3].

In TGD framework p-adic length scale hypothesis might explain these findings. The basic
vision is that the p-adic length scale of neutrino can vary so that the mass squared scale comes as
octaves. Mixing matrices would be universal. The large discrepancy between LSND and MiniBoone
results [C23] contra solar neutrino results could be understood if electron and muon neutrinos have
same p-adic mass scale for solar neutrinos but for LSND and MiniBoone the mass scale of either
neutrino type is scaled up. The existence of a sterile neutrino [C47] suggested as an explanation of
the findings would be replaced by p-adically scaled up variant of ordinary neutrino having standard
weak interactions. This scaling up can be different for neutrinos and antineutrinos as suggested
by the fact that the anomaly is present only for antineutrinos.

The different values of ∆m2 for neutrinos and antineutrinos in MINOS experiment [C3] can
be understood if the p-adic mass scale for neutrinos increases by one unit. The breaking of CP and
CPT would be spontaneous and realized as a choice of different p-adic mass scales and could be
understood in ZEO. Similar mechanism would break supersymmetry and explain large differences
between the mass scales of elementary fermions, which for same p-adic prime would have mass
scales differing not too much.
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Experimental results

There several different type of experimental approaches to study the oscillations. One can study the
deficit of electron type solar electron neutrinos (Kamiokande, Super-Kamiokande); one can measure
the deficit of muon to electron flux ratio measuring the rate for the transformation of νµ to ντ
(super-Kamiokande); one can study directly the deficit of νe (νe) neutrinos due to transformation
to νµ νµ coming from nuclear reactor with energies in the same range as for solar neutrinos
(KamLAND); and one can also study neutrinos from particle accelerators in much higher energy
range such as solar neutrino oscillations (K2K,LSND,Miniboone,Minos).

1. Solar neutrino experiments and atmospheric neutrino experiments

The rate of neutrino oscillations is sensitive to the mass squared differences ∆m2
12, ∆m2

12,
∆m2

13 and corresponding mixing angles θ12, θ13, θ23 between νe, νµ, and ντ (ordered in obvious
manner). Solar neutrino experiments allow to determine sin2(2θ12) and ∆m2

12. The experiments
involving atmospheric neutrino oscillations allow to determine sin2(2θ23) and ∆m2

23.

The estimates of the mixing parameters obtained from solar neutrino experiments and at-
mospheric neutrino experiments are sin2(2θ13) = 0.08, sin2(2θ23) = 0.95, and sin2(2θ12) = 0.86.
The mixing between νe and ντ is very small. The mixing between νe and νµ, and νµ and ντ tends
is rather near to maximal. The estimates for the mass squared differences are ∆m2

12 = 8 × 10−5

eV2, ∆m2
23 ' ∆m2

13 = 2.4× 10−3 eV2. The mass squared differences have obviously very different
scale but this need not means that the same is true for mass squared values.

2. The results of LSND and MiniBoone

LSND experiment measuring the transformation of νµ to νe gave a totally different esti-
mate for ∆m2

12 than solar neutrino experiments MiniBoone [C47]. If one assumes same value of
sin2(θ12)2 ' .86 one obtains ∆m2

23 ∼ .1 eV2 to be compared with ∆m2
12 = 8 × 10−5 eV2. This

result is known as LSND anomaly and led to the hypothesis that there exists a sterile neutrino
having no weak interactions and mixing with the ordinary electron neutrino and inducing a rapid
mixing caused by the large value of ∆m2. The purpose of MiniBoone experiment [C23] was to test
LSND anomaly.

1. It was found that the two-neutrino fit for the oscillations for νµ → νe is not consistent with
LSND results. There is an unexplained 3σ electron excess for E < 475 MeV. For E > 475
MeV the two-neutrino fit is not consistent with LSND fit. The estimate for ∆m2 is in the
range .1− 1 eV2 and differs dramatically from the solar neutrino data.

2. For antineutrinos there is a small 1.3σ electron excess for E < 475 MeV. For E > 475 MeV
the excess is 3 per cent consistent with null. Two-neutrino oscillation fits are consistent with
LSND. The best fit gives (∆m2

12, sin
2(2θ12) = (0.064 eV 2, 0.96). The value of ∆m2

12 is by a
factor 800 larger than that estimated from solar neutrino experiments.

All other experiments (see the table of the summary of [C47] about sterile neutrino hy-
pothesis) are consistent with the absence of νµ → ne and νµ → νe mixing and only LSND and
MiniBoone report an indication for a signal. If one however takes these findings seriously they sug-
gest that neutrinos and antineutrinos behave differently in the experimental situations considered.
Two-neutrino scenarios for the mixing (no sterile neutrinos) are consistent with data for either
neutrinos or antineutrinos but not both [C47].

3. The results of MINOS group

The MINOS group at Fermi National Accelerator Laboratory has reported evidence that the
mass squared differences between neutrinos are not same for neutrinos and antineutrinos [C3]. In
this case one measures the disappearance of νµ and νµ neutrinos from high energy beam beam in the
range .5-1 GeV and the dominating contribution comes from the transformation to τ neutrinos.
∆m2

23 is reported to be about 40 percent larger for antineutrinos than for neutrinos. There is
5 percent probability that the mass squared differences are same. The best fits for the basic
parameters are (∆m2

23 = 2.35 × 10−3, sin2(2θ23 = 1) for neutrinos with error margin for ∆m2

being about 5 per cent and (∆m2
23 = 3.36 × 10−3, sin2(2θ23) = .86) for antineutrinos with errors

margin around 10 per cent. The ratio of mass squared differences is r ≡ ∆m2(ν)/∆m2(ν) = 1.42.
If one assumes sin2(2θ23) = 1 in both cases the ratio comes as r = 1.3.
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Explanation of findings in terms of p-adic length scale hypothesis

p-Adic length scale hypothesis predicts that fermions can correspond to several values of p-adic
prime meaning that the mass squared comes as octaves (powers of two). The simplest model for the
neutrino mixing assumes universal topological mixing matrices and therefore for CKM matrices so
that the results should be understood in terms of different p-adic mass scales. Even CP breaking
and CPT breaking at fundamental level is un-necessary although it would occur spontaneously in
the experimental situation selecting different p-adic mass scales for neutrinos and antineutrinos.
The expression for the mixing probability a function of neutrino energy in two-neutrino model for
the mixing is of form

P (E) = sin2(2θ)sin2(X) , X = k ×∆m2 × L

E
.

Here k is a numerical constant, L is the length travelled, and E is neutrino energy.

1. LSND and MiniBoone results

LSND and MiniBoone results are inconsistent with solar neutrino data since the value of
∆m2

12 is by a factor 800 larger than that estimated from solar neutrino experiments. This could be
understood if in solar neutrino experiments νµ and νw correspond to the same p-adic mass scale
k = k0 and have very nearly identical masses so that ∆m2 scale is much smaller than the mass
squared scale. If either p-adic scale is changed from k0 to k0 + k, the mass squared difference
increases dramatically. The counterpart of the sterile neutrino would be a p-adically scaled up
version of the ordinary neutrino having standard electro-weak interactions. The p-adic mass scale
would correspond to the mass scale defined by ∆m2 in LSND and MiniBoone experiments and
therefore a mass scale in the range .3-1 eV. The electron Compton scale assignable to eV mass scale
could correspond to k = 167, which corresponds to cell length scale of 2.5 µm. k = 167 defines one
of the Gaussian Mersennes MG,k = (1 + i)k − 1. Le(k) =

√
5L(k), k = 151, 157, 163, 167, varies

in the range 10 nm (cell membrane thickness) and 2.5 µm defining the size of cell nucleus. These
scales could be fundamental for the understanding of living matter [K38] .

2. MINOS results

One must assume also now that the p-adic mass scales for ντ and ντ are near to each other
in the “normal” experimental situation. Assuming that the mass squared scales of νµ or νµ come
as 2−k powers of m2

νµ = m2
ντ + ∆m2, one obtains

m2
ντ (k0)−m2

νµ(k0 + k) = (1− 2−k)m2
nuτ − 2−k∆m2

0 .

For k = 1 this gives

r =
∆m2(k = 2)

∆m2(k = 1)
=

3
2 −

2r
3

1− r
, r =

∆m2
0

m2
ντ

. (15.2.1)

One has r ≥ 3/2 for r > 0 if one has mντ > mνµ for the same p-adic length scale. The experimental
ratio r ' 1.3 could be understood for r ' −.31. The experimental uncertainties certainly allow
the value r = 1.5 for k(νµ) = 1 and k(νµ) = 2.

This result implies that the mass scale of νµ and ντ differ by a factor 1/2 in the “normal”
situation so that mass squared scale of ντ would be of order 5 × 10−3 eV2. The mass scales for
ντ and ντ would about .07 eV and .05 eV. In the LSND and MiniBoone experiments the p-adic
mass scale of other neutrino would be around .1-1 eV so that different p-adic mass scale large by
a factor 2k/2, 2 ≤ 2 ≤ 7 would be in question. The different resuts from various experiments could
be perhaps understood in terms of the sensitivity of the p-adic mass scale to the experimental
situation. Neutrino energy could serve as a control parameter.

CPT breaking [B3] requires the breaking of Lorentz invariance. ZEO could therefore allow
a spontaneous breaking of CP and CPT. This might relate to matter antimatter asymmetry at the
level of given CD.

There is some evidence that the mixing matrices for neutrinos and antineutrinos are different
in the experimental situations considered [C3, C23]. This would require CPT breaking in the



728 Chapter 15. New Physics Predicted by TGD

standard QFT framework. In TGD p-adic length scale hypothesis allowing neutrinos to reside
in several p-adic mass scales. Hence one could have apparent CPT breaking if the measurement
arrangements for neutrinos and antineutrinos select different p-adic length scales for them [K64] .

Is CP and T breaking possible in ZEO?

The CKM matrices for quarks and possibly also leptons break CP and T. Could one understand
the breaking of CP and T at fundamental level in TGD framework?

1. In standard QFT framework Chern-Simons term breaks CP and T. Kähler action indeed
reduces to Chern-Simons terms for the proposed ansatz for preferred extremals assuming that
weak form of electric-magnetic duality holds true.
In TGD framework one must however distinguish between space-time coordinates and em-
bedding space coordinates. CP breaking occurs at the embedding space level but instanton
term and Chern-Simons term are odd under P and T only at the space-time level and thus
distinguish between different orientations of space-time surface. Only if one identifies P and
T at space-time level with these transformations at embedding space level, one has hope of
interpreting CP and T breaking as spontaneous breaking of these symmetries for Kähler ac-
tion and basically due to the weak form of electric-magnetic duality and vanishing of j · A
term for the preferred extremals. This identification is possible for space-time regions allowing
representation as graphs of maps M4 → CP2.

2. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac action
in induced metric with the boundaries of string world sheets at the light-like parton orbits. Its
bosonic counterpart is line-length in induced metric. Field equations imply that the boundaries
are light-like geodesics and fermion has light-like 8-momentum. This suggests strongly a
connection with quantum field theory and an 8-D generalization of twistor Grassmannian
approach. By field equations the bosonic part of this action does not contribute to the Kähler
action. Chern-Simons Dirac terms to which Kähler action reduces could be responsible for the
breaking of CP and T symmetries as they appear in CKM matrix.

3. The GRT-QFT limit of TGD obtained by lumping together various space-time sheets to a
region of Minkowski space with effective metric defined by the sum of Minkowski metric and
deviations of the induced metrics of sheets from Minkowski metric. Gauge potentials for the
effective space-time would idenfied as sums of gauge potentials for space-time sheets. At this
limit the identification of P and T at space-time level and embedding space level would be
natural. Could the resulting effective theory in Minkowski space or GRT space-time break
CP and T slightly? If so, CKM matrices for quarks and fermions would emerge as a result of
representing different topologies for wormhole throats with different topologies as single point
like particle with additional genus quantum number.

4. Could the breaking of CP and T relate to the generation of the arrow of time? The arrow of
time relates to the fact that state function reduction can occur at either boundary of CD [K9].
Zero energy states do not change at the boundary at which reduction occurs repeatedly but
the change at the other boundary and also the wave function for the position of the second
boundary of CD changes in each quantum jump so that the average temporal distance between
the tips of CD increases. This gives to the arrow of psychological time, and in TGD inspired
theory of consciousness “self” as a counterpart of observed can be identified as sequence of
quantum jumps for which the state function reduction occurs at a fixed boundary of CD.
The sequence of reductions at fixed boundary breaks T-invariance and has interpretation as
irreversibility. The standard view is that the irreversibility has nothing to do with breaking of
T-invariance but it might be that in elementary particle scales irreversibility might manifest
as small breaking of T-invariance.

Is CPT breaking needed/possible?

Different values of ∆m2
ij for neutrinos and antineutrinos would require in standard QFT framework

not only the violation of CP but also CPT [B3] which is the cherished symmetry of quantum field
theories. CPT symmetry states that when one reverses time’s arrow, reverses the signs of momenta
and replaces particles with their antiparticles, the resulting Universe obeys the same laws as the
original one. CPT invariance follows from Lorentz invariance, Lorentz invariance of vacuum state,
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and from the assumption that energy is bounded from below. On the other hand, CPT violation
requires the breaking of Lorentz invariance.

In TGD framework this kind of violation does not seem to be necessary at fundamental
level since p-adic scale hypothesis allowing neutrinos and also other fermions to have several mass
scales coming as half-octaves of a basic mass scale for given quantum numbers. In fact, even in
TGD inspired low energy hadron physics quarks appear in several mass scales. One could explain
the different choice of the p-adic mass scales as being due to the experimental arrangement which
selects different p-adic length scales for neutrinos and antineutrinos so that one could speak about
spontaneous breaking of CP and possibly CPT. The CP breaking at the fundamental level which
is however expected to be small in the case considered. The basic prediction of TGD and relates
to the CP breaking of Chern-Simons action inducing CP breaking in the Kähler-Dirac action
defining the fermionic propagator [L8]. For preferred extremals Kähler action would indeed reduce
to Chern-Simons terms by weak form of electric-magnetic duality.

In TGD one has breaking of translational invariance and the symmetry group reduces to
Lorentz group leaving the tip of CD invariant. Positive and negative energy parts of zero energy
states correspond to different Lorentz groups and zero energy states are superpositions of state
pairs with differen values of mass squared. Is the breaking of Lorentz invariance in this sense
enough for breaking of CPT is not clear.

One can indeed consider the possibility of a spontaneous breaking of CPT symmetry in
TGD framework since for a given CD (causal diamond defined as the intersection of future and
past directed light-cones whose size scales are assumed to come as octaves) the Lorentz invariance
is broken due to the preferred time direction (rest system) defined by the time-like line connecting
the tips of CD. Since the world of classical worlds is union of CDs with all boosts included the
Lorentz invariance is not violated at the level of WCW. Spontaneous symmetry breaking would
be analogous to that for the solutions of field equations possessing the symmetry themselves. The
mechanism of breaking would be same as that for supersymmetry. For same p-adic length scale
particles and their super-partners would have same masses and only the selection of the p-adic
mass scale would induces the mass splitting.

Encountering the puzzle of inert neutrinos once again

Sabine Hossenfelder had an interesting link to Quanta Magazine article “On a Hunt for a Ghost
of a Particle” telling about the plans of particle physicist Janet Conrad to find the inert neutrino
(see http://tinyurl.com/ybhcjwu6).

The attribute “sterile” or “inert” (I prefer the latter since it is more respectful!) comes
from the assumption this new kind of neutrino does not have even weak interactions and feels only
gravitation. There are indications for the existence of inert neutrino from LSND experiments (see
http://tinyurl.com/y7ktyfrs) and some Mini-Boone experiments(see http://tinyurl.com/

y74hmq7c). In standard model it would be interpreted as fourth generation neutrino which would
suggest also the existence of other fourth generation fermions. For this there is no experimental
support.

The problem of inert neutrino is very interesting also from TGD point of view. TGD predicts
also right handed neutrino with no electroweak couplings but mixes with left handed neutrino by a
new interaction produced by the mixing of M4 and CP2 gamma matrices: this is a unique feature
of induced spinor structure and serves as a signature of sub-manifold geometry and one signature
distinguishing TGD from standard model. Only massive neutrino with both helicities remains and
behaves in good approximation as a left handed neutrino.

There are indeed indications in both LSND and MiniBoone experiments for inert neutrino.
But only in some of them. And not in the ICECUBE experiment (see http://tinyurl.com/

h79dyj3) performed at was South Pole. Special circumstances are required. “Special circum-
stances” need not mean bad experimentation. Why this strange behavior?

1. The evidence for the existence of inert neutrino, call it νI , came from antineutrino mixing
νµ → νe manifesting as mass squared difference between muonic and electronic antineutrinos.
This difference was ∆m2(LSND) = 1−10 eV 2 in the LSND experiment. The other two mass
squared differences deduced from solar neutrino mixing and atmospheric neutrino mixing were
∆m2(sol) = 8× 10−5 eV 2 and ∆m2(atm) = 2.5× 10−3 eV 2 respectively.

http://tinyurl.com/ybhcjwu6
http://tinyurl.com/y7ktyfrs
http://tinyurl.com/y74hmq7c
http://tinyurl.com/y74hmq7c
http://tinyurl.com/h79dyj3
http://tinyurl.com/h79dyj3
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2. The inert neutrino interpretation would be that actually νµ → νI takes place and the mass
squared difference for νµandνI determines the mixing.

1. The explanation based on several p-adic mass scales for neutrinos

The first TGD inspired explanation proposed for a long time ago relies on p-adic length
scale hypothesis predicting that neutrinos can exist in several p-adic length scales for which mass
squared scale ratios come as powers of 2. Mass squared differences would also differ by a power
of two. Indeed, the mass squared differences from solar and atmospheric experiments are in ratio
2−5 so that the model looks promising!

Writing ∆m2(LSND) = x eV 2 the condition m2(LSND)/m2(atm) = 2k has 2 possible
solutions corresponding to k = 9, or k = 10 and x = 2.5 and x = 1.25. The corresponding mass
squared differences 2.5 eV 2 and 1.25 eV 2.

The interpretation would be that the three measurement outcomes correspond to 3 neu-
trinos with nearly identical masses in given p-adic mass scale k but having different p-adc mass
scales. The atmospheric and solar p-adic length scales would comes as powers (L(atm), L(sol)) =
(2n/2, 2(n+10)/2) × L(k(LSND)) , n = 9 or n = 10. For n = 10 the mass squared scales would
come as powers of 210.

How to estimate the value of k(LSND)?

1. Empirical data and p-adic mass calculations suggest that neutrino mass is of order .1 eV . The
most natural candidates for p-adic mass scales would correspond to k = 163, 167 or k = 169.
The first primes k = 163, 167 correspond to Gaussian Mersenne primes MG,n = (1 + i)n − 1
and to p-adic length scales L(163) = 640 nm and L(167) = 2.56 µm.

2. p-Adic mass calculations [K60] predict that the ratio x = ∆m2/m2 for µ− e system has upper
bound x ∼ .4. This does not take into account the mixing effects but should give upper bound
for the mass squared difference affected by the mixing.

3. The condition ∆m2/m2 = .4 × x, where x ≤ 1 parametrizes the mass difference assuming
∆m(LSND)2 = 2.5 eV 2 gives m2(LSND) ∼ 6.25 eV 2/x.
x = 1/4 would give (k(LSND), k(atm), k(sol)) = (157, 167, 177). k(LSND) and k(atm) label
two Gaussian Mersenne primes MG,k = (1+ i)k in the series k = 151, 157, 163, 167 of Gaussian
Mersennes. The scale L(151) = 10 nm defines cell membrane thickness. All these scales
could be relevant for DNA coiling. k(sol) = 177 is not Mersenne prime nor even prime. The
correspoding p-adic length scale is 82 µm perhaps assignable to neuron. Note that k = 179 is
prime.

This explanation looks rather nice because the mass squared difference ratios come as powers
of two. What seems clear that the longer the path of neutrino travelled from the source to the
detector, the smaller than mass squared: in other words one has k(LSND) < k(atm) < k(sol).
This suggest that neutrinos transform to lower mass neutrinos during the travel k(LSND) →
k(atm)→ k(sol). The sequence could contains also other p-adic length scales.

What really happens when neutrino characterised by p-adic length scale L(k1) transforms
to a neutrino characterized by p-adic length scale L(k2).

1. The simplest possibility would be that k1 → k2 corresponds to a 2-particle vertex. The
conservation of energy and momentum however prevent this process unless one has ∆m2 = 0.
The emission of weak boson is not kinematically possible since Z0 boson is so massive. For
instance, solar neutrinos have energies in MeV range. The presence of classical Z0 field could
make the transformation possible and TGD indeed predicts classical Z0 fields with long range.
The simplest assumption is that all classical electroweak gauge fields except photon field vanish
at string world sheets. This could in fact be guaranteed by gauge choice analogous to the
unitary gauge.

2. The twistor lift of TGD however provides an alternative option. Twistor lift predicts that
also M4 has the analog of Kähler structure characterized by the Kähler form J(M4) which
is covariantly constant and self-dual and thus corresponds to parallel electric and magnetic
components of equal strength. One expects that this gives rise to both classical and quantum
field coupling to fermion number, call this U(1) gauge field U . The presence of J(M4) induces
P, T, and CP breaking and could be responsible for CP breaking in both leptonic and quark
sectors and also explain matter antimatter asymmetry [L37, L41] as well as large parity viola-
tion in living matter (chiral selection). The coupling constant strength α1 is rather small due
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to the constraints coming from atomic physics (new U(1) boson couples to fermion number
and this causes a small scaling of the energy levels). One has α1 ∼ 10−9, which is also the
number characterizing matter antimatter asymmetry as ratio of the baryon density to CMB
photon density.
Already the classical long ranged U field could induce the neutrino transitions. k1 → k2

transition could become allowed by conservation laws also by emission of U boson. The
simplest situation corresponds to parallel momenta for neutrinos and U . Conservation laws of
energy and momentum give E1 =

√
p2

1 +m2
1 = E2+E(U) =

√
p2

2 +m2
2+E(U), p1 = p2+p(U).

Masslessness gives E(U) = p(U). This would give in good approximation p2/p1 = m2
1/m

2
2 and

E(U) = p1 − p2 = p1(1−m2
1/m

2
2).

One can ask whether CKM mixing for quarks could involve similar mechanism explaining the
CP breaking. Also the transitions changing heff/h = n could involve U boson emission.

2. The explanation based on several p-adic mass scales for neutrinos

Second TGD inspired interpretation would be as a transformation of ordinary neutrino to
a dark variant of ordinary neutrino with heff/h = n occurring only if the situation is quantum
critical (what would this mean now?). Dark neutrino would behave like inert neutrino. One cannot
exclude this option but it does not give quantitative predictions.

This proposal need not however be in conflict with the first one since the transition k(LSND)→
k1 could produce dark neutrino with different value of heff/h = 2∆k scaling up the Compton scale
by this factor. This transition could be followed by a transition back to a particle with p-adic
length scale scaled up by 22k. I have proposed that p-adic phase transitions occurring at criticality
requiring heff/h > 1 are important in biology [K58].

There is evidence for a similar effect in the case of neutron decays. Neutron lifetime is found
to be considerably longer than predicted. The TGD explanation [K64] is that part of protons
resulting in the beta decays of neutrino transform to dark protons and remain undetected so that
lifetime looks longer than it really is [L55] (see http://tinyurl.com/yc8d7sed). Note however
that also now conservation laws give constraints and the emission of U photon might be involved
also in this case. As a matter of fact, one can consider the possibility that the phase transition
changing heff/h = n involve the emission of U photon too. The mere mixing of the ordinary
and dark variants of particle would induce mass splitting and U photon would take care of energy
momentum conservation.

LSND anomaly is here again!

MinibooNe collaboration published a highly interesting preprint [C20] “Observation of a Signifi-
cant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment” (see
https://arxiv.org/abs/1805.12028).

The findings give strong support for old and forgotten LSND anomaly - forgotten because
it is in so blatant conflict with the standard model wisdom. The significance level of the anomaly
is 6.1 sigmas in the new experiment. 5 sigma is regarded as the threshold for a discovery. It is nice
to see this fellow again: anomalies are the theoreticians best friends.

To me this seems like a very important event from the point of view of standard model and
even theoretical particle physics: this anomaly together with other anomalies raises hopes that
the patient could leave the sickbed after illness that has lasted for more than four decades after
becoming a victim of the GUT infection.

LSND as also other experiments are consistent with neutrino mixing model. LSND however
produces electron excess as compared to other neutrino experiments. Anomaly means that the
parameters of the neutrino mixing matrix (masses, mixing angles, phases) are not enough to
explain all experiments.

One manner to explain the anomaly would be fourth “inert” neutrino having no couplings
to electroweak bosons. TGD predicts both right and left-handed neutrinos and right-handed ones
would not couple electroweakly. In massivation they would however combine to single massive
neutrino just like in Higgs massivation Higgs gives components for massive gauge bosons and only
neutral Higgs having no coupling to photon remains. Therefore this line of thought does not loo
promising in TGD framework.

http://tinyurl.com/yc8d7sed
https://arxiv.org/abs/1805.12028
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For many years ago I explained the LSND neutrino anomaly in TGD framework as being
due to the fact that neutrinos can correspond to several p-adic mass scales. p-Adic mass scale
coming as power of 21/2 would bring in the needed additional parameter. The new particles could
be ordinary neutrinos with different p-adic mass scales. The neutrinos used in experiment would
have p-adic length scale depending on their origin. Lab, Earth’s atmosphere, Sun, ... It is possible
that the neutrinos transform during their travel to less massive neutrinos.

What is intriguing that the p-adic length scale range that can be considered as candidates for
neutrino Compton lengths is biologically extremely interesting. This range could correspond to the
p-adic length scales L(k) ∼ 2(k−151)/2L(151), k = 151, 157, 163, 167 varying from cell membrane
thickness 10 nm to 2.5 µm. These length scales correspond to Gaussian Mersennes MG,k =
(1 + i)k − 1. The appearance of four of 4 Gaussian Mersennes in such a short length scale interval
is a number theoretic miracle. Could neutrinos or their dark variants with heff = n× h0 together
with dark variants weak bosons effectively massless below their Compton length have a fundamental
role in quantum biology?

Remark: h = 6 × h0 is the most plausible option at this moment [L31, L60] (see http:

//tinyurl.com/ybxlqqsj and http://tinyurl.com/yafndef9).

15.3 Family Replication Phenomenon And Super-Symmetry

15.3.1 Family Replication Phenomenon For Bosons

TGD predicts that also gauge bosons, with gravitons included, should be characterized by family
replication phenomenon but not quite in the expected manner. The first expectation was that
these gauge bosons would have at least 3 light generations just like quarks and leptons.

Only within last years it has become clear that there is a deep difference between fermions
and gauge bosons. Elementary fermions and particles super-conformally related to elementary
fermions correspond to single throat of a wormhole contact assignable to a topologically condensed
CP2 type vacuum extremal whereas gauge bosons would correspond to a wormhole throat pair
assignable to wormhole contact connecting two space-time sheets. Wormhole throats correspond
to light-like partonic 3-surfaces at which the signature of the induced metric changes.

In the case of 3 generations gauge bosons can be arranged to octet and singlet representations
of a dynamical SU(3) and octet bosons for which wormhole throats have different genus could be
massive and effectively absent from the spectrum.

Exotic gauge boson octet would induce particle reactions in which conserved handle number
would be exchanged between incoming particles such that total handle number of boson would be
difference of the handle numbers of positive and negative energy throat. These gauge bosons would
induce flavor changing but genus conserving neutral current. There is no evidence for this kind of
currents at low energies which suggests that octet mesons are heavy. Typical reaction would be
µ+ e→ e+ µ scattering by exchange of ∆g = 1 exotic photon.

15.3.2 Supersymmetry In Crisis

Supersymmetry is very beautiful generalization of the ordinary symmetry concept by generaliz-
ing Lie-algebra by allowing grading such that ordinary Lie algebra generators are accompanied by
super-generators transforming in some representation of the Lie algebra for which Lie-algebra com-
mutators are replaced with anti-commutators. In the case of Poincare group the super-generators
would transform like spinors. Clifford algebras are actually super-algebras. Gamma matrices anti-
commute to metric tensor and transform like vectors under the vielbein group (SO(n) in Euclidian
signature). In supersymmetric gauge theories one introduced super translations anti-commuting
to ordinary translations.

Supersymmetry algebras defined in this manner are characterized by the number of super-
generators and in the simplest situation their number is one: one speaks about N = 1 SUSY and
minimal super-symmetric extension of standard model (MSSM) in this case. These models are
most studied because they are the simplest ones. They have however the strange property that
the spinors generating SUSY are Majorana spinors- real in well-defined sense unlike Dirac spinors.
This implies that fermion number is conserved only modulo two: this has not been observed

http://tinyurl.com/ybxlqqsj
http://tinyurl.com/ybxlqqsj
http://tinyurl.com/yafndef9
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experimentally. A second problem is that the proposed mechanisms for the breaking of SUSY do
not look feasible.

LHC results suggest MSSM does not become visible at LHC energies. This does not exclude
more complex scenarios hiding simplest N = 1 to higher energies but the number of real believers
is decreasing. Something is definitely wrong and one must be ready to consider more complex
options or totally new view abot SUSY.

What is the analog of SUSY in TGD framework? I must admit that I am still fighting to
gain understanding of SUSY in TGD framework [K88]. That I can still imagine several scenarios
shows that I have not yet completely understood the problem but I am working hardly to avoid
falling to the sin of sloppying myself.

At the basic level one has super-conformal invariance generated in the fermion sector by the
super-conformal charges assignable to the strings emanating from partonic 2-surfaces and connect-
ing them to each other. For elementary particles one has 2 wormhole contacts and 4 wormhole
throats. If the number of strings is just one, one has symplectic super-conformal symmetry, which
is already huge. Several strings must be allowed and this leads to the Yangian variant of super-
conformal symmetry, which is multi-local (multi-stringy).

One can also say that fermionic oscillator operators generate infinite-D super-algebra. One
can restrict the consideration to lowest conformal weights if spinorial super-conformal invariance
acts as gauge symmetry so that one obtains a finite-D algebra with generators labelled by electro-
weak quantum numbers of quarks and leptons. This super-symmetry is badly broken but contains
the algebra generated by right-handed neutrino and its conjugate as sub-algebra.

The basic question is whether covariantly constant right handed neutrino generators N = ∈
SUSY or whether the SUSY is generated as approximate symmetry by adding massless right-
handed neutrino to the state thus changing its four-momentum. The problem with the first option
is that it the standard norm of the state is naturally proportional to four-momentum and vanishes
at the limit of vanishing four-momentum: is it possible to circumvent this problem somehow? In
the following I summarize the situation as it seems just now.

1. In TGD framework N = 1 SUSY is excluded since B and L and conserved separately and
embedding space spinors are not Majorana spinors. The possible analog of space-time SUSY
should be a remnant of a much larger super-conformal symmetry in which the Clifford algebra
generated by fermionic oscillator operators giving also rise to the Clifford algebra generated by
the gamma matrices of the “world of classical worlds” (WCW) and assignable with string world
sheets. This algebra is indeed part of infinite-D super-conformal algebra behind quantum TGD.
One can construct explicitly the conserved super conformal charges accompanying ordinary
charges and one obtains something analogous to N =∞ super algebra. This SUSY is however
badly broken by electroweak interactions.

2. The localization of induced spinors to string world sheets emerges from the condition that
electromagnetic charge is well-defined for the modes of induced spinor fields. There is however
an exception: covariantly constant right handed neutrino spinor νR: it can be de-localized
along entire space-time surface. Right-handed neutrino has no couplings to electroweak fields.
It couples however to left handed neutrino by induced gamma matrices except when it is
covariantly constant. Note that standard model does not predict νR but its existence is
necessary if neutrinos develop Dirac mass. νR is indeed something which must be considered
carefully in any generalization of standard model.

Could covariantly constant right handed neutrinos generate SUSY?

Could covariantly constant right-handed spinors generate exact N = 2 SUSY? There are two
spin directions for them meaning the analog N = 2 Poincare SUSY. Could these spin directions
correspond to right-handed neutrino and antineutrino. This SUSY would not look like Poincare
SUSY for which anti-commutator of super generators would be proportional to four-momentum.
The problem is that four-momentum vanishes for covariantly constant spinors! Does this mean
that the sparticles generated by covariantly constant νR are zero norm states and represent super
gauge degrees of freedom? This might well be the case although I have considered also alternative
scenarios.
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What about non-covariantly constant right-handed neutrinos?

Both embedding space spinor harmonics and the Kähler-Dirac equation have also right-handed
neutrino spinor modes not constant in M4 and localized to the partonic orbits. If these are
responsible for SUSY then SUSY is broken.

1. Consider first the situation at space-time level. Both induced gamma matrices and their
generalizations to Kähler-Dirac gamma matrices defined as contractions of embedding space
gamma matrices with the canonical momentum currents for Kähler action are superpositions
of M4 and CP2 parts. This gives rise to the mixing of right-handed and left-handed neutrinos.
Note that non-covariantly constant right-handed neutrinos must be localized at string world
sheets.
This in turn leads neutrino massivation and SUSY breaking. Given particle would be accom-
panied by sparticles containing varying number of right-handed neutrinos and antineutrinos
localized at partonic 2-surfaces.

2. One an consider also the SUSY breaking at embedding space level. The ground states of the
representations of extended conformal algebras are constructed in terms of spinor harmonics
of the embedding space and form the addition of right-handed neutrino with non-vanishing
four-momentum would make sense. But the non-vanishing four-momentum means that the
members of the super-multiplet cannot have same masses. This is one manner to state what
SUSY breaking is.

What one can say about the masses of sparticles?

The simplest form of massivation would be that all members of the super-multiplet obey the same
mass formula but that the p-adic length scales associated with them are different. This could
allow very heavy sparticles. What fixes the p-adic mass scales of sparticles? If this scale is CP2

mass scale SUSY would be experimentally unreachable. The estimate below does not support this
option.

One can consider the possibility that SUSY breaking makes sparticles unstable against phase
transition to their dark variants with heff = n× h. Sparticles could have same mass but be non-
observable as dark matter not appearing in same vertices as ordinary matter! Geometrically the
addition of right-handed neutrino to the state would induce many-sheeted covering in this case
with right handed neutrino perhaps associated with different space-time sheet of the covering.

This idea need not be so outlandish at it looks first.

1. The generation of many-sheeted covering has interpretation in terms of breaking of conformal
invariance. The sub-algebra for which conformal weights are n-tuples of integers becomes the
algebra of conformal transformations and the remaining conformal generators do note represent
gauge degrees of freedom anymore. They could however represent conserved conformal charges
still.

2. This generalization of conformal symmetry breaking gives rise to infinite number of fractal
hierarchies formed by sub-algebras of conformal algebra and is also something new and a
fruit of an attempt to avoid sloppy thinking. The breaking of conformal symmetry is indeed
expected in massivation related to the SUSY breaking.

The following poor man’s estimate supports the idea about dark sfermions and the view
that sfermions cannot be very heavy.

1. Neutrino mixing rate should correspond to the mass scale of neutrinos known to be in eV
range for ordinary value of Planck constant. For heff/h = n it is reduced by factor 1/n, when
mass kept constant. Hence sfermions could be stabilized by making them dark.

2. A very rough order of magnitude estimate for sfermion mass scale is obtained from Uncertainty
Principle: particle mass should be higher than its decay rate. Therefore an estimate for the
decay rate of sfermion could give a lower bound for its mass scale.

3. Assume the transformation νR → νL makes sfermion unstable against the decay to fermion
and ordinary neutrino. If so, the decay rate would be dictated by the mixing rate and therefore
to neutrino mass scale for the ordinary value of Planck constant. Particles and sparticles would
have the same p-adic mass scale. Large heff could however make sfermion dark, stable, and
non-observable.
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A rough model for the neutrino mixing in TGD framework

The mixing of neutrinos would be the basic mechanism in the decays of sfermions. The following
argument tries to capture what is essential in this process.

1. Conformal invariance requires that the string ends at which fermions are localized at wormhole
throats are light-like curves. In fact, light-likeness gives rise to Virasosoro conditions.

2. Mixing is described by a vertex residing at partonic surface at which two partonic orbits join.
Localization of fermions to string boundaries reduces the problem to a problem completely
analogous to the coupling of point particle coupled to external gauge field. What is new that
orbit of the particle has edge at partonic 2-surface. Edge breaks conformal invariance since one
cannot say that curve is light-like at the edge. At edge neutrino transforms from right-handed
to left handed one.

3. In complete analogy with ΨγtAtΨ vertex for the point-like particle with spin in external field,
the amplitude describing nuR−νL transition involves matrix elements of form νRΓt(CP2)ZtνL
at the vertex of the CP2 part of the Kähler-Dirac gamma matrix and classical Z0 field.
How Γt is identified? The Kähler-Dirac gamma matrices associated with the interior need
not be well-defined at the light-like surface and light-like curve. One basis of weak form
of electric magnetic duality the Kähler-Dirac gamma matrix corresponds to the canonical
momentum density associated with the Chern-Simons term for Kähler action. This gamma
matrix contains only the CP2 part.

The following provides as more detailed view.

1. Let us denote by ΓtCP2
(in/out) the CP2 part of the Kähler-Dirac gamma matrix at string at at

partonic 2-surface and by Z0
t the value of Z0 gauge potential along boundary of string world

sheet. The direction of string line in embedding space changes at the partonic 2-surface. The
question is what happens to the Kähler-Dirac action at the vertex.

2. For incoming and outgoing lines the equation

D(in/out)Ψ(in/out) = pk(in, out)γkΨ(in/out) ,

where the Kähler-Dirac operator is D(in/out) = Γt(in/out)Dt, is assumed. νR corresponds to
”in” and νR to ”out”. It implies that lines corresponds to massless M4 Dirac propagator and
one obtains something resembling ordinary perturbation theory.
It also implies that the residue integration over fermionic internal momenta gives as a residue
massless fermion lines with non-physical helicities as one can expect in twistor approach. For
physical particles the four-momenta are massless but in complex sense and the imaginary
part comes classical from four-momenta assignable to the lines of generalized Feynman dia-
gram possessing Euclidian signature of induced metric so that the square root of the metric
determinant differs by imaginary unit from that in Minkowskian regions.

3. In the vertex D(in/out) could act in Ψ(out/in) and the natural idea is that νR− νL mixing is
due to this so that it would be described the classical weak current couplings νRΓtCP2

(out)Z0
t (in)νL

and νRΓtCP2
(out)Z0

t (in)νL.

To get some idea about orders of magnitude assume that the CP2 projection of string
boundary is geodesic circle thus describable as Φ = ωt, where Φ is angle coordinate for the circle
and t is Minkowski time coordinate. The contribution of CP2 to the induced metric gtt is ∆gtt =
−R2ω2.

1. In the first approximation string end is a light-like curve in Minkowski space meaning that
CP2 contribution to the induced metric vanishes. Neutrino mixing vanishes at this limit.

2. For a non-vanishing value of ωR the mixing and the order of magnitude for mixing rate and
neutrino mass is expected to be R ∼ ω and m ∼ ω/h. p-Adic length scale hypothesis and the
experimental value of neutrino mass allows to estimate m to correspond to p-adic mass to be
of order eV so that the corresponding p-adic prime p could be p ' 2167. Note that k = 127
defines largest of the four Gaussian Mersennes MG,k = (1 + i)k − 1 appearing in the length
scale range 10 nm -2.5 µm. Hence the decay rate for ordinary Planck constant would be of
order R ∼ 1014/s but large value of Planck constant could reduced it dramatically. In living
matter reductions by a factor 10−12 can be considered.
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To sum up, the space-time SUSY in TGD sense would differ crucially from SUSY in the
standard sense. There would no Majorana spinors and sparticles could correspond to dark phase
of matter with non-standard value of Planck constant. The signatures of the standard SUSY do
not apply to TGD. Of course, a lot of professional work would be needed to derive the signatures
of TGD SUSY.

15.4 New Hadron Physics

15.4.1 Leptohadron Physics

TGD suggest strongly (“predicts” is perhaps too strong expression) the existence of color excited
leptons. The mass calculations based on p-adic thermodynamics and p-adic conformal invariance
lead to a rather detailed picture about color excited leptons.

1. The simplest color excited neutrinos and charged leptons belong to the color octets ν8 and L10

and L1̄0 decouplet representations respectively and lepto-hadrons are formed as the color sin-
glet bound states of these and possible other representations. Electro-weak symmetry suggests
strongly that the minimal representation content is octet and decouplets for both neutrinos
and charged leptons.

2. The basic mass scale for lepto-hadron physics is completely fixed by p-adic length scale hy-
pothesis. The first guess is that color excited leptons have the levels k = 127, 113, 107, ...
(p ' 2k, k prime or power of prime) associated with charged leptons as primary condensation
levels. p-Adic length scale hypothesis allows however also the level k = 112 = 121 in case of
electronic lepto-hadrons. Thus both k = 127 and k = 121 must be considered as a candidate
for the level associated with the observed lepto-hadrons. If also lepto-hadrons correspond non-
perturbatively to exotic Super Virasoro representations, lepto-pion mass relates to pion mass
by the scaling factor L(107)/L(k) = k(107−k)/2. For k = 121 one has mπL ' 1.057 MeV which
compares favorably with the mass mπL ' 1.062 MeV of the lowest observed state: thus k = 121
is the best candidate contrary to the earlier beliefs. The mass spectrum of lepto-hadrons is
expected to have same general characteristics as hadronic mass spectrum and a satisfactory
description should be based on string tension concept. Regge slope is predicted to be of order
α′ ' 1.02/MeV 2 for k = 121. The masses of ground state lepto-hadrons are calculable once
primary condensation levels for colored leptons and the CKM matrix describing the mixing of
color excited lepton families is known.

The strongest counter arguments against color excited leptons are the following ones.

1. The decay widths of Z0 and W boson allow only N = 3 light particles with neutrino quantum
numbers. The introduction of new light elementary particles seems to make the decay widths
of Z0 and W intolerably large.

2. Lepto-hadrons should have been seen in e+e− scattering at energies above few MeV . In
particular, lepto-hadronic counterparts of hadron jets should have been observed.

A possible resolution of these problems is provided by the loss of asymptotic freedom in lepto-
hadron physics. Lepto-hadron physics would effectively exist in a rather limited energy range
about one MeV.

The development of the ideas about dark matter hierarchy [?, K93, K39, K37] led however
to a much more elegant solution of the problem.

1. TGD predicts an infinite hierarchy of various kinds of dark matters which in particular means
a hierarchy of color and electro-weak physics with weak mass scales labelled by appropriate
p-adic primes different from M89: the simplest option is that also ordinary photons and gluons
are labelled by M89.

2. There are number theoretical selection rules telling which particles can interact with each
other. The assignment of a collection of primes to elementary particle as characterizer of
p-adic primes characterizing the particles coupling directly to it, is inspired by the notion of
infinite primes [K94] , and discussed in [?] . Only particles characterized by integers having
common prime factors can interact by the exchange of elementary bosons: the p-adic length
scale of boson corresponds to a common primes.
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3. Also the physics characterized by different values of heff are dark with respect to each other as
far quantum coherent gauge interactions are considered. Laser beams might well correspond
to photons characterized by p-adic prime different from M89 and de-coherence for the beam
would mean decay to ordinary photons. De-coherence interaction involves scaling down of the
Compton length characterizing the size of the space-time of particle implying that particles
do not anymore overlap so that macroscopic quantum coherence is lost.

4. Those dark physics which are dark relative to each other can interact only via graviton ex-
change. If lepto-hadrons correspond to a physics for which weak bosons correspond to a p-adic
prime different from M89, intermediate gauge bosons cannot have direct decays to colored ex-
citations of leptons irrespective of whether the QCD in question is asymptotically free or not.
Neither are there direct interactions between the QED:s and QCD:s in question if M89 char-
acterizes also ordinary photons and gluons. These ideas are discussed and applied in detail
in [?, K93, K39] .

Skeptic reader might stop the reading after these counter arguments unless there were defi-
nite experimental evidence supporting the lepto-hadron hypothesis.

1. The production of anomalous e+e− pairs in heavy ion collisions (energies just above the
Coulomb barrier) suggests the existence of pseudo-scalar particles decaying to e+e− pairs.
A natural identification is as lepto-pions that is bound states of color octet excitations of e+

and e−.

2. The second puzzle, Karmen anomaly, is quite recent [C31] . It has been found that in charge
pion decay the distribution for the number of neutrinos accompanying muon in decay π →
µ+νµ as a function of time seems to have a small shoulder at t0 ∼ ms. A possible explanation
is the decay of charged pion to muon plus some new weakly interacting particle with mass
of order 30 MeV [C10] : the production and decay of this particle would proceed via mixing
with muon neutrino. TGD suggests the identification of this state as color singlet leptobaryon
of, say type LB = fabcL

a
8L

b
8L̄

c
8, having electro-weak quantum numbers of neutrino.

3. The third puzzle is the anomalously high decay rate of orto-positronium. [C43] . e+e− annihi-
lation to virtual photon followed by the decay to real photon plus virtual lepto-pion followed
by the decay of the virtual lepto-pion to real photon pair, πLγγ coupling being determined by
axial anomaly, provides a possible explanation of the puzzle.

4. There exists also evidence for anomalously large production of low energy e+e− pairs [C30,
C41, C35, C59] in hadronic collisions, which might be basically due to the production of
lepto-hadrons via the decay of virtual photons to colored leptons.

In this chapter a revised form of lepto-hadron hypothesis is described.

1. Sigma model realization of PCAC hypothesis allows to determine the decay widths of lepto-pion
and lepto-sigma to photon pairs and e+e− pairs. Ortopositronium anomaly determines the
value of f(πL) and therefore the value of lepto-pion-lepto-nucleon coupling and the decay rate
of lepto-pion to two photons. Various decay widths are in accordance with the experimental
data and corrections to electro-weak decay rates of neutron and muon are small.

2. One can consider several alternative interpretations for the resonances.
Option 1 : For the minimal color representation content, three lepto-pions are predicted corre-
sponding to 8, 10, 10 representations of the color group. If the lightest lepto-nucleons eex have
masses only slightly larger than electron mass, the anomalous e+e− could be actually e+

ex+e−ex
pairs produced in the decays of lepto-pions. One could identify 1.062, 1.63 and 1.77 MeV
states as the three lepto-pions corresponding to 8, 10, 10 representations and also understand
why the latter two resonances have nearly degenerate masses. Since d and s quarks have same
primary condensation level and same weak quantum numbers as colored e and µ, one might
argue that also colored e and µ correspond to k = 121. From the mass ratio of the colored
e and µ, as predicted by TGD, the mass of the muonic lepto-pion should be about 1.8 MeV
in the absence of topological mixing. This suggests that 1.83 MeV state corresponds to the
lightest g = 1 lepto-pion.
Option 2 : If one believes sigma model (in ordinary hadron physics the existence of sigma
meson is not established and its width is certainly very large if it exists), then lepto-pions are
accompanied by sigma scalars. If lepto-sigmas decay dominantly to e+e− pairs (this might be
forced by kinematics) then one could adopt the previous sceneario and could identify 1.062
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state as lepto-pion and 1.63, 1.77 and 1.83 MeV states as lepto-sigmas rather than lepto-pions.
The fact that muonic lepto-pion should have mass about 1.8 MeV in the absence of topological
mixing, suggests that the masses of lepto-sigma and lepto-pion should be rather close to each
other.
Option 3 : One could also interpret the resonances as string model “satellite states” having
interpretation as radial excitations of the ground state lepto-pion and lepto-sigma. This iden-
tification is not however so plausible as the genuinely TGD based identification and will not
be discussed in the sequel.

3. PCAC hypothesis and sigma model leads to a general model for lepto-hadron production in
the electromagnetic fields of the colliding nuclei and production rates for lepto-pion and other
lepto-hadrons are closely related to the Fourier transform of the instanton density Ē · B̄ of
the electromagnetic field created by nuclei. The first source of anomalous e+e− pairs is the
production of σLπL pairs from vacuum followed by σL → e+e− decay. If e+

exe
−
ex pairs rather

than genuine e+e− pairs are in question, the production is production of lepto-pions from
vacuum followed by lepto-pion decay to lepto-nucleon pair.
Option 1 : For the production of lepto-nucleon pairs the cross section is only slightly below
the experimental upper bound for the production of the anomalous e+e− pairs and the decay
rate of lepto-pion to lepto-nucleon pair is of correct order of magnitude.
Option 2 : The rough order of magnitude estimate for the production cross section of anomalous
e+e− pairs via σlπl pair creation followed by σL → e+e− decay, is by a factor of order
1/
∑
N2
c (Nc is the total number of states for a given colour representation and sum over

the representations contributing to the ortopositronium anomaly appears) smaller than the
reported cross section in case of 1.8 MeV resonance. The discrepancy could be due to the
neglect of the large radiative corrections (the coupling g(πLπLσL) = g(σLσLσL) is very large)
and also due to the uncertainties in the value of the measured cross section.
Given the unclear status of sigma in hadron physics, one has a temptation to conclude that
anomalous e+e− pairs actually correspond to lepto-nucleon pairs.

4. The vision about dark matter suggests that direct couplings between leptons and lepto-hadrons
are absent in which case no new effects in the direct interactions of ordinary leptons are
predicted. If colored leptons couple directly to ordinary leptons, several new physics effects
such as resonances in photon-photon scattering at cm energy equal to lepto-pion masses and
the production of eexēex (eex is leptobaryon with quantum numbers of electron) and eexē pairs
in heavy ion collisions, are possible. Lepto-pion exchange would give dominating contribution
to ν − e and ν̄ − e scattering at low energies. Lepto-hadron jets should be observed in e+e−

annihilation at energies above few MeV:s unless the loss of asymptotic freedom restricts lepto-
hadronic physics to a very narrow energy range and perhaps to entirely non-perturbative
regime of lepto-hadronic QCD.

During 18 years after the first published version of the model also evidence for colored µ has
emerged. Towards the end of 2008 CDF anomaly gave a strong support for the colored excitation
of τ . The lifetime of the light long lived state identified as a charged τ -pion comes out correctly and
the identification of the reported 3 new particles as p-adically scaled up variants of neutral τ -pion
predicts their masses correctly. The observed muon jets can be understood in terms of the special
reaction kinematics for the decays of neutral τ -pion to 3 τ -pions with mass scale smaller by a factor
1/2 and therefore almost at rest. A spectrum of new particles is predicted. The discussion of CDF
anomaly led to a modification and generalization of the original model for lepto-pion production
and the predicted production cross section is consistent with the experimental estimate.

15.4.2 Evidence For TGD View About QCD Plasma

The emergence of the first interesting findings from LHC by CMS collaboration [C17, C1] provide
new insights to the TGD picture about the phase transition from QCD plasma to hadronic phase
and inspired also the updating of the model of RHIC events (mainly elimination of some remnants
from the time when the ideas about hierarchy of Planck constants had just born).

In some proton-proton collisions more than hundred particles are produced suggesting a
single object from which they are produced. Since the density of matter approaches to that
observed in heavy ion collisions for five years ago at RHIC, a formation of quark gluon plasma
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and its subsequent decay is what one would expect. The observations are not however quite what
QCD plasma picture would allow to expect. Of course, already the RHIC results disagreed with
what QCD expectations. What is so striking is the evolution of long range correlations between
particles in events containing more than 90 particles as the transverse momentum of the particles
increases in the range 1-3 GeV (see the excellent description of the correlations by Lubos Motl in
his blog [C6] ).

One studies correlation function for two particles as a function of two variables. The first
variable is the difference ∆φ for the emission angles and second is essentially the difference for the
velocities described relativistically by the difference ∆η for hyperbolic angles. As the transverse
momentum pT increases the correlation function develops structure. Around origin of ∆η axis a
widening plateau develops near ∆φ = 0. Also a wide ridge with almost constant value as function
of ∆η develops near ∆φ = π. The interpretation is that particles tend to move collinearly and
or in opposite directions. In the latter case their velocity differences are large since they move in
opposite directions so that a long ridge develops in ∆η direction in the graph.

Ideal QCD plasma would predict no correlations between particles and therefore no struc-
tures like this. The radiation of particles would be like blackbody radiation with no correlations
between photons. The description in terms of string like object proposed also by Lubos Motl on
basis of analysis of the graph showing the distributions as an explanation of correlations looks
attractive. The decay of a string like structure producing particles at its both ends moving nearly
parallel to the string to opposite directions could be in question.

Since the densities of particles approach those at RHIC, I would bet that the explanation
(whatever it is!) of the hydrodynamical behavior observed at RHIC for some years ago should apply
also now. The introduction of string like objects in this model was natural since in TGD framework
even ordinary nuclei are string like objects with nucleons connected by color flux tubes [L3] , [L3] :
this predicts a lot of new nuclear physics for which there is evidence. The basic idea was that in the
high density hadronic color flux tubes associated with the colliding nucleon connect to form long
highly entangled hadronic strings containing quark gluon plasma. The decay of these structures
would explain the strange correlations. It must be however emphasized that in the recent case the
initial state consists of two protons rather than heavy nuclei so that the long hadronic string could
form from the QCD like quark gluon plasma at criticality when long range fluctuations emerge.

The main assumptions of the model for the RHIC events and those observed now deserve
to be summarized. Consider first the “macroscopic description”.

1. A critical system associated with confinement-deconfinement transition of the quark-gluon
plasma formed in the collision and inhibiting long range correlations would be in question.

2. The proposed hydrodynamic space-time description was in terms of a scaled variant of what
I call critical cosmology defining a universal space-time correlate for criticality: the specific
property of this cosmology is that the mass contained by comoving volume approaches to zero
at the initial moment so that Big Bang begins as a silent whisper and is not so scaring. Critical-
ity means flat 3-space instead of Lobatchevski space and means breaking of Lorentz invariance
to SO(4). Breaking of Lorentz invariance was indeed observed for particle distributions but
now I am not so sure whether it has much to do with this.

The microscopic level the description would be like follows.

1. A highly entangled long hadronic string like object (color-magnetic flux tube) would be formed
at high density of nucleons via the fusion of ordinary hadronic color-magnetic flux tubes to
much longer one and containing quark gluon plasma. In QCD world plasma would not be at
flux tube.

2. This geometrically (and perhaps also quantally!) entangled string like object would straighten
and split to hadrons in the subsequent “cosmological evolution” and yield large numbers of
almost collinear particles. The initial situation should be apart from scaling similar as in
cosmology where a highly entangled soup of cosmic strings (magnetic flux tubes) precedes the
space-time as we understand it. Maybe ordinary cosmology could provide analogy as galaxies
arranged to form linear structures?

3. This structure would have also black hole like aspects but in totally different sense as the
10-D hadronic black-hole proposed by Nastase to describe the findings. Note that M-theorists
identify black holes as highly entangled strings: in TGD 1-D strings are replaced by 3-D string
like objects.
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15.4.3 The Incredibly Shrinking Proton

The discovery by Pohl et al (2010) [C42] was that the charge radius of proton deduced from
detuerium - the muonic version of hydrogen atom - is .842 fm and about 4 per cent smaller than .875
fm than the charge radius deduced from hydrogen atom [C50, C53] is in complete conflict with the
cherished belief that atomic physics belongs to the museum of science (for details see the Wikipedia
article http://tinyurl.com/jkt2mkv). The title of the article Quantum electrodynamics-a chink
in the armour? of the article published in Nature [C42] expresses well the possible implications,
which might actually go well extend beyond QED.

Quite recently (2016) new more precise data has emerged from Pohl et al [C45] (see http:

//tinyurl.com/jd2hwuq). Now the reduction of charge radius of muonic variant of deuterium is
measured. The charge radius is reduced from 2.1424 fm to 2.1256 fm and the reduction is .012
fm, which is about .8 per cent (see http://tinyurl.com/j4z3yp9). The charge radius of proton
deduced from it is reported to be consistent with the charge radius deduced from deuterium. The
anomaly seems therefore to be real. Deuterium data provide a further challenge for various models.
The finding is a problem of QED or to the standard view about what proton is. Lamb shift [C2] is
the effect distinguishing between the states hydrogen atom having otherwise the same energy but
different angular momentum. The effect is due to the quantum fluctuations of the electromagnetic
field. The energy shift factorizes to a product of two expressions. The first one describes the effect
of these zero point fluctuations on the position of electron or muon and the second one characterizes
the average of nuclear charge density as “seen” by electron or muon. The latter one should be
same as in the case of ordinary hydrogen atom but it is not. Does this mean that the presence of
muon reduces the charge radius of proton as determined from muon wave function? This of course
looks implausible since the radius of proton is so small. Note that the compression of the muon’s
wave function has the same effect.

Before continuing it is good to recall that QED and quantum field theories in general have
difficulties with the description of bound states: something which has not received too much
attention. For instance, van der Waals force at molecular scales is a problem. A possible TGD
based explanation and a possible solution of difficulties proposed for two decades ago is that for
bound states the two charged particles (say nucleus and electron or two atoms) correspond to two
3-D surfaces glued by flux tubes rather than being idealized to points of Minkowski space. This
would make the non-relativistic description based on Schrödinger amplitude natural and replace
the description based on Bethe-Salpeter equation having horrible mathematical properties.

In the following two models of the anomaly will be discussed.

1. The basic idea of the original model is that muon has some probability to end up to the
magnetic flux tubes assignable to proton. In this state it would not contribute to the ordinary
Schrödinger amplitude. The effect of this would be reduction of |Ψ|2 near origin and apparent
reduction of the charge radius of proton. The weakness of the model is that it cannot make
quantitative prediction for the size of the effect. Even the sign is questionable. Only S-wave
binding energy is affected considerably but does the binding energy really increase by the
interaction of muon with the quarks at magnetic flux tubes? Is the average of the charge
density seen by muon in S wave state larger, in other words does it spend more time near
proton or do the quarks spend more time at the flux tubes?

2. Second option is inspired by data about breaking of universality of weak interactions in neutral
B decays possibly manifesting itself also in the anomaly in the magnetic moment of muon. Also
the different values of the charge radius deduced from hydrogen atom and muonium could
reflect the breaking of universality. In the original model the breaking of universality is only
effective.

3. TGD indeed predicts a dynamical U(3) gauge symmetry whose 8+1 gauge bosons correspond
to pairs of fermion and antifermion at opposite throats of wormhole contact. Throats are
characterized by genus g = 0, 1, 2, so that bosons are superpositions of states labelled by
(g1, g2). Fermions correspond to single wormhole throat carrying fermion number and behave
as U(3) triplet labelled by g.
The charged gauge bosons with different genera for wormhole throats are expected to be very
massive. The 3 neutral gauge bosons with same genus at both throats are superpositions of
states (g, g) are expected to be lighter. Their charge matrices are orthogonal and necessarily
break the universality of electroweak interactions. For the lowest boson family - ordinary gauge

http://tinyurl.com/jkt2mkv
http://tinyurl.com/jd2hwuq
http://tinyurl.com/jd2hwuq
http://tinyurl.com/j4z3yp9
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bosons - the charge matrix is proportional to unit matrix. The exchange of second generation
bosons Z0

1 and γ1 would give rise to Yukawa potential increasing the binding energies of S-
wave states. Therefore Lamb shift defined as difference between energies of S and P waves is
increased and the charge radius deduced from Lamb shift becomes smaller.

4. The model thus predicts a correct sign for the effect but the size of the effect from näıve
estimate assuming only γ1 contribution and α1 = α ad M = 2.9 TeV is almost by an order
of magnitude too small. The values of the gauge couplings α1 and α1Z, 1 are free parameters
as also the mixing angles between states (g, g). The effect is also proportional to the ratio
(mµ/M(boson)2. It turns out that the inclusion of Z0

1 contribution and assumption α1 and
α1Z, 1 are near color coupling strength αs gives a correct prediction.

Basic facts and notions

In this section the basic TGD inspired ideas and notions - in particular the notion of field body -
are introduced and the general mechanism possibly explaining the reduction of the effective charge
radius relying on the leakage of muon wave function to the flux tubes associated with u quarks is
introduced. After this the value of leakage probability is estimated from the standard formula for
the Lamb shift in the experimental situation considered.

1. Basic notions of TGD which might be relevant for the problem

Can one say anything interesting about the possible mechanism behind the anomaly if one
accepts TGD framework? How the presence of muon could reduce the charge radius of proton?
Let us first list the basic facts and notions.

1. One can say that the size of muonic hydrogen characterized by Bohr radius is by factor
me/mµ = 1/211.4 = 4.7×10−4 smaller than for hydrogen atom and equals to 250 fm. Hydrogen
atom Bohr radius is .53 Angstroms.

2. Proton contains 2 quarks with charge 2e/3 and one d quark which charge -e/3. These quarks
are light. The last determination of u and d quark masses [C36] (see http://tinyurl.com/

zqbj7x4) gives masses, which are mu = 2 MeV and md = 5 MeV (I leave out the error
bars). The standard view is that the contribution of quarks to proton mass is of same order
of magnitude. This would mean that quarks are not too relativistic meaning that one can
assign to them a size of order Compton wave length of order 4 × re ' 600 fm in the case
of u quark (roughly twice the Bohr radius of muonic hydrogen) and 10 × re ' 24 fm in the
case of d quark. These wavelengths are much longer than the proton charge radius and for u
quark more than twice longer than the Bohr radius of the muonic hydrogen. That parts of
proton would be hundreds of times larger than proton itself sounds a rather weird idea. One
could of course argue that the scales in question do not correspond to anything geometric. In
TGD framework this is not the way out since quantum classical correspondence requires this
geometric correlate.

3. There is also the notion of classical radius of electron and quark. It is given by r = α~/m and is
in the case of electron this radius is 2.8 fm whereas proton charge radius is .877 fm and smaller.
The dependence on Planck constant is only apparent as it should be since classical radius is in
question. For u quark the classical radius is .52 fm and smaller than proton charge radius. The
constraint that the classical radii of quarks are smaller than proton charge radius gives a lower
bound of quark masses: p-adic scaling of u quark mass by 2−1/2 would give classical radius
.73 fm which still satisfies the bound. TGD framework the proper generalization would be
r = αK~/m, where αK is Kähler coupling strength defining the fundamental coupling constant
of the theory and quantized from quantum criticality. Its value is very near or equal to fine
structure constant in electron length scale.

4. The intuitive picture is that light-like 3-surfaces assignable to quarks describe random motion of
partonic 2-surfaces with light-velocity. This is analogous to zitterbewegung assigned classically
to the ordinary Dirac equation. The notion of braid emerges from the localization of the modes
of the induced spinor field to 2-D surfaces - string world sheets and possibly also partonic 2-
surfaces carrying vanishing W fields and Z0 field at least above weak scale. It is implied by
well-definedness of em charge for the modes of Kähler-Dirac action. The orbits of partonic
2-surface effectively reduces to braids carrying fermionic quantum numbers. These braids in

http://tinyurl.com/zqbj7x4
http://tinyurl.com/zqbj7x4
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turn define higher level braids which would move inside a structure characterizing the particle
geometrically. Internal consistency suggests that the classical radius r = αK~/m characterizes
the size scale of the zitterbewegung orbits of quarks.
I cannot resist the temptation to emphasize the fact that Bohr orbitology is now reasonably
well understood. The solutions of field equations with higher than 3-D CP2 projection describ-
ing radiation fields allow only generalizations of plane waves but not their superpositions in
accordance with the fact it is these modes that are observed. For massless extremals with 2-D
CP2 projection superposition is possible only for parallel light-like wave vectors. Furthermore,
the restriction of the solutions of the Chern-Simons Dirac equation at light-like 3-surfaces to
braid strands gives the analogs of Bohr orbits. Wave functions of -say electron in atom- are
wave functions for the position of wormhole throat and thus for braid strands so that Bohr’s
theory becomes part of quantum theory.

5. In TGD framework quantum classical correspondence requires -or at least strongly suggests-
that also the p-adic length scales assignable to u and d quarks have geometrical correlates.
That quarks would have sizes much larger than proton itself how sounds rather paradoxical
and could be used as an objection against p-adic length scale hypothesis. Topological field
quantization however leads to the notion of field body as a structure consisting of flux tube-
sandthe identification of this geometric correlate would be in terms of Kähler (or color-, or
electro-) magnetic body of proton consisting of color flux tubes beginning from space-time
sheets of valence quarks and having length scale of order Compton wavelength much longer
than the size of proton itself. Magnetic loops and electric flux tubes would be in question. Also
secondary p-adic length scale characterizes field body. For instance, in the case of electron the
causal diamond assigned to electron would correspond to the time scale of .1 seconds defining
an important bio-rhythm.

2. Could the notion of field body explain the anomaly?

The large Compton radii of quarks and the notion of field body encourage the attempt to
imagine a mechanism affecting the charge radius of proton as determined from electron’s or muon’s
wave function.

1. Muon’s wave function is compressed to a volume, which is about 8 million times smaller than
the corresponding volume in the case of electron. The Compton radius of u quark more that
twice larger than the Bohr radius of muonic hydrogen so that muon should interact directly
with the field body of u quark. The field body of d quark would have size 24 fm which is
about ten times smaller than the Bohr radius so that one can say that the volume in which
muons sees the field body of d quark is only one thousandth of the total volume. The main
effect would be therefore due to the two u quarks having total charge of 4e/3.
One can say that muon begins to “see” the field bodies of u quarks and interacts directly
with u quarks rather than with proton via its electromagnetic field body. With d quarks it
would still interact via protons field body to which d quark should feed its electromagnetic
flux. This could be quite enough to explain why the charge radius of proton determined from
the expectation value defined by its wave function is smaller for muonium than for hydrogen.
One must of course notice that this brings in also direct magnetic interactions with u quarks.

2. What could be the basic mechanism for the reduction of charge radius? Could it be that the
muon is caught with some probability into the flux tubes of u quarks and that Schrödinger
amplitude for this kind state vanishes near the origin? If so, this portion of state would not
contribute to the charge radius and the since the portion ordinary state would smaller, this
would imply an effective reduction of the charge radius determined from experimental data
using the standard theory since the reduction of the norm of the standard part of the state
would be erratically interpreted as a reduction of the charge radius.

3. This effect would be of course present also in the case of electron but in this case the u quarks
correspond to a volume which million times smaller than the volume defined by Bohr radius
so that electron does not in practice “see” the quark sub-structure of proton. The probability
P for getting caught would be in a good approximation proportional to the value of |Ψ(ru)|2
and in the first approximation one would have

Pe
Pµ
∼ (aµ/ae)

3 = (me/mµ)3 ∼ 10−7 .
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from the proportionality Ψi ∝ 1/a
3/2
i , i=e,µ.

3. A general formula for Lamb shift in terms of proton charge radius

The charge radius of proton is determined from the Lamb shift between 2S- and 2P states
of muonic hydrogen. Without this effect resulting from vacuum polarization of photon Dirac
equation for hydrogen would predict identical energies for these states. The calculation reduces
to the calculation of vacuum polarization of photon inducing to the Coulomb potential and an
additional vacuum polarization term. Besides this effect one must also take into account the finite
size of the proton which can be coded in terms of the form factor deducible from scattering data.
It is just this correction which makes it possible to determine the charge radius of proton from the
Lamb shift.

1. In the article [C9] the basic theoretical results related to the Lamb shift in terms of the
vacuum polarization of photon are discussed. Proton’s charge density is in this representation
is expressed in terms of proton form factor in principle deducible from the scattering data.
Two special cases can be distinguished corresponding to the point like proton for which Lamb
shift is non-vanishing only for S wave states and non-point like proton for which energy shift
is present also for other states. The theoretical expression for the Lamb shift involves very
refined calculations. Between 2P and 2S states the expression for the Lamb shift is of form

∆E(2PF=2
3/2 2SF=1

1/2 = a− br2
p + cr3

p = 209.968(5)5.2248× r2
p + 0.0347× r3

p meV .

(15.4.1)

where the charge radius rp = .8750 is expressed in femtometers and energy in meVs.

2. The general expression of Lamb shift is given in terms of the form factor by

E(2P − 2S) =

∫
d3q

2π)3
× (−4πα)

F (q2)

q2

Π(q2)

q2
×X ,

X =

∫
(|Ψ2P (r)|2 − |Ψ2S(r)|2)exp(iq · r)dV .

(15.4.2)

Here Π is is a scalar representing vacuum polarization due to decay of photon to virtual pairs.

The model to be discussed predicts that the effect is due to a leakage from “standard” state
to what I call flux tube state. This means a multiplication of |Ψ2P |2 with the normalization factor
1/N of the standard state orthogonalized with respect to flux tube state. It is essential that 1/N
is larger than unity so that the effect is a genuine quantum effect not understandable in terms of
classical probability.

The modification of the formula is due to the normalization of the 2P and 2S states. These
are in general different. The normalization factor 1/N is same for all terms in the expression of
Lamb shift for a given state but in general different for 2S and 2P states. Since the lowest order
term dominates by a factor of ∼ 40 over the second one, one one can conclude that the modification
should affect the lowest order term by about 4 per cent. Since the second term is negative and
the modification of the first term is interpreted as a modification of the second term when rp is
estimated from the standard formula, the first term must increase by about 4 per cent. This is
achieved if this state is orthogonalized with respect to the flux tube state. For states Ψ0 and Ψtube

with unit norm this means the modification

Ψ0 → 1

1− |C|2
× (Ψi − CΨtube) ,

C = 〈Ψtube|Ψ0〉 . (15.4.3)

In the lowest order approximation one obtains

a− br2
p + cr3

p → (1 + |C|2)a− br2
p + cr3

p . (15.4.4)

Using instead of this expression the standard formula gives a wrong estimate rp from the condition
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a− br̂2
p + cr̂3

p → (1 + |C|2)a− br2
p + cr3

p . (15.4.5)

This gives the equivalent conditions

r̂2
p = r2

p −
|C|2a
b

,

Ptube ≡ |C|2 ' 2
b

a
× r2

p ×
(rp − r̂p)

rp
) . (15.4.6)

The resulting estimate for the leakage probability is Ptube ' .0015. The model should be able to
reproduce this probability.

A model for the coupling between standard states and flux tube states

Just for fun one can look whether the idea about confinement of muon to quark flux tube carrying
electric flux could make sense.

1. Assume that the quark is accompanied by a flux tube carrying electric flux
∫
EdS = −

∫
∇Φ ·

dS = q, where q = 2e/3 = ke is the u quark charge. The potential created by the u quark
at the proton end of the flux tube with transversal area S = πR2 idealized as effectively 1-D
structure is

Φ = − ke

πR2
|x|+ Φ0 . (15.4.7)

The normalization factor comes from the condition that the total electric flux is q. The value
of the additive constant V0 is fixed by the condition that the potential coincides with Coulomb
potential at r = ru, where ru is u quark Compton length. This gives

eΦ0 =
e2

ru
+Kru , K =

ke2

πR2
. (15.4.8)

2. Parameter R should be of order of magnitude of charge radius αKru of u quark is free parameter
in some limits. αK = α is expected to hold true in excellent approximation. Therefore a
convenient parameterization is

R = zαru . (15.4.9)

This gives

K =
4k

αr2
u

, eΦ0 = 4(πα+
k

α
)

1

ru
. (15.4.10)

3. The requirement that electron with four times larger charge radius that u quark can topolog-
ically condensed inside the flux tube without a change in the average radius of the flux tube
(and thus in a reduction in p-adic length scale increasing its mass by a factor 4!) suggests that
z ≥ 4 holds true at least far away from proton. Near proton the condition that the radius of
the flux tube is smaller than electron’s charge radius is satisfied for z = 1.

1. Reduction of Schrödinger equation at flux tube to Airy equation

The 1-D Schrödinger equation at flux tube has as its solutions Airy functions and the related
functions known as “Bairy” functions.

1. What one has is a one-dimensional Schrödinger equation of general form

− ~2

2mµ

d2Ψ

dx2
+ (Kx− eΦ0)Ψ = EΨ , K =

ke2

πR2
. (15.4.11)

By performing a linear coordinate change

u = (
2mµK

~2
)1/3(x− xE) , xE =

−|E|+ eΦ0

K
, (15.4.12)
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one obtains

d2Ψ

du2
− uΨ = 0 . (15.4.13)

This differential equation is known as Airy equation (or Stokes equation) and defines special
functions Ai(x) known as Airy functions and related functions Bi(x) referred to as “Bairy”
functions [B1] . Airy functions characterize the intensity near an optical directional caustic
such as that of rainbow.

2. The explicit expressions for Ai(u) and Bi(u) are is given by

Ai(u) =
1

π

∫ ∞
0

cos(
1

3
t3 + ut)dt ,

Bi(u) =
1

π

∫ ∞
0

[
exp(−1

3
t3) + sin(

1

3
t3 + ut)dt

]
. (15.4.14)

Ai(u) oscillates rapidly for negative values of u having interpretation in terms of real wave
vector and goes exponentially to zero for u > 0. Bi(u) oscillates also for negative values of x
but increases exponentially for positive values of u. The oscillatory behavior and its character
become obvious by noticing that stationary phase approximation is possible for x < 0.
The approximate expressions of Ai(u) and Bi(u) for u > 0 are given by

Ai(u) ∼ 1

2π1/2
exp(−2

3
u3/2)u−1/4 ,

Bi(u) ∼ 1

π1/2
exp(

2

3
u3/2)u−1/4 . (15.4.15)

For u < 0 one has

Ai(u) ∼ 1

π1/2
sin(

2

3
(−u)3/2)(−u)−1/4 ,

Bi(u) ∼ 1

π1/2
cos(

2

3
(−u)3/2)(−u)−1/4 . (15.4.16)

3. u = 0 corresponds to the turning point of the classical motion where the kinetic energy changes
sign. x = 0 and x = ru correspond to the points

umin ≡ u(0) = −(
2mµK

~2
)1/3xE ,

umax ≡ u(ru) = (
2mµK

~2
)1/3(ru − xE) ,

xE =
−|E|+ eΦ0

K
. (15.4.17)

4. The general solution is

Ψ = aAi(u) + bBi(u) . (15.4.18)

The natural boundary condition is the vanishing of Ψ at the lower end of the flux tube giving

b

a
= −Ai(u(0))

Bi(u(0))
. (15.4.19)

A non-vanishing value of b implies that the solution increases exponentially for positive val-
ues of the argument and the solution can be regarded as being concentrated in an excellent
approximation near the upper end of the flux tube.
Second boundary condition is perhaps most naturally the condition that the energy is same for
the flux tube amplitude as for the standard solution. Alternative boundary conditions would
require the vanishing of the solution at both ends of the flux tube and in this case one obtains
very large number of solutions as WKB approximation demonstrates. The normalization of
the state so that it has a unit norm fixes the magnitude of the coefficients a and b since one
can choose them to be real.
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2. Estimate for the probability that muon is caught to the flux tube
The simplest estimate for the muon to be caught to the flux tube state characterized by the

same energy as standard state is the overlap integral of the ordinary hydrogen wave function of
muon and of the effectively one-dimensional flux tube. What one means with overlap integral is
however not quite obvious.

1. The basic condition is that the modified “standard” state is orthogonal to the flux tube state.
One can write the expression of a general state as

Ψnlm → N × (Ψnlm − C(E,nlm)Φnlm) ,

Φnlm = YlmΨE ,

C(E,nlm) = 〈ΨE |Ψnlm〉 . (15.4.20)

Here Φnlm depends a flux tube state in which spherical harmonics is wave function in the
space of orientations of the flux tube and ΨE is flux tube state with same energy as standard
state. Here an inner product between standard states and flux tube states is introduced.

2. Assuming same energy for flux tube state and standard state, the expression for the total
total probability for ending up to single flux tube would be determined from the orthogonality
condition as

Pnlm =
|C(E,nlm)|2

1− |C(E, lmn)|2
. (15.4.21)

Here E refers to the common energy of flux tube state and standard state. The fact that flux
tube states vanish at the lower end of the flux tube implies that they do not contribute to the
expression for average charge density. The reduced contribution of the standard part implies
that the attempt to interpret the experimental results in “standard model” gives a reduced
value of the charge radius. The size of the contribution is given by Pnlm whose value should
be about 4 per cent.

One can consider two alternative forms for the inner product between standard states and
flux tube states. Intuitively it is clear that an overlap between the two wave functions must be in
question.

1. The simplest possibility is that one takes only overlap at the upper end of the flux tube which
defines 2-D surface. Second possibility is that the overlap is over entire flux tube projection
at the space-time sheet of atom.

〈ΨE |Ψnlm〉 =

∫
end

ΨrΨnlmdS (Option I) ,

〈ΨE |Ψnlm〉 =

∫
tube

ΨrΨnlmdV (Option II) . (15.4.22)

2. For option I the inner product is non-vanishing only if ΨE is non-vanishing at the end of the
flux tube. This would mean that electron ends up to the flux tube through its end. The
inner product is dimensionless without introduction of a dimensional coupling parameter if
the inner product for flux tube states is defined by 1-dimensional integral: one might criticize
this assumption as illogical. Unitarity might be a problem since the local behaviour of the
flux tube wave function at the end of the flux tube could imply that the contribution of the
flux tube state in the quantum state dominates and this does not look plausible. One can
of course consider the introduction to the inner product a coefficient representing coupling
constant but this would mean loss of predictivity. Schrödinger equation at the end of the flux
tubes guarantees the conservation of the probability current only if the energy of flux tube
state is same as that of standard state or if the flux tube Schrödinger amplitude vanishes at
the end of the flux tube.

3. For option II there are no problems with unitary since the overlap probability is always smaller
than unity. Option II however involves overlap between standard states and flux tube states
even when the wave function at the upper end of the flux tube vanishes. One can however
consider the possibility that the possible flux tube states are orthogonalized with respect to
standard states with leakage to flux tubes. The interpretation for the overlap integral would
be that electron ends up to the flux tube via the formation of wormhole contact.
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3. Option I fails

The considerations will be first restricted to the simpler option I. The generalization of the
results of calculation to option II is rather straighforward. It turns out that option II gives correct
order of magnitude for the reduction of charge radius for reasonable parameter values.

1. In a good approximation one can express the overlap integrals over the flux tube end (option
I) as

C(E,nlm) =

∫
tube

ΨEΨnlmdS ' πR2 × Ylm × C(E,nl) ,

C(E,nl) = ΨE(ru)Rnl(ru) . (15.4.23)

An explicit expression for the coefficients can be deduced by using expression for ΨE as a
superposition of Airy and Bairy functions. This gives

C(E,nl) = ΨE(ru)Rnl(ru) ,

ΨE(x) = aEAi(uE) + bBi(uE) ,
aE
bE

= −Bi(uE(0))

Ai(uE(0))
,

uE(x) = (
2mµK

~2
)1/3(x− xE) , xE =

|E| − eΦ0

K
,

K =
ke2

πR2
, R = zαKru , k =

2

3
.

(15.4.24)

The normalization of the coefficients is fixed from the condition that a and b chosen in such
a way that Ψ has unit norm. For these boundary conditions Bi is expected to dominate
completely in the sum and the solution can be regarded as exponentially decreasing function
concentrated around the upper end of the flux tube.

In order to get a quantitative view about the situation one can express the parameters umin
and umax in terms of the basic dimensionless parameters of the problem.

1. One obtains

umin ≡ u(0) = −2(
k

zα
)1/3

[
1 + π

z

k
α2(1− 1

2
αr)

]
× r1/3 ,

umax ≡ u(ru) = u(0) + 2
k

zα
× r1/3 ,

r =
mµ

mu
, R = zαru . (15.4.25)

Using the numerical values of the parameters one obtains for z = 1 and α = 1/137 the values
umin = −33.807 and umax = 651.69. The value of umax is so large that the normalization is
in practice fixed by the exponential behavior of Bi for the suggested boundary conditions.

2. The normalization constant is in good approximation defined by the integral of the approximate
form of Bi2 over positive values of u and one has

N2 ' dx

du
×
∫ umax

umin

Bi(u)2du ,
dx

du
=

1

2
(
z2α

k
)1/3 × r1/3ru ,

(15.4.26)

By taking t = exp( 4
3u

3/2) as integration variable one obtains∫ umax

umin

Bi(u)2du ' π−1

∫ umax

umin

exp(
4

3
u3/2)u−1/2du

= (
4

3
)2/3π−1

∫ tmax

tmin

dt

log(t)2/3
' 1

π

exp( 4
3u

3/2
max)

umax
. (15.4.27)

This gives for the normalization factor the expression

N ' 1

2
(
z2α

k
)2/3r1/3r1/2

u exp(
2

3
u3/2
max) . (15.4.28)
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3. One obtains for the value of ΨE at the end of the flux tube the estimate

ΨE(ru) = Bi(umax)
N ' 2π−1/2 × (

k

z2α
)2/3r1/3r−1/2

u , r =
ru
rµ

. (15.4.29)

4. The inner product defined as overlap integral gives for the ground state

CE,00 = ΨE(ru)×Ψ1,0,0(ru)× πR2

= 2π−1/2(
k

z2α
)2/3r1/3r−1/2

u × (
1

πa(µ)3
)1/2 × exp(−αr)× πz2α2r2

u

= 2π1/2k2/3z2/3r11/6α17/6exp(−αr) . (15.4.30)

The relative reduction of charge radius equals to P = C2
E,00. For z = 1 one obtains P =

C2
E,00 = 5.5 × 10−6, which is by three orders of magnitude smaller than the value needed for

Ptube = C2
E,20 = .0015. The obvious explanation for the smallness is the α2 factor coming

from the area of flux tube in the inner product.

4. Option II could work

The failure of the simplest model is essentially due to the inner product. For option II
the inner product for the flux tube states involves the integral over the area of flux tube so that
the normalization factor for the state is obtained from the previous one by the replacement N →
N/
√
πR2. In the integral over the flux tube the exponent function is is in the first approximation

equal to constant since the wave function for ground state is at the end of the flux tube only by
a factor .678 smaller than at the origin and the wave function is strongly concentrated near the
end of the flux tube. The inner product defined by the overlap integral over the flux tube implies
N → NS1/2, S = πR2 = z2α2r2

u. In good approximation the inner product for option II means
the replacement

CE,n0 → A×B × CE,n0 ,

A =
dx
du√
πR2

=
1

2
√
π
z−1/3k−1/3α−2/3r1/3 ,

B =

∫
Bi(u)du√
Bi(umax)

= u−1/4
max = 2−1/4z1/2k−1/4α1/4r−1/12 . (15.4.31)

Using the expression

R20(ru) =
1

2
√

2
× (

1

aµ
)3/2 × (2− rα)× exp(−rα) , r =

ru
rµ

(15.4.32)

one obtains for CE,20 the expression

CE,20 = 2−3/4z5/6k1/12α29/12r25/12 × (2− rα)× exp(−rα) . (15.4.33)

By the earlier general argument one should have Ptube = |CE,20|2 ' .0015. Ptube = .0015 is
obtained for z = 1 and N = 2 corresponding to single flux tube per u quark. If the flux tubes are
in opposite directions, the leakage into 2P state vanishes. Note that this leakage does not affect
the value of the coefficient a in the general formula for the Lamb shift. The radius of the flux tube
is by a factor 1/4 smaller than the classical radius of electron and one could argue that this makes
it impossible for electron to topologically condense at the flux tube. For z = 4 one would have
Ptube = .015 which is 10 times too large a value. Note that the nucleus possess a wave function for
the orientation of the flux tube. If this corresponds to S-wave state then only the leakage beween
S-wave states and standard states is possible.
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Are exotic flux tube bound states possible?

There seems to be no deep reason forbidding the possibility of genuine flux tube states decoupling
from the standard states completely. To get some idea about the energy eigenvalues one can apply
WKB approximation. This approach should work now: in fact, the study on WKB approximation
near turning point by using linearization of the potential leads always to Airy equation so that
the linear potential represents an ideal situation for WKB approximation. As noticed these states
do not seem to be directly relevant for the recent situation. The fact that these states have larger
binding energies than the ordinary states of hydrogen atom might make possible to liberate energy
by inducing transitions to these states.

1. Assume that a bound state with a negative energy E is formed inside the flux tube. This means
that the condition p2 = 2m(E − V ) ≥ 0, V = −eΦ, holds true in the region x ≤ xmax < ru
and p2 = 2m(E − V ) < 0 in the region ru > x ≥ xmax. The expression for xmax is

xmax =
πR2

k
(−|E|

e2
+

1

ru
+
kru
πR2

)~ . (15.4.34)

xmax < ru holds true if one has

|E| <
e2

ru
= Emax . (15.4.35)

The ratio of this energy to the ground state energy of muonic hydrogen is from E(1) = e2/2a(µ)
and a = ~/αm given by

Emax
E(n = 1)

=
2mu

αmµ
' 5.185 . (15.4.36)

This encourages to think that the ground state energy could be reduced by the formation of
this kind of bound state if it is possible to find a value of n in the allowed range. The physical
state would of course contain only a small fraction of this state. In the case of electron the
increase of the binding energy is even more dramatic since one has

Emax
E(n = 1)

=
2mu

αme
=

8

α
' 1096 . (15.4.37)

Obviously the formation of this kind of states could provide a new source of energy. There
have been claims about anomalous energy production in hydrogen [D9] . I have discussed
these claims from TGD viewpoint in [K102]

2. One can apply WKB quantization in the region where the momentum is real to get the
condition

I =

∫ xmax

0

√
2m(E + eΦ)

dx

~
= n+

1

2
. (15.4.38)

By performing the integral one obtains the quantization condition

I = k−1(8πα)1/2 × R2

r
3/2
u rµ

×A3/2 = n+
1

2
,

A = 1 + kx2 − |E|ru
e2

,

x =
ru
R

, k =
2

3π
, ri =

~
mi

. (15.4.39)

3. Parameter R should be of order of magnitude of charge radius αKru of u quark is free parameter
in some limits. αK = α is expected to hold true in excellent approximation. Therefore a
convenient parameterization is

R = zαru . (15.4.40)

This gives for the binding energy the general expression in terms of the ground state binging
energy E(1, µ) of muonic hydrogen as
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|E| = C × E(1, µ) ,

C = D × (1 +Kz−2α−2 − (
y

z2
)2/3 × (n+ 1/2)2/3) ,

D = 2y × (
K2

8πα
)1/3 ,

y =
mu

mµ
, K =

2

3π
. (15.4.41)

4. There is a finite number of bound states. The above mentioned consistency conditions coming
from 0 < xmax < rµ give 0 < C < Cmax = 5.185 restricting the allowed value of n to some
interval. One obtains the estimates

nmin ' z2

y
(1 +Kz−2α−2 − Cmax

D
)3/2 − 1

2
,

nmax =
z2

y
(1 +Kz−2α−2)3/2 − 1

2
. (15.4.42)

Very large value of n is required by the consistency condition. The calculation gives nmin ∈
{1.22×107, 4.59×106, 1.48×105} and nmax ∈ {1.33×107, 6.66×106, 3.34×106} for z ∈ {1, 2, 4}.
This would be a very large number of allowed bound states -about 3.2× 106 for z = 1.

The WKB state behaves as a plane wave below xmax and sum of exponentially decaying
and increasing amplitudes above xmax:

1√
k(x)

[
Aexp(i

∫ x

0

k(y)dy) +Bexp(−i
∫ x

0

k(y)dy)

]
,

1√
κ(x)

[
Cexp(−

∫ x

xmax

κ(y)dy +Dexp(

∫ x

xmax

κ(y)dy

]
,

k(x) =
√

2m(−|E|+ eΦ) , κ(x)
√

2m(|E| − eΦ) . (15.4.43)

At the classical turning point these two amplitudes must be identical.
The next task is to decide about natural boundary conditions. Two types of boundary

conditions must be considered. The basic condition is that genuine flux tube states are in question.
This requires that the inner product between flux tube states and standard states defined by the
integral over flux tube ends vanishes. This is guaranteed if the Schrödinger amplitude for the flux
tube state vanishes at the ends of the flux tube so that flux tube behaves like an infinite potential
well. The condition Ψ(0) = 0 at the lower end of the flux tube would give A = −B. Combined
with the continuity condition at the turning point these conditions imply that Ψ can be assumed
to be real. The Ψ(ru) = 0 gives a condition leading to the quantization of energy.

The wave function over the directions of flux tube with a given value of n is given by the
spherical harmonics assigned to the state (n, l,m).

Could second generation of weak bosons explain the reduction of proton charge radius?

The above proposed speculative model is not the only one that one can imagine. The observation
could be explained also as breaking of the universality of weak interactions. Also other anomalies
challenging the universality exists. The decays of neutral B-meson to lepton pairs should be same
apart from corrections coming from different lepton masses by universality but this does not seem
to be the case [K64]. There is also anomaly in muon’s magnetic moment discussed briefly in [K88].
This leads to ask whether the breaking of universality could be due to the failure of universality
of electroweak interactions.

The proposal for the explanation of the muon’s anomalous magnetic moment and anomaly in
the decays of B-meson is inspired by a recent very special di-electron event and involves higher gen-
erations of weak bosons predicted by TGD leading to a breaking of lepton universality. Both Tom-
maso Dorigo (http://tinyurl.com/pfw7qqm) and Lubos Motl (http://tinyurl.com/hqzat92)
tell about a spectacular 2.9 TeV di-electron event not observed in previous LHC runs. Single event

http://tinyurl.com/pfw7qqm
http://tinyurl.com/hqzat92
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of this kind is of course most probably just a fluctuation but human mind is such that it tries to
see something deeper in it - even if practically all trials of this kind are chasing of mirages.

Since the decay is leptonic, the typical question is whether the dreamed for state could
be an exotic Z boson. This is also the reaction in TGD framework. The first question to ask
is whether weak bosons assignable to Mersenne prime M89 have scaled up copies assignable to
Gaussian Mersenne M79. The scaling factor for mass would be 2(89−79)/2 = 32. When applied to
Z mass equal to about .09 TeV one obtains 2.88 TeV, not far from 2.9 TeV. Eureka!? Looks like a
direct scaled up version of Z!? W should have similar variant around 2.6 TeV.

TGD indeed predicts exotic weak bosons and also gluons.

1. TGD based explanation of family replication phenomenon in terms of genus-generation corre-
spondence forces to ask whether gauge bosons identifiable as pairs of fermion and antifermion
at opposite throats of wormhole contact could have bosonic counterpart for family replica-
tion. Dynamical SU(3) assignable to three lowest fermion generations labelled by the genus of
partonic 2-surface (wormhole throat) means that fermions are combinatorially SU(3) triplets.
Could 2.9 TeV state - if it would exist - correspond to this kind of state in the tensor product
of triplet and antitriplet? The mass of the state should depend besides p-adic mass scale also
on the structure of SU(3) state so that the mass would be different. This difference should be
very small.

2. Dynamical SU(3) could be broken so that wormhole contacts with different genera for the
throats would be more massive than those with the same genera. This would give SU(3)
singlet and two neutral states, which are analogs of η′ and η and π0 in Gell-Mann’s quark
model. The masses of the analogs of η and π0 and the analog of η′, which I have identified as
standard weak boson would have different masses. But how large is the mass difference?

3. These 3 states are expected top have identical mass for the same p-adic mass scale, if the
mass comes mostly from the analog of hadronic string tension assignable to magnetic flux
tube. connecting the two wormhole contacts associates with any elementary particle in TGD
framework (this is forced by the condition that the flux tube carrying monopole flux is closed
and makes a very flattened square shaped structure with the long sides of the square at
different space-time sheets). p-Adic thermodynamics would give a very small contribution
genus dependent contribution to mass if p-adic temperature is T = 1/2 as one must assume
for gauge bosons (T = 1 for fermions). Hence 2.95 TeV state could indeed correspond to this
kind of state.

Could the exchange of massive MG,79 photon and Z0 give rise to additional electromagnetic
interaction inducing the breaking of Universality?

1. The additional contribution in the effective Coulomb potential is Yukawa potential. In S-wave
state this would give a contribution to the binding energy in a good approximation given by
the expectation value of the Yukawa potential, which can be parameterized as

V (r) = g2 e−Mr

r , g2 = 4πkα . (15.4.44)

. The expectation differs from zero significantly only in S-wave state characterized by principal
quantum number n. Since the exponent function goes exponentially to zero in the p-adic
length scale associated with 2.9 TeV mass, which is roughly by a factor 32 times shorter
than intermediate boson mass scale, hydrogen atom wave function is constant in excellent
approximation in the effective integration volume. This gives for the energy shift

∆E = g2|Ψ(0|2 × I ,

|Ψ(0|2 =
22

n2

1

a3
0

, a0 =
1

mα
,

I =

∫
e−Mr

r
r2drdΩ =

4π

M2
. (15.4.45)

For the energy shift and its ratio to ground state energy

En =
α2

2n2
×m (15.4.46)

on obtains the expression
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∆En =
64π2α

n2
α3(

m

M
)2 ×m ,

∆En
En

= 27π2α2k2(
m

M
)2 . (15.4.47)

For k = 1 and M = 2.9 TeV one has ∆En/En ' 8.9× 10−11 for muon.

Consider next Lamb shift.

1. Lamb shift as difference of energies between S and P wave states (see http://tinyurl.com/

y99ctyn4) is approximately given by

∆n(Lamb)

En
=

13α3

2n
. (15.4.48)

For n = 2 this gives ∆2(Lamb)/E2 = 4.9× 10−7.

2. Recall that the previous parameterization for the theoretical Lamb shift reads as

∆E(rp(th)) = a− br2
p + cr3

p = 209.968(5)5.2248× r2
p + 0.0347× r3

p meV .

(15.4.49)

where the charge radius rp = .8750 is expressed in femtometers and energy in meVs.

3. The reduction of rp by 3.3 per cent allows to estimate the reduction of Lamb shift (attractive
additional potential reduces it). The relative change of the Lamb shift is

x =
∆E(rp(th))−∆E(rp(exp))

∆E(rp(th))

=
5.2248× (r2

p(th)− r2
p(exp)) + 0.0347× (r3

p(th)− r3
p(exp))

209.968(5)5.2248× r2
p(th) + 0.0347× r3

p(th)
. (15.4.50)

The estimate gives x = 1.2× 10−3.

This value can be compared with the prediction. For n = 2 ratio of ∆En/∆En(Lamb)/ is

x =
∆En

∆En(Lamb)
= k2 × 29π2

13α
× (

m

M
)2 . (15.4.51)

For M = 2.9 TeV the numerical estimate gives x ' k2 × 10−4. The value of x deduced from
experimental data is x ' 1.2 × 10−3. For k = 3 a correct order of magnitude is obtained. There
are thus good hopes that the model works.

The contribution of Z0
1 exchange is neglected in the above estimate. Is it present and can it

explain the discrepancy?

1. In the case of deuterium the weak isospins of proton and deuterium are opposite so that their
contributions to the Z0

1 vector potential cancel. If Z0
1 contribution for proton can be neglected,

one has ∆rp = ∆rd.
One however has ∆rp ' 2.75∆rd. Hence Z0

1 contribution to ∆rp should satisfy ∆rp(Z
0
1 ) '

1.75 × ∆rp(γ1). This requires αZ,1 > α1, which is true also for the ordinary gauge bosons.
The weak isospins of electron and proton are opposite so that the atom is weak isospin singlet
in Abelian sense, and one has I3

pI
3
µ = −1/4 and attractive interaction. The condition relating

rp and rZ suggests

αZ,1
α1
' 28

6
= 4 +

1

3
.

In standard model one has αZ/α = 1/[sin2(θW )cos2(θW )] = 5.6 for sin2(θW ) = .23. One has
upper bound αZ,1/α1 ≥ 4 saturated for sin2(θW,1) = 1/2. Weinberg angle can be expressed
as

sin2(θW,1) =
1

2

[
1−

√
1− 4

α1

αZ,1

]
.

http://tinyurl.com/y99ctyn4
http://tinyurl.com/y99ctyn4
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αZ,1/α1 ' 28/6 gives sin2(θW,1) = 1
2 [1−

√
1/7] ' .31.

The contribution to the axial part of the potential depending on spin need not cancel and
could give a spin dependent contribution for both proton and deuteron.

2. If the scale of α1 and αZ,1 is that of αs ' .1 at TeV energy scale and if the factor 2.75 emerges
in the proposed manner, one has k2 ' 2.75 × 10 = 27.5 rather near to the rough estimate
k2 ' 27 from data for proton. This would give α1 ' 1/13.7.
Note however than there are mixing angles involved corresponding to the diagonal hermitian
family charge matrix Q = (a, b, c) satisfying a2 + b2 + c2 = 1 and the condition a+ b+ c = 0
expressing the orthogonality with the electromagnetic charge matrix (1, 1, 1)/

√
3 express-

ing electroweak universality for ordinary electroweak bosons. For instance, one could have
(a, b, c) = (0, 1,−1)/

√
2 for the second generation and (a, b, c) = (2,−1,−1)/

√
6 for the third

generation. In this case the above estimate would would be scaled down: α1 → 2α1/3 ' 1/20.5.

To sum up, the proposed model is successful at quantitative level allowing to understand the
different changes for charge radius for proton and deuteron and estimate the values of electroweak
couplings of the second generation of weak bosons apart from the uncertainty due to the family
charge matrix. Muon’s magnetic moment anomaly and decays of neutral B allow to test the model
and perhaps fix the remaining two mixing angles.

15.4.4 Misbehaving b-quarks and the magnetic body of proton

Science news tells about misbehaving bottom quarks (see http://tinyurl.com/jpkwey4 and
ICHEP conference talk at http://tinyurl.com/z4lqtvz). Or perhaps one should talk about
misbehaving b-hadrons - hadrons containing b- quarks. The mis-behavior appears in proton-
proton collisions at LHC. This is not the only anomaly associated with proton. The spin of proton
is still poorly understood and proton charge radius if quite not what it should be. Now we learn
that there are more b-containing hadrons (b-hadrons) in the directions deviating considerably from
the direction of proton beam: discrepancy factor is of order two.

How this could reflect the structure of proton? Color magnetic flux tubes are the new TGD
based element in the model or proton: could they help? I assign to proton color magnetic flux
tubes with size scale much larger than proton size - something like electron Compton length: most
of the mass of proton is color magnetic energy associated with these tubes and they define the
non-perturbative aspect of hadron physics in TGD framework. For instance, constituent quarks
would be valence quarks plus their color flux tubes. Current quarks just the quarks whose masses
give rather small contribution to proton mass.

What happens when two protons collide? In cm system the dipolar flux tubes get contracted
in the direction of motion by Lorentz contraction. Suppose b-hadrons tend to leave proton along the
color magnetic flux tubes (also ordinary em flux tubes could be in question). Lorentz contraction
of flux tubes means that they tend to leave in directions orthogonal to the collision axis. Could
this explain the misbehavior of b-hadrons?

But why only b-hadrons or some fraction of them should behave in this manner? Why not
also lighter hadrons containing c and s? Could this relate to the much smaller size of b-quark
defined by its Compton length L = ~/m(b) , m(b) = 4.2GeV , which is much shorter than the
Compton length of u-quark (the mass of constituent u quark is something like 300 MeV and the
mass of current u quark is few MeVs. Could it be that lighter hadrons do not leave proton along flux
tubes? Why? Are these hadrons or corresponding quarks too large to fit (topologically condense)
inside protonic flux tube? b-quark is much more massive and has considerably smaller size than
say c-quark with mass m(c) = 1.5 GeV and could be able to topologically condense inside the
protonic flux tube. c quark should be too large, which suggests that the radius of flux tubes is
larger than proton Compton length. This picture conforms with the view of perturbative QCD in
which the primary processes take place at parton level. The hadronization would occur in longer
time scale and generate the magnetic bodies of outgoing hadrons. The alternative idea that also
the color magnetic body of hadron should fit inside the protonic color flux tube is not consistent
with this view.

http://tinyurl.com/jpkwey4
http://tinyurl.com/z4lqtvz
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15.4.5 Dark Nuclear Strings As Analogs Of DNA-, RNA- And Amino-
Acid Sequences And Baryonic Realization Of Genetic Code?

Water memory is one of the ugly words in the vocabulary of a main stream scientist. The work
of pioneers is however now carrying fruit. The group led by Jean-Luc Montagnier, who received
Nobel prize for discovering HIV virus, has found strong evidence for water memory and detailed
information about the mechanism involved [K48, K103] , [I6] . The work leading to the discovery
was motivated by the following mysterious finding. When the water solution containing human
cells infected by bacteria was filtered in purpose of sterilizing it, it indeed satisfied the criteria for
the absence of infected cells immediately after the procedure. When one however adds human cells
to the filtrate, infected cells appear within few weeks. If this is really the case and if the filter
does what it is believed to do, this raises the question whether there might be a representation of
genetic code based on nano-structures able to leak through the filter with pores size below 200 nm.

The question is whether dark nuclear strings might provide a representation of the genetic
code. In fact, I posed this question year before the results of the experiment came with motivation
coming from attempts to understand water memory. The outcome was a totally unexpected finding:
the states of dark nucleons formed from three quarks can be naturally grouped to multiplets in
one-one correspondence with 64 DNAs, 64 RNAS, and 20 amino-acids and there is natural mapping
of DNA and RNA type states to amino-acid type states such that the numbers of DNAs/RNAs
mapped to given amino-acid are same as for the vertebrate genetic code.

The basic idea is simple. Since baryons consist of 3 quarks just as DNA codons consist of
three nucleotides, one might ask whether codons could correspond to baryons obtained as open
strings with quarks connected by two color flux tubes. This representation would be based on
entanglement rather than letter sequences. The question is therefore whether the dark baryons
constructed as string of 3 quarks using color flux tubes could realize 64 codons and whether 20
amino-acids could be identified as equivalence classes of some equivalence relation between 64
fundamental codons in a natural manner.

The following model indeed reproduces the genetic code directly from a model of dark neutral
baryons as strings of 3 quarks connected by color flux tubes.

1. Dark nuclear baryons are considered as a fundamental realization of DNA codons and con-
structed as open strings of 3 dark quarks connected by two colored flux tubes, which can be
also charged. The baryonic strings cannot combine to form a strictly linear structure since
strict rotational invariance would not allow the quark strings to have angular momentum
with respect to the quantization axis defined by the nuclear string. The independent rotation
of quark strings and breaking of rotational symmetry from SO(3) to SO(2) induced by the
direction of the nuclear string is essential for the model.

(a) Baryonic strings could form a helical nuclear string (stability might require this) locally
parallel to DNA, RNA, or amino-acid) helix with rotations acting either along the axis of
the DNA or along the local axis of DNA along helix. The rotation of a flux tube portion
around an axis parallel to the local axis along DNA helix requires that magnetic flux tube
has a kink in this portion. An interesting question is whether this kink has correlate at the
level of DNA too. Notice that color bonds appear in two scales corresponding to these two
strings. The model of DNA as topological quantum computer [K6] allows a modification
in which dark nuclear string of this kind is parallel to DNA and each codon has a flux tube
connection to the lipid of cell membrane or possibly to some other bio-molecule.

(b) The analogs of DNA -, RNA -, and of amino-acid sequences could also correspond to se-
quences of dark baryons in which baryons would be 3-quark strings in the plane transversal
to the dark nuclear string and expected to rotate by stringy boundary conditions. Thus
one would have nuclear string consisting of short baryonic strings not connected along
their ends. In this case all baryons would be free to rotate.

2. The new element as compared to the standard quark model is that between both dark quarks
and dark baryons can be charged carrying charge 0,±1. This is assumed also in nuclear string
model and there is empirical support for the existence of exotic nuclei containing charged color
bonds between nuclei.

3. The net charge of the dark baryons in question is assumed to vanish to minimize Coulomb
repulsion:
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∑
q

Qem(q) = −
∑

flux tubes

Qem(flux tube) . (15.4.52)

This kind of selection is natural taking into account the breaking of isospin symmetry. In the
recent case the breaking cannot however be as large as for ordinary baryons (implying large
mass difference between ∆ and nucleon states).

4. One can classify the states of the open 3-quark string by the total charges and spins associated
with 3 quarks and to the two color bonds. Total em charges of quarks vary in the range
ZB ∈ {2, 1, 0,−1} and total color bond charges in the range Zb ∈ {2, 1, 0,−1,−2}. Only neutral
states are allowed. Total quark spin projection varies in the range JB = 3/2, 1/2,−1/2,−3/2
and the total flux tube spin projection in the range Jb = 2, 1,−1,−2. If one takes for a given
total charge assumed to be vanishing one representative from each class (JB , Jb), one obtains
4 × 5 = 20 states which is the number of amino-acids. Thus genetic code might be realized
at the level of baryons by mapping the neutral states with a given spin projection to single
representative state with the same spin projection. The problem is to find whether one can
identify the analogs of DNA, RNA and amino-acids as baryon like states.

States in the quark degrees of freedom

One must construct many-particle states both in quark and flux tube degrees of freedom. These
states can be constructed as representations of rotation group SU(2) and strong isospin group
SU(2) by using the standard tensor product rule j1 × j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ ...⊕ |j1 − j2| for
the representation of SU(2) and Fermi statistics and Bose-Einstein statistics are used to deduce
correlations between total spin and total isospin (for instance, J = I rule holds true in quark
degrees of freedom). Charge neutrality is assumed and the breaking of rotational symmetry in the
direction of nuclear string is assumed.

Consider first the states of dark baryons in quark degrees of freedom.

1. The tensor product 2 ⊗ 2 ⊗ 2 is involved in both cases. Without any additional constraints
this tensor product decomposes as (3 ⊕ 1) ⊗ 2 = 4 ⊕ 2 ⊕ 2: 8 states altogether. This is what
one should have for DNA and RNA candidates. If one has only identical quarks uuu or ddd,
Pauli exclusion rule allows only the 4-D spin 3/2 representation corresponding to completely
symmetric representation -just as in standard quark model. These 4 states correspond to a
candidate for amino-acids. Thus RNA and DNA should correspond to states of type uud
and ddu and amino-acids to states of type uuu or ddd. What this means physically will be
considered later.

2. Due to spin-statistics constraint only the representations with (J, I) = (3/2, 3/2) (∆ resonance)
and the second (J, I) = (1/2, 1/2) (proton and neutron) are realized as free baryons. Now of
course a dark -possibly p-adically scaled up - variant of QCD is considered so that more general
baryonic states are possible. By the way, the spin statistics problem which forced to introduce
quark color strongly suggests that the construction of the codons as sequences of 3 nucleons -
which one might also consider - is not a good idea.

3. Second nucleon like spin doublet - call it 2odd - has wrong parity in the sense that it would
require L = 1 ground state for two identical quarks (uu or dd pair). Dropping 2odd and using
only 4⊕ 2 for the rotation group would give degeneracies (1, 2, 2, 1) and 6 states only. All the
representations in 4 ⊕ 2 ⊕ 2odd are needed to get 8 states with a given quark charge and one
should transform the wrong parity doublet to positive parity doublet somehow. Since open
string geometry breaks rotational symmetry to a subgroup SO(2) of rotations acting along the
direction of the string and since the boundary conditions on baryonic strings force their ends to
rotate with light velocity, the attractive possibility is to add a baryonic stringy excitation with
angular momentum projection Lz = −1 to the wrong parity doublet so that the parity comes
out correctly. Lz = −1 orbital angular momentum for the relative motion of uu or dd quark
pair in the open 3-quark string would be in question. The degeneracies for spin projection
value Jz = 3/2, ...,−3/2 are (1, 2, 3, 2). Genetic code means spin projection mapping the states
in 4⊕ 2⊕ 2odd to 4.
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States in the flux tube degrees of freedom

Consider next the states in flux tube degrees of freedom.

1. The situation is analogous to a construction of mesons from quarks and antiquarks and one
obtains the analogs of π meson (pion) with spin 0 and ρ meson with spin 1 since spin statistics
forces J = I condition also now. States of a given charge for a flux tube correspond to the
tensor product 2⊗ 2 = 3⊕ 1 for the rotation group.

2. Without any further constraints the tensor product 3⊗ 3 = 5⊕ 3⊕ 1 for the flux tubes states
gives 8+1 states. By dropping the scalar state this gives 8 states required by DNA and RNA
analogs. The degeneracies of the states for DNA/RNA type realization with a given spin
projection for 5 ⊕ 3 are (1, 2, 2, 2, 1). 8× 8 states result altogether for both uud and udd for
which color bonds have different charges. Also for ddd state with quark charge -1 one obtains
5⊕ 3 states giving 40 states altogether.

3. If the charges of the color bonds are identical as the are for uuu type states serving as candidates
for the counterparts of amino-acids bosonic statistics allows only 5 states (J = 2 state). Hence
20 counterparts of amino-acids are obtained for uuu. Genetic code means the projection of
the states of 5⊕ 3 to those of 5 with the same spin projection and same total charge.

Analogs of DNA,RNA, amino-acids, and of translation and transcription mechanisms

Consider next the identification of analogs of DNA, RNA and amino-acids and the baryonic real-
ization of the genetic code, translation and transcription.

1. The analogs of DNA and RNA can be identified dark baryons with quark content uud, ddu
with color bonds having different charges. There are 3 color bond pairs corresponding to charge
pairs (q1, q2) = (−1, 0), (−1, 1), (0, 1) (the order of charges does not matter). The condition
that the total charge of dark baryon vanishes allows for uud only the bond pair (−1, 0) and
for udd only the pair (−1, 1). These thus only single neutral dark baryon of type uud resp.
udd: these would be the analogous of DNA and RNA codons. Amino-acids would correspond
to uuu states with identical color bonds with charges (−1,−1), (0, 0), or (1, 1). uuu with color
bond charges (-1,-1) is the only neutral state. Hence only the analogs of DNA, RNA, and
amino-acids are obtained, which is rather remarkable result.

2. The basic transcription and translation machinery could be realized as processes in which the
analog of DNA can replicate, and can be transcribed to the analog of mRNA in turn translated
to the analogs of amino-acids. In terms of flux tube connections the realization of genetic code,
transcription, and translation, would mean that only dark baryons with same total quark spin
and same total color bond spin can be connected by flux tubes. Charges are of course identical
since they vanish.

3. Genetic code maps of (4⊕2⊕2)⊗(5⊕3) to the states of 4×5. The most natural map takes the
states with a given spin to a state with the same spin so that the code is unique. This would
give the degeneracies D(k) as products of numbers DB ∈ {1, 2, 3, 2} and Db ∈ {1, 2, 2, 2, 1}:
D = DB × Db. Only the observed degeneracies D = 1, 2, 3, 4, 6 are predicted. The numbers
N(k) of amino-acids coded by D codons would be

[N(1), N(2), N(3), N(4), N(6)] = [2, 7, 2, 6, 3] .

The correct numbers for vertebrate nuclear code are (N(1), N(2), N(3), N(4), N(6)) = (2, 9, 1, 5, 3).
Some kind of symmetry breaking must take place and should relate to the emergence of stop-
ping codons. If one codon in second 3-plet becomes stopping codon, the 3-plet becomes dou-
blet. If 2 codons in 4-plet become stopping codons it also becomes doublet and one obtains
the correct result (2, 9, 1, 5, 3)!

4. Stopping codons would most naturally correspond to the codons, which involve the Lz = −1
relative rotational excitation of uu or dd type quark pair. For the 3-plet the two candidates
for the stopping codon state are |1/2,−1/2〉⊗{|2, k〉}, k = 2,−2. The total spins are Jz = 3/2
and Jz = −7/2. The three candidates for the 4-plet from which two states are thrown out
are |1/2,−3/2〉 ⊗ {|2, k〉, |1, k〉}, k = 1, 0,−1. The total spins are now Jz = −1/2,−3/2,−5/2.
One guess is that the states with smallest value of Jz are dropped which would mean that
Jz = −7/2 states in 3-plet and Jz = −5/2 states 4-plet become stopping codons.
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5. One can ask why just vertebrate code? Why not vertebrate mitochondrial code, which has
unbroken A − G and T − C symmetries with respect to the third nucleotide. And is it
possible to understand the rarely occurring variants of the genetic code in this framework? One
explanation is that the baryonic realization is the fundamental one and biochemical realization
has gradually evolved from non-faithful realization to a faithful one as kind of emulation of
dark nuclear physics. Also the role of tRNA in the realization of the code is crucial and could
explain the fact that the code can be context sensitive for some codons.

Understanding the symmetries of the code

Quantum entanglement between quarks and color flux tubes would be essential for the baryonic
realization of the genetic code whereas chemical realization could be said to be classical. Quantal
aspect means that one cannot decompose to codon to letters anymore. This raises questions
concerning the symmetries of the code.

1. What is the counterpart for the conjugation ZY Z → XcYcZc for the codons?

2. The conjugation of the second nucleotide Y having chemical interpretation in terms of hydrophoby-
hydrophily dichotomy in biology. In DNA as TQC model it corresponds to matter-antimatter
conjugation for quarks associated with flux tubes connecting DNA nucleotides to the lipids of
the cell membrane. What is the interpretation in now?

3. The A-G, T-C symmetries with respect to the third nucleotide Z allow an interpretation as
weak isospin symmetry in DNA as TQC model. Can one identify counterpart of this symmetry
when the decomposition into individual nucleotides does not make sense?

Natural candidates for the building blocks of the analogs of these symmetries are the change
of the sign of the spin direction for quarks and for flux tubes.

1. For quarks the spin projections are always non-vanishing so that the map has no fixed points.
For flux tube spin the states of spin Sz = 0 are fixed points. The change of the sign of quark spin
projection must therefore be present for both XY Z → XcYcZc and Y → Yc but also something
else might be needed. Note that without the symmetry breaking (1, 3, 3, 1) → (1, 2, 3, 2) the
code table would be symmetric in the permutation of 2 first and 2 last columns of the code
table induced by both full conjugation and conjugation of Y .

2. The analogs of the approximate A − G and T − C symmetries cannot involve the change of
spin direction in neither quark nor flux tube sector. These symmetries act inside the A-G and
T-C sub-2-columns of the 4-columns defining the rows of the code table. Hence this symmetry
must permute the states of same spin inside 5 and 3 for flux tubes and 4 and 2 for quarks
but leave 2odd invariant. This guarantees that for the two non-degenerate codons coding for
only single amino-acid and one of the codons inside triplet the action is trivial. Hence the
baryonic analog of the approximate A − G and T − C symmetry would be exact symmetry
and be due to the basic definition of the genetic code as a mapping states of same flux tube
spin and quark spin to single representative state. The existence of full 4-columns coding for
the same amino-acid would be due to the fact that states with same quark spin inside (2, 3, 2)
code for the same amino-acid.

3. A detailed comparison of the code table with the code table in spin representation should
allow to fix their correspondence uniquely apart from permutations of n-plets and thus also
the representation of the conjugations. What is clear that Y conjugation must involve the
change of quark spin direction whereas Z conjugation which maps typically 2-plets to each
other must involve the permutation of states with same Jz for the flux tubes. It is not quite
clear what X conjugation correspond to.

Some comments about the physics behind the code

Consider next some particle physicist’s objections against this picture.

1. The realization of the code requires the dark scaled variants of spin 3/2 baryons known as
∆ resonance and the analogs (and only the analogs) of spin 1 mesons known as ρ mesons.
The lifetime of these states is very short in ordinary hadron physics. Now one has a scaled
up variant of hadron physics: possibly in both dark and p-adic senses with latter allowing
arbitrarily small overall mass scales. Hence the lifetimes of states can be scaled up.
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2. Both the absolute and relative mass differences between ∆ and N resp. ρ and π are large in
ordinary hadron physics and this makes the decays of ∆ and ρ possible kinematically. This is
due to color magnetic spin-spin splitting proportional to the color coupling strength αs ∼ .1,
which is large. In the recent case αs could be considerably smaller - say of the same order of
magnitude as fine structure constant 1/137 - so that the mass splittings could be so small as
to make decays impossible.

3. Dark hadrons could have lower mass scale than the ordinary ones if scaled up variants of
quarks in p-adic sense are in question. Note that the model for cold fusion that inspired
the idea about genetic code requires that dark nuclear strings have the same mass scale as
ordinary baryons. In any case, the most general option inspired by the vision about hierarchy
of conscious entities extended to a hierarchy of life forms is that several dark and p-adic scaled
up variants of baryons realizing genetic code are possible.

4. The heaviest objection relates to the addition of Lz = −1 excitation to Sz = |1/2,±1/2〉odd
states which transforms the degeneracies of the quark spin states from (1, 3, 3, 1) to (1, 2, 3, 2).
The only reasonable answer is that the breaking of the full rotation symmetry reduces SO(3)
to SO(2). Also the fact that the states of massless particles are labeled by the representation
of SO(2) might be of some relevance. The deeper level explanation in TGD framework might
be as follows. The generalized embedding space is constructed by gluing almost copies of
the 8-D embedding space with different Planck constants together along a 4-D subspace like
pages of book along a common back. The construction involves symmetry breaking in both
rotational and color degrees of freedom to Cartan sub-group and the interpretation is as a
geometric representation for the selection of the quantization axis. Quantum TGD is indeed
meant to be a geometrization of the entire quantum physics as a physics of the classical spinor
fields in the “world of classical worlds” so that also the choice of measurement axis must have
a geometric description.

The conclusion is that genetic code can be understand as a map of stringy baryonic states
induced by the projection of all states with same spin projection to a representative state with
the same spin projection. Genetic code would be realized at the level of dark nuclear physics and
biochemical representation would be only one particular higher level representation of the code. A
hierarchy of dark baryon realizations corresponding to p-adic and dark matter hierarchies can be
considered. Translation and transcription machinery would be realized by flux tubes connecting
only states with same quark spin and flux tube spin. Charge neutrality is essential for having only
the analogs of DNA, RNA and amino-acids and would guarantee the em stability of the states.

15.5 Cosmic Rays And Mersenne Primes

Sabine Hossenfelder has written two excellent blog postings about cosmic rays. The first one is
about the GKZ (see http://tinyurl.com/ybdflmgl) cutoff for cosmic ray energies and second one
about possible indications for new physics above 100 TeV (see http://tinyurl.com/ydewc2ug).
This inspired me to read what I have said about cosmic rays and Mersenne primes- this was around
1996 - immediately after performing for the first time p-adic mass calculations. It was unpleasant
to find that some pieces of the text contained a stupid mistake related to the notion of cosmic
ray energy. I had forgotten to take into account the fact that the cosmic ray energies are in the
rest system of Earth- what a shame! The recent version should be free of worst kind of blunders.
Before continuing it should be noticed I am now living year 2012 and this section was written
for the first time for around 1996 - and as it became clear - contained some blunders due to the
confusion with what one means with cosmic ray energy. The recent version should be free of worst
kind of blunders.

TGD suggests the existence of a scaled up copy of hadron physics associated with each
Mersenne prime Mn = 2n − 1, n prime: M107 corresponds to ordinary hadron physics. Also
lepto-hadrons are predicted. Also Gaussian Mersennes (1 + i)k − 1, could correspond to hadron
physics. Four of them (k = 151, 157, 163, 167) are in the biologically interesting length scale
range between cell membrane thickness and the size of cell nucleus. Also leptonic counterparts of
hadron physics assignable to certain Mersennes are predicted and there is evidence for them (see
http://tinyurl.com/ybfkptns) [K104].

http://tinyurl.com/ybdflmgl
http://tinyurl.com/ydewc2ug
http://tinyurl.com/ybfkptns
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The scaled up variants of hadron physics corresponding to k < 107 are of special interest.
k = 89 defines the interesting Mersenne prime at LHC, and the near future will probably tell
whether the 125 GeV signal corresponds to Higgs or a pion of M89 physics. Also cosmic ray
spectrum could provide support for M89 hadrons and quite recent cosmic ray observations [C60] are
claimed to provide support for new physics around 100 TeV (see http://tinyurl.com/y8s8swa5).
M89 proton would correspond to.5 TeV mass considerably below 100 TeV but this mass scale could
correspond to a mass scale of a scaled up copy of a heavy quark of M107 hadron physics: a näıve
scaling of top quark mass by factor 512 would give mass about 87 TeV. Also the lighter hadrons
of M89 hadron physics should contribute to cosmic ray spectrum and there are indeed indications
for this.

The mechanisms giving rise to ultra high energy cosmic rays are poorly understood. The
standard explanation would be acceleration in huge magnetic fields. TGD suggests a new mech-
anism based on the decay cascade of cosmic strings. The basis idea is that cosmic string decays
cosmic string → M2 hadrons → M3 hadrons ....→ M61 → M89 → M107 hadrons could be a new
source of cosmic rays. Also variants of this scenario with decay cascade beginning from larger
Mersenne prime can be considered. One expects that the decay cascade leads rapidly to extremely
energetic ordinary hadrons, which can collide with ordinary hadrons in atmosphere and create
hadrons of scaled variants of ordinary hadron physics. These cosmic ray events could serve as a
signature for the existence of these scale up variants of hadron physics.

1. Centauro events and the peculiar events associated with E > 105 GeV radiation from Cygnus
X-3. E refers to energy in Earth’s rest frame and for a collision with proton the cm energy
would be Ecm =

√
2EM > 10 TeV in good approximation whereasM89 variant of proton would

have mass of.5 TeV. These events be understood as being due to the collisions of energetic
M89 hadrons with ordinary hadrons (nucleons) in the atmosphere.

2. The decay πn → γγ produces a peak in the spectrum of the cosmic gamma rays at energy
m(πn)

2 . These produce peaks in cosmic gamma ray spectrum at energies which depend on the
energy of πn in the rest system of Earth. If the pion is at rest in the cm system of incoming
proton and atmospheric proton one can estimate the energy of the peak if the total energy of
the shower can be estimated reliably.

3. The slope in the hadronic cosmic ray spectrum changes at E = 3 · 106 GeV. This corresponds
to the energy Ecm = 2.5 TeV in the cm system of cosmic ray hadron and atmospheric proton.
This is not very far from M89 proton mass .5 TeV. The creation of M89 hadrons in atmospheric
collisions could explain the change of the slope.

4. The ultra-higher energy cosmic ray radiation having energies of order 109 GeV in Earth’s
rest system apparently consisting of protons and nuclei not lighter than Fe might be actually
dominated by gamma rays: at these energies γ and p induced showers have same muon content.
E = 109 GeV corresponds to Ecm =

√
2Emp = 4× 104 GeV. M89 nucleon would correspond

to mass scale 512 GeV.

5. So called GKZ cutoff should take place for cosmic gamma ray spectrum due to the collisions
with the cosmic microwave background. This should occur around E = 6× 1010 GeV, which
corresponds to Ecm = 3.5 × 105 GeV. Cosmic ray events above this cutoff (see http://

tinyurl.com/y75jho96) are however claimed. There should be some mechanism allowing for
ultra high energy cosmic rays to propagate over much longer distances as allowed by the limits.
Cosmic rays should be able to propagate without collisions. Many-sheeted space-time suggests
ways for how gamma rays could avoid collisions with microwave background. For instance,
gamma rays could be dark in TGD sense and therefore have large value of Planck constant.
One can even imagine exotic variants of hadrons, which differ from ordinary hadrons in that
they do not have quarks and therefore no interactions with the microwave background.

6. The highest energies of cosmic rays are around E = 1011 GeV, which corresponds to Ecm =
4×105 GeV. M61 nucleon and pion correspond to the mass scale of 6×106 GeV and 8.4×105

GeV. These events might correspond to the creation of M61 hadrons in atmosphere.

The identification of the hadronic space-time sheet as super-symplectic mini black-hole [K70]
suggests the science fictive possibility that part of ultra-high energy cosmic rays could be also
protons which have lost their valence quarks. These particles would have essentially same mass as
proton and would behave like mini black-holes consisting of dark matter. They could even give a
large contribution to the dark matter. Since electro-weak interactions are absent, the scattering

http://tinyurl.com/y8s8swa5
http://tinyurl.com/y75jho96
http://tinyurl.com/y75jho96
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from microwave background is absent, and they could propagate over much longer distances than
ordinary particles. An interesting question is whether the ultrahigh energy cosmic rays having
energies larger than the GZK cut-off of 5 × 1010 GeV in the rest system of Earth are super-
symplectic mini black-holes associated with M107 hadron physics or some other copy of hadron
physics.

15.5.1 Mersenne Primes And Mass Scales

p-Adic mass calculations lead to quite detailed predictions for elementary particle masses. In
particular, there are reasons to believe that the most important fundamental elementary particle
mass scales correspond to Mersenne primes Mn = 2n − 1, n = 2, 3, 7, 13, 17, 19, ...

m2
n =

m2
0

Mn
,

m0 ' 1.41 · 10−4

√
G

, (15.5.1)

where
√
G is Planck length. The lower bound for n can be of course larger than n = 2. The known

elementary particle mass scales were identified as mass scales associated identified with Mersenne
primes M127 ' 1038 (leptons), M107 (hadrons) and M89 (intermediate gauge bosons). Of course,
also other p-adic length scales are possible and it is quite possible that not all Mersenne primes
are realized. On the other hand, also Gaussian Mersennes could be important (muon and atomic
nuclei corresponds to Gaussian Mersenne (1 + i)k − 1 with k = 113).

Theory predicts also some higher mass scales corresponding to the Mersenne primes Mn for
n = 89, 61, 31, 19, 17, 13, 7, 3 and suggests the existence of a scaled up copy of hadron physics with
each of these mass scales. In particular, masses should be related by simple scalings to the masses
of the ordinary hadrons.

An attractive first working hypothesis hypothesis is that the color interactions of the particles
of level Mn can be described using the ordinary QCD scaled up to the level Mn so that masses
and the confinement mass scale Λ is scaled up by the factor

√
Mn/M107.

Λn =

√
Mn

M107
Λ . (15.5.2)

In particular, the näıve scaling prediction for the masses of the exotic pions associated with Mn is
given by

m(πn) =

√
Mn

M107
mπ . (15.5.3)

Here mπ ' 135 MeV is the mass of the ordinary pion. This estimte is of course extremely näıve
and the recent LHC data suggests that the 125 GeV Higgs candidate could be M89 pion. The mass
would be two times higher than the näıve estimate gives. p-Adic scalings by small powers of

√
2

must be considered in these estimates.

The interactions between the different level hadrons are mediated by the emission of electro-
weak gauge bosons and by gluons with cm energies larger than the energy defined by the confine-
ment scale of level with smaller p. The decay of the exotic hadrons at level Mnk to exotic hadrons at
level Mnk+1

must take place by a transition sequence leading from the effective Mnk -adic space-time
topology to effective Mnk+1

-adic topology. All intermediate p-adic topologies might be involved.

15.5.2 Cosmic Strings And Cosmic Rays

Cosmic strings are fundamental objects in quantum TGD and dominated during early cosmology.
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Cosmic strings

Cosmic strings (not quite the same thing in TGD as in GUTs) are basic objects in TGD inspired
cosmology [K32, K90].

1. In TGD inspired galaxy model galaxies are regarded as mass concentrations around cosmic
strings and the energy of the string corresponds to the dark energy whereas the particles con-
densed at cosmic strings and magnetic flux tubes resulting from them during cosmic expansion
correspond to dark matter [K32, K90]. The galactic nuclei, often regarded as candidates for
black holes, are the most probable seats for decaying highly entangled cosmic strings.

2. Galaxies are known to organize to form larger linear structures. This can be understood if
the highly entangled galactic strings organize around long strings like pearls in necklace. Long
strings could correspond to galactic jets and their gravitational field could explain the constant
velocity spectrum of distant stars in the galactic halo.

3. In [K32, K90, K89] it is suggested that decaying cosmic strings might provide a common
explanation for the energy production of quasars, galactic jets and gamma ray bursters and
that the visible matter in galaxies could be regarded as decay products of cosmic strings.
The magnetic and Z0 magnetic flux tubes resulting during the cosmic expansion from cosmic
strings allow to assign at least part of gamma ray bursts to neutron stars. Hot spots (with

temperature even as high as T ∼ 10−3,5
√
G

) in the cosmic string emitting ultra high energy cosmic

rays might be created under the violent conditions prevailing in the galactic nucleus.

The decay of the cosmic strings provides a possible mechanism for the production of the
exotic hadrons and in particular, exotic pions. In [C34] the idea that cosmic strings might produce
gamma rays by decaying first into “X” particles with mass of order 1015 GeV and then to gamma
rays, was proposed. As authors notice this model has some potential difficulties resulting from the
direct production of gamma rays in the source region and the presence of intensive electromagnetic
fields near the source. These difficulties are overcome if cosmic strings decay first into exotic
hadrons of type Mn0

, n0 ≥ 3 of energy of order 2−n0+21025 GeV , which in turn decay to exotic
hadrons corresponding to Mk, k > n0 via ordinary color interaction, and so on so that a sequence
of Mk: s starting some value of n0 in n = 2, 3, 7, 13, 17, 19, 31, 61, 89, 107 is obtained. The value of
n remains open at this stage and depends on the temperature of the hot spot and much smaller
temperatures than the T ∼ m0 are possible: favored temperatures are the temperatures Tn ∼ mn

at which Mn hadrons become unstable against thermal decay.

Decays of cosmic strings as producer of high energy cosmic gamma rays

In [C57] the gamma ray signatures from ordinary cosmic strings were considered and a dynamical
QCD based model for the decay of cosmic string was developed. In this model the final state
particles were assumed to be ordinary hadrons and final state interactions were neglected. In the
recent case the string decays first to Mn0

hadrons and the time scale of for color interaction between
Mn0

hadrons is extremely short (given by the length scale defined by the inverse of πn0
mass) as

compared to the time time scale in case of ordinary hadrons. Therefore the interactions between
the final state particles must be taken into account and there are good reasons to expect that
thermal equilibrium sets on and much simpler thermodynamic description of the process becomes
possible.

A possible description for the decaying part of the highly tangled cosmic string is as a
“fireball” containing various Mn0

(n ≥ 3) partons in thermal equilibrium at Hagedorn temperature

Tn0
of order Tn0

∼ mn0
= 2−2+n0 10−4

k
√
G

, k ' 1.288. The experimental discoveries made in RHIC

suggest [C56] that high energy nuclear collisions create instead of quark gluon plasma a liquid like
phase involving gluonic BE condensate christened as color glass condensate. Also black hole like
behavior is suggested by the experiments.

RHIC findings inspire a TGD based model for this phase as a macroscopic quantum phase
condensed on a highly tangled color magnetic string at Hagedorn temperature. The model relies
also on the notion of dynamical but quantized ~ [K37] and its recent form to the realization that
super-symplectic many-particle states at hadronic space-time sheets give dominating contribution
to the baryonic mass and explain hadronic masses with an excellent accuracy.
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This phase has no direct gauge interactions with ordinary matter and is identified in TGD
framework as a particular instance of dark matter. Quite generally, quantum coherent dark matter
would reside at magnetic flux tubes idealizable as string like objects with string tension determined
by the p-adic length scale and thus outside the “ordinary” space-time. This suggests that color glass
condensate forms when hadronic space-time sheets fuse to single long string like object containing
large number of super-symplectic bosons.

Color glass condensate has black-hole like properties by its electro-weak darkness and there
are excellent reasons to believe that also ordinary black holes could by their large density correspond
to states in which super-symplectic matter would form single connected string like structure (if
Planck constant is larger for super-symplectic hadrons, this fusion is even more probable).

This inspires the following mechanism for the decay of exotic boson.

1. The tangled cosmic string begins to cool down and when the temperature becomes smaller
than m(πn0) mass it has decayed to Mn1 matter which in turn continues to decay to Mn2

matter. The decay to Mn1 matter could occur via a sequence n0 → n0 − 1 → ...n1 of phase
transitions corresponding to the intermediate p-adic length scales p ' 2k, n1 ≥ k > n0.
Of course, all intermediate p-adic length scales are in principle possible so that the process
would be practically continuous and analogous to p-adic length scale evolution with p ' 2k

representing more stable intermediate states.

2. The first possibility is that virtual hadrons decay to virtual hadrons in the transition k → k−1.
The alternative option is that the density of final state hadrons is so high that they fuse to form
a single highly entangled hadronic string at Hagedorn temperature Tk−1 so that the process
would resemble an evaporation of a hadronic black hole staying in quark plasma phase without
freezing to hadrons in the intermediate states. This entangled string would contain partons as
“color glass condensate”.

3. The process continues until all particles have decayed to ordinary hadrons. Part of the Mn low
energy thermal pions decay to gamma ray pairs and produce a characteristic peak in cosmic

gamma ray spectrum at energies En = m(πn)
2 (possibly red-shifted by the expansion of the

Universe). The decay of the cosmic string generates also ultra high energy hadronic cosmic
rays, say protons. Since the creation of ordinary hadron with ultra high energy is certainly a
rare process there are good hopes of avoiding the problems related to the direct production
of protons by cosmic strings (these protons produce two high flux of low energy gamma rays,
when interacting with cosmic microwave background [C34] ).

Topologically condensed cosmic strings as analogs super-symplectic black-holes?

Super-symplectic matter has very stringy character. For instance, it obeys stringy mass formula due
the additivity and quantization of mass squared as multiples of p-adic mass scale squared [K70].
The ensuing additivity of mass squared defines a universal formula for binding energy having
no independence on interaction mechanism. Highly entangled strings carrying super-symplectic
dark matter are indeed excellent candidates for TGD variants of black-holes. The space-time sheet
containing the highly entangled cosmic string is separated from environment by a wormhole contact
with a radius of black-hole horizon. Schwartschild radius has also interpretation as Compton length
with Planck constant equal to gravitational Planck constant ~/~0 = 2GM2. In this framework the
proposed decay of cosmic strings would represent nothing but the TGD counterpart of Hawking
radiation. Presumably the value of p-adic prime in primordial stage was as small as possible, even
p = 2 can be considered.

Exotic cosmic ray events and exotic hadrons

One signature of the exotic hadrons is related to the interaction of the ultra high energy gamma
rays with the atmosphere. What can happen is that gamma rays in the presence of an atmospheric
nucleus decay to virtual exotic quark pair associated with Mnk , which in turn produces a cascade
of exotic hadrons associated with Mnk through the ordinary scaled up color interaction. These
hadrons in turn decay Mnk+1

type hadrons via mechanisms to be discussed later. At the last step
ordinary hadrons are produced. The collision creates in the atmospheric nucleus the analog of
quark gluon plasma which forms a second kind of fireball decaying to ordinary hadrons. RHIC
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experiments have already discovered these fireballs and identified them as color glass condensates
[C56]. It must be emphasized that it is far from clear whether QCD really predicts this phase.

These showers differ from ordinary gamma ray showers in several respects.

1. Exotic hadrons can have small momenta and the decay products can have isotropic angular
distribution so that the shower created by gamma rays looks like that created by a massive
particle.

2. The muon content is expected to be similar to that of a typical hadronic shower generated by
proton and larger than the muon content of ordinary gamma ray shower [C51].

3. Due to the kinematics of the reactions of type γ+p→ HMn
+ ...+p the only possibility at the

available gamma ray energies is that M89 hadrons are produced at gamma ray energies above
10 TeV . The masses of these hadrons are predicted to be above 70 GeV and this suggests
that these hadrons might be identified incorrectly as heavy nuclei (heavier than 56Fe). These
signatures will be discussed in more detail in the sequel in relation to Centauro type events,
Cygnus X-3 events and other exotic cosmic ray events. For a good review for these events and
models form them see the review article [C25].

Some cosmic ray events [C46, C21] have total laboratory energy as high as 3000 TeV which
suggests that the shower contains hadron like particles, which are more penetrating than ordinary
hadrons.

1. One might argue that exotic hadrons corresponding Mk, k > 107with interact only electro-
weakly (color is confined in the length scale associated with Mn) with the atmosphere one
might argue that they are more penetrating than the ordinary hadrons.

2. The observed highly penetrating fireballs could also correspond super-symplectic dark matter
part of incoming, possibly exotic, hadron fused with that for a hadron of atmosphere. Both
hadrons would have lost their valence quarks in the collision just as in the case of Pomeron
events. Large fraction of the collision energy would be transformed to super-symplectic quanta
in the process and give rise to a large color spin glass condensate. These condensates would
have no direct electro-weak interactions with ordinary matter which would explain their long
penetration lengths in the atmosphere. Sooner or later the color glass condensate would decay
to hadrons by the analog of blackhole evaporation. This process is different from QCD type
hadronization process occurring in hadronic collisions and this might allow to understand the
anomalously low production of neutral pions.

Exotic mesons can also decay to lepton pairs and neutral exotic pions produce gamma pairs.
These gamma pairs in principle provide a signature for the presence of exotic pions in the cosmic
ray shower. If M89 proton is sufficiently long-lived enough they might be detectable.The properties
of Centauro type events however suggest that M89 protons are short lived.
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Appendix

A-1 Introduction

Originally this appendix was meant to be a purely technical summary of basic facts but in its
recent form it tries to briefly summarize those basic visions about TGD which I dare to regarded
stabilized. I have added illustrations making it easier to build mental images about what is involved
and represented briefly the key arguments. This chapter is hoped to help the reader to get fast
grasp about the concepts of TGD.

The basic properties of embedding space and related spaces are discussed and the relation-
ship of CP2 to the standard model is summarized. The basic vision is simple: the geometry of the
embedding space H = M4 ×CP2 geometrizes standard model symmetries and quantum numbers.
The assumption that space-time surfaces are basic objects, brings in dynamics as dynamics of 3-D
surfaces based on the induced geometry. Second quantization of free spinor fields of H induces
quantization at the level of H, which means a dramatic simplification.

The notions of induction of metric and spinor connection, and of spinor structure are dis-
cussed. Many-sheeted space-time and related notions such as topological field quantization and the
relationship many-sheeted space-time to that of GRT space-time are discussed as well as the recent
view about induced spinor fields and the emergence of fermionic strings. Also the relationship to
string models is discussed briefly.

Various topics related to p-adic numbers are summarized with a brief definition of p-adic
manifold and the idea about generalization of the number concept by gluing real and p-adic number
fields to a larger book like structure analogous to adele [L53, L52]. In the recent view of quantum
TGD [L130], both notions reduce to physics as number theory vision, which relies on M8 − H
duality [L99, L100] and is complementary to the physics as geometry vision.

Zero energy ontology (ZEO) [L80] [K115] has become a central part of quantum TGD and
leads to a TGD inspired theory of consciousness as a generalization of quantum measurement
theory having quantum biology as an application. Also these aspects of TGD are briefly discussed.

A-2 Embedding space M 4 × CP2

Space-times are regarded as 4-surfaces inH = M4×CP2 the Cartesian product of empty Minkowski
space - the space-time of special relativity - and compact 4-D space CP2 with size scale of order
104 Planck lengths. One can say that embedding space is obtained by replacing each point m of
empty Minkowski space with 4-D tiny CP2. The space-time of general relativity is replaced by a
4-D surface in H which has very complex topology. The notion of many-sheeted space-time gives
an idea about what is involved.

Fig. 1. Embedding space H = M4 × CP2 as Cartesian product of Minkowski space M4

and complex projective space CP2. http://tgdtheory.fi/appfigures/Hoo.jpg

Denote by M4
+ and M4

− the future and past directed lightcones of M4. Denote their in-
tersection, which is not unique, by CD. In zero energy ontology (ZEO) [L80, L120] [K115] causal
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diamond (CD) is defined as cartesian product CD×CP2. Often I use CD to refer just to CD×CP2

since CP2 factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M4
+ and M4

−. Causal diamonds (CD) are defined as
their intersections. http://tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler. http:

//tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP2 is the only compact 4-manifold with Euclidian
signature of metric allowing twistor space with Kähler structure. M4 is in turn is the only 4-D
space with Minkowskian signature of metric allowing twistor space with Kähler structure [A57] so
that H = M4 × CP2 is twistorially unique.

One can loosely say that quantum states in a given sector of “world of classical worlds”
(WCW) are superpositions of space-time surfaces inside CDs and that positive and negative energy
parts of zero energy states are localized and past and future boundaries of CDs. CDs form a
hierarchy. One can have CDs within CDs and CDs can also overlap. The size of CD is characterized
by the proper time distance between its two tips. One can perform both translations and also
Lorentz boosts of CD leaving either boundary invariant. Therefore one can assign to CDs a
moduli space and speak about wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to some
discrete subgroup of Lorentz group and also the distances between the tips of CDs to multiples of
CP2 radius defined by the length of its geodesic. Therefore the moduli space of CDs discretizes.
The quantization of cosmic recession velocities for which there are indications, could relate to this
quantization.

A-2.1 Basic facts about CP2

CP2 as a four-manifold is very special. The following arguments demonstrate that it codes for the
symmetries of standard models via its isometries and holonomies.

CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-2.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2.
As j runs from 1 to 3 one obtains an atlas of three coordinate charts covering CP2, the charts
being holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0
form a subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to
S2. Therefore CP2 is obtained by “adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3, i = 1, 2 the coordinates of Eguchi and
Freund [A48] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-2.2)

These are related to the “spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-2.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.

http://tgdtheory.fi/appfigures/futurepast.jpg
http://tgdtheory.fi/appfigures/penrose.jpg
http://tgdtheory.fi/appfigures/penrose.jpg
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Considered as a real four-manifold CP2 is compact and simply connected, with Euler number
Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP2 as manifold. http://tgdtheory.fi/appfigures/cp2.jpg

Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the
orbits of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is

obtained by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the
distance between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄dξ
adξ̄b , (A-2.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-2.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-2.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting
the angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-2.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-2.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-2.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-2.10)

The explicit representations of vierbein vectors are given by

http://tgdtheory.fi/appfigures/cp2.jpg
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e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-2.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-2.12)

From this expression one finds that at coordinate infinity r =∞ line element reduces to r2

4F (dΘ2 +
sin2ΘdΦ2) of S2 meaning that 3-sphere degenerates metrically to 2-sphere and one can say that
CP2 is obtained by adding to R4 a 2-sphere at infinity.

The vierbein connection satisfying the defining relation

deA = −V AB ∧ eB , (A-2.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-2.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −isab̄dξadξ̄b , (A-2.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-2.17)

The condition states that J and g give representations of real unit and imaginary units related by
the formula i2 = −1.

Kähler form is expressible locally in terms of Kähler gauge potential

J = dB , (A-2.18)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

dJ = ddB = 0 gives the topological half of Maxwell equations (vanishing of magnetic charges
and Faraday’s induction law) and self-duality ∗J = J reduces the remaining equations to dJ = 0.
Hence the Kähler form can be regarded as a curvature form of a U(1) gauge potential B carrying
a magnetic charge of unit 1/2g (g denotes the gauge coupling).
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The magnetic flux of J through a 2-surface in CP2 is proportional to its homology equivalence
class, which is integer valued. The explicit representations of J and B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘ ∧ dΦ .

(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1, 1).

Useful coordinates for CP2 are the so called canonical (or symplectic or Darboux) coordinates
in which the Kähler potential and Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-2.20)

The relationship of the canonical coordinates to the “spherical” coordinates is given by the equa-
tions

P1 = − 1

1 + r2
,

P2 = − r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-2.21)

Spinors In CP2

CP2 doesn’t allow spinor structure in the conventional sense [A39]. However, the coupling of
the spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure.
Because the delicacies associated with the spinor structure of CP2 play a fundamental role in TGD,
the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation around a
closed curve with a base point x leads to a rotated vierbein at x: eA = RABe

B and one can
associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base
point x and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the
element RAB(v) defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g.,
homologically trivial, the path in SO(4) is also contractible to a point and therefore represents a
trivial element of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homo-
topically nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4)
(leading from the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also
spinors and by the above construction associate a closed path of Spin(4) to the surface S2. Now,
however this path corresponds to a lift of the corresponding SO(4) path and cannot be closed.
Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1-
factor associated with the parallel transport of the spinor around the sphere S2 by coupling it
to a gauge potential in such a way that in the parallel transport the gauge potential introduces
a compensating −1-factor. For a U(1) gauge potential this factor is given by the exponential
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exp(i2Φ), where Φ is the magnetic flux through the surface. This factor has the value −1 provided
the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required
gauge potential is half odd multiple of the Kähler potential B defined previously. In the case of
M4×CP2 one can in addition couple the spinor components with different chiralities independently
to an odd multiple of B/2.

Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the em-
bedding space. As a consequence the second fundamental form of the geodesic manifold vanishes,
which means that the tangent vectors hkα (understood as vectors of H) are covariantly constant
quantities with respect to the covariant derivative taking into account that the tangent vectors are
vectors both with respect to H and X4.

In [A81] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric
space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple
systems of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g
characterized by the closedness property with respect to double commutation

[X, [Y, Z]] ∈ t for X,Y, Z ∈ t . (A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres.
This is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding
to subgroups SO(3) (orthogonal 3×3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form is also easy
to verify. The first geodesic manifold is homologically trivial: in fact, the induced Kähler form
vanishes identically for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives

its homology equivalence class.

A-2.2 CP2 geometry and Standard Model symmetries

Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the
coupling of the spinors to the U(1) gauge potential defined by the Kähler structure provides the
missing U(1) factor in the gauge group. Secondly, it is possible to couple different H-chiralities
independently to a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct
spectrum for the electromagnetic charge are considerable. In the following it will be demonstrated
that the couplings of the induced spinor connection are indeed those of the GWS model [B35] and in
particular that the right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the
condition

ΓΨ = eΨ ,

e = ±1 , (A-2.23)

where Γ denotes the matrix Γ9 = γ5 ⊗ γ5, 1 ⊗ γ5 and γ5 ⊗ 1 respectively. Clearly, for a fixed
H-chirality CP2- and M4-chiralities are correlated.
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The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood as a
consequence of generalized chiral invariance if this identification is accepted. For the spinors with
a definite H-chirality one can identify the vielbein group of CP2 as the electro-weak group: SO(4)
having as its covering group SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-2.24)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of
a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-2.25)

and

B = 2re3 , (A-2.26)

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that
the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-2.27)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-2.28)

Ach is clearly left handed so that one can perform the identification of the gauge potential as

W± =
2(e1 ± ie2)

r
, (A-2.29)

where W± denotes the charged intermediate vector boson.
The covariantly constant curvature tensor is given by

R01 = −R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = −R31 = e0 ∧ e2 − e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 ,
R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-2.30)

The charged part of the curvature tensor is left handed.
This is to be compared with the Weyl tensor, which defines a representation of quaternionic

imaginary units.
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W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,
W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,
W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 .

(A-2.31)

The charged part of the Weyl tensor is right-handed and that the relative sign of the two terms in
the curvature tensor and Weyl tensor are opposite.

Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear
combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-2.32)

appearing in the neutral part of the spinor connection. We show first that the mere requirement
that photon couples vectorially implies the basic coupling structure of the GWS model leaving
only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-2.33)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-2.34)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively,
the requirement that γ couples vectorially leads to the condition

c = −d . (A-2.35)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (A-2.36)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-2.37)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-2.38)
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The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-2.39)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of the Weinberg angle is a dynamical problem. The original
approach was based on the assumption that it makes sense to talk about electroweak action defined
at fundamental level and introduce a symmetry breaking by adding an additional term proportional
to Kähler action. The recent view is that Kähler action plus volume term defines the fundamental
action.

The Weinberg angle is completely fixed if one requires that the electroweak action contains
no cross term of type γZ0. This leads to a definite value for the Weinberg angle.

One can however add a symmetry breaking term proportional to Kähler action and this
changes the value of the Weinberg angle. As a matter fact, color gauge action identifying color
gauge field as proportional to HAJαβ is proportional to Kähler action. A possible interpretation
would be as a sum of electroweak and color gauge interactions.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-2.40)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-2.41)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-2.42)

Evaluating the expressions above, one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR12 ,

Z0 = 2R03 . (A-2.43)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-2.44)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-2.45)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression
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X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-2.46)

This parameter can be calculated by substituting the values of quark and lepton charges and weak
isospins.

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-2.47)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the
integer describing the coupling of the spinor field to the Kähler potential. The cross term vanishes
provided the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-2.48)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-2.49)

The bare value of the Weinberg angle is 9/28 in this scenario, which is not far from the typical value
9/24 of GUTs at high energies [B10]. The experimental value at the scale length scale of the electron
can be deduced from the ratio of W and Z boson masses as sin2θW = 1 − (mW /mZ)2 ' .22290.
This ratio and also the weak boson masses depend on the length scale.

If one interprets the additional term proportional to J as color action, one could perhaps
interpret the value of Weinberg angle as expressing a connection between strong and weak coupling
constant evolution. The limit f → 0 should correspond to an infinite value of color coupling
strength and at this limit one would have sin2θW = 9

28 for f/g2 → 0. This does not make sense
since the Weinberg angle is in the standard model much smaller in QCD scale Λ corresponding
roughly to pion mass scale. The Weinberg angle is in principle predicted by the p-adic coupling
constant evolution fixed by the number theoretical vision of TGD.

One could however have a sum of electroweak action, correction terms changing the value
of Weinberg angle, and color action and coupling constant evolution could be understood in terms
of the coupling parameters involved.

Electroweak symmetry breaking

One of the hardest challenges in the development of the TGD based view of weak symmetry break-
ing was the fact that classical field equations allow space-time surfaces with finite but arbitrarily
large size. For a fixed space-time surface, the induced gauge fields, including classical weak fields,
are long ranged. On the other hand, the large mass for weak bosons would require a short cor-
relation length. How can one understand this together with the fact that a photon has a long
correlation length?

In zero energy ontology quantum states are superpositions of space-time surfaces as analogs
of almost unique Bohr orbits of particles identified as 3-D surfaces. For some reason the superpo-
sition should be such that the quantum averages of weak gauge boson fields vanish below the weak
scale whereas the quantum average of electromagnetic fields is non-vanishing.

This is indeed the case.
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1. The supersymplectic symmetries form isometries of the world of classical worlds (WCW) and
they act in CP2 degrees of freedom as symplectic transformations leaving the CP2 symplectic
form J invariant and therefore also its contribution to the electromagnetic field since this
part is the same for all space-time surfaces in the superposition of space-time surfaces as a
representation of supersymplectic isometry group (as a special case a representation of color
group).

2. In TGD, color and electroweak symmetries acting as holonomies are not independent and
for the SU(2)L part of induced spinor connection the symplectic transformations induces
SU(2)L × U(1)R gauge transformation. This suggests that the quantum expectations of the
induced weak fields over the space-time surfaces vanish above the quantum coherence scale.
The averages of W and of the left handed part of Z0 should therefore vanish.

3. 〈Z0〉 should vanish. For U(1)R part of Z0, the action of gauge transformation is trivial in
gauge theory. Now however the space-time surface changes under symplectic transformations
and this could make the average of the right-handed part of Z0 vanishing. The vanishing of
the average of the axial part of the Z0 is suggested by the partially conserved axial current
hypothesis.

One can formulate this picture quantitatively.

1. The electromagnetic field [L137] contains, besides the induced Kähler form, also the induced
curvature form R12, which couples vectorially. Conserved vector current hypothesis suggests
that the average of R12 is non-vanishing. One can express the neutral part of the induced
gauge field in terms of induced spinor curvature and Kähler form J as

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) = J + 2e0 ∧ e3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) = 3J − 2e0 ∧ e3 , (A-2.50)

2. The induced fields γ and Z0 (photon and Z- boson) can be expressed as

γ = 3J − sin2θWR12 ,

Z0 = 2R03 = 2(J + 2e0 ∧ e3) (A-2.51)

per. (A-2.52)

The condition 〈Z0〉 = 0 gives 2〈e0∧e3〉 = −2J and this in turn gives 〈R12〉 = 4J . The average
over γ would be

〈γ〉 = (3− 4sin2θW )J .

For sin2θW = 3/4 langleγ〉 would vanish.

The quantum averages of classical weak fields quite generally vanish. What about correlation
functions?

1. One expects that the correlators of classical weak fields as color invariants, and perhaps even
symplectic invariants, are non-vanishing below the Compton length since in this kind of situ-
ation the points in the correlation function belong to the same 3-surface representing particle,
such as hadron.

2. The intuitive picture is that in longer length scales one has disjoint 3-surfaces with a size scale
of Compton length. If the states associated with two disjoint 3-surfaces are separately color
invariant there are no correlations in color degrees of freedom and correlators reduce to the
products of expectations of classical weak fields and vanish. This could also hold when the
3-surfaces are connected by flux tube bonds.
Below the Compton length weak bosons would thus behave as correlated massless fields. The
Compton lengths of weak bosons are proportional to the value of effective Planck constant
heff and in living systems the Compton lengths are proposed to be even of the order of cell
size. This would explain the mysterious chiral selection in living systems requiring large parity
violation.

3. What about the averages and correlators of color gauge fields? Classical color gauge fields
are proportional to the products of Hamiltonians of color isometries induced Kähler form
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and the expectations of color Hamiltonians give vanishing average above Compton length and
therefore vanishing average. Correlators are non-vanishing below the hadron scale. Gluons
do not propagate in long scales for the same reason as weak bosons. This is implied by color
confinement, which has also classical description in the sense that 3-surfaces have necessarily
a finite size.
A large value of heff allows colored states even in biological scales below the Compton length
since in this kind of situation the points in the correlation function belong to the same 3-surface
representing particle, such as dark hadron.

Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

1. Symmetries must be realized as purely geometric transformations.

2. Transformation properties of the field variables should be essentially the same as in the con-
ventional quantum field theories [B13] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-2.53)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the
physicist turns out to be correct. One can verify by a direct calculation that pure Dirac action is
invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-2.54)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds
geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-2.55)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Induction procedure and many-sheeted space-time

Since the classical gauge fields are closely related in TGD framework, it is not possible to have
space-time sheets carrying only single kind of gauge field. For instance, em fields are accompanied
by Z0 fields for extremals of Kähler action.

Classical em fields are always accompanied by Z0 field and some components of color gauge
field. For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields
are the only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields
are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although
the net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge
field has U(1) holonomy for all space-time surfaces and quantum classical correspondence suggest a
weak form of color confinement meaning that physical states correspond to color neutral members
of color multiplets.
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A-3.1 Induction procedure for gauge fields and spinor connection

Induction procedure for gauge potentials and spinor structure is a standard procedure of bundle
theory. If one has embedding of some manifold to the base space of a bundle, the bundle structure
can be induced so that it has as a base space the imbedded manifold, whose points have as fiber
the fiber if embedding space at their image points. In the recent case the embedding of space-time
surface to embedding space defines the induction procedure. The induced gauge potentials and
gauge fields are projections of the spinor connection of the embedding space to the space-time
surface (see http://tgdtheory.fi/appfigures/induct.jpg).

Induction procedure makes sense also for the spinor fields of embedding space and one
obtains geometrization of both electroweak gauge potentials and of spinors. The new element is
induction of gamma matrices which gives their projections at space-time surface.

As a matter fact, the induced gamma matrices cannot appear in the counterpart of massless
Dirac equation. To achieve super-symmetry, Dirac action must be replaced with Kähler-Dirac
action for which gamma matrices are contractions of the canonical momentum currents of Kähler
action with embedding space gamma matrices. Induced gamma matrices in Dirac action would
correspond to 4-volume as action.

Fig. 9. Induction of spinor connection and metric as projection to the space-time surface.
http://tgdtheory.fi/appfigures/induct.jpg.

A-3.2 Induced gauge fields for space-times for which CP2 projection is
a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields
and homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can
be verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3

vanish imply the vanishing of W field. For space-time sheets for which CP2 projection is r = ∞
homologically non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates
constant values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish
but induced W fields are non-vanishing. This holds also for surfaces obtained by color rotation.
Hence one can say that for non-vacuum extremals with 2-D CP2 projection color rotations and
weak symmetries commute.

A-3.3 Many-sheeted space-time

TGD space-time is many-sheeted: in other words, there are in general several space-sheets which
have projection to the same M4 region. Second manner to say this is that CP2 coordinates are
many-valued functions of M4 coordinates. The original physical interpretation of many-sheeted
space-time time was not correct: it was assumed that single sheet corresponds to GRT space-time
and this obviously leads to difficulties since the induced gauge fields are expressible in terms of
only four embedding space coordinates.

Fig. 10. Illustration of many-sheeted space-time of TGD. http://tgdtheory.fi/appfigures/
manysheeted.jpg

Superposition of effects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge fields and
induced metric. The resolution of the problem is that it is effects which need to superpose, not

http://tgdtheory.fi/appfigures/induct.jpg
http://tgdtheory.fi/appfigures/induct.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
http://tgdtheory.fi/appfigures/manysheeted.jpg
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the fields.
Test particle topologically condenses simultaneously to all space-time sheets having a pro-

jection to same region of M4 (that is touches them). The superposition of effects of fields at various
space-time sheets replaces the superposition of fields.This is crucial for the understanding also how
GRT space-time relates to TGD space-time, which is also in the appendix of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect them to be
stable unless there is non-trivial Kähler magnetic flux flowing through then so that the throats
look like Kähler magnetic monopoles.

Fig. 11. Wormhole contact. http://tgdtheory.fi/appfigures/wormholecontact.jpg
Since the flow lines of Kähler magnetic field must be closed this requires the presence of

another wormhole contact so that one obtains closed monopole flux tube decomposing to two
Minkowskian pieces at the two space-time sheets involved and two wormhole contacts with Eu-
clidian signature of the induced metric. These objects are identified as space-time correlates of
elementary particles and are clearly analogous to string like objects.

The relationship between the many-sheeted space-time of TGD and of GRT space-
time

The space-time of general relativity is single-sheeted and there is no need to regard it as surface
in H although the assumption about representability as vacuum extremal gives very powerful
constraints in cosmology and astrophysics and might make sense in simple situations.

The space-time of GRT can be regarded as a long length scale approximation obtained by
lumping together the sheets of the many-sheeted space-time to a region of M4 and providing it
with an effective metric obtained as sum of M4 metric and deviations of the induced metrics of
various space-time sheets from M4 metric. Also induced gauge potentials sum up in the similar
manner so that also the gauge fields of gauge theories would not be fundamental fields.

Fig. 12. The superposition of fields is replaced with the superposition of their effects in
many-sheeted space-time. http://tgdtheory.fi/appfigures/fieldsuperpose.jpg

Space-time surfaces of TGD are considerably simpler objects that the space-times of general
relativity and relate to GRT space-time like elementary particles to systems of condensed matter
physics. Same can be said about fields since all fields are expressible in terms of embedding
space coordinates and their gradients, and general coordinate invariance means that the number
of bosonic field degrees is reduced locally to 4. TGD space-time can be said to be a microscopic
description whereas GRT space-time a macroscopic description. In TGD complexity of space-time
topology replaces the complexity due to large number of fields in quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell’s theory. TGD predicts topological light rays
(“massless extremals (MEs)”) as space-time sheets carrying waves or arbitrary shape propagating
with maximal signal velocity in single direction only and analogous to laser beams and carrying
light-like gauge currents in the generi case. There are also magnetic flux quanta and electric flux
quanta. The deformations of cosmic strings with 2-D string orbit as M4 projection gives rise to
magnetic flux tubes carrying monopole flux made possible by CP2 topology allowing homological
Kähler magnetic monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bundles of
them defining flux tubes as topological field quanta. http://tgdtheory.fi/appfigures/field.

jpg

The imbeddability condition for say magnetic field means that the region containing constant
magnetic field splits into flux quanta, say tubes and sheets carrying constant magnetic field. Unless
one assumes a separate boundary term in Kähler action, boundaries in the usual sense are forbidden
except as ends of space-time surfaces at the boundaries of causal diamonds. One obtains typically
pairs of sheets glued together along their boundaries giving rise to flux tubes with closed cross
section possibly carrying monopole flux.

http://tgdtheory.fi/appfigures/wormholecontact.jpg
http://tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://tgdtheory.fi/appfigures/field.jpg
http://tgdtheory.fi/appfigures/field.jpg
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These kind of flux tubes might make possible magnetic fields in cosmic scales already during
primordial period of cosmology since no currents are needed to generate these magnetic fields:
cosmic string would be indeed this kind of objects and would dominated during the primordial
period. Even superconductors and maybe even ferromagnets could involve this kind of monopole
flux tubes.

A-3.4 Embedding space spinors and induced spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure of M4×CP2.

CP2 does not allow spinor structure in the ordinary sense but one can couple the opposite
H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential to obtain
a respectable modified spinor structure. The em charges of resulting spinors are fractional (integer
valued) and the interpretation as quarks (leptons) makes sense since the couplings to the induced
spinor connection having interpretation in terms electro-weak gauge potential are identical to those
assumed in standard model.

The notion of quark color differs from that of standard model.

1. Spinors do not couple to color gauge potential although the identification of color gauge po-
tential as projection of SU(3) Killing vector fields is possible. This coupling must emerge only
at the effective gauge theory limit of TGD.

2. Spinor harmonics of embedding space correspond to triality t = 1 (t = 0) partial waves.
The detailed correspondence between color and electroweak quantum numbers is however not
correct as such and the interpretation of spinor harmonics of embedding space is as represen-
tations for ground states of super-conformal representations. The wormhole pairs associated
with physical quarks and leptons must carry also neutrino pair to neutralize weak quantum
numbers above the length scale of flux tube (weak scale or Compton length). The total color
quantum numbers or these states must be those of standard model. For instance, the color
quantum numbers of fundamental left-hand neutrino and lepton can compensate each other
for the physical lepton. For fundamental quark-lepton pair they could sum up to those of
physical quark.

The well-definedness of em charge is crucial condition.

1. Although the embedding space spinor connection carries W gauge potentials one can say that
the embedding space spinor modes have well-defined em charge. One expects that this is true
for induced spinor fields inside wormhole contacts with 4-D CP2 projection and Euclidian
signature of the induced metric.

2. The situation is not the same for the modes of induced spinor fields inside Minkowskian region
and one must require that the CP2 projection of the regions carrying induced spinor field
is such that the induced W fields and above weak scale also the induced Z0 fields vanish in
order to avoid large parity breaking effects. This condition forces the CP2 projection to be
2-dimensional. For a generic Minkowskian space-time region this is achieved only if the spinor
modes are localized at 2-D surfaces of space-time surface - string world sheets and possibly
also partonic 2-surfaces.

3. Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation must vanish
in the directions normal to the 2-D surface in order that Kähler-Dirac equation can be satisfied.
This does not seem plausible for space-time regions with 4-D CP2 projection.

4. One can thus say that strings emerge from TGD in Minkowskian space-time regions. In
particular, elementary particles are accompanied by a pair of fermionic strings at the opposite
space-time sheets and connecting wormhole contacts. Quite generally, fundamental fermions
would propagate at the boundaries of string world sheets as massless particles and wormhole
contacts would define the stringy vertices of generalized Feynman diagrams. One obtains
geometrized diagrammatics, which brings looks like a combination of stringy and Feynman
diagrammatics.

5. This is what happens in the the generic situation. Cosmic strings could serve as examples about
surfaces with 2-D CP2 projection and carrying only em fields and allowing delocalization of
spinor modes to the entire space-time surfaces.
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A-3.5 About induced gauge fields

In the following the induced gauge fields are studied for general space-time surface without assum-
ing the preferred extremal property (Bohr orbit property). Therefore the following arguments are
somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-3.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-3.2)

where ΘW denotes Weinberg angle.

1. The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-3.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral space-
time is 2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
|k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-3.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1
giving |u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-3.5)

The components of the electromagnetic field generated by varying vacuum parameters are
proportional to the components of the Kähler field: in particular, the magnetic field is parallel
to the Kähler magnetic field. The generation of a long range Z0 vacuum field is a purely TGD
based feature not encountered in the standard gauge theories.
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2. The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2 as
becomes clear by considering the condition stating that Z0 field vanishes identically. Also the

relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.

3. The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-
times. In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-3.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains
as a long range gauge field. Vacuum extremals for which long range Z0 field vanishes but em
field is non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is
of practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-3.7)

and is useful in the construction of vacuum embedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized
by six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type param-
eters, two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1

and n2) are integers. The parameters ωi and ni will be referred as electric and magnetic quantum
numbers. The existence of these quantum numbers is not a feature of these solutions alone but
represents a much more general phenomenon differentiating in a clear cut manner between TGD
and Maxwell’s electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the
derivatives of CP2 coordinates on the common boundary of two neighboring regions with differ-
ent vacuum quantum numbers is topological field quantization, 3-space decomposes into disjoint
topological field quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-3.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the
vacuum parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time
surface becomes ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the
vacuum parameters r0 and Θ0. At r = ∞ surfaces n2,ω2 and m can change since all values of
Ψ correspond to the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all
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values of Φ correspond to same point of CP2, too. If r = 0 or r = ∞ is not in the allowed range
space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not possible
to find a smooth global embedding for, say a constant magnetic field. Although global embedding
exists it decomposes into regions with different values of the vacuum parameters and the coordinate
u in general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner
to avoid edges of space-time is to allow field quantization so that 3-space (and field) decomposes
into disjoint quanta, which can be regarded as structurally stable units a 3-space (and of the gauge
field). This doesn’t exclude partial join along boundaries for neighboring field quanta provided
some additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-3.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general
generates magnetic field and therefore these integers will be referred to as magnetic (electric)
quantum numbers.

A-4 The relationship of TGD to QFT and string models

The recent view of the relationship of TGD to QFT and string models has developed slowly during
years and it seems that in a certain sense TGD means a return to roots: instead of QFT like
description involving path integral one would have wave mechanics for 3-surfaces.

A-4.1 TGD as a generalization of wave mechanism obtained by replacing
point-like particles with 3-surfaces

The first vision of TGD was as a generalization of quantum field theory (string models) obtained
by replacing pointlike particles (strings) as fundamental objects with 3-surfaces.

The later work has revealed that TGD could be seen as a generalization of the wave mecha-
nism based on the replacement of a point-like particle with 3-D surface. This is due to holography
implied by general coordinate invariance. The definition of the metric of the ”world of classical
worlds” (WCW) must assign a unique or at least almost unique space-time surface to a given
3-surface. This 4-surface is analogous to Bohr orbit so that also Bohr orbitology becomes an exact
part of quantum physics. The failure of strict determinism forces to replace 3-surfaces with 4-
surfaces and this leads to zero energy ontology (ZEO) in which quantum states are superpositions
of space-time surfaces [K52, K31, K85] [L121, L130].

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://tgdtheory.fi/appfigures/
particletgd.jpg

A-4.2 Extension of superconformal invariance

The fact that light-like 3-surfaces are effectively metrically 2-dimensional and thus possess gen-
eralization of 2-dimensional conformal symmetries with light-like radial coordinate defining the
analog of second complex coordinate suggests that this generalization could work and extend the
super-conformal symmetries to their 4-D analogs.

The boundary δM4
+ = S2 ×R+- of 4-D light-cone M4

+ is also metrically 2-dimensional and
allows extended conformal invariance. Also the group of isometries of light-cone boundary and of
light-like 3-surfaces is infinite-dimensional since the conformal scalings of S2 can be compensated
by S2-local scaling of the light-like radial coordinate of R+. These simple facts mean that 4-
dimensional Minkowski space and 4-dimensional space-time surfaces are in a completely unique
position as far as symmetries are considered.

In fact, this leads to a generalization of the Kac-Moody type symmetries of string models.
δM4

+ × CP2 allows huge supersymplectic symmetries for which the radial light-like coordinate of

http://tgdtheory.fi/appfigures/particletgd.jpg
http://tgdtheory.fi/appfigures/particletgd.jpg
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δM4
+ plays the role of complex string coordinate in string models. These symmetries are assumed

to act as isometries of WCW.

A-4.3 String-like objects and strings

String like objects obtained as deformations of cosmic strings X2×Y 2, where X2 is minimal surface
in M4 and Y 2 a holomorphic surface of CP2 are fundamental extremals of Kähler action having
string world sheet as M4 projections. Cosmic strings dominate the primordial cosmology of the
TGD Universe and the inflationary period corresponds to the transition to radiation dominated
cosmology for which space-time sheets with 4-D M4 projection dominate.

Also genuine string-like objects emerge from TGD. The conditions that the em charge
of modes of induces spinor fields is well-defined requires in the generic case the localization of
the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces. This in
Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to 2-D
surfaces in generic situations in Minkowskian regions of space-time surface. http://tgdtheory.

fi/appfigures/fermistring.jpg

A-4.4 TGD view of elementary particles

The TGD based view about elementary particles has two key aspects.

1. The space-time correlates of elementary particles are identified as pairs of wormhole contacts
with Euclidean signature of metric and having 4-D CP2 projection. Their throats behave
effectively as Kähler magnetic monopoles so that wormhole throats must be connected by
Kähler magnetic flux tubes with monopole flux so that closed flux tubes are obtained.

2. At the level of H Fermion number is carried by the modes of the induced spinor field. In
space-time regions with Minkowski signature the modes are localized at string world sheets
connecting the wormhole contacts.

Fig. 7. TGD view about elementary particles. a) Particle orbit corresponds to a 4-D
generalization of a world line or b) with its light-like 3-D boundary (holography). c) Particle
world lines have Euclidean signature of the induced metric. d) They can be identified as wormhole
contacts. e) The throats of wormhole contacts carry effective Kähler magnetic charges so that
wormhole contacts must appear as pairs in order to obtain closed flux tubes. f) Wormhole contacts
are accompanied by fermionic strings connecting the throats at the same sheet: the strings do not
extend inside the wormhole contacts. http://tgdtheory.fi/appfigures/elparticletgd.jpg

Particle interactions involve both stringy and QFT aspects.

1. The boundaries of string world sheets correspond to fundamental fermions. This gives rise to
massless propagator lines in generalized Feynman diagrammatics. One can speak of “long”
string connecting wormhole contacts and having a hadronic string as a physical counter-
part. Long strings should be distinguished from wormhole contacts which due to their super-
conformal invariance behave like “short” strings with length scale given by CP2 size, which is
104 times longer than Planck scale characterizing strings in string models.

2. Wormhole contact defines basic stringy interaction vertex for fermion-fermion scattering. The
propagator is essentially the inverse of the superconformal scaling generator L0. Wormhole
contacts containing fermion and antifermion at its opposite throats behave like virtual bosons
so that one has BFF type vertices typically.

3. In topological sense one has 3-vertices serving as generalizations of 3-vertices of Feynman
diagrams. In these vertices 4-D “lines” of generalized Feynman diagrams meet along their 3-D
ends. One obtains also the analogs of stringy diagrams but stringy vertices do not have the
usual interpretation in terms of particle decays but in terms of propagation of particles along
two different routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of space-
time topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear but the
interpretation of the analogs stringy diagrams is different. http://tgdtheory.fi/appfigures/

tgdgraphs.jpg

http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/fermistring.jpg
http://tgdtheory.fi/appfigures/elparticletgd.jpg
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A-5 About the selection of the action defining the Kähler
function of the ”world of classical worlds” (WCW)

The proposal is that space-time surfaces correspond to preferred extremals of some action principle,
being analogous to Bohr orbits, so that they are almost deterministic. The action for the preferred
extremal would define the Kähler function of WCW [K52, K85].

How unique is the choice of the action defining WCW Kähler metric? The problem is that
twistor lift strongly suggests the identification of the preferred extremals as 4-D surfaces having
4-D generalization of complex structure and that a large number of general coordinate invariant
actions constructible in terms of the induced geometry have the same preferred extremals.

A-5.1 Could twistor lift fix the choice of the action uniquely?

The twistor lift of TGD [K87] [L121, L125, L126] generalizes the notion of induction to the level
of twistor fields and leads to a proposal that the action is obtained by dimensional reduction of
the action having as its preferred extremals the counterpart of twistor space of the space-time
surface identified as 6-D surface in the product T (M4) × T (CP2) twistor spaces of T (M4) and
T (CP2) of M4 and CP2. Only M4 and CP2 allow a twistor space with Kähler structure [A57] so
that TGD would be unique. Dimensional reduction is forced by the condition that the 6-surface
has S2-bundle structure characterizing twistor spaces and the base space would be the space-time
surface.

1. Dimensional reduction of 6-D Kähler action implies that at the space-time level the funda-
mental action can be identified as the sum of Kähler action and volume term (cosmological
constant). Other choices of the action do not look natural in this picture although they
would have the same preferred extremals.

2. Preferred extremals are proposed to correspond to minimal surfaces with singularities such
that they are also extremals of 4-D Kähler action outside the singularities. The physical
analogue are soap films spanned by frames and one can localize the violation of the strict
determinism and of strict holography to the frames.

3. The preferred extremal property is realized as the holomorphicity characterizing string world
sheets, which generalizes to the 4-D situation. This in turn implies that the preferred extremals
are the same for any general coordinate invariant action defined on the induced gauge fields
and induced metric apart from possible extremals with vanishing CP2 Kähler action.
For instance, 4-D Kähler action and Weyl action as the sum of the tensor squares of the
components of the Weyl tensor of CP2 representing quaternionic imaginary units constructed
from the Weyl tensor of CP2 as an analog of gauge field would have the same preferred
extremals and only the definition of Kähler function and therefore Kähler metric of WCW
would change. One can even consider the possibility that the volume term in the 4-D action
could be assigned to the tensor square of the induced metric representing a quaternionic or
octonionic real unit.

Action principle does not seem to be unique. On the other hand, the WCW Kähler form
and metric should be unique since its existence requires maximal isometries.

Unique action is not the only way to achieve this. One cannot exclude the possibility that
the Kähler gauge potential of WCW in the complex coordinates of WCW differs only by a complex
gradient of a holomorphic function for different actions so that they would give the same Kähler
form for WCW. This gradient is induced by a symplectic transformation of WCW inducing a
U(1) gauge transformation. The Kähler metric is the same if the symplectic transformation is an
isometry.

Symplectic transformations of WCW could give rise to inequivalent representations of the
theory in terms of action at space-time level. Maybe the length scale dependent coupling parame-
ters of an effective action could be interpreted in terms of a choice of WCW Kähler function, which
maximally simplifies the computations at a given scale.

1. The 6-D analogues of electroweak action and color action reducing to Kähler action in 4-D
case exist. The 6-D analog of Weyl action based on the tensor representation of quaternionic
imaginary units does not however exist. One could however consider the possibility that only
the base space of twistor space T (M4) and T (CP2) have quaternionic structure.
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2. Kähler action has a huge vacuum degeneracy, which clearly distinguishes it from other actions.
The presence of the volume term removes this degeneracy. However, for minimal surfaces hav-
ing CP2 projections, which are Lagrangian manifolds and therefore have a vanishing induced
Kähler form, would be preferred extremals according to the proposed definition. For these
4-surfaces, the existence of the generalized complex structure is dubious.
For the electroweak action, the terms corresponding to charged weak bosons eliminate these
extremals and one could argue that electroweak action or its sum with the analogue of color
action, also proportional Kähler action, defines the more plausible choice. Interestingly, also
the neutral part of electroweak action is proportional to Kähler action.

Twistor lift strongly suggests that also M4 has the analog of Kähler structure. M8 must be
complexified by adding a commuting imaginary unit i. In the E8 subspace, the Kähler structure
of E4 is defined in the standard sense and it is proposed that this generalizes to M4 allowing also
generalization of the quaternionic structure. M4 Kähler structure violates Lorentz invariance but
could be realized at the level of moduli space of these structures.

The minimal possibility is that the M4 Kähler form vanishes: one can have a different
representation of the Kähler gauge potential for it obtained as generalization of symplectic trans-
formations acting non-trivially in M4. The recent picture about the second quantization of spinors
of M4 × CP2 assumes however non-trivial Kähler structure in M4.

A-5.2 Two paradoxes

TGD view leads to two apparent paradoxes.

1. If the preferred extremals satisfy 4-D generalization of holomorphicity, a very large set of
actions gives rise to the same preferred extremals unless there are some additional conditions
restricting the number of preferred extremals for a given action.

2. WCW metric has an infinite number of zero modes, which appear as parameters of the metric
but do not contribute to the line element. The induced Kähler form depends on these degrees
of freedom. The existence of the Kähler metric requires maximal isometries, which suggests
that the Kähler metric is uniquely fixed apart from a conformal scaling factor Ω depending on
zero modes. This cannot be true: galaxy and elementary particle cannot correspond to the
same Kähler metric.

Number theoretical vision and the hierarchy of inclusions of HFFs associated with supersym-
plectic algebra actings as isometries of WcW provide equivalent realizations of the measurement
resolution. This solves these paradoxes and predicts that WCW decomposes into sectors for which
Kähler metrics of WCW differ in a natural way.

The hierarchy subalgebras of supersymplectic algebra implies the decomposition of
WCW into sectors with different actions

Supersymplectic algebra of δM4
+×CP2 is assumed to act as isometries of WCW [L130]. There are

also other important algebras but these will not be discussed now.

1. The symplectic algebra A of δM4
+×CP2 has the structure of a conformal algebra in the sense

that the radial conformal weights with non-negative real part, which is half integer, label the
elements of the algebra have an interpretation as conformal weights.
The super symplectic algebra A has an infinite hierarchy of sub-algebras [L130] such that the
conformal weights of sub-algebras An(SS) are integer multiples of the conformal weights of
the entire algebra. The superconformal gauge conditions are weakened. Only the subalgebra
An(SS) and the commutator [An(SS), A] annihilate the physical states. Also the corresponding
classical Noether charges vanish for allowed space-time surfaces.
This weakening makes sense also for ordinary superconformal algebras and associated Kac-
Moody algebras. This hierarchy can be interpreted as a hierarchy symmetry breakings, mean-
ing that sub-algebra An(SS) acts as genuine dynamical symmetries rather than mere gauge
symmetries. It is natural to assume that the super-symplectic algebra A does not affect the
coupling parameters of the action.

2. The generators of A correspond to the dynamical quantum degrees of freedom and leave the
induced Kähler form invariant. They affect the induced space-time metric but this effect is
gravitational and very small for Einsteinian space-time surfaces with 4-D M4 projection.
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The number of dynamical degrees of freedom increases with n(SS). Therefore WCW decom-
poses into sectors labelled by n(SS) with different numbers of dynamical degrees of freedom so
that their Kähler metrics cannot be equivalent and cannot be related by a symplectic isometry.
They can correspond to different actions.

Number theoretic vision implies the decomposition of WCW into sectors with different
actions

The number theoretical vision leads to the same conclusion as the hierarchy of HFFs. The number
theoretic vision of TGD based on M8−H duality [L130] predicts a hierarchy with levels labelled by
the degrees n(P ) of rational polynomials P and corresponding extensions of rationals characterized
by Galois groups and by ramified primes defining p-adic length scales.

These sequences allow us to imagine several discrete coupling constant evolutions realized
at the level H in terms of action whose coupling parameters depend on the number theoretic
parameters.

1. Coupling constant evolution with respect to n(P )

The first coupling constant evolution would be with respect to n(P ).

1. The coupling constants characterizing action could depend on the degree n(P ) of the poly-
nomial defining the space-time region by M8 −H duality. The complexity of the space-time
surface would increase with n(P ) and new degrees of freedom would emerge as the number of
the rational coefficients of P .

2. This coupling constant evolution could naturally correspond to that assignable to the inclusion
hierarchy of hyperfinite factors of type II1 (HFFs). I have indeed proposed [L130] that the
degree n(P ) equals to the number n(braid) of braids assignable to HFF for which super
symplectic algebra subalgebra An(SS) with radial conformal weights coming as n(SS)-multiples
of those of entire algebra A. One would have n(P ) = n(braid) = n(SS). The number of
dynamical degrees of freedom increases with n which just as it increases with n(P ) and n(SS).

3. The actions related to different values of n(P ) = n(braid) = n(SS) cannot define the same
Kähler metric since the number of allowed space-time surfaces depends on n(SS).
WCW could decompose to sub-WCWs corresponding to different actions, a kind of theory
space. These theories would not be equivalent. A possible interpretation would be as a
hierarchy of effective field theories.

4. Hierarchies of composite polynomials define sequences of polynomials with increasing values
of n(P ) such that the order of a polynomial at a given level is divided by those at the lower
levels. The proposal is that the inclusion sequences of extensions are realized at quantum level
as inclusion hierarchies of hyperfinite factors of type II1.
A given inclusion hierarchy corresponds to a sequence n(SS)i such that n(SS)i divides n(SS)i+1.
Therefore the degree of the composite polynomials increases very rapidly. The values of n(SS)i
can be chosen to be primes and these primes correspond to the degrees of so called prime poly-
nomials [L128] so that the decompositions correspond to prime factorizations of integers. The
”densest” sequence of this kind would come in powers of 2 as n(SS)i = 2i. The corresponding
p-adic length scales (assignable to maximal ramified primes for given n(SS)i) are expected to

increase roughly exponentially, say as 2r2
i

. r = 1/2 would give a subset of scales 2r/2 allowed
by the p-adic length scale hypothesis. These transitions would be very rare.
A theory corresponding to a given composite polynomial would contain as sub-theories the
theories corresponding to lower polynomial composites. The evolution with respect to n(SS)
would correspond to a sequence of phase transitions in which the action genuinely changes.
For instance, color confinement could be seen as an example of this phase transition.

5. A subset of p-adic primes allowed by the p-adic length scale hypothesis p ' 2k defining the
proposed p-adic length scale hierarchy could relate to nS changing phase transition. TGD
suggests a hierarchy of hadron physics corresponding to a scale hierarchy defined by Mersenne
primes and their Gaussian counterparts [K64, K65]). Each of them would be characterized by
a confinement phase transition in which nS and therefore also the action changes.

2. Coupling constant evolutions with respect to ramified primes for a given value of n(P )
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For a given value of n(P ), one could have coupling constant sub-evolutions with respect to
the set of ramified primes of P and dimensions n = heff/h0 of algebraic extensions. The action
would only change by U(1) gauge transformation induced by a symplectic isometry of WCW.
Coupling parameters could change but the actions would be equivalent.

The choice of the action in an optimal manner in a given scale could be seen as a choice
of the most appropriate effective field theory in which radiative corrections would be taken into
account. One can interpret the possibility to use a single choice of coupling parameters in terms
of quantum criticality.

The range of the p-adic length scales labelled by ramified primes and effective Planck con-
stants heff/h0 is finite for a given value of n(SS).

The first coupling constant evolution of this kind corresponds to ramified primes defining
p-adic length scales for given n(SS).

1. Ramified primes are factors of the discriminant D(P ) of P , which is expressible as a product of
non-vanishing root differents and reduces to a polynomial of the n coefficients of P . Ramified
primes define p-adic length scales assignable to the particles in the amplitudes scattering
amplitudes defined by zero energy states.
P would represent the space-time surface defining an interaction region in N−-particle scat-
tering. The N ramified primes dividing D(P ) would characterize the p-adic length scales
assignable to these particles. If D(P ) reduces to a single ramified prime, one has elementary
particle [L128], and the forward scattering amplitude corresponds to the propagator.
This would give rise to a multi-scale p-adic length scale evolution of the amplitudes analogous
to the ordinary continuous coupling constant evolution of n-point scattering amplitudes with
respect to momentum scales of the particles. This kind of evolutions extend also to evolutions
with respect to n(SS).

2. According to [L128], physical constraints require that n(P ) and the maximum size of the
ramified prime of P correlate.
A given rational polynomial of degree n(P ) can be always transformed to a polynomial with
integer coefficients. If the integer coefficients are smaller than n(P ), there is an upper bound
for the ramified primes. This assumption also implies that finite fields become fundamental
number fields in number theoretical vision [L128].

3. p-Adic length scale hypothesis [L131] in its basic form states that there exist preferred primes
p ' 2k near some powers of 2. A more general hypothesis states that also primes near some
powers of 3 possibly also other small primes are preferred physically. The challenge is to
understand the origin of these preferred scales.
For polynomials P with a given degree n(P ) for which discriminant D(P ) is prime, there exists
a maximal ramified prime. Numerical calculations suggest that the upper bound depends
exponentially on n(P ).
Could these maximal ramified primes satisfy the p-adic length scale hypothesis or its general-
ization? The maximal prime defines a fixed point of coupling constant evolution in accordance
with the earlier proposal. For instance, could one think that one has p ' 2k, k = n(SS)? Each
p-adic prime would correspond to a p-adic coupling constant sub-evolution representable in
terms of symplectic isometries.

Also the dimension n of the algebraic extension associated with P , which is identified in
terms of effective Planck constant heff/h0 = n labelling different phases of the ordinary matter
behaving like dark matter, could give rise to coupling constant evolution for given n(SS). The
range of allowed values of n is finite. Note however that several polynomials of a given degree can
correspond to the same dimension of extension.

Number theoretic discretization of WCW and maxima of WCW Kähler function

Number theoretic approach involves a unique discretization of space-time surface and also of WCW.
The question is how the points of the discretized WCW correspond to the preferred extremals.

1. The exponents of Kähler function for the maxima of Kähler function, which correspond to the
universal preferred extremals, appear in the scattering amplitudes. The number theoretical
approach involves a unique discretization of space-time surfaces defining the WCW coordinates
of the space-time surface regarded as a point of WCW.
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In [L130] it is assumed that these WCW points appearing in the number theoretical dis-
cretization correspond to the maxima of the Kähler function. The maxima would depend on
the action and would differ for ghd maxima associated with different actions unless they are
not related by symplectic WCW isometry.

2. The symplectic transformations of WCW acting as isometries are assumed to be induced by
the symplectic transformations of δM4

+×CP2 [K52, K31]. As isometries they would naturally
permute the maxima with each other.

A-6 Number theoretic vision of TGD

Physics as number theory vision is complementary to the physics as geometry vision and has
developed gradually since 1993. Langlands program is the counterpart of this vision in mathematics
[L129].

The notion of p-adic number fields emerged with the motivation coming from the observation
that elementary particle mass scales and mass ratios could be understood in terms of the so-called
p-adic length scale hypothesis [K68, K60, K28]. The fusion of the various p-adic physics leads to
what I call adelic physics [L53, L52]. Later the hypothesis about hierarchy of Planck constants
labelling phases of ordinary matter behaving like dark matter emerged [K34, K35, K36, K36].

Eventually this led to that the values of effective Planck constant could be identified as the
dimension of an algebraic extension of rationals assignable to polynomials with rational coefficients.
This led to the number theoretic vision in which so-called M8−H duality [L99, L100] plays a key
role. M8 (actually a complexification of real M8) is analogous to momentum space so that the
duality generalizes momentum position duality for point-like particles. M8 has an interpretation
as complexified octonions.

The dynamics of 4-surfaces in M8 is coded by polynomials with rational coefficients, whose
roots define mass shells H3 of M4 ⊂M8. It has turned out that the polynomials satisfy stringent
additional conditions and one can speak of number theoretic holography [L128, L129]. Also the
ordinary 3→ 4 holography is needed to assign 4-surfaces with these 3-D mass shells. The number
theoretic dynamics is based on the condition that the normal space of the 4-surface in M8 is
associative (quaternionic) and contains a commutative complex sub-space. This makes it possible
to assign to this surface space-time surface in H = M4 × CP2.

At the level of H the space-time surfaces are by holography preferred extremals and are
assumed to be determined by the twistor lift of TGD [K87] giving rise to an action which is sum
of the Kähler action and volume term. The preferred extremals would be minimal surfaces
analogous to soap films spanned by frames. Outside frames they would be simultaneous extremals
of the Kähler action, which requires a generalization of the holomorphy characterizing string
world sheets.

In the following only p-adic numbers and hierarchy of Planck constants will be discussed.

A-6.1 p-Adic numbers and TGD

p-Adic number fields

p-Adic numbers (p is prime: 2, 3, 5, ...) can be regarded as a completion of the rational numbers
using a norm, which is different from the ordinary norm of real numbers [A35]. p-Adic numbers
are representable as power expansion of the prime number p of form

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-6.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-6.2)
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Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the
p-adic number only. Arbitrarily high powers in the expansion are possible since the norm of the
p-adic number is finite also for numbers, which are infinite with respect to the ordinary norm. A
convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (A-6.3)

where ε(x) = k+ .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x− y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-6.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint
sets using the criterion that x and y belong to same class if the distance between x and y satisfies
the condition

d(x, y) ≤ D . (A-6.5)

This division of the metric space into classes has following properties:

1. Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between
classes.

2. Distances of points x and y inside single class are smaller than distances between different
classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin
glasses and is believed to have also applications in biology [B31]. The emergence of p-adic topology
as the topology of the effective space-time would make ultra-metricity property basic feature of
physics.

Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key
role in this respect.

1. Basic form of the canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative
real numbers given by the “pinary” expansion of the real number for x ∈ R and y ∈ Rp this
correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-6.6)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not
unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of
pinary digits
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x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-6.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique
by choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice
since in the numerical work one always must use a pinary cutoff on the real axis.

2. The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers
differs from the ordinary topology. The difference is easily understood by interpreting the p-adic
norm as a norm in the set of the real numbers. The norm is constant in each interval [pk, pk+1)
(see Fig. A-6.1 ) and is equal to the usual real norm at the points x = pk: the usual linear norm
is replaced with a piecewise constant norm. This means that p-adic topology is coarser than the
usual real topology and the higher the value of p is, the coarser the resulting topology is above a
given length scale. This hierarchical ordering of the p-adic topologies will be a central feature as
far as the proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topol-
ogy is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as
is clear already from the properties of the p-adic norm (the graph of the norm is indeed continuous
from right). This feature is one clear signature of the p-adic topology.

Fig. 14. The real norm induced by canonical identification from 2-adic norm. http:

//tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the set of
the non-negative real numbers and p-adic linearity in general differs from the ordinary concept
of linearity. For example, p-adic sum is equal to real sum only provided the summands have no
common pinary digits. Furthermore, the condition x+p y < max{x, y} holds in general for the p-
adic sum of the real numbers. p-Adic multiplication is equivalent with the ordinary multiplication
only provided that either of the members of the product is power of p. Moreover one has x×p y <
x × y in general. The p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =∑
k(p− 1)pk and defines p-adic negative for each real number x. An interesting possibility is that

p-adic linearity might replace the ordinary linearity in some strongly nonlinear systems so these
systems would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-6.9)

http://tgdtheory.fi/appfigures/norm.png
http://tgdtheory.fi/appfigures/norm.png
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where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-6.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space
suggests the definition

(xR)2 = (
∑
n

x2
n)R . (A-6.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might
have a generalization and physically the generalization might apply to the description of some
non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm
under scaling.

3. Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symme-
tries even approximately. This led to a search of variants which would do better in this respect.
The modification of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones
by IQ sum up to one in p-adic thermodynamics.

4. Generalization of number concept and notion of embedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic
number fields along common rationals is in question. This induces a similar fusion of real and
p-adic embedding spaces. Since finite p-adic numbers correspond always to non-negative reals
n-dimensional space Rn must be covered by 2n copies of the p-adic variant Rnp of Rn each of which
projects to a copy of Rn+ (four quadrants in the case of plane). The common points of p-adic and
real embedding spaces are rational points and most p-adic points are at real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued together
along common rationals and also numbers in algebraic extension of rationals whose number belong
to the algebraic extension of p-adic numbers. This gives rise to a book like structure with rationals
and various algebraic extensions of rationals taking the role of the back of the book. Note that
Neper number is exceptional in the sense that it is algebraic number in p-adic number field Qp
satisfying ep mod p = 1.

Fig. 15. Various number fields combine to form a book like structure. http://tgdtheory.
fi/appfigures/book.jpg

For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real embedding space consists of a discrete set of rational points: the interpretation

http://tgdtheory.fi/appfigures/book.jpg
http://tgdtheory.fi/appfigures/book.jpg
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in terms of the unavoidable discreteness of the physical representations of cognition is natural.
Purely local p-adic physics implies real p-adic fractality and thus long range correlations for the
real space-time surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface
X4 are related by a direct identification whereas CP2 coordinates of X4 at these points are related
by I, IQ or some of its variants implying long range correlates for CP2 coordinates. Since only
a discrete set of points are related in this manner, both real and p-adic field equations can be
satisfied and there are no problems with symmetries. p-Adic effective topology is expected to be
a good approximation only within some length scale range which means infrared and UV cutoffs.
Also multi-p-fractality is possible.

The notion of p-adic manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-adic physics to
a larger structure which suggests that real and p-adic number fields should be glued together along
common rationals bringing in mind adeles. The notion is problematic because p-adic topology
is totally disconnected implying that p-adic balls are either disjoint or nested so that ordinary
definition of manifold using p-adic chart maps fails. A cure is suggested to be based on chart maps
from p-adics to reals rather than to p-adics (see the appendix of the book)

The chart maps are interpreted as cognitive maps, “thought bubbles”.
Fig. 16. The basic idea between p-adic manifold. http://tgdtheory.fi/appfigures/

padmanifold.jpg

There are some problems.

1. Canonical identification does not respect symmetries since it does not commute with second
pinary cutoff so that only a discrete set of rational points is mapped to their real counterparts
by chart map arithmetic operations which requires pinary cutoff below which chart map takes
rationals to rationals so that commutativity with arithmetics and symmetries is achieved in
finite resolution: above the cutoff canonical identification is used

2. Canonical identification is continuous but does not map smooth p-adic surfaces to smooth
real surfaces requiring second pinary cutoff so that only a discrete set of rational points is
mapped to their real counterparts by chart map requiring completion of the image to smooth
preferred extremal of Kähler action so that chart map is not unique in accordance with finite
measurement resolution

3. Canonical identification violates general coordinate invariance of chart map: (cognition-induced
symmetry breaking) minimized if p-adic manifold structure is induced from that for p-adic em-
bedding space with chart maps to real embedding space and assuming preferred coordinates
made possible by isometries of embedding space: one however obtains several inequivalent
p-adic manifold structures depending on the choice of coordinates: these cognitive represen-
tations are not equivalent.

A-6.2 Hierarchy of Planck constants and dark matter hierarchy

Hierarchy of Planck constants was motivated by the “impossible” quantal effects of ELF em fields
on vertebrate cyclotron energies E = hf = ~× eB/m are above thermal energy is possible only if
~ has value much larger than its standard value. Also Nottale’s finding that planetary orbits migh
be understood as Bohr orbits for a gigantic gravitational Planck constant.

Hierachy of Planck constant would mean that the values of Planck constant come as integer
multiples of ordinary Planck constant: heff = n× h. The particles at magnetic flux tubes charac-
terized by heff would correspond to dark matter which would be invisible in the sense that only
particle with same value of heff appear in the same vertex of Feynman diagram.

Hierarchy of Planck constants would be due to the non-determism of the Kähler action
predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-manfolds of any
M4×Y 2, where Y 2 is Lagrangian sub-manifold of CP2. For agiven Y 2 one obtains new manifolds
Y 2 by applying symplectic transformations of CP2.

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD) can
be connected by several space-time surfaces carrying same conserved Kähler charges and having
same values of Kähler action. Conformal symmetries defined by Kac-Moody algebra associated

http://tgdtheory.fi/appfigures/padmanifold.jpg
http://tgdtheory.fi/appfigures/padmanifold.jpg
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with the embedding space isometries could act as gauge transformations and respect the light-
likeness property of partonic orbits at which the signature of the induced metric changes from
Minkowskian to Euclidian (Minkowskianb space-time region transforms to wormhole contact say).
The number of conformal equivalence classes of these surfaces could be finite number n and define
discrete physical degree of freedom and one would have heff = n × h. This degeneracy would
mean “second quantization” for the sheets of n-furcation: not only one but several sheets can be
realized.

This relates also to quantum criticality postulated to be the basic characteristics of the
dynamics of quantum TGD. Quantum criticalities would correspond to an infinite fractal hierar-
chy of broken conformal symmetries defined by sub-algebras of conformal algebra with conformal
weights coming as integer multiples of n. This leads also to connections with quantum critical-
ity and hierarchy of broken conformal symmetries, p-adicity, and negentropic entanglement which
by consistency with standard quantum measurement theory would be described in terms of den-
sity matrix proportional n× n identity matrix and being due to unitary entanglement coefficients
(typical for quantum computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces in
singular n-fold singular coverings of embedding space. A stronger assumption would be that they
are expressible as as products of n1 -fold covering of M4 and n2-fold covering of CP2 meaning
analogy with multi-sheeted Riemann surfaces and that M4 coordinates are n1-valued functions
and CP2 coordinates n2 -valued functions of space-time coordinates for n = n1 × n2. These
singular coverings of embedding space form a book like structure with singularities of the coverings
localizable at the boundaries of causal diamonds defining the back of the book like structure.

Fig. 17. Hierarchy of Planck constants. http://tgdtheory.fi/appfigures/planckhierarchy.
jpg

A-6.3 M8 −H duality as it is towards the end of 2021

The view of M8 − H duality (see Appendix ??) has changed considerably towards the end 2021
[L121] after the realization that this duality is the TGD counterpart of momentum position duality
of wave mechanics, which is lost in QFTs. Therefore M8 and also space-time surface is analogous
to momentum space. This forced us to give up the original simple identification of the points
M4 ⊂M4 × E4 = M8 and of M4 × CP2 so that it respects Uncertainty Principle (UP).

The first improved guess for the duality map was the replacement with the inversion pk →
mk = ~effpk/p2 conforming in spirit with UP but turned out to be too naive.

The improved form [L121] of the M8−H duality map takes mass shells p2 = m2 of M4 ⊂M8

to cds with size L(m) = ~eff/m with a common center. The slicing by mass shells is mapped to
a Russian doll like slicing by cds. Therefore would be no CDs in M8 contrary to what I believed
first.

Quantum classical correspondence (QCC) inspires the proposal that the point pk ∈ M8 is
mapped to a geodesic line corresponding to momentum pk starting from the common center of cds.
Its intersection with the opposite boundary of cd with size L(m) defines the image point. This is
not yet quite enough to satisfy UP but the additional details [L121] are not needed in the sequel.

The 6-D brane-like special solutions in M8 are of special interest in the TGD inspired
theory of consciousness. They have an M4 projection which is E = En 3-ball. Here En is a
root of the real polynomial P defining X4 ⊂ M8

c (M8 is complexified to M8
c ) as a ”root” of its

octonionic continuation [L99, L100]. En has an interpretation as energy, which can be complex.
The original interpretation was as moment of time. For this interpretation, M8−H duality would
be a linear identification and these hyper planes would be mapped to hyperplanes in M4 ⊂ H.
This motivated the term ”very special moment in the life of self” for the image of the E = En
section of X4 ⊂M8 [L73]. This notion does not make sense at the level M8 anymore.

The modified M8 − H duality forces us to modify the original interpretation [L121]. The
point (En, p = 0) is mapped (tn = ~eff/En, 0). The momenta (En, p) in E = En plane are mapped
to the boundary of cd and correspond to a continuous time interval at the boundary of CD: ”very
special moment” becomes a ”very special time interval”.

The quantum state however corresponds to a set of points corresponding to quark momenta,
which belong to a cognitive representation and are therefore algebraic integers in the extension de-

http://tgdtheory.fi/appfigures/planckhierarchy.jpg
http://tgdtheory.fi/appfigures/planckhierarchy.jpg
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termined by the polynomial. These active points in En are mapped to a discrete set at the boundary
of cd(m). A ”very special moment” is replaced with a sequence of ”very special moments”.

So called Galois confinement [L116] forces the total momenta for bound states of quarks and
antiquarks to be rational integers invariant under Galois group of extension of rationals determined
by the polynomial P [L121]. These states correspond to states at boundaries of sub-CDs so that
one obtains a hierarchy. Galois confinement provides a universal number theoretic mechanism for
the formation of bound states.

A-7 Zero energy ontology (ZEO)

ZEO is implied by the holography forced in the TGD framework by general coordinate invariance.

A-7.1 Basic motivations and ideas of ZEO

The following gives a brief summary of ZEO [L80] [K115].

1. In ZEO quantum states are not 3-dimensional but superpositions of 4-dimensional determin-
istic time evolutions connecting ordinary initial 3-dimensional states. By holography they are
equivalent to pairs of ordinary 3-D states identified as initial and final states of time evolution.
One can say that in the TGD framework general coordinate invariance implies holography and
the slight failure of its determinism in turn forces ZEO.
Quantum jumps replace this state with a new one: a superposition of deterministic time evolu-
tions is replaced with a new superposition. Classical determinism of individual time evolution
is not violated and this solves the basic paradox of quantum measurement theory. There are
two kinds of quantum jumps: ordinary (”big”) state function reductions (BSFRs) changing the
arrow of time and ”small” state function reductions (SSFRs) (weak measurements) preserving
it and giving rise to the analog of Zeno effect [L80].

2. To avoid getting totally confused it is good to emphasize some aspects of ZEO.

(a) ZEO does not mean that physical states in the usual 3-D sense as snapshots of time
evolution would have zero energy state pairs defining zero energy states as initial and final
states have same conserved quantities such as energy. Conservation implies that one can
adopt the conventions that the values of conserved quantities are opposite for these states
so that their sum vanishes: one can think that incoming and outgoing particles come from
geometric past and future is the picture used in quantum field theories.

(b) ZEO means two times: subjective time as sequence of quantum jumps and geometric time
as space-time coordinate. These times are identifiable but are strongly correlated.

3. In BSFRs the arrow of time is changed and the time evolution in the final state occurs back-
wards with respect to the time of the external observer. BSFRs can occur in all scales since
TGD predicts a hierarchy of effective Planck constants with arbitrarily large values. There is
empirical support for BSFRs.

(a) The findings of Minev et al [L69] in atomic scale can be explained by the same mecha-
nism [L69]. In BSFR a final zero energy state as a superposition of classical deterministic
time evolutions emerges and for an observer with a standard arrow of time looks like a
superposition of deterministic smooth time evolutions leading to the final state. Interest-
ingly, once this evolution has started, it cannot be stopped unless one changes the stimulus
signal inducing the evolution in which case the process does not lead to anywhere: the
interpretation would be that BSFR back to the initial state occurs!

(b) Libets’ experiments about active aspects of consciousness [J3] can be understood. Subject
person raises his finger and neural activity starts before the conscious decision to do so. In
the physicalistic framework it is thought to lead to raising of the finger. The problem with
the explanation is that the activity beginning .5 seconds earlier seems to be dissipation
with a reversed arrow of time: from chaotic and disordered to ordered at around .15
seconds. ZEO explanation is that macroscopic quantum jump occurred and generated
a signal proceeding backwards in time and generated neural activity and dissipated to
randomness.
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(c) Earthquakes involve a strange anomaly: they are preceded by ELF radiation. One would
expect that they generate ELF radiation. The identification as BSFR would explain the
anomaly [L72]. In biology the reversal of the arrow of time would occur routinely and
be a central element of biological self-organization, in particular self-organized quantum
criticality (see [L77, L139].

A-7.2 Some implications of ZEO

ZEO has profound implications for understanding self-organization and self-organized quantum
criticality in terms of dissipation with non-standard arrow of time looking like generation of struc-
tures [L77, L139]. ZEO could also allow understanding of what planned actions - like realizing the
experiment under consideration - could be.

1. Second law in the standard sense does not favor - perhaps even not allow - realization of
planned actions. ZEO forces a generalization of thermodynamics: dissipation with a non-
standard arrow of time for a subsystem would look like self-organization and planned action
and its realization.
Could most if not all planned action be like this - induced by BSFR in the geometric future and
only apparently planned? There would be however the experience of planning and realizing
induced by the signals from geometric future by a higher level in the hierarchy of conscious
entities predicted by TGD! In long time scales we would be realizing our fates or wishes of
higher level conscious entities rather than agents with completely free will.

2. The notion of magnetic body (MB) serving as a boss of ordinary matter would be central. MB
carries dark matter as heff = nh0 phases of ordinary matter with n serving as a measure for
algebraic complexity of extension of rationals as its dimension and defining a kind of universal
IQ. There is a hierarchy of these phases and MBs labelled by extension of rationals and the
value of n.
MBs would form a hierarchy of bosses - a realization for master slave hierarchy. Ordinary
matter would be at the bottom and its coherent behavior would be induced from quantum
coherence at higher levels. BSFR for higher level MB would give rise to what looks like planned
actions and experienced as planned action at the lower levels of hierarchy. One could speak
of planned actions inducing a cascade of planned actions in shorter time scales and eventually
proceeding to atomic level.

A-8 Some notions relevant to TGD inspired consciousness
and quantum biology

Below some notions relevant to TGD inspired theory of consciousness and quantum biology.

A-8.1 The notion of magnetic body

Topological field quantization inspires the notion of field body about which magnetic body is espe-
cially important example and plays key role in TGD inspired quantum biology and consciousness
theory. This is a crucial departure fromt the Maxwellian view. Magnetic body brings in third level
to the description of living system as a system interacting strongly with environment. Magnetic
body would serve as an intentional agent using biological body as a motor instrument and sensory
receptor. EEG would communicated the information from biological body to magnetic body and
Libet’s findings from time delays of consciousness support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant for
quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://tgdtheory.fi/appfigures/
fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://tgdtheory.fi/

appfigures/reconnect1.jpg

http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/fluxquant.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
http://tgdtheory.fi/appfigures/reconnect1.jpg
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Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules. http:
//tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to “rec-
ognize” the presence of another magnetic body, b) braiding, knotting and linking of flux tubes
making possible topological quantum computation, c) contraction of flux tube in phase transition
reducing the value of heff allowing two molecules to find each other in dense molecular soup.
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg

A-8.2 Number theoretic entropy and negentropic entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define the notion of
Shannon entropy for rational probabilities (and even those in algebraic extension of rationals) by
replacing the argument of logarithm of probability with its p-adic norm. The resulting entropy can
be negative and the interpretation is that number theoretic entanglement entropy defined by this
formula for the p-adic prime minimizing its value serves as a measure for conscious information.
This negentropy characterizes two-particle system and has nothing to do with the formal negative
negentropy assignable to thermodynamic entropy characterizing single particle. Negentropy Maxi-
mization Principle (NMP) implies that number theoretic negentropy increases during evolution by
quantum jumps. The condition that NMP is consistent with the standard quantum measurement
theory requires that negentropic entanglement has a density matrix proportional to unit matrix so
that in 2-particle case the entanglement matrix is unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this state
would be stable. http://tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life as something residing in the intersection of reality and p-
adicities

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-time corre-
lates for thoughts and intentions. The intersections of real and p-adic preferred extremals consist
of points whose coordinates are rational or belong to some extension of rational numbers in pre-
ferred embedding space coordinates. They would correspond to the intersection of reality and
various p-adicities representing the “mind stuff” of Descartes. There is temptation to assign life to
the intersection of realities and p-adicities. The discretization of the chart map assigning to real
space-time surface its p-adic counterpart would reflect finite cognitive resolution.

At the level of “world of classical worlds” ( WCW ) the intersection of reality and various
p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces) representable
in terms of rational functions with polynomial coefficients with are rational or belong to algebraic
extension of rationals.

The quantum jump replacing real space-time sheet with p-adic one (vice versa) would cor-
respond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding p-
adic manifold can be interpreted as formation of though, cognitive representation. Its reversal
would correspond to a transformation of intention to action. http://tgdtheory.fi/appfigures/
padictoreal.jpg

A-8.4 Sharing of mental images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint large
space-time sheets representing selves. These 3-surfaces can also have flux tube connections and
this makes possible entanglement of sub-selves, which unentangled in the resolution defined by
the size of sub-selves. The interpretation for this negentropic entanglement would be in terms
of sharing of mental images. This would mean that contents of consciousness are not completely
private as assumed in neuroscience.

http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/reconect2.jpg
http://tgdtheory.fi/appfigures/fluxtubedynamics.jpg
http://tgdtheory.fi/appfigures/cat.jpg
http://tgdtheory.fi/appfigures/padictoreal.jpg
http://tgdtheory.fi/appfigures/padictoreal.jpg
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Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux tube
connections between topologically condensed space-time sheets associated with mental images.
http://tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time mirror mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired consciousness and leads
to the understanding of the relationship between geometric time and experience time and how the
arrow of psychological time emerges. One of the basic predictions is the possibiity of negative energy
signals propagating backwards in geometric time and having the property that entropy basically as-
sociated with subjective time grows in reversed direction of geometric time. Negative energy signals
inspire time mirror mechanism (see Fig. http://tgdtheory.fi/appfigures/timemirror.jpg or
Fig. 24 in the appendix of this book) providing mechanisms of both memory recall, realization
of intentational action initiating action already in geometric past, and remote metabolism. What
happens that negative energy signal travels to past and is reflected as positive energy signal and
returns to the sender. This process works also in the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of memory
recall. Essentially “seeing” in time direction is in question. http://tgdtheory.fi/appfigures/

timemirror.jpg
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CP2 geometry.
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