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5.4 Adeles and Gödel numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Numbering of theorems by space-time surfaces? . . . . . . . . . . . . . . . . . . . . 34
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Abstract

The considerations of this article were inspired by an interview of Edward Frenkel relating
to the Langlands correspondence and led to a considerably more detailed understanding of
how number theoretic and geometric Langlands correspondences emerge in the TGD frame-
work from number theoretic universality, holography=holomorphy vision leading to a general
solution of field equations based on the generalization of holomorphy, and M8 − H duality
relating geometric and number theoretic visions of TGD.

The space-time surfaces are realized as roots for a pair (P1, P2) of holomorphic polynomials
of four generalized complex coordinates of H = M4×CP2. In this view space-time surfaces are
representations of the function field of generalized polynomial pairs in H and can be regarded
as numbers with product induced from the product (P1, Q)∗(P2, Q) = (P1P2, Q). Same applies
to other arithmetic operations.

A proposal for how to count the number of roots of the (P1, P2) = (0, 0), when the ar-
guments are restricted to a finite field in terms of modular forms defined at the hyperboloid
H3 × CP2 ⊂ M4 × CP2. The geometric variant of the Galois group as a group mapping
different roots for a polynomial pair (P1, P2) identifiable as regions of the space-time surface
(minimal surface) would be in terms of homomorphisms of H.

The interpretation of space-time surfaces as numbers leads to a general construction recipe
for quantum states in terms of a geometric analog (P1, Q) ∗ (P2, Q) = (P1P2, Q) of a tensor
product with the property that the product corresponds to a union of the surfaces (P1, Q) =
(0, 0) and (P2, Q) = 0. The asymmetry between Pi and Q has a physical interpretation.
The interactions would be associated with stable intersection points of these surfaces and a
deformation making P1P2 irreducible replacing them with wormhole contacts is suggestive.
One could say that TGD is exactly solvable at both classical space-time level and quantum
level. The geometric Langlands correspondence extends to a trinity between number theory,
geometry and physics.

1 Introduction

I listened to an extremely interesting interview with Edward Frenkel. Thanks to Marko Manninen
for providing the link (see this). Frenkel explained more than two hours aspects of the number
theoretic Langlands correspondence [A10, K5, A3, A2] in order to provide the background making
it possible to get to the geometric Langland correspondence in the next interview! The fact of
course is that one must learn the basic notions first.

If one should summarize the Langlands correspondence (LC) very briefly, one might say that
LC can be seen as a kind of grand unification of mathematics. LC relates typically two totally
different fields of mathematics. Modular forms is one aspect of the LC. Galois groups permuting
the roots of polynomials are a second aspect, also mentioned in the interview.

1.1 Polynomials defining elliptic surfaces in finite fields and modular
forms in hyperbolic plane

The example related to the number theoretic LC discussed in the interview relates number theory
and so-called modular forms defined in the hyperbolic plane H2 (see ). The graphics of Escher
gives a good idea of what a hyperbolic plane looks like.

1. The modular forms known as elliptic functions are doubly periodic functions in complex
plane and serve analogs of plane waves appearing as solutions of field equations of free field
theories.

2. Lorentz group SL(2, C) acts as global conformal symmetries of the complex plane compact-
ified to the Riemann sphere CP1. SL(2, C) consists of 2× 2 matrices with unit determinant
and acts linearly on 2-spinors and as Möbius transformations on the points of the complex
plane CP1, whose points correspond to the ratios z1/z2 of the complex spinor components.
2-D hyperbolic space H2 can be represented as upper half-plane of the complex plane or as
an interior of a unit disk and has the real Lorentz group SL(2, R) as conformal symmetries
mapping the real axis or the boundary of the disk to itself.

For H2, the modular group can be identified as some subgroup SL(2, Z), having integer val-
ued matrix elements satisfying some additional conditions. Modular forms have the modular

https://youtu.be/RX1tZv_Nv4Y?si=RXGm5LnAgowbKlo-
https://en.wikipedia.org/wiki/Hyperbolic_geometry
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group as their symmetries. The modular subgroup can correspond also to a group SL(2, Z2)
where Z2 consist of Gaussian integers n1 + in2. Modular transformations act as translations
in the complex plane. There is an infinite number of analogs of modular groups since the
elements could also be algebraic integers ZE in some extension E of rationals.

The example discussed in the interview was very inspiring also from the TGD point of view.

1. The example was about the number of solutions to certain kinds of Diophantine equations
defining roots of polynomials involving 2 variables x, y with integer coefficients in finite
field defined by integers modulo prime p. Modulo p corresponds to a generalization of the
clock arithmetics in which 13=1, 14=2, etc.: now there would be p hours per day. The
polynomials considered are cubic polynomials, which third order polynomials of x and second
order polynomials y satisfying some additional conditions, which guarantee that they allow
a modular symmetry analogous to a 2-D translation symmetry.

The independent variables x, y can be numbers in finite fields, integers, reals, complex num-
bers. In other words, the equations are number-theoretically universal. This is what makes
algebraic geometry so beautiful.

2. If the variables x, y are complex numbers, the solutions are 2-D surfaces in 2-D complex
space C2 having complex coordinates x and y. With some additional assumptions about the
integer coefficients they are elliptic curves, which have the topology of the torus. Elliptic
curve, or a general cubic curve, can be written in rather general case in the canonical form
(see this):

y3 = x2 + ax+ b . (1.1)

3. Elliptic curve intersects line (in complex case complex line, that is plane) in 3 points except
in the situations, when the equation allows degenerate roots. This reflects the fact that the
equation has 3 roots. A similar equation appears in the cusp catastrophe. The coefficients
are however real numbers rather than integers in this case. The 4-D generalization of cusp
catastrophe is very interesting also in the TGD framework,

4. The elliptic curve can be parameterized in terms of elliptic functions, which can be regarded
as doubly periodic functions in the complex plane. They are non-linear analogs of plane
waves. The rational points of an elliptic curve form a group which is finitely generated.
Elliptic curves are modular, which means that it can be constructed as a quotient of a
complex plane under modular grou, which is a subgroup of the group SL(2, Z) analogous to
a discrete subgroup of translational group but acting on H2 rather than Euclidean space E2.

5. With this background one can consider a general equation defining elliptic curve and restrict
the solutions to integers and consider solutions x,y as integers modulo p.

What is the number of solutions for a given prime p. This is the problem. Langland’s
discovery implies that one can find a modular form in the hyperbolic plane H2, whose Taylor
expansion contains terms with coefficients, which code for the numbers of the solutions for
any prime p: the problem of finding the number of solutions is solved for almost all primes at
the same time! There exists a finite number of exceptions but still this is quite an impressive
achievement.

Anyone can write a computer code listing the numbers of solutions for primes p = 2, 3, 5, 7, ...,
This is a gigantic leap in understanding and LC generalizes this. There is also a geometric
variant of this correspondence.

1.2 Galois group, dual group and number theoretic LC

Galois groups define number theoretic symmetries. Consider a polynomial P (x) of single variable
x with coefficients, which are algebraic integers in some extension E of rationals. The standard
definition for the Galois group is as a group acting in the extension of E as permutations of the
roots acting trivially in E.

https://mathworld.wolfram.com/EllipticCurve.html
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Let G be a reductive Lie group G represented in an extension K of field k, which has Galois
group Gal(K/k). LC relates the ”good” irreducible representations G to the representations of
Langlands dual LG, which has the same root datum as G and is therefore infinitesimally equivalent
with G. LG can be regarded as the semidirect product LGonGal(K/k), where LGo is the connected
component of LG. The number of connected components of LG corresponds to the order of the
Galois group, which implies that LG depends on K via its Galois group.

LC states roughly that there is one-one correspondence between ”good” representations of G
and homomorphisms of the Galois group Gal(K, k) to the Langlands dual LG. One could say that
the extension by the Galois group gives rise to a kind of number theoretic degree of freedom and
that the irreducible representations of the Galois group become additional degrees of freedom.

1.3 LC and TGD

It must be emphasized that LC is extremely general and the forms of LC discussed in this article
from the TGD perspective are not expected to be the only ones realized in TGD. Both number
theoretic and geometric LC have counterparts in TGD.

1.3.1 Number theoretic LC and TGD

Consider first the number theoretic LC.

1. In the electric-magnetic duality (Montonen-Olive duality) of gauge theories [B1], electric and
magnetic couplings are combined to a complex number z = z1/z2 representing a point of CP1.
Electric-magnetic duality corresponds to S-duality as the Möbius transformation z → −1/z.

More generally, SL(2, Z) transformations act as Möbius transformations induced by the
linear action on (z1, z2) in C2 and could correspond to physical symmetries giving rise to
different actions. SL(2, Z) has 3 matrix generators S = [0, 1;−1, 0],T = [1, 1; 0, 1] and
T−1 = [1,−1; 0, 1] acting linearly on (z1, z2). The product U = ST is called U = ST duality.
S corresponds to inversion z → z and to electric magnetic duality. In M-theory there are 3
analogous dualities S, T, and U. One might guess that SL(2,Z) appears because it generates
global conformal transformations of the conformal algebras.

2. In the TGD framework, the self-duality of CP2 Kähler form implies that the electric and
magnetic fluxes over a given 2-surface of CP2 are indeed identical. This inspires the proposal
that TGD is self-dual with respect to S [K1] a stronger condition would be that the entire
SL(2, Z) defines equivalent actions. In fact, in the TGD framework space-time surfaces are
minimal surfaces apart from singularities irrespective of the action principle and the action
makes itself manifest only through the singularities at which the minimal surface property
fails [L26, L27, L28, L17].

A weak form of this duality is proposed to be realized at the light-like interactions between
Euclidean CP2 type extremals and Minkowskian regions of the space-time surface. The
corresponding parts in the action correspond to Kähler action and the associated topological
instanton term.

3. In TGD, the geometry of the ”world of classical worlds” (WCW) allows two kinds of sym-
metries.

(a) The generalized super-conformal symmetries defined as a 4-D generalization of Kac-
Moody symmetries appear since holography = holomorphy vision implies that space-
time surfaces are holomorphic minimal surfaces of H = M4 × CP2 irrespective of the
action as long it is general coordinate invariant and constructed in terms of the induced
geometry. One can assign the charges of these symmetries to the light-like boundaries
of the causal diamond CD = cd× CP2 and also to the light-cone proper time constant
surfaces of the light-cone.

(b) Super-symplectic symmetries in turn have a natural action at the boundaries at the
light-like orbits of the partonic 2-surfaces between the Euclidean interior of the CP2

type extremals and the Minkowskian exterior. Could a strong form of holography,
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which would state that it is enough to define the theory using only the charges of either
kind, make sense. Also this kind of duality might be seen as a kind of LC .

1.3.2 Geometric LC and TGD

The geometric Langlands duality emerges naturally from the holography = holomorphy vision.

1. The space-time surfaces are realized as roots for a pair (P1, P2) of holomorphic poly-
nomials (or more general analytic functions) of four generalized complex coordinates of
H = M4 × CP2. In this view space-time surfaces are representations of the function field
of generalized polynomial pairs in H and can be regarded as numbers with arithmetic op-
erations induced from those for the polynomial pairs. Product is always well defined by
inverse is ill-defined if either function vanishes.

2. A proposal for how to count the number of roots of the (P1, P2) = (0, 0), when the arguments
are restricted to a finite field in terms of modular forms defined at the hyperboloidH3×CP2 ⊂
M4×CP2. The geometric variant of the Galois group as a group mapping different roots for
a polynomial pair (P1, P2) identifiable as regions of the space-time surface (minimal surface)
would be in terms of holomorphisms of H.

3. Space-time surfaces inherit the structure of the function field from the members of the pairs
identifiable as numbers. To obtain a number field analogous to rationals, one must however
restrict the product to a subspace of rational functions (R,Q) with coefficients in some exten-
sion E of rationals, Q fixed, and define the product as (R1, Q) ∗ (R2, Q)) = (R1R2, Q). This
asymmetry conforms also with the interpretation of Q = 0 as a definition of the correspon-
dence between the wistor sphere of M4 and CP2. One can generalize the notions of integer,
prime, rational number and extensions of rationals, and transcendental so that they apply
to space-time surfaces identified as numbers: one can multiply, divide, sum and subtract
them. Obviously, the definition generalizes to algebraic and analytic functions and produces
analogs of extensions of rationals and complex numbers.

The interpretation of space-time surfaces as numbers leads to a general construction recipe
for quantum states in terms of a geometric analog (P1, Q) ∗ (P2, Q) = (P1P2, Q) of a tensor
product with the property that the product corresponds to a union of the surfaces (P1, Q) =
(0, 0) and (P2, Q) = 0. The asymmetry between Pi and Q has a physical interpretation.
The interactions would be associated with stable intersection points of these surfaces and a
deformation making P1P2 irreducible replacing them with wormhole contacts is suggestive.
One could say that TGD is exactly solvable at both classical space-time level and quantum
level. The geometric Langlands correspondence extends to a trinity between number theory,
geometry and physics.

In the following I will discuss number theoretic and geometric LC in the way as I see them in the
TGD framework. My view is not of a professional mathematician but of physicist and TGD dictates
my views to a high degree. I have discussed LC several times already earlier [K5, K6] [L12, L26].

2 Number theoretic LC and TGD

In TGD both number theoretic and geometric LC are expected to play a role. Number theoretic LC
is naturally associated with the adelic physics [L1, L2] involving number theoretic discretizations
of the space-time surface in some extension of rationals. All p-adic number fields are involved.

This requires theoretical universality, which is guaranteed if the definition of space-time surfaces
is such that it makes sense in all number fields. In holography=holomorphy vision, the definition
of the space-time sheet as a root for a pair of polynomials, with coefficients in some extension E
of rationals, guarantees this. In number theoretic vision one must have discretization by assuming
that the roots are in rationals or even integers of E. One obtains a hierarchy of adeles labelled by
E, forming an evolutionary hierarchy.

In the TGD framework, also a modification of the notion of adele can be considered [L21, L26].
p-Adic number fields and their extensions can be glued together along integers, which can be
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regarded as simultaneously belonging to several p-adic number fields since the p-adic integers n
in the intersection of the p-adic number fields can be expressed as a power series of an integer m
divisible by the primes considered. Systems characterized by different p-adic primes, identifiable
as ramified primes for a polynomial, must interact, and the modified view of adeles allows us to
describe this interaction at the level of discretization.

2.1 How could the number theoretic LC relate to TGD?

Some background is required in order to understand how the number theoretic Langlands involving
finite fields and modular forms in Langlands group relate to TGD.

2.1.1 Number theoretical universality and holography=holomorphy principle

Number theoretical universality and holography=holomorphy principle [L26, L24] are central in
TGD.

1. In TGD number theoretical universality becomes a basic physical principle [L26]. The number
theoretical view and geometric view of physics are proposed to be equivalent. This M8 −H
correspondence can be seen as a generalization of momentum-position duality of quantum
mechanics required by the replacement of point-like particle with 3-surface and is analogous
to the LC .

An intuitive motivation for this proposal is that in free field theories, the field equations at
the level of momentum space reduce to algebraic equations, typically mass shell conditions.
At the level of space-time, one has partial differential equations describing the propagation
of fields.

2. This view is realized in terms of holography=holomorphy correspondence implying that
space-time surfaces are analogs of Bohr orbits [L26, L24]. The field equations character-
izing the space-time surfaces reduce to equations, which are a non-linear generalization of
massless field equations.

There is a completely general solution ansatz for which the field equations reduce to minimal
surface equations for any general coordinate invariant action principle constructed in terms
of the induced geometry. At the level of H, the field equations reduce to purely algebraic
equations involving a contraction of two tensor quantities, which are of different types as
complex tensors and therefore vanish identically [L26]. Minimal surface equations fail only
at the singularities, which have a dimension lower than 4 [L28, L17]. At the level of M8,
identifiable as octonions with number theoretical inner product Re(o1o2), associative holog-
raphy allows to construct the 4-surfaces in terms of 3-D holographic data [L22]. M8 − H
duality allows an alternative manner to construct these 4-surfaces.

3. M4 metric has Minkowskian signature and for the space-time surface the regions outside
elementary particles (partonic orbits) are Minkowskian. For Minkowski signature one must
generalize the notion of complex structure to Hamilton-Jacobi structure, as I call it [L18].
Hamilton-Jacobi structure is a fusion of ordinary complex structure and hypercomplex struc-
ture. Hypercomplex numbers are very much like complex numbers but do not form a number
field since the norm vanishes for light-like hypercomplex numbers. Hypercomplex coordinate
u as counterpart of complex coordinate z corresponds to a coordinate for which coordinate
lines are light-like. Its conjugate v corresponds to a dual light-like coordinate.

4. In the general case, the space-time surfaces can be identified as roots of 2 analytic functions
f1 and f2 of the 4 generalized complex coordinates of H = M4 × CP2. One of them is a
hypercomplex coordinate of M4 and the remaining 3 are ordinary complex coordinates. The
coefficients of the analytic functions can be also assumed to belong to an algebraic extension
E of rationals and this gives rise to a hierarchy consisting of discrete subspaces of the ”world
of classical worlds” (WCW).

5. One can also consider a hierarchy of polynomial pairs (P1, P2) with coefficients in E. In the
simplest case the coefficients are ordinary rationals or equivalently integers. One obtains a
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hierarchy of solutions of field equations labelled by the extension and by the degrees of the
polynomials and by the extensions of rationals that they define. This hierarchy is identified
as an evolutionary hierarchy [L1, L2]. The higher the complexity of the space-time surfaces,
the higher the evolutionary level of the system.

2.1.2 Number theoretic discretization gives cognitive representations

In the number theoretic vision [L26], the number theoretic discretization is a second aspect of
TGD. It applies to space-time surfaces and, at a more abstract level, to the WCW coordinates
defining moduli characterizing the space-time surfaces.

1. One can say that the most concrete cognitive representations correspond to number theoretic
discretizations of the space-time surface. The first question concerns the number of roots
(P1, P2) = (0, 0) for a given prime p characterizing a p-adic number field, in particular the
ramified prime of a related polynomial. Can one estimate the number of roots for any finite
field in turn defining the number of solutions in corresponding p-adic number field? This is
the key question.

2. From the example discussed in Frenkel’s interview, I learned how one can get a rough idea
of this number at least in some cases. This argument generalizes the well-known counting
argument for the number of roots of two polynomials of two real variables. In this case
the number of solutions is the number of variables minus the number of conditions. For
polynomials defined in a finite field, the number of points (x, y) in a finite field is p2. The
Diophantine equation gives p conditions. Therefore the rough guess for the number of solu-
tions is p2/p = p (in the discrete situation, subtraction is replaced by division). Already this
is a fantastic piece of information.

3. Could it be possible to get the exact number # of integer solutions modulo p for any p-
adic prime? LC in the case of the Diophantine equations considered in the interview comes
to rescue. The modular function assignable to the equations codes in terms of its Taylor
coefficients the deviations of the #− p from the rough guess for all primes p except a finite
number of exceptional ones! Note however that the Diophantine equation possesses a modular
symmetry.

2.1.3 Could the number theoretical LC generalize from dimension 2 to dimension 4?

Could the number theoretical LC for polynomials of two arguments generalize from dimension
2 to dimension 4. holography=holomorphy vision suggests a very concrete formulation of this
generalization.

Consider first the statement of the problem in the TGD context.

1. Cognitive representation as a discretization of the space-time surface would consist of the
points of the space-time with coordinates in the extension E of rationals defining the coef-
ficient field of P1 and P2. These points would be rational numbers as ratios of E integers.
One should be able to count the numbers of the solutions to the equations (P1, P2) = (0, 0)
for which the H = M4 ×CP2 coordinates have values in E. A weaker condition is that only
M4 coordinates belong to E. Could a generalization of LC make this possible?

2. The 2-dimensional elliptic surfaces (analogs of string world sheets) reside in C2, which has
2-complex dimensions. Space-time surfaces have 1 hypercomplex dimension and 1 complex
dimension and have a generalized complex structure, Hamilton-Jacobi structure [L18]. Space-
time surface has 2 generalized complex coordinates (u,w). u is a hypercomplex coordinate
with light-like coordinate curves and w is a complex coordinate.

The 2-complex dimensional space C2 with complex coordinates (x, y) is replaced with the
embedding space H = M4 × CP2 having 4 generalized complex coordinates (one of them is
hypercomplex) so that the polynomials P1 and P2 depend on 4 generalized complex coordi-
nates (u, z1, z2, z3).
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3. An elliptic surface is a root of a single polynomial of degree 3 depending on (say) 2 complex
variables (z1, z2) in 2-complex dimensional space C2. In TGD, space-time surfaces are defined
as roots of two polynomial equations (P1, P2) = (0, 0).

4. The natural generalization of the 2-dimensional (in real sense) hyperbolic space H2 (remem-
ber Escher) is the hyperbolic 3-space H3. This corresponds to the mass shell as momentum
space or light-cone proper time a = constant surface in Minkowski space M4 (actually in-
side a causal diamond cd). What is remarkable is that the Lorentz group SL(2, C) and its
modular subgroups act in H3 and have the same interpretation as in special relativity.

Could one find a modular form in the product H3 × CP2, where H3 us hyperbolic 3-space
coding for the numbers of the solutions to the number theoretical discretization conditions for
the space-time surface for any pair (P1, P2)of polynomials? If this were possible, it would have
enormous practical value. This might be possible except under very special conditions probably
related to the ramified primes of the polynomials involved.

1. The counterparts of the holographic boundary conditions at selected hyperboloids a = ak
should satisfy modular symmetries. Is this implied by the Bohr orbit property for the space-
time surface [L26]? This would mean that the space-time surfaces are analogous to H3

counterparts of discrete plane waves.

2. The rough estimate for the number of solutions of the cubic equation with modular invariance
generalizes. In number theoretic discretization, the extension of rationals corresponds to a
finite field G(p, k) for some k. The number of elements in the finite field G(p, k) is pk.
One has a p-adic discretization of the space-time surface using points for which the preferred
coordinates are algebraic integers in an extension of p-adic numbers induced by the extension
of rationals. These points are approximated with points of finite fieldG(p, k). The generalized
complex dimension of H is D = 4. Therefore one has p4k points in the discretization. The
two vanishing conditions (P1, P2) = (0, 0) give p2k conditions so that the rough guess for the
number of the solutions is p2k. Already this is a fantastic result, which was new to me.

3. One might hope that if modular invariance is realized at the hyperboloids H3(k) defining the
boundary data, then a modular form assignable to the pair (P1, P2) could give the number of
roots in G(p, k) by coding the correction #−p2k by some coefficients in its Taylor expansion.
This would in turn give the numbers of the p-adic roots since they can be generated once
the solution in finite field G(p, k) is known.

2.2 How to identify the Galois group in the number theoretic picture?

The physical interpretation would be that the Galois group extends the group algebra of LG, where
G is SL(2, C) acting at H3. The Galois group brings in additional degrees of freedom: a kind of
Galois spin. There are two interpretations of the Galois group.

1. The simplest option is that K corresponds to an extension E of rationals appearing as the
coefficient field of the polynomials or even as the field for the Taylor coefficients of analytic
functions considered so that the number theoretic Galois group is naturally associated with
it.

In this case one cannot however identify the ramified primes since they require a definition of
the extension in terms of the roots of a polynomial. The Galois group would not characterize
the polynomial P1 or P2 but the field extension E. In this case, one would consider the
discretization allowing only E-rational points.

The group G could be the Lorentz group SL(2, C) represented in the space of modular forms
defined in H3. The complex dual group LG would have the same Lie-algebra as SL(2, C)
and would be a semidirect product of LG0 nGal(E/Q).

2. In the TGD framework, one can also consider the identification of the Galois group as that for
the extension of E defined by the space-time surface itself, if in the case that it is well-defined.
If holography=holomorphy vision is accepted, H has 4 generalized complex coordinates.
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Suppose that 2 of the complex coordinates are E rationals. One can solve the 2 remaining
generalized complex coordinates from the conditions (P1, P2) = (0, 0).

The hypercomplex coordinate of M4, which has light-like coordinate curves and is real and
therefore does not allow complex values, is not a good candidate to be one of these 2 co-
ordinates. This leaves only two options under consideration. The two complex coordinates
ξ1, ξ2 of CP2 would make sense when the space-time surface has 4-D CP2 projection and the
induced metric is Euclidean.

The second option corresponds to the complex coordinate ξ1 or ξ2 of CP2 and to the complex
coordinate w of M4 assignable to its Hamilton-Jacobi structure [L18]. The values of, say, ξ1

and w are obtained by solving P1 = 0 and P2 = 0. One could require that w is E rational
and ξ1 in the extension of E or vice versa. One can assign to both options a Galois group
and an extension of E.

3. This picture would conform with the fact that in TGD two kinds of effective Planck constants
appear naturally. The first kind of effective Planck constant, identified tentatively as the
dimension of extension of E, can be assigned with the space-time surface as a covering of
M4 and would be relatively small since one does not expect that the space-time has very
many sheets with the same M4 projection. The other effective Plank constant corresponds
to the space-time surface as covering CP2 and could be the counterpart for say periodic field
pattern having as a TGD counterpart a bundle of monopole flux tubes in H. The number
of the flux tubes would correspond to the degree of the polynomials considered and could be
very large [L3, L9, L10, L15].

2.3 Objections

The best way to sharpen a hypothesis is to invent objections against it.

1. According to Frenkel, there are exceptional primes for which the coding fails. A good guess
is that they correspond to the ramified primes for a cubic polynomial in the case considered.
Indeed if the other coordinate of the cubic polynomials is integer, the polynomial reduces
to a cubic polynomial with integer coefficients and one can assign to it roots and ramified
primes.

In TGD, the p-adic primes characterizing space-time surfaces are identified as the ramified
primes assignable to the polynomials defining the space-time surface. If the problematic
primes are ramified primes, the coding would fail for the physically interesting primes! The
blessing in disguise is that the number of ramified primes is finite.

2. Modular invariance characterizes the example considered by Frenkel. Modular group acting
as symmetries is analogous to lattice translations: torus topology indeed reflects this. Modu-
lar invariance implies that the numbers of solutions to a given cubic equation are coded by a
particular modular invariant function. Could the TGD analog of this condition, stating that
the solutions are analogous to plane waves, be too strong? One might of course hope that by
the notion of holography meaning that space-time surfaces are analogs of Bohr orbits requires
this condition or that it corresponds to ”good” representations of SL(2, C) at quantum level.

Suppose that a modular form for, say 3-D hyperbolic space H3 (mass shell a = ak), invariant
under a modular group identified as discrete subgroup of SL(2, Z) (or SL(2, ZE)), codes for the
numbers of say solutions to (P1, P2) = (0, 0) belonging to an extension E of rationals appearing as
coefficients of Pi. This would mean that all 4 generalized complex coordinates belong to E.

1. One might expect that the modular group acts as symmetries of the space-time surface in the
same way as the modular group for elliptic surfaces. This could mean periodicity analogous
to that for planewave solutions to field equations. Could the TGD counterparts of plane wave
solutions of free field theories correspond to generalized elliptic functions of H3 for which 4-D
translational invariance is replaced with 3-D modular invariance at H3. Inside the space-
time surface translational (or scaling-) invariance with respect to a is probably too much to
require but holography=holomorphy principle allows the continuation of the boundary data
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to the space-time interior so that it is not needed. The modular invariance would reduce to
the modular invariance of the holographic data at some surfaces H3 with constant value of
the light-cone proper time.

One would obtain the H3 analogs of 3-D plane waves in E3. In free field theory in M4, E3

plane waves can be continued to 4-D plane waves. In TGD, holography allows to continue
the counterparts of the E3 plane waves in H3 to the interior of the space-time surface.

Could it be that modular invariance is a physically sensical restriction.

1. One cannot have a linear superposition of the H3 plane waves since TGD is not a free field
theory. This restriction holds true for the so-called massless extremals [K1] for which the
linear superposition holds only for modes propagating in the same direction: one has an
analog of a laser beam. The pulse shape is preserved in the propagation since there is no
dispersion.

2. Linear superposition would correspond in TGD to a union of space-time surfaces having
the same M4 projection: a test particle touching the space-time surfaces in the union would
experience the sum of the induced gauge fields and gravitational field associated with different
space-time sheets.

3. How strong conditions does the modular symmetry pose on the polynomials (P1, P2)? Does
modularity mean that only a very restricted number of polynomials allows this coding? Or
could all solutions of field equations reduce to H3 analogs of plane waves for some set of
a = constant hyperboloids H3?

This form of holography I have indeed proposed. This would mean a nonlinear generalization
of Fourier analysis from E3 ⊂ M4 to the level of the space-time surface with E3 replaced
with the intersections of these special subset of hyperboloids. The intersections of the space-
time sheet with H3(ak) would represent the Fourier mode and their superposition would
correspond to a set theoretic union.

4. I have proposed that the tessellations of H3 are fundamental in TGD and characterize the
solutions of the field equations as symmetries of the boundary data at a finite set of hyperbolic
3-surfaces identifiable as light-cone proper time a = ak surface. The equations for the minimal
surfaces are not completely deterministic and non-determinism would be localized at these
hyperboloids. At these hyperboloids the data would satisfy the modular symmetry so that
the intersection with H3(ak) would reduce to a union of fundamental domains of the modular
subgroup, which are analogous to lattice cells in E3.

Are space-time surfaces without modular symmetry for any H3(a) impossible or are they
such that the representations of SL(2, C) are not ”good”? In the case of H2 this poses
extremely powerful conditions on the polynomials considedere and the same is expected in
the case of H3.

3 Geometric LC and TGD

Also geometric LC would emerge with the holography=holomorphy vision [L26, L27, L24]. In this
case, number fields are replaced with function fields defined by generalized holomorphic functions in
H = M4×CP2. The pairs (f1, g1) of polynomials with coefficient field E as extension of rationals
define space-time surfaces as their roots. The pairs (f1, g), g fixed, form a function field with
respect to product (f1, g) ∗ (f2, g) = (f1f2, g) so that space-time surfaces as roots (f1, g) = (0, 0)
behave like numbers and form an analog of a number field. Note that here also rational functions
can be allowed since their poles do not appear as points of the space-time surface. This also applies
to general analytic functions with Taylor coefficients in E.

This asymmetric option is physically favored and the product of space-time surfaces has an
interpretation as a geometric analog of a tensor product giving rise to a two-particle state. Many-
particle states are obtained by performing arithmetic operations for the space-time surfaces.
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3.1 Space-time surfaces as numbers

One can endow the polynomial pairs defining the space-time surfaces with a structure of a function
field, which is inherited by the roots so that also space-time surfaces can be regarded as numbers.

1. One can define basic arithmetic operations (multiplication, division, sum and subtraction) for
the space-time surfaces defined by the conditions (P1, Q) = (0, 0) and (P2, Q) = (0, 0). The
product of the space-time surfaces would be defined by the conditions (P1P2, Q) = (0, 0). The
generalization to the other arithmetic operations is obvious. There are two roots (P1, Q) =
(0, 0) and (P2, Q) = (0, 0) that correspond to the space-time surfaces having interpretation
as free particle states. However, due to the dimensions of space-time surfaces and embedded
space, these surfaces have a discrete set of intersection points and the physical intuition
suggests that these singularities give rise to interactions between the particles.

The fixing of Q has interpretation as a condition fixing the relationship between the space-
time images of twistor spheres of M4 and CP2 and defines cosmological constant as a dy-
namical scale dependent parameter.

One can wonder whether one could combine the generalized analytic function f1 and f2 to
a quaternion valued function f1 + Kf2, where K is a quaternionic unit? This is formally
possible but the product would be non-commutative and would not be a generalized analytic
function anymore. Also the nice physical interpretation of the product of space-time surfaces
is lost.

2. One can multiply the defining polynomials by functions which do not vanish in the region
defined by the space-time surface. This region corresponds naturally to the causal diamond
cd of M4. In this case the space-time surface as a root is not affected. This is analogous
to the multiplication of a polynomial with a polynomial (or even rational function), which
vanishes nowhere in the range considered. This multiplication corresponds to a multiplication
of an ordinary polynomial with a rational number. One can identify elementary particle-like
space-time surfaces as those associated with irreducible polynomials Pi and Q. It turns out
that the so-called blow-up could eliminate the intersection points as singularities by replacing
the P1P2 with an irreducible polynomial.

3.2 Is there a relationship to the hierarchy of infinite primes?

How does this picture relate to the notion of infinite-primes [K12]? Infinite primes can be said to
correspond to a hierarchy of second quantizations of a supersymmetric arithmetic theory in which
single boson- and fermion states at a given level correspond to infinite primes as many-particle
states of the previous level. At the lowest level they correspond to ordinary primes having a
possible interpretation as momenta.

1. At a given level Dirac vacuum X corresponds to the product of all primes, which is infinite
as a real number but finite as a p-adic number for any prime p.

2. The construction of infinite primes as analogs of free particles is analogous to the construction
of many particle states in second quantization. The simplest states are of the form P =
mX + n, where m and n are integers chosen in such a way that P is indivisible by any finite
prime.

3. Also infinite primes, analogous to bound states, are possible and are realized as irreducible
polynomials P (X) (no decomposition to a product of monomials with integer coefficients)
with coefficients, which are (possibly infinite) primes of the previous level. At level n, these
polynomials can be regarded as polynomials of n formal variables X1, ....Xn.

4. At the lowest non-trivial level the roots of P correspond to integers and possibly complex
algebraic numbers. At the next level, one has polynomials of two variables and roots cor-
respond to 1-D curves. Next level gives 2-D surfaces, third level gives 3-D surfaces and the
fourth level 4-D surfaces as roots. This construction generalizes from the case of rational
integers to integers in extensions of rationals.
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The proposal has been that this hierarchy corresponds to the scale hierarchy of space-time
sheets with sheets having particle interpretation. The challenge is to see whether this hierarchy
could somehow relate to the hierarchy defined by the pairs (P,Q) of polynomials.

P = 0 and Q = 0 surfaces define the analogs of 6-D twistor spaces of M4 and CP2 having the
same space-time surface X4 as a base space and twistor sphere as a fiber [L26, L27, L24]. The
intersection of these two twistor spaces gives X4. H has 4 generalized complex coordinates so that
a 4-level hierarchy for which X can be complex is suggestive.

There are two problems.

1. The first problem is that the hierarchy of infinite primes involves polynomials rather than
pairs of them. It however turns that product of space-time surfaces is induced by the product
of (P1, Q)∗(P2, Q) = (P1P2, Q) so that Q is fixed for a given hierarchy. Infinite integers would
correspond to (

∏
i Pi, Q), where Pi is irreducible and has an interpretation as an infinite

integers. Also physical arguments support this view.

2. The second problem is that the higher levels of the hierarchy seem to be absent? The geomet-
ric interpretation of the infinite hierarchy of infinite primes encourages the question whether
one could obtain also the higher levels of the hierarchy in the holography= holomorphy vision
in some way?

It seems that one must consider Hn instead of H at the nth level of the hierarchy. At the level
of the spinor structure this means nth tensor power of the spinor space of H. This conforms
with the idea of repeated second quantization and with the ideat the infinite primes define an
abstraction hierarchy of statements about statements about.... Note also that in condensed
matter physics, the n-particle system is defined in terms of particles in (E3)n. This could
be replaced by Hn, where n is analogous to the number of particles and to the level of the
hierarchy.

Could 4-D space-time surface inHn correspond to the roots of polynomial-tuples (P1, P2, .....Pk)
of k = 4n− 4 polynomials depending on the 4n generalized complex coordinates of Hn? The
roots satisfy k = 4n − 4 conditions eliminating this number of degrees of freedom so that
the conditions define a 2-complex-dimensional surface of Hn identifiable as the space-time
surface. Its projections to the n Cartesian factors of Hn would define 4-D surfaces, which
could represent the geometric view of a particular particle-like entity about the entire state.

Could this description give a purely geometric description for the interactions of the particles?
Or could it give a description for the hierarchy of space-time sheets topologically condensed
at larger space-time sheets? The mathematical description of this hierarchy is still far from
quantitative. Hierarchy requires an ordering. In the case of infinite primes there is a natural
ordering involved. Does this generalize? At nth level one has polynomials of n:th variable
having as its coefficient polynomials of (n− 1)th level. The ordering is partially determined
by requiring that a given level has the highest possible polynomial degree. At each level this
selects a finite number of alternatives for the coordinate in question.

3.3 About various passive symmetries

General coordinate invariance creates an apparent tension between number theoretic and geometric
vision since general coordinate transformations do not respect polynomiality. Also the number
theoretic notions such as the notion of effective Planck constant and ramified primes should be
formulated in a general coordinate invariant manner.

3.3.1 General coordinate invariance and number theoretical vision

The technical problem relates to general coordinate invariance, in particular, to the possibility to
perform generalized holomorphic coordinate changes, with holomorphy required inside the causal
diamond CD or at least in a smaller region containing the space-time surfaces involved. In this
kind of transformation the polynomials are mapped to more general functions. Physically the roots
of polynomials, whose arguments are replaced with functions of new coordinates, are not affected.

It would be highly desirable to have coordinates in which one can identify uniquely space-time
surfaces as roots of function pairs (f1, f2) of different kinds forming a hierarchy, which would
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consist of hierarchies of polynomial pairs with coefficients in various extensions E of rationals,
analytic functions with Taylor coefficients (or Laurent coefficients) for various choices of E and
finally arbitrary complex coefficients. Note that also rational functions P/Q can be allowed and
in this case the poles of Q would define roots. In the case of CP2 coordinates the poles would
correspond to finite points.

Some preferred coordinates defining this hierarchy uniquely should exist. The physical intuition
serves as a guideline in the identification of these preferred complex coordinates. The light-like
hypercomplex coordinate u and the complex coordinate w associated with the Hamilton-Jacobi
structure of M4 and complex Eguchi-Hanson coordinates ξi of CP2 are indeed natural candidates
for the preferred coordinates.

What about the situation at the level of M8? It would not be too surprising if the 4-surfaces
as M8 −H duals of the space-time surfaces could also be defined as roots of a function pair, call
it (F1, F2). In this case, preferred coordinates are provided by the linear coordinates in which
the octonionic arithmetics has its standard form. This allows only the octonionic automorphism
group G2 as coordinate changes. M8−H duality suggests very close connections between the pairs
(f1, f2) and (F1, F2).

3.3.2 Generalized holomorphies and multiplication by non-vanishing holomorphic
functions as gauge symmetries

Generalized holomorphies act as analogs of conformal symmetries, which gives rise to gauge con-
ditions. It is however essential that the corresponding infinitesimal transformations integrate to
bijections. If this does not take place, a breaking of conformal symmetry takes place. TGD indeed
suggests a hierarchy of conformal symmetry breakings in which sub-algebra An of conformal half-
algebra with non-negative weights and its commutator [An, A] with the entire algebra acts as a
gauge algebras and the subalgebra with conformal weights below n acts as dynamical symmetries.
This picture is expected to generalize when the functions of a single complex variable are replaced
with 4 generalized complex variables.

The multiplication of (f1, f2) in an element-wise manner by a function pair (Q1, Q2) leaves the
space-time surface unaffected if the functions Qi are non-vanishing inside CD. The requirement
that the functions fi do not decompose in this way, boiling down to irreducibility in the case of
polynomials, allows a gauge fixing in this case.

3.4 How to define the geometric analogs for rationals and their exten-
sions?

How do the notions of rationals and extension of rationals generalize? Does the generalized Galois
group leave the generalized rationals invariant? A natural approach is provided by zero energy
ontology (ZEO) in which the causal diamonds CD = cd × CP2 play a key role as analogs of
perceptive fields of a conscious entity, the observer.

1. Pairs (Q1, Q2) of rational functions with Q2 fixed, of rational functions with coefficients
in E would define the counterpart for rationals. If Qi are non-vanishing inside CDm the
element-wise multiplication of (P1, Q : 1) to give (Q1P1, Q2P2) does not give rise to new
roots inside CD. This corresponds to gauge invariance and the irreducibility constraints
drops these polynomial pairs from consideration. Qi have no have no roots inside CD so that
the generalized Galois group permuting the space-time regions representing various roots acts
on them trivially. Multiplication by these pairs acts like a gauge transformation.

2. The irreducible polynomials which do not decompose to polynomials are the natural basis for
Pi. Note that polynomials of prime degree have no decomposition as a product of polynomials
of lower order. This definition is however too restrictive.

3. Different roots for polynomial pairs (P1, P2) having roots inside CD correspond to space-time
regions defining the analog for an extension of rationals. The roots give rise to analogs of
monomials x − rn as monomials (z1 − Rn,1, z2 − Rn,2), where Rn,i are algebraic functions
as analogs or roots of ordinary polynomials. P1 and P2 can be expressed as local products
of these monomials. Galois groups realized as generalized homomorphisms of H must map
these regions to each other.
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3.4.1 Roots of polynomials for space-time surfaces

What are the counterparts of the roots of polynomials as space-time surfaces? What is the coun-
terpart of discriminant, which allows to assign to a polynomial a seet of ramified primes as rational
primes. What is the space-time counterpart of rational prime?

1. Ordinary polynomials factorize to a product of monomials x − rn with roots which are the
roots of polynomials. In the recent case the corresponding decomposition in the case of
P1 = 0 given by a polynomial having as its only root the space-region correspond to a given
root of P1 having its coefficients in the base field but with the root as algebraic number with
the solution of some of the 4 complex variables appearing in P1 and solved in terms of others
as an algebraic function with coefficients depending on the point of the region defined. One
would have zk − rk({zl, l 6= k}, where the algebraic function rk gives zk locally as a solution
of P1 = 0.

Root as an algebraic number is replaced with algebraic function and defines the root as a
space-time region. One can say that the surface decomposes to a union of regions defined by
the roots of monomials, which join along their boundaries at which two roots co-incide.

2. There are preferred choices for the choice of zk. The natural condition is that the degree of
P1 as a polynomial of zk is maximal. The cusp catastrophe dV (x)/dx = x3 + 2ax + b = 0
illustrates the situation: behavior variable x is preferred choice for the counterpart of zk: the
roots for the parameters (a, b) are rational functions because a and b appear linearly.

In the simplest situation one has pairs (P,Q), where P and Q are irreducible. The 4-D
roots for the pair are intersections of the 6-D roots of P and Q. One can substitute to Q
zk1

= rk({zl, l 6= k} and solve some coordinate zk2
, k1 6= k2 as an algebraic function of the

other remaining parameter like coordinates.

3.4.2 Generalizing the notions of discriminant and of ramified prime

Do the notions of discriminant and ramified prime as rational prime generalize?

1. Consider also now P1 = 0 as a simpler example. One can decompose P1 to monomials
which are algebraic functions zk = rk. Since these functions are elements in an extensions
of the function field of rational polynomials, one can also form the differences zi − zj and
define the discriminant as the local product

∏
i6=j(zi− zj). For the ordinary polynomials the

discriminant decomposes to primes of the coefficient field, say rationals.

In this case the discriminant should decompose to analogs of primes as rational polynomials.
Irreducible rational polynomials of prime degree p are primes in the sense that theyt cannot
be decomposed into polynomials of lower degree without leaving the coefficient field. There
the ramified primes could correspond to the factors of the discriminant with prime degree.

2. An interesting question is how the prime degrees appearing of the polynomial prime factors
of P1 relate to the ramified primes assignable to the roots of P1 when restricted to physical
special 2-surfaces X2 fixed to some degree by the condition that P1|X2 has coefficients in
some base field E as extension of rational for a suitable chosen complex coordinate for X2

most naturally one of the generalized complex coordinates used. P1 = 0 and P2 = 0 give 2
conditions giving the space-time surface X4.

3.5 How could the polynomial of a single variable determining ordinary
ramified primes and effective Planck constant emerge?

Ordinary rational primes are of special physical interest in TGD. How could these rational primes,
or more generally, E-rational primes emerge? Somehow one should be able to identify a polynomial
giving ramified primes as roots and ramified primes. The outcome should be consistent with the
recent physical view about ramified primes and hierarchy of Planck constants. One can consider a
formal algebraic approach and geometric approach relying strongly on the existing physical picture.
In the following I will describe different approaches to the problem but cannot must admit that
the problem is far from being fully understood.
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3.5.1 Purely algebraic approach

Consider first the algebraic approach.

1. Is the polynomial pair (P1, P2) enough or are two additional polynomials (P3, P4) needed so
that the one would obtain a hierarchy consisting of 6-surfaces as roots of Pi having interpre-
tation as analogs of twistor space of the space-time surface X4 as their interaction, 2-surface
X2 and a discrete set of points. Since one coordinate is a light-like hypercomplex coordinate.
Can one select (P3, P4) freely or are they determined by the pair (P1, P2)? This would be the
case if the surfaces X2 and the roots of a polynomial at it are determined by some geometric
and physical conditions.

2. The 2-surfaces X2 might actually correspond to their metrically 2-D light-like orbits X3.
Could the partonic orbit correspond to intersection of two roots of (P1, P2) as regions X2 (
or X3). In the case of partonic orbits X3, these roots could correspond to Euclidean and
Minkowskian space-time regions and at their interface the induced metric would be degenerate
and effectively 2-D. Therefore the partonic orbits are represented as roots (P1, P2, P3) =
(0, 0, 0). Note that the coefficients of P3 depend on the root of (P1, P2) = (0, 0) so that each
root corresponds to a different P3.

3. The fact that partonic orbits are determined by the condition (P1, P2) = 0 alone, suggests
that P 3 cannot be chosen freely in this case. On the other hand, the light-likeness of the
partonic orbits might mean non-determinism (for CP2 type extremals as vacuum extremals
of Kähler action, M4 projection is an arbitrary light-like curve).

The conditions P1 = 0 and P2 = 0 give zk1
and zk2

as algebraic functions of 2 generalized
complex coordinates (w, ξ) at the space-time surface. When one substitutes zk1

and zk2
as to

the third polynomial P3(zk1
, zk2

, w, ξ) as a function of (w, ξ), one should obtain a polynomial
of (w, ξ) with coefficients in E. This is a highly non-trivial condition. The roots of P3 should
define partonic orbits X3.

One wants to assign p-adic primes as ramified primes to the ordinary roots of P4 restricted to
a given X3 and having form depending on it so that each partonic orbit could correspond to its
own p-adic prime as some ramified prime. Algebraic approach is the first option to be considered.

1. The roots should correspond to the roots of a polynomial P4 of 4 generalized complex coor-
dinates subject to the condition (P1, P2, P3) = (0, 0, 0) defining X2 or X3 so that one would
have (P1, P2, P3, P4) = (0, 0, 0, 0).

The roots could correspond geometrically to light-like curves at metrically 2-D partonic
orbits, that is, fermion lines to which one wants to assign ramified primes as p-adic primes.
Also now one can ask whether it is possible to P4 freely as polynomials having coefficients
in E does (P1, P2) pair fix P4 completely? Can one identify a physical condition fixing the
light-like partonic orbits of fermions? Fermion lines should correspond to the intersections of
string world sheets as 2-D singularities of X4 with X3. Could this condition fix P4 so that
it is determined by the pair (P1, P2).

2. If P4 is a polynomial of 4 generalized complex coordinates with coefficients in E, it should
remain such at the partonic orbit. If 3 generalized complex coordinates are E-rational con-
stants at the partonic orbit, then P4(z) has coefficients in E and and its roots are in an
extension of E and one can assign ramified primes to the roots of P4. E-rational constancy
conditions are very powerful. Note that analogous conditions are encountered for the elliptic
curves: in this case the rational points form a lattice due to the underlying symmetry of the
elliptic curves.

3.5.2 Geometric approach

The purely algebraic approach looks rather complex. Could geometric approach allow to improve
the understanding?
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1. The conditions defining light-like partonic orbits (
√
g4 = 0) and the conditions defining light-

like fermion lines as intersections of string world sheets as singularities with partonic orbits
could be the geometric conditions. This suggests that one should find a manifestly gen-
eral coordinate invariant formulation, where the polynomial form emerges only in preferred
coordinates and ramified primes emerge naturally.

2. Concerning the identification of ramified primes, one could also start from the situation in
which the n roots at X2 are assumed to correspond to the intersections of string world
sheets and partonic orbits. One can introduce a complex coordinate z. The points should be
algebraic points for this choice of coordinate and therefore expressible as roots of a polynomial
P of degree n with coefficients in E. This condition gives very powerful conditions on the
coordinate z. If some choice of z is found, one can write the polynomial as a product of
monomials defined by the roots and can calculate the discriminant and the ramified primes
associated with it.

How unique is this complex coordinate? The root differences are only scaled under linear
modular transformations so that the spectrum of ramified primes is preserved. If these linear
transformations define the allowed global holomorphies, the preferred complex coordinate at
X2 is rather unique.

3.5.3 How could the algebraic and geometric approaches relate?

Geometric Langlands correspondence suggests that one should be able to express the geometric
view in terms of algebraic conditions.

1. M8 −H duality [L22, L26] requires that the quaternionic normal space of the surface Y 4 in
M8 should contain a 2-D commutative sub-space at each point. This implies that X4 contains
2-D surface X2 having possible several components. This surface should be determined by
an additional condition. One can consider surfaces P3(.., u) = 0 or condition P4(..., v) = 0.

A surface P3(.., u) = 0 would be topologically 3-D, hence the notation X3. It would be
metrically 2-D and some condition should select 2-D surface X2

1 by fixing the allowed values
of u. X2

1 can have several components corresponding to different partonic orbits and also
for a given partonic orbits the number of components could be larger than one. The failure
of the generalized holomorphy essential for the identification of vertices as singularities as
analogs of poles would occur for these special values of u.

2. The condition P4(..., v) = 0 would naturally define string world sheetsX2
2 with a Minkowskian

signature of the induced metric. These surfaces would be 2-D since v appears in P4 instead
of u. These surfaces are transversal to the partonic 2-surfaces X2

1 and would naturally
correspond to co-commutative 2-surfaces. Fermion lines would correspond to the intersections
of X3 and X2

2 .

The condition
√
g4 = 0 at the partonic orbit makes the 4-D tangent space of X4 effectively

2-D. This could correspond to the local degeneration of the metric dimension of the string
world sheet to 0. The intersection one would be a light-like fermion line rather than a single
point.

3. The application of both P3 = 0 and P4 = 0 gives a discrete set of preferred points perhaps
identifiable as points with the special values of u and v and the complex coordinate of X2

1

defining the counterparts of vertices and corners of the fermion line as well as the intersection
points of the string world sheets with the partonic 2-surfaces. If these points are roots of a
polynomial P , this polynomial could define ramified primes, extension of E, and heff .

3.5.4 Is it really possible to formulate all geometric statements as statements of
algebraic geometry

The TGD view of the geometric Langlands correspondence states that there is a correspondence
between the algebraic, essentially linguistic view of physics and the geometric view of physics
relying on vision. This leads to a kind of language game. The highly non-trivial challenge is to
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find whether the geometric picture can be formulated using the language of algebraic geometry
involving generalized complex variables of which one is hypercomplex and real.

First of all, one must find out whether the known algebraically universal extremals appearing
for practically any conceivable action, deduced by geometric and symmetry arguments, have a
simple algebraic description as the roots (P,Q) = (0, 0) where P and Q are analytic functions
of generalized complex coordinates of H = M4 × CP2. This is not at all obvious. One should
carefully check whether CP2 type extremals, cosmic strings and monopole flux tubes, and massless
extremals allow this kind of formulation.

Inequalities are part of geometric description and involve in an essential manner the notion of
distance. The representation of topological boundaries gives rise to inequalities. In TGD a long
standing question is whether one should allow boundaries and whether the boundary conditions
guaranteeing conservation laws indeed allow space-time boundaries. For instance, could one
eliminate CP2 type extremals defining wormhole contacts glued to the Minkowskian background
and leaving partonic orbits as boundaries [L13].

1. The problem is that well-ordering required by inequalities characterizes only real numbers:
the notion of inequality is not algebraically universal. Inequalities have no natural place in
pure algebraic geometry involving complex numbers or p-adic numbers. In TGD, the natural
variables are generalized complex coordinates and inequalities cannot be represented for the
complex numbers using only complex analytic functions.

In TGD, the light-like hypercomplex coordinate u is however an exception. u is real and
inequalities make sense for it. For instance, the segment u1 < u < u2 can be defined in the
semialgebraic context and the simplest situation corresponds to a position dependent time
interval x − u1 ≤ t ≤ x + u2 or propagating pulse. The real part Re(w) of the complex
coordinate w of the space-time surface defining the analog of the real axis in complex analysis
would be a second coordinate of this kind and could be assigned to the partonic 2-surface.

2. Also in the p-adic topology well-ordering is absent and inequalities would be represented
in terms of norm but this is not a notion of algebraic geometry. Only the discrete subsets of
p-adic numbers defined by powers of p are well-ordered and inequalities can be defined for
them. The hierarchy of discretizations as cognitive representations defined by extensions of
rationals could however allow to overcome this problem by reducing them to inequalities.

The notion of semi-algebraic geometry makes it possible to represent these observations for-
mally.

1. In semi-algebraic geometry inequalities are allowed in the real case but do not make sense
for complex and p-adic numbers. In TGD, semialgebraic geometry would make sense for
the regions of space-time surface for which the generalized complex coordinates of H or
space-time surface are real.

All inequalities should be formulated for the real sub-manifolds, which for ordinary complex
4-manifolds are 2-D. This is the case now. String world sheets parameterized by light-like
coordinates u and v, would be naturally 2-D surfaces of this kind but the coordinate v does
not appear as the argument of the functions (P,Q). Only the inequalities relating to u
seem to make sense.

2. Hamilton-Jacobi structure [L18] means a slicing of M4 by pairs of strings world sheets and
partonic 2-surfaces and would allow to generalize this representation to the interior of the
space-time surface. Could the inequalities related to the geometry of preferred extremals
implied by holography=holomorphy correspondence reduce to this kind of inequalities? The
two real coordinates u and x = Re(w) could have interpretation as local choices of light-like
direction and polarization direction and inequalities in this sense would be consistent with
the notion of semialgebraic geometry.

An interesting question is whether symplectic structure, which is basic element of the WCW
geometry and can be seen as a companion of the generalized complex structure, could
correspond to the decomposition of the complex space-time coordinate as w = P + iQ and
hypercomplex coordinate as (u, v) such that (P,Q) and (u, v) define canonically conjugate
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coordinate pairs is consistent with the Hamilton-Jacobi structure. Note that the two
real coordinates u and x = Re(w) could have interpretation as local choices of light-like
direction and polarization direction and inequalities in this sense would be consistent with
the notion of semialgebraic geometry.

Could one get rid of inequalities altogether by a suitable choices of the real coordinate variants
(u, x)? There is indeed a well-known trick allowing to get rid of an inequalities representable in
the form t ≥ 0 by a change of the coordinate variable as a replacement t → T = t2. Only the
points with t ≥ 0 are allowed by mere reality conditions. This trick might work to inequalities
involving u and x.

3.5.5 What kind of singularities space-time surfaces can have?

Space-time surfaces as algebraic surfaces can have various kinds of singularities. In particular cusp-
like singularities as kinds of peaks are possible. The earlier out-of-date proposal for the realization
of M8 −H duality led to the proposal [L19] that wormhole contacts identified as deformations of
CP2 to CP2 type extremals with light-like curve as a M4 projection, emerge as what algebraic
geometers call blow-ups. A blow-up replacing a point with CP2 type extremal could take place for
the peak-like singularities. In this case however two Minkowskian space-time regions connected by
the CP2 type extremal would be in question.

Could space-time surfaces have stable self-intersections? In the generic situation this is the
case since the sum of the dimensions of two intersecting space-time reasons give 4 + 4 = 8 so that
the intersection consists of a discrete point set. The situation is not so simple in the recent case.
The reason is that by generalized holomorphy the light-like coordinate v is effectively eliminated
and H is effectively 7 − D. For the same reason, the space-time surface itself is effectively 3-D.
The dimension of self-intersection is formally 3 + 3 − 7 = −1 so that no stable self-intersections
should exist. The condition

√
g4 = 0 at the partonic orbit worsens the situation since one has

2 + 2− 6 = −2.
This is the case also for the intersections of surfaces P1(..., u), Q) = (0, 0) and P2(..., u), Q) =

(0, 0). However, one can also consider two space-time surfaces with different light-like coordinates
u1 and u2 such that the Hamilton-Jacobi structures [L18] are not equivalent and this is rather
natural for many-particle systems. For instance, for u1 = u and u2 = v, the intersection consists
of a discrete set of points. Also in this case blow-up might allow to eliminate or smooth out the
singularity.

This intuition is supported by a 1+1-D analogy. The intersection cannot be removed by an
infinitesimal deformation. One could cut small 1-D segments around both points and reconnect
the resulting pieces to get two disjoint curves.

The intersections of CP2 type extremal and Minkowski space-time regions provide a physically
highly interesting example. The recent view relies on physical intuition and it is of interest to see
whether it can be understood in terms of a deformation removing an intersection point.

1. The simplest CP2 type extremal is the canonically embedded CP2 in H. It has constant M4

coordinates and intersects any space-time surface whose projection contains this point. This
situation is definitely non-physical.

2. In the case of Kähler action [K1], one can deform the simplest CP2 type extremal such that
its M4 projection becomes a light-like curve. If the action contains volume term, CP2 type
extremals can consist of pieces, which are light-like geodesics of M4. The metric and Kähler
form are not affected.

This surface has no space-like boundary and as such cannot be glued along boundary to a
larger space-time surface with Minkowskian signature. It however has homologically non-
trivial 3-D ends. The surface is analogous to a general relativistic wormhole leaving the
background space-time surface and returning back at a later time. It can also return to
another space-time surface. The homologically non-trivial 2-surfaces at the ends behave like
monopole charges of opposite sign.

3. What about the dual monopole fluxes at the light-like boundaries of CD? Dual monopole
fluxes are topological and by definition fluxes of the Kähler form over 2-surfaces, whose M4
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projection has Minkowskian signature (1,-1). These quantized dual fluxes are encountered in
superconductivity. They do not correspond to the electric flux over a space-like surface.

4. One could argue that neither free magnetic charges nor their dual counterparts are physically
acceptable. The mathematical reason would be that boundary conditions cannot be satisfied.
The dual monopole flux should go somewhere at the boundary of CD. One could add a second
roughly parallel Minkowskian space-time sheet and allow the flux flow to this space-time
sheet through a wormhole contact at the boundaries of CD. One would obtain a closed dual
flux loop in time direction with Euclidean wormhole contacts connecting the two sheets. A
creation of fermion-antifermion pairs could create this kind of time-like loop beginning at
point-like vertex [L17, L27].

Interestingly, one could consider closed polygons having as edges CP2 type extremals with M4

projections with light-like geodesics meeting at the corners. This kind of light-like polygons
appear in the twistor Grassmann approach to gauge theories.

5. One can consider also a situation in which one cuts a piece from the deformed extremal
so that the partonic orbit, having boundaries only at its ends of CD, gets a light-like 3-D
boundary connecting the ends of CD. This boundary can have non-vanishing magnetic flux
(over space-like surface) only if there is a second similar object with an opposite magnetic
flux. This partonic orbit can be glued to the background Minkowskian space-time surface.
Appropriate boundary conditions are satisfied at the boundary guaranteeing the conservation
of charges. One can say that at the partonic orbit the space-time becomes Euclidean.

The partonic orbit is analogous to a magnetic monopole. One can however direct the flux to
a parallel Minkowskian space-time sheet, where it returns back and a closed monopole flux
loop is formed. One can say that the space-time surface turns to the direction of CP2 and
meets the parallel Minkowskian space-time sheet. This would be a basic building brick of a
general TGD based model for elementary particles.

6. There is however an outwards Kähler magnetic flux at both space-time sheets. If one cannot
tolerate monopoles, one must have wormhole contact glued to the same pair of space-time
surfaces. A monopole flux would connect the boundaries of the wormhole contact. This
gives the recent model for elementary particles as closed monopole flux loops connecting two
parallel Minkowskian space-time sheets.

These considerations raise again a long standing question concerning classical electromagnetic
charges as electric fluxes. Although this question does not relate directly to the recent topic, it
deserves a discussion. The self-duality of Kähler form of CP2 raises the possibility that the magnetic
and electric Kähler fluxes are identical for CP2 type extrenals. Classical electromagnetic charge
receives two contributions coming from Kähler form and the vectorial part of spinor connection of
CP2 [L20].

1. For leptons the simplest assumption is that only the Kähler contribution is non-vanishing
for charged leptons L: the contributions would be (-1,0). If neutrinos are Kähler magnetic
monopoles, one would have (-1,1) (also (0,0) can be considered).

2. For quarks the two contributions should explain fractional em charges. (νL, L) and (U,D)
have the same weak isospin but quarks and leptons correspond to different H-hiralities. This
suggests that the anti-leptonic charges would be shifted by -1/3 to get the charges of quarks:
the contributions to the fluxes would be (1,-1/3) for U and (1,-4/3) for D (also (0,-1/3)can
be considered).

3.6 How could various effective Planck constants emerge?

The phenomenology of TGD leads to the proposal that ordinary Planck constant is replaced
with a hierarchy of effective Planck constants having interpretation in terms of the dimension
of an algebraic extension determined by some polynomial characterizing the particle [L26, L27].
Nottale’s proposal [E1] [K11] for the gravitational Planck constant, which characterizes a pair
of masses, generalizes in the TGD framework [L3, L10, L9]. The generalization also applies to
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the electromagnetic, weak and color interactions [L15]. One should understand both kinds of
effective Planck constants and also the corresponding ramified primes defining p-adic length scales
[?, L7, L14].

3.6.1 What about the effective Planck constant associated with a partonic orbit?

What is the physical interpretation of the dimension n = heff/h0 of the extension of E defining
the effective Planck constant associated with P4(w) defining points of the partonic surface as its
roots? What about the corresponding ramified primes? The first thing to notice is that one could
interpret P4(w) as a restriction of a polynomial P4(w, u) to say u = 0. This polynomial would
determine a slicing of the space-time surface as a union light-like partonic orbits defined by the
roots P4(w, u) as u varies.

The fermion lines of the partonic 2-surface could be identified as the light-like boundaries of
string world sheets, which mediate various interactions between different partonic orbits.

One can assign an effective Planck constant hgr, hem, etc assignable to gravitational, electro-
magnetic, weak or strong interactions. They are proportional to the product of charges assignable
to ends of the string at different partonic orbits unlike the ordinary Planck constant. How could
they emerge from the proposed picture.

A natural assignment of hgr, hem, etc would be to the string world sheets and actually to the
ends of string worlds sheets or strings if u if string world sheet corresponds to a region of (u, v)
plane. Could they correspond to the roots of the polynomial P4(wn, u) determining the positions
of the ends of the string at the two partonic orbits involved. The roots would give the values of u
at the ends of the string world sheet and the P4(wn, u) would characterized the interaction. The
roots P4(w, u = constant) would in turn parametrize the light-like intersections of the string world
sheets at the partonic orbit.

Q characterizes the sector of WCW and therefore naturally the background physics including
classical gravitational and electric fields and also the length scale dependent cosmological constant
as a dynamical parameter. P would in turn characterize particles. Therefore, the roots and ramified
primes for R would reflect both the properties of the particle and those of the background. This
could explain why the gravitational resp. electric Planck constants are proportional masses resp.
charges of the particle and larger system.

3.6.2 What about the effective Planck constant characterizing single fermion states
only?

Besides electric and gravitational Planck constants characterizing the interactions with background
fields, there are also effective Planck constants analogous to h and characterizing single fermion
states. These ramified primes are important in p-adic mass calculations. How to identify them?

As already found, the points of the partonic 2-surfaces identified as self-intersection points
depend on Q characterizing the background and are not strict single particle characteristics. One
could of course argue that this conforms with the basic view of the Higgs mechanism. One can
however ask, whether a single particle heff could have some other identification?

1. Could one identify heff as roots of a polynomial P5(v) varying along the light-like curves
u = constant along the boundary of the string world sheet at a given partonic orbit. The
appearance of v as an argument of P5 obviously means a violation of the generalized conformal
invariance. If one assumes the proposed preferred coordinates, the polynomial P5(v) having
coefficients in E would be determined by the geometry, that is by the knowledge of the
singular points.

The dimension n = heff/h0 of the extension of E associated with P5 would be a single
particle characteristic and have a natural interpretation as the effective Planck constant heff
assuming rather small values as generalization of the ordinary Planck constant.

2. The roots could now correspond to singularities at which the light-like-curve has a corner.
Also the vertices for the creation of a fermion pair could correspond to such corners. The
physical interpretation would be as a change of light-like momentum located at the corner.
Also the interpretation as analog of Brownian motion makes sense and ordinary Brownian
motion might relate to these corners.
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3. Also a connection with the breaking of conformal invariance is suggestive. If the Kähler
action were the sole action, M4 projection of the CP2 type extremal, now vacuum exteremal,
would be an arbitrary light-like curve and Virasoro conditions would express this property.
When the volume term is present, one has a discretized version of this picture, implying
the breaking of conformal invariance, which reflects the presence of the volume term in the
action. The average velocity is reduced by the change of the direction of motion at the
vertices and this can be seen as a signature for massivation describable in terms of p-adic
thermodynamics.

4. TGD indeed leads to the picture in which the corners correspond to fermionic vertices at
which also the generalized holomorphy fails so that the trace of the second fundamental
form is non-vanishing. At the corners, the fermion suffers an instantaneous generalized
acceleration. The CP2 part of the second fundamental form behaves like a Higgs field group
theoretically. One can also say that the analog of the Higgs mechanism takes place only at
the fermionic vertices.

5. The sequence of the roots vn of P5 defines a sequence of values of light-cone proper time
an, which would naturally correspond to the weak failure of the classical determinism for
the dynamics of the space-time surface. This classical determinism would correspond to
the quantal non-determinism of ”small” state function reductions (SSFRs), whose sequence
defines the flow of consciousness in the TGD inspired theory of consciousness.

This sequence augments the sequence of repeated measurements of the same observable with
the measurement of cognitive observables associated with the classical non-determinism and
gives rise to a generalization of the Zeno effect: only the states at the passive boundary of
CD would remain unaffected in SSFRs.

This non-determinism would also naturally correspond to p-adic non-determinism inherent
to the p-adic dynamics as a correlate for cognition. The degree of P5 would correspond to
the maximal number of very special moments of geometric time for a system in question. At
these moments of geometric time the contents of consciousness would be replaced by a new
one and remain constant until the next SSFR.

6. String world sheets appear as singularities of the space-time surfaces and since the light-like
coordinate v defining the hypercomplex coordinate is constant along the boundary of the
string world sheet, at least in piecewise way, the string world sheet itself must correspond
to a singularity defined by a polynomial generalizing the condition defining the light-like
partonic orbit. By the generalized holomorphy of (f1, f2), there is no dependence on the
coordinate v, so that one indeed obtains string world sheet locally when one fixes the points
of the partonic 2-surface to a root of a polynomial P4 characterizing a string world sheet.

The objection against this proposal is that it requires that the polynomial defining the singular
points as its roots does not depend on the state of the particle. If the singular points are associated
with the corners of the light-like curve at which momentum direction changes, this does not seem
plausible.

3.7 The counterpart of the Galois group in the geometric LC

Recently I considered a view of the Galois group, which conforms with the geometric Langlands in
which the roots of a polynomial are replaced with space-time regions as roots of the pair (P1, P2).

1. The ordinary Galois group is assigned with the roots of P defining an extension of E. The
Galois group acts as a permutation group of the roots of a polynomial of a polynomial P
with integer coefficients. Besides this it acts trivially in k if K is an extension of k.

2. For a pair (P1, P2) the roots (P1, P2) = (0, 0) correspond to regions of a connected 4-
surface. One should generalize the notion of Galois group so that it permutes various roots
of (P1, P2) = (0, 0) as regions of the 4-D surface.

Could generalized holomorphic transformation represent the action of the generalized Galois
group on the space-time surface as flows permuting the regions representing the roots [L26].
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This transformation would not only map the roots as space-time regions to each other but
also respect the local root property. This might pose restrictions to the Galois group in the
sense that the full permutation group would not be allowed.

3. If this flow reduces to isometries, then the action must reduced to that of a discrete subgroup
of SO(3) or SL(2, C) and one obtains that the allowed Galois groups correspond to the
hierarchy of discrete subgroups of SO(3) associated with inclusions of hyper-finite factors
[L26] and with McKay correspondence [A9, A8, A7, A5, A4] [L4].

4. What about the analogy for the condition that the Galois group leaves the field E invariant?
The natural identification is that the counterparts of the field E are pairs of polynomials
(or rational functions, or even analytic functions), which are non-vanishing inside CD. The
notion of root indeed generalizes also to analytic functions so that the notion of the geometric
Galois group is number-theoretically universal.

3.8 The identification of the geometric Langlands group

Just as in the case of the number theoretical LC, the geometric Langlands group would correspond
to the semidirect product of LSL(2, C)o with a Galois group, which would be now the geometric
variant of the Galois group. SL(2, C) and its subgroup SL(2, ZE) would act on the selected discrete
set hyperboloids H3(ak).

An additional hypothesis, giving hopes for obtaining the numbers of the numbers of p-adic
roots (P1, P2) = (0, 0), is that the Bohr orbitology forces a modular invariance in the sense that the
boundary data of holography are analogous to plane waves with a definite discretized 3-momentum
in the sense that a discrete subgroup of SL(2, ZE) defines a periodic tessellations of the H3 projec-
tion of the space-time surface defining boundary data of the holography. The plane waves would
correspond to modular forms in the hyperboloid H3 covariant under SL(2, ZE).

Also in the CP2 degrees of freedom analog of modular invariance might hold true for a discrete
subgroup of CP2 so that the 3-surface in CP2 degrees of freedom would be an analog of Platonic
solid. This would conform with the quantum classical correspondence suggested by the Bohr
orbitology and suggest that space-time surfaces reflect the quantum numbers of the fermionic
quantum states associated with them.

3.9 Master formula for the construction of quantum states using the
interpretation of space-time surfaces as numbers

The exact solution of field equations of TGD in terms of holography=holomorphy vision and the
recent progress in the understanding of the TGD view of Langlands correspondence allows to
propose an explicit recipe, a kind of a master formula, for the construction of states describing the
interaction in terms of generalized holomorphic algebraic geometry.

3.9.1 Do space-time surfaces have the structure of a number field?

While writing this article, I was inspired by the idea that the space-time surfaces indeed have a
structure of a number field, induced by the structure of the function field formed by the analytic
functions with respect to the four generalized complex coordinates of H = M4 × CP2 (one of
the coordinates is hypercomplex light-like coordinate). Function fields are indeed central in the
geometric Langlands correspondence.

1. This function field also has a hierarchical structure. There are hierarchies of polymials of
various degrees and also rational functions with coefficient fields in different extensions of
rationals. Analytical functions for which the Taylor coefficients are in extensions of rationals
in the expansion is the next step. At the ultimate limit one has algebraic numbers as
coefficients. Also transcendental extensions can be thought of and in this way one eventually
ends up with complex numbers.

2. For H = M4 × CP2, this would correspond to the lowest level of the hierarchy of infinite
primes but the Cartesian powers of H = M4 × CP2 correspond to the higher levels in the
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hierarchy of infinite primes. Again, this hierarchy is be analogous to the hierarchy used in
the description of condensed matter, 3N -dimensional spaces, N number of particles.

3. One can consider two options for the product of space-time surfaces. The product could be
induced by a) the product for the first members of the pairs (f1, f) and (f2, f) as (f1f2, f)
with f fixed or b) the component-wise product (f1, g1) ∗ (f2, g2) = (f1f2, g1g2).

For option a) function field structure induces a structure of number field in the space of
space-time surfaces. For option b) there are problems. Pairs of form (f1, 0) and (0, f2) can
be produced in summation. The corresponding surface would be a 6-dimensional analog of
brane. The pair (f1, f2) = (0, 0) has the entire H as a representative. Can one accept this?
The inverse in these cases does not exist for function fields except formally if f = ∞ is
accepted as a constant function. It does not have a space-time surface as a representative.
It turns out that a) is also physically favored.

In zero energy ontology (ZEO), quantum states corresponds to spinor fields of WCW, which
consists of space-time surfaces satisfying holography and therefore being analogous to Bohr orbits,
and also having interpretation as elements of number field so that one can multiply them. WCW
spinor fields assign to a given space-time surface a pair of fermionic Fock states at its 3-D ends
located at the opposite light-like boundaries of the causal diamond CD. Could one multiply two
WCW spinor fields so that the space-time surfaces appearing as their arguments are multiplied

X4
1 ∪X4

2 → X4
1 ∗X4

2 ,

and the tensor product of the fermionic states at the boundaries of CD is formed. This would give

Ψ(X4
1 )⊗Ψ(X4

2 )(X4
1 ∪X4

2 )→ Ψ(X4
1 )⊗Ψ(X4

2 )(X4
1 ∗X4

2 ) .

Here X4
1 ∗X4

2 would be the product of surfaces induced by the function algebra and the product
of fermion states would be tensor product. Could Gods compyte using spacetime surfaces as
numbers and could our arithmetics be a shadow on the wall of the cave.

So: could a believer of TGD dream conclude that these meta-levels and perhaps even mathe-
matical thinking could be described within the framework of the mathematics offered by the infinite
dimensional number field formed by the space-time surfaces. This quite a lot more complicated
than binary math with a cutoff of the order of 1038!

3.9.2 The product of the space-time surfaces as a geometric counterpart of the tensor
product?

The product and sum of the space-time surfaces are the natural candidates for the describing
interactions of particles. What could the product of space-time surfaces mean concretely? The
physical intuition suggests the first guess. Could it correspond to a creation of an interacting pair
of 3-D particles identified as 4-D Bohr orbits? The product would be the geometric counterpart of
a tensor product, but perhaps also involve interaction. If so, this product could provide a geometric
and algebraic description of the interactions. What would one get?

Let us restrict the consideration to option a), which looks more promising both physically and
mathematically. One considers polynomials (Pi, Q), and forms only the products of Pi assuming
Pi and Q irreducible. Space-time surfaces obtained by multiplying only Pi in the product (P1, Q)∗
(P2, Q) = (P1P2, Q) would have a number field structure in a rather strict sense. The product
would correspond to the union of the surfaces (P1, Q) = 0 and (P2, Q) = 0 and analogous to a
state of two free particles without interaction.

This option would put P and Q in asymmetric positions. This would conform with the idea
that the condition P1 = 0 defines the analog of a 6-D twistor space, and the space-time surface
X4 is the intersection of the analogs of the twistor bundles of M4 and CP2, i.e., its base space. As
already proposed, the condition Q = 0 could define an identification for the counterparts of twistor
spheres of M4 and CP2. This map would define cosmological constant for the analog of dimensional
reduction of the product of twistor spaces to the induced twistor space of the space-time surface.

The product of the space-time surfaces produces an almost free two-particle state in topological
and geometric sense. Is the discrete set of intersection points enough to describe the interactions?
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This is possible in the fermionic sector since these points appear as arguments of fermionic n-point
functions.

3.9.3 The sum of the space-time surfaces as a geometric counterpart of the tensor
product?

The basic restriction to the sum of the space-time surfaces is the condition that the space-time
surfaces appearing as summands allow a common Hamilton-Jacobi structure [L18] in M4 degrees
of freedom in turn inducing it for the space-time surfaces. The summed space-time surfaces must
have a common hypercomplex coordinate with light-like coordinate curves and a common complex
coordinate. For the product this is not required.

1. Could the sum of the space-time surfaces (f1, g) = (0, 0) and (f2, g) = (0, 0) defined as a
root of (f1, g) + (f2, g) = (f1 + f2, g)) define a topologically and geometrically non-trivial
interaction? If the functions f1 and f2 have interiors of causal diamonds CD1 and CD2 with
different tips as supports (does the complex analyticity allow this?) and CD1 and CD2 are
located within a larger CD then both f1 and f2 are nonvanishing only in the intersection
CD1 ∩ CD2.

Generalized complex analyticity requires a Hamilton-Jacobi structure [L18] inside CD. It
must have a common hypercomplex coordinate and complex M4 coordinate inside CD and
therefore inside CD1 ∩CD2 and also inside CD1 and CD2? Suppose that this condition can
be satisfied.

Outside CD1 ∩CD2 either f1 and f2 is identically vanishing and one has f1 = 0 and f2 = 0
as disjoint roots representing incoming particles in topological sense. In the intersection
CD1 ∩CD2 f1 + f2 = 0 represents a root having interpretation as interaction. fi ”interfere”
in this region and this interference is consistent with relativistic causality.

One could also assign to the sum a tensor product in fermionic degrees of freedom and
define n-point functions and restrict their arguments to the self-intersection points of the
intersection region CD1 ∩ CD2. One could also say that the sum represents z = x + y in
such a way that both summands and sum are realized geometrically.

At this moment it is unclear whether both product and sum or only product or some could
be assigned with topological particle interactions. From the number theoretic point of perspective
one would expect that both are involved.

3.9.4 How to treat the intersections of the space-time surfaces?

In the generic situation the 4-D surfaces (P1, Q) = 0 and (P2, Q) = 0 have a discrete set of
intersection points in H: could the intersection points allow the description of the interactions
between the particles?

1. Assume a set of n irreducible polynomial pairs (Pi, Q) as analogs of elementary particles.
The product is (

∏
i Pi, Q) and gives rise to n space-time regions X4

i defined by the conditions
(Pi, Q) = (0, 0).

2. In the generic situation, the intersection of two 4-D regions X4
i of 8-D H of the surface

(P1P2, Q = (0, 0) would consist of discrete points. This applies also to self-intersections as
interactions of sub-regions of a given region. Some of the intersections are just tangential
touching points, which can be eliminated by an infinitesimally small deformation (in plane
two curves can touch tangentially).

In the recent case however the generalized holomorphy means that M4 and X4 are effectively
bundles of light-like curves parameterized by a light-like dual coordinate v so that conditions
defining the self intersection are effectively 3-D surfaces in effectively 7-DH. Self-intersections
are not stable. Stability requires that the coordinates u1 and u2 are different for the two
4-surfaces. For u1 6= u2, the intersection would consist of a discrete set of stable intersection
points. Different coordinates ui suggest interpretation as different states of motion.
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At the partonic orbits defining boundaries of wormhole contacts, the v = constant lines
have a natural interpretation as fermion lines at the partonic orbits defining boundaries of
wormhole contacts as blow-ups.

3. If u1 and u2 are different then also Q and say P2 corresponds to different u and the 6-surfaces
P2 = 0 and Q = 0 have a 2-D self-intersection given rise to a discrete self-intersection of the
4-surface X4

2 . These self-intersection points could correspond to internal fermionic vertices
assignable to analog of self-interactions in QFT picture.

What should one do with intersection points.

1. If the scattering amplitudes involve fermionic n-point functions with arguments restricted
to the intersection points, there is no need to eliminate the intersection points. This would
be the simplest option and bring in the interactions in a minimal possible way. This would
also allow unique purely topological identification of the vertices of the n-point function and
make the dimensions of the space-time and embedding space unique.

2. The second possibility is that the intersection points of the space-time surfaces are eliminated
by a small deformations of the space-time surface involved. The obvious objection is that
this deformation is highly non-unique. In any case, the polynomials P1 and P2 should be
modified so that the product P1P2 becomes irreducible. What conditions can one pose on
these deformations?

3.9.5 Could it make sense to eliminate the intersection points?

The second option is that the singularities are eliminated or smoothed out. The blow-ups [L19],
mentioned already earlier in this article, could take place for genuine intersection points. I have
proposed that blow-ups to eliminate the singularities for which the 4-surface Y 4 in M8 has a peak
so that CP2 point assignable to the normal space is highly non-unique and can span a 3-D subset of
CP2. This would give rise to the CP2 type extremal. The blow-ups would correspond to wormhole
contacts, identified as deformations of CP2 to CP2 type extremals with light-like curve as a M4

projection and connecting two space-time surfaces.
Could the possible deformation of the product polynomial P1P2 to an irreducible polynomial

involve a blowup? This deformation should not dramatically affect the polynomials involved nor the
corresponding space-time surfaces outside the blow-up. The intuitive picture is that the space-time
surfaces are deformed so that the intersection point is replaced by wormhole contact connecting
the deformed space-time surfaces.

Consider two Minkowskian regions of the space-time surface.

1. How to eliminate the intersection point as singularity?

(a) One can think of is that the irreducible intersection point corresponds to point-like
Kähler monopoles, which are ends of infinitely short and thin monopole flux tubes
connecting the two space-time regions. This can be deformed to a wormhole contact
connecting two Minkowskian space-time sheets.

The wormhole contact option would mean that for two Minkowskian regions intersecting
at point, the intersection point is replaced by a wormhole contact represented as a
deformation of CP2 to a CP2 type extremal having in the simplest situation a light-like
projection.

(b) One can also consider the possibility that the wormhole contact is replaced by a monopole
flux tube with a Minkowskian induced metric connecting the two space-time sheets in-
volved. This could apply to self-intersections and mean that self-intersection points are
replaced by monopole flux tubes.

(c) One can also perform a blow-up for a Minkowskian string world sheet associated with the
orbit of a monopole flux tube. Now the wormhole contact corresponds to homologically
non-trivial geodesic sphere of CP2
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2. The number of wormhole contacts or monopole flux tubes would be
∑

i 6=j nij , where nij
is the number of nontrivial self intersections for X4

i and X4
j . Therefore the process would

generate quite a large number of partonic objects. That all these regions can be otherwise
disjoint does not conform with the naive particle interpretation.

3. Physical intuition suggests that for interacting particles, which do not form a bound state,
the product reduces near the passive boundary of the CD (initial state) of the causal diamond
CD to a union of the surfaces with no intersections and thus without wormhole contacts or
monopole flux tubes. The surfaces (Pi, Q) = (0, 0) and (Pj , Q) = (0, 0). If this condition is
not true, the interpretation would be as a bound state. The TGD view of nuclei, atoms, and
molecules assume that particles forming the bound state are indeed connected by monopole
flux tubes [L16].

4. One should also understand particle creation. What about the following? One can multiply
a given polynomial pair (P,Q) with a polynomial pair (P1, Q) to give (P,1 P2, Q). If P1

does not vanish inside the CD the spacetime surface does not change. CD however increases
during the sequence of ”small” state function reductions (SSFRs) and it can happen that P1

can develop roots inside the CD and a new space-time region emerges.

3.9.6 What about the product of spinors fields?

The WCW spinor field assigns multifermion states to the 3-D ends of a given spacetime surface at
the boundaries of the CD. If one can define what happens to the multifermion states associated
with the zero energy states in the interaction, then one has a universal construction for the states
of WCW as spinor fields of WCW providing a precise description of interactions analogous to
an exact solution of an interacting quantum field theory. At the geometric level, the product of
the surfaces corresponds to the interaction. At the fermion level, essentially the ordinary tensor
product of the multifermion states should correspond to this interaction.

Under what conditions does this vision work for fermionic states as WCW spinors, identified
in ZEO as pairs of the many-fermion states at the 3-surfaces at the boundaries of the CD? It
is obvious that the definition of the fermion state should be universal in the sense that at the
fundamental level the fermion state is defined without saying anything about space-time surfaces
involved.

Induction is basic principle of TGD and the induction of spinor fields indeed conforms with
this idea. The basic building bricks of WCW spinor fields are second quantized spinor fields of H
restricted to the 3-surfaces defining the ends of the space-time surfaces at the boundaries of CD.
Therefore the multifermion states are restrictions of the multifermion states of H to the spacetime
surfaces. The Fourier components (in the general sense) for the second quantized spinor field ψ
of H (not WCW!) and its conjugate ψ would only be confined to the ends of X4 at the light-like
boundaries of CD.

The oscillator algebra of H spinor fields makes it possib le to calculate all fermionic propagators
and fermionic parts of N-point functions reduce to free fermionic field theory in H but arguments
restricted to the space-time surfaces. The dynamics of the formally classical spinor fields of WCW
would very concretely be a ”shadow” of the dynamics of the second quantized spinor fields of H.
One would have a free fermionic field theory in H induced to space-time surfaces!

In this way, one could construct multiparticle states containing an arbitrary number of particles.
The construction of quantum spaces would reduce to a multiplication in the number field formed
by space-time surfaces, accompanied by fermionic tensor product!

3.9.7 Geometric Langlands duality extends to a trinity involving also physics

The master formula for TGD allowing construction of quantum states using the interpretation of
space-time surfaces as numbers realizes the analog of geometric Langlands duality and generalizes
it to a trinity. Geometric Langlands correspondence assigns to a pair of elements of a function field,
which is a number theoretic object, a geometric object as algebraic surface having interpretation
also as a Riemann surface with Kähler structure, twistor structure and spinor structure. This
extends the number-theory-algebraic geometry duality to trinity and physics becomes the third
part of a trinity.
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1. The most high level form of number theory corresponds to function fields, which are infinite-
D structured. In TGD, the pairs (f1, f2) of two functions of generalized complex coordinates
of H = M4 ×CP2 define a linear space and the functions fi are elements of a function field.
This is the number theoretic side of the Langlands geometric duality.

2. A function pair, whose root (f1, f2) = (0, 0) defines a space-time surface in H and induces
the number field structure of the function field to the space of space-time surfaces, ”world of
classical worlds” (WCW). Basic arithmetic operations of the number field apply to the com-
ponent functions fi and induce corresponding operations for space-time surfaces in WCW.
The notion of induction, which is the basic principle of TGD, is central also here. It is missing
from standard physics and also string models.

3. The root as a space-time surface obeys holography =holomorphy principle and is a min-
imal surface (as classical representation of generalized massless particle and massless field
equations) and represents the geometry side of the geometric Langlands duality. This con-
nection represents geometric Langlands duality in TGD. Riemannian geometries restricted
to algebraic geometries is what makes the geometric Langlands duality possible.

It is still unclear whether the choice of the classical action defining space-time surfaces and
producing, apart from singularities, a minimal surface as an outcome, is only analogous to a
choice of the coordinates and whether the recent choice (volume action + Kähler action) is
only the most convenient choice. If so, the laws of physics boil down to a completely action
independent form, that is to the construction of quantum states induced by the products for
space-time surfaces regarded as generalized numbers.

4. Space-time surfaces as minimal surfaces with generalized complex structure and are extremals
for any variational principle constructible in terms of the induced geometry since extremal
property reduces to the generalized complex structure. The action makes itself visible only
at the singularities.

5. Langlands geometric duality becomes actually a trinity: number theory ↔ geometry ↔
physics. The number theory ↔ geometry part of this trinity duality corresponds to Lang-
lands geometric duality. The geometry↔ physics part is the TGD counterpart of Einstein’s
equations identifying geometry and physics.

4 About the relationship between geometric and number
theoretic counterparts of WCW

At the continuum limit, the WCW geometry is determined by a Kähler function identifiable in
terms of the action defining the space-time surface. The preferred extremals satisfying hologra-
phy=holomorphy principle are minimals surfaces which apart from singularities are independent
of action.

For the twistor lift the action is naturally the 6-D counterpart of Kähler action decomposing
in a dimensional reduction to 4-D Kähler action plus dynamical volume term with dynamical
but quantized cosmological constant. This condition uniquely fixes the choice of H [A6]. The
dimensional reduction is forced by the condition that the space-time surface can be interpreted as
a base space of a twistor bundle. The analogs of wistor bundles of M4 and CP2 are represented as
6-surfaces in H and space-time surface is identifiable as an intersection of these. The 6-D variant of
αK appeas as the fundamental coupling parameter. Cosmological constant would be dynamically
generated in the dimensional reduction needed to achieve induced twistor bundle structure.

The action defining K might contain additional dynamical terms characterizing the quantum
state rather than the vacuum functional. This would make possible also the breaking of various
symmetries of the vacuum functional. The action is not visible in interior dynamics since the 4-D
interior dynamics is universal and same for any general coordinate invariant action constructible in
terms of induced geometry. Action makes itself visible only via the action exponential and at the
level of singularities defining the vertices. The action exponential disappears from the scattering
amplitudes if only superpositions of 4-surfaces with the same value of K are allowed. This happens
quite generally also in perturbative quantum field theories. Here essential role is played also by
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the equality of the Gaussian determined associated with the functional integral and the metric
determinant of WCW Kähler metric.

4.1 Does number theoretic discretization mapping real WCW to its real
counterpart involve canonical identification?

Number theoretic discretization means that the coefficients of polynomials P1 and P2 (or analytic
functions) are numbers in extension E of rationals. This implies a discretization of the real
variant WCW. Maximization of the Kähler function defines an even stronger discretization of
WCW.

What about the situation in the p-adic sector. Real and p-adic views of continuity differ
dramatically for rationals. The direct identification of the E-value Taylor coefficients of the
polynomials possibly appearing in rational functions and in analytic functions is therefore not
consistent with the idea that cognitive representations are approximately continuous.

Continuity is guaranteed if the finite E rational valued coefficients of the polynomials P and Q
appearing in R = P/Q in the real sector are mapped by canonical identification I :

∑
xn → xnp

−n

to the p-adic sector. Canonical identification appears also in p-adic thermodynamics [L14]. Here
the map of reals to p-adics is 1 to 2 the real number involves an infinite number of negative powers
of p. For finite rationals it is 1-to-1. The map from p-adics to reals is 2-1 for finite rationals. The
E valued coefficients are E-rationals so that the 1-1 property is achieved.

The identification of the p-adic primes a ramified prime of the discriminant of extension of E
is problematic since it is difficult to decide which ramified prime to select. A democratic form of
the canonical identification for nteger n would invert only the ramified primes p in the prime
decomposition of n.

The assumption that the Taylor coefficients of analytic function belong to E defines the
discretization of WCW in the sector associated with E. The p-adic counterpart of WCW could
consist of p-adic analogs of the surfaces with coefficients obtained by the proposed form of the
canonical identification. The ramified primes would be determined by the exponent of Kähler
function if it corresponds to a power of the discriminant of the polynomial defining the ramified
primes.

4.2 The relationship between Kähler function and discriminant

The number theoretical discretization provides additional understanding of the WCW and its
number theoretical counterpart.

1. The assumption that the Taylor coefficients of analytic function belong to E defines the
discretization of WCW in the sector associated with E. The maxima of the quantity which
is product of the vacuum functional with degeneracy factor N(K) counting the number of
space-time surfaces with the same value of exp(K) would naturally select some preferred
points in the discretization of WCW.

2. Also the degeneracy d(K) for a given value of Kähler function matters. The d(K)exp(−K) =
d(K)f(D) is analogous the exponential exp(−F/T ) of free energy E−TS, d(K) corresponds
to the contribution of entropy and would correspond to number of space-time surfaces
with the same value of discriminant D.

Each partonic orbit is expected to contribute a discriminant so that one would have
the product of powers of disminants for f(D) = Dk, where is an integer. k = 1 is a good
candidate. In continuum context maximization of the Kähler function is well-understood
and could have a straightforward generalization to the number theoretic situation. Obviously,
the expression of K in terms of D poses powerful additional conditions and means a powerful
tool of physical intuition.

3. The degeneracy factor d(K) serves as a measure for quantum criticality. In the continuum
case the number of zero modes serves as a measure for the criticality. K = constant sets in
WCW corresponding to maxima of exp(−F ) define the valleys of the spin glass landscape.
Highly degenerate valleys are separated by mountains. Quantum tunnelling between valleys
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of the landscape is possible and one can define ultrametric topology involving various p-adic
number fields in the landscape.

4.3 The notion of spin glass energy landscape

The TGD Universe is quantum critical, which means that the system has a very large number
of almost degenerate ground states which in TGD means the same or almost the same value of
Kähler function. Therefore spin glass energy energy landscape is a natural analog for the p-adic
counterpart of WCW [L8].

4.3.1 Ultrametric distance as counterpart of Riemann metric in the adelic spin glass
energy landscape

The notion of integral and therefore also the notion of distance fail to be defined in the adelic
sector [L2, L1]. The solution of the problem is the replacement of the discretized real variant
of WCW as a spin glass energy landscape having ultrametric topology defined by ultrametric
distance function. In this topology would decomposes to p-adic topologies glued together along
p-adic integers having expansion in powers of integer divisible by the the p-adic primes considered.

1. Usually one defines paths in the spin glass energy landscape between the bottoms of the
valleys and tops of mountains corresponding to the minima and maxima of f(D). In TGD
the discretizaion of WCW defines the spin glass energy landscape.

Spin glass energy landscape has ultrametric topology defined by an ultrametric distance
function. Consider two valleys A and B with the same value of D(A) = D(B). Note
that D(A) would correspond to the exponent of Kähler function. Minimax principle defines
ultrametric distance function.

In the spin glass energy landscape, the distance d(A,B) along a given path connecting A
and B is defined by the maximum of exp(K) = f(D). D the discriminant, along this path.
The distance D(A,B) is the minimum of this distance in the set of connecting paths γA,B .
The p-adic primes possibly defining the possible p-adic topologies correspond to a ramified
prime p appearing in D. If D for a given surface at the path is not divisible by the ramified
prime, the value of D is large. Therefore paths for which the discriminant has p as a divisor
are favoured by the minimization. The further minimization with respect to p, would select
ramified prime.

2. The assumption D(A) = D(B) can be criticized as too restrictive. One could only assume
that some ramified primes are shared by D(A) and D(B). If one drops even this assumption
that distance becomes rather large since B corresponds to a very high mountain from the
point of view of A.

This implies that the adelic variant of the discretized WCW decomposes into a union of
regions which can be described theoretically in terms of topologies of extensions of the p-adic
numbers induced by the extension of E and defined by a polynomial P of single variable
defined at partonic 2-surfaces. Valleys of the spin glass landscape with the same value of
D have the same depth but can have a large real distance also the ultrametric distance
can be small. There exists a large number of polynomials with the same value of D and
these can have a large distance since even their degrees can differ.

3. The ratio of the D for the intermediate state and initial state defines the distance between
the degenerate values with the same D. Height of the mountain. Is the p-adic prime a
ramified prime for the initial state.

4. In quantum description, tunnelling could replace the classical path between valleys of the spin
glass landscape. The larger the ultrametric distance, the lower the tunnelling probability.
Minimax principle or its dual. The exponent of K must have minima, maxima and saddle
points. Description of the tunnelling is in ZEO and in terms of D and ramified primes
dividing it. Initial and final state have the same D. Small changes of ramified primes in
the intermediate state or even new ramified primes so that the Kähler function changes.
Perhaps a new prime appears in discriminant during the tunnelling.
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In annealing system ends up to the bottom of the deepest valley: small energy boosts allow
to kick up the system from a local valley if it gets stuck there. Note that in number theoretic
evolution D increases and exp(K) also and ramified primes appear.

4.4 How do the coupling parameters emerge in the transition from the
number theoretical discretization to the QFT limit?

The key question is the relation of αK related to the number theoretic discretization. A fixed value
of αK poses urealistically strong conditions on the value of the Kähler function for the maxima. It
would seem that αK must be interpreted as a mere normalization factor making possible the p-adic
existence of exp(K) for the ramified primes dividing D, necessary for the number theory-geometry
duality.

The hypothesis exp(K/αK) = Dk gives αK = K/kln(D). Logarithmic dependence of αK on the
ramified primes would make sense. This expression would also determine the value of electroweak
U(1) coupling gK number theoretically. Neither gK nor other weak couplings appear as coupling
parametries in Dirac equation. In QFT picture this would mean that they are absorbed the gauge
potential so that only YM action contains the couplings as 1/g2 factors. Same applies to other
gauge couplings. They can appear only at the QFT limit of TGD.

A more detailed picture would be as follows.

1. The construction of quantum states as products of space-time surfaces interpreted as num-
bers. In principle it gives coupling parameters as predictions. Transition to QFT limit brings
in coupling constants. Quantum states are replaced by quantum fields.

2. Classical action involves only αK and cosmological constant Λ and holography=holomorphy
ansatz predicts Λ as a dynamical parameter. Induced gauge potentials appear at vertices
but gauge couplings are absorbed to them.

3. αK appears as a mere normalization factor of the action, being analogous to temperature.
The only function of the αK could be the scaling of the exponent of Kähler function to
a function of D, perhaps power of D. This scaling factor should determine U(1) coupling
strength at QFT limit and other coupling should be proportional to it.

4. The gauge couplings could emerge in the following way at the QFT limit. Induced gauge po-
tentials are replaced with quantum fields. If the commutators of operators creating bosons as
fermion antifermion pairs are proportional to n2αK , n a numerical parameter. Commutators
must be normalized in the standard way. This forces the renormalization of gauge potential
by factor 1/ngK and means that coupling constants appear in the couplings of fermions to
the QFT counterparts of the induced gauge potentials.

5 TGD view of computationalism and its physical realiza-
tion

The TGD view of space-time surfaces as numbers [L23] provides the background for the following
considerations.

5.1 The replacement of the static universe with a Universe continuously
recreating itself

It seems to me that the problems of computationalism emerge from a single ontological assumption:
the ”system”, be it Universe in some sense or God, is fixed. In quantum TGD this is not the case.
The Quantum Universe, which could be seen as a counterpart for God, is continually recreating
itself and this means the unavoidable increase of algebraic complexity since the dimensions asso-
ciated with extensions of rationals defining space-time regions unavoidably increase. This in turn
implies evolution.

In zero energy ontology (ZEO) ”small” state function reductions (SSFRs) [K14], whose sequence
generalizes Zeno effect, which has no effect on physical state. SSFRs have and their sequence gives
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rise to conscious entities, selves. This makes possible memory [L25]: the outcome of SSFR has
classical information about the initial state and also about the transition. Therefore the Universe
remembers and learns consciously: one can talk about Akashic records.

This dynamical view of the Universe recreating itself and becoming more intelligent by learning
about what it was before the previous SSFR is very different from the view of the Universe as a
Turing machine or Universal Computer. These notions are static notions (Universe ”out there”)
and computation is based on integers. In the TGD view one obtains an entire hierarchy of compu-
tationalisms based on the hierarchy of extensions of rationals. Even transcendental extension can
be considered. TGD Universe as a counterpart of the Turing machine is also conscious and has
free will.

5.2 A generalization of the number concept

Also the notion of number generalizes from the set N of integers to the set of space-time surfaces,
the ”World of Classical Worlds” (WCW) [K4, K2, K13, K10, K9, K3]. The TGD view of geometric
Langlands duality means that space-time surfaces can be multiplied and summed and form an
algebra. This algebra decomposes to a union of number fields with product,division, sum and
subtraction. One can identify space-time surfaces forming analogs for hierarchies of algebraic
integers, algebraic rationals, etc... So that the mathematics performed by Quantum Platonia is
considerably more complex than counting by 5+5 fingers!

These structures are defined by the corresponding structures for function algebras and fields
defined in terms of analytic functions of 8 generalized complex coordinates of H = M4×CP2. One
of the coordinates is a hypercomplex coordinate with light-like coordinate curves.

1. In TGD space-time surfaces are numbers [L23]. Their dynamics is almost deterministic (at
singularities the determinism fails and this forces us to take space-time surfaces instead of 3-
surfaces as basic objects). The space-time surface as an almost deterministic time evolution is
analogous to a proof of a theorem. The assumptions correspond to the initial state 3-surface
and the outcome of the theorem to the final 3-surface. Second interpretation is as analogs of
deterministic computer programs. Space-time surface as a proof of a theorem is analogous
to its own Gödel number as a generalized number.

2. Cognition always requires a discretization and the space of space-time surfaces (”world of clas-
sical worlds”, WCW) allows a hierarchy of discretizations. The Taylor coefficients of the two
analytic functions defining space-time belong to some extension of rationals forming a hierar-
chy. Therefore a given space-time surface corresponds to a discrete set of integers/rationals
in an extension so that also WCW is discretized. For polynomials and rational functions this
set is discrete. This gives a hierarchy. At the level of the space-time surface an analogous
discretization in terms of an extension of rationals takes place.

3. Gödel number for a given theorem as almost deterministic time evolution of 3-surface would
be parametrized by the Taylor coefficients in a given extension of rationals. Polynomials
are simplest analytic functions and irreducible polynomials define polynomial primes having
no decomposition to polynomials of a lower degree. They might be seen as counterparts of
axioms.

4. One can form analogs of integers as products of polynomials inducing products of space-time
surfaces. The space-time surfaces are unions for the space-time surfaces defined by the factors
but an important point is that they have a discrete set of intersection points. Fermionic n-
point functions defining scattering amplitudes are defined in terms of these intersection points
and give a quantum physical realization giving information of the quantum superpositions of
space-time surfaces as quantum theorems.

5.3 Could space-time surfaces replaced as integers replace ordinary in-
tegers in computationalism?

It is interesting to play with the idea that space-time surfaces as numbers, in particular integers,
could define counterparts of integers in ordinary computationalism and metamathematics.
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What might be the counterpart for the possibility to represent theorems as integers deduced
using logic and for the Gödel numbering for theorems by integers?

1. In TGD space-time surfaces are numbers. Their dynamics is almost deterministic (at sin-
gularities the determinism fails and this forces us to take space-time surfaces instead of
3-surfaces as basic objects). The space-time surface as an almost deterministic time evolu-
tion is analogous to a proof of a theorem. The assumptions correspond to the initial state
3-surface and the outcome of the theorem to the final 3-surface. The second interpretation is
as analogs of deterministic computer programs. Space-time surface as a proof of a theorem
is analogous to its own Gödel number as a generalized number.

2. Cognition always requires a discretization and the space of space-time surfaces (”world of clas-
sical worlds”, WCW) allows a hierarchy of discretizations. The Taylor coefficients of the two
analytic functions defining space-time belong to some extension of rationals forming a hierar-
chy. Therefore a given space-time surface corresponds to a discrete set of integers/rationals
in an extension so that also WCW is discretized. For polynomials and rational functions this
set is discrete. This gives a hierarchy. At the level of the space-time surface an analogous
discretization in terms of an extension of rationals takes place.

3. Gödel number for a given theorem as almost deterministic time evolution of 3-surface would
be parametrized by the Taylor coefficients in a given extension of rationals. Polynomials
are simplest analytic functions and irreducible polynomials define polynomial primes having
no decomposition to polynomials of a lower degree. They might be seen as counterparts of
axioms.

4. One can form analogs of integers as products of polynomials inducing products of space-time
surfaces. The space-time surfaces are unions for the space-time surfaces defined by the factors
but an important point is that they have a discrete set of intersection points. Fermionic n-
point functions defining scattering amplitudes are defined in terms of these intersection points
and give a quantum physical realization giving information of the quantum superpositions of
space-time surfaces as quantum theorems.

5.4 Adeles and Gödel numbering

Adeles in TGD sense [L1, L2, L21] inspire another interesting development generalizing the Gödelian
view of metamathematics.

1. p-Adic number fields are labelled by primes and finite fields induced by their extensions. One
can organize the p-adic number fields to adele and the same applies to their extensions so
that one has an infinite hierarchy of algebraic extensions of the rational adele. TGD brings
something new to this picture.

2. Two p-adic number fields for which elements are power series in powers of p1 resp. p2 with
coefficients smaller than p1 resp. p2, have common elements for which expansions are in
powers of integers n(k1, k2) = pk1

1 × p
k2
2 , k1 > 0, k2 > 0 [L21, L26]. This generalizes to the

intersection of p1, p2, ...pn. One can decompose adeles for a union of p-adic number fields
which are glued together along these kinds of subsets. This decomposition is general in the
description of interactions between p-adic sectors of adeles. Interactions are localized to these
intersections.

3. Mathematical cognition would be based on p-adic numbers. Could one think that ordinary
integers should be replaced with the adelic integers for which the pi:th factor would consist
of p-adic integers of type pi. These integers are not well-ordered so that the one cannot
well-order theorems/programs/etc... as in Gödel numbering. The number of p-adic integers
is much larger than natural numbers since the pinery expansion can contain an infinite
number of terms and one can map p-adic integers to real numbers by what I call canonical
identification. Besides this one has fusion of various p-adic number fields.

An interesting question is how this changes the Gödelian views about metamathematics. It
is interesting to play with the idea that space-time surfaces as numbers, in particular generalized
integers, could define counterparts of integers in ordinary computationalism and metamathematics.
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5.5 Numbering of theorems by space-time surfaces?

What might be the counterpart for the possibility to represent theorems as integers deduced using
logic and for the Gödel numbering for theorems by integers?

1. In TGD space-time surfaces are numbers. Their dynamics is almost deterministic (at sin-
gularities the determinism fails and this forces us to take 4-D space-time surfaces instead of
3-surfaces as basic objects). The space-time surface as an almost deterministic time evolu-
tion is analogous to a proof of a theorem. The assumptions correspond to the initial state
3-surface and the outcome of the theorem to the final 3-surface. The second interpretation is
as an analog of a deterministic computer program. The third interpretation as a biological
function. Space-time surface as a proof of a theorem is analogous to its own Gödel number,
but now as a generalized number. One can define the notions of prime , integer , rational
and transcendental for the space-time surfaces.

The counterparts of primes, determined by pairs of irreducible polynomials, could be seen
as axioms. The product operation for space-time surfaces generates unions of space-time
surfaces with a discrete set of intersection points, which appear as arguments of fermionic
n-point functions allowing to define fermionic scattering amplitudes. Also other arithmetic
operations are possible.

2. Also functional composition, essential in computationalism, is possible. One can take any
pair (h1(z), h2(z)) of analytic functions of a complex coordinate z and form a functional
composites h1 ◦ f1 or h2 ◦ f2. One can also iterate with respect to h1 or h2. As a special
case on can take h1 = h2 = h. This would make it possible to realize recursion, essential in
computationalism. The iteration increases the degree of the polynomial and therefore also
the number of roots with an exponential rate so that the complexity of the space-time surface
increases. The iteration leads also to fractals. An interesting question is how this could relate
to biological evolution.

Also self-referentiality becomes possible: one could identify z as one of the genuinely complex
H coordinates and perform parameter dependent iteration for z as argument of f1 using
z → f1(z, ...) with parameters defined by other H coordinates.

3. One can consider even more general maps (f1, f2) → G(f1, f2) = (g1(f1, f2), g2(f1, f2)) and
iterate also them. The special case (g1, g2) = (g1(f1), g2(f2)) gives iterations of functions gi
of a single complex variable appearing in the construction of Mandelbrot and Julia fractals.

Extensions of rationals, Galois groups, and ramified primes assignable to polynomials of a single
complex variable are central in the number theoretic vision. It is not however completely clear
how they should emerge from the holography= holomorphy vision.

1. If the functions gi ≡ Pi are polynomials, which vanish at the origin (0, 0) (this is not a
necessary condition), the surfaces (f1, f2) = (0, 0) are roots of (P1(f1, f2), P2(f1, f2)) = (0, 0).
Besides these roots, there are roots for which (f1, f2) does not vanish. One can solve the
roots f2 = h(f1) from g2(f1, f2) = 0 and substitute to P1(f1, f2) = 0 to get P1(f1, h(f1)) ≡
P1 ◦ H(f1)) = 0. The values of H(f1) are roots of P1 and are algebraic numbers if the
coefficients of P1 are in an extension of rationals. One can assign to the roots discriminant,
ramified primes, and Galois group. This is just what the phenomenological number
theoretical picture requires.

2. In the earliest approach to M8 −H duality summarized in [L5, L6, L22] polynomials P
of a single complex coordinate played a key role. Although this approach was a failure, it
added to the number theoretic vision Galois groups and ramified primes as prime factors
of the discriminant D, identified as p-adic primes in p-adic mass calculations. Note that
in the general case the ramified primes are primes of algebraic extensions of rationals: the
simplest case corresponds to Gaussian primes and Gaussian Mersenne primes indeed appear
in the applications of TGD [K7, K8].

The problem was to assign a Galois group and ramified primes to the space-time surfaces
as 4-D roots of (f1, f2) = (0, 0). One can indeed define the counterpart of the Galois group
defined as analytic flows permuting various 4-D roots of (f1, f2) = (0, 0) [L23].
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Since the roots are 4-D surfaces, it is far from clear whether there exists a definition of
discriminant as an analog for the product of root differences. Also it is unclear what the
notion of ramified prime could mean. However, the ordinary Galois group plays a key role
in the number theoretic vision: can one identify it? An possible identification of the
ordinary Galois group and ramified primes would by the assignment to maps defined by
(f1, f2)→ (P1(f1, f2), P2(f1, f2)) would be in terms of (P1(f1, f2), P2(f1, f2)) = (0, 0) giving
the roots P1(f1, h(f1)) = 0 as values of h(f1). The roots belong to extension rationals even
when fi are arbitrary analytic functions of H coordinates but correspond geometrically to
4-surfaces.

3. The earlier proposal is that the ordinary Galois group can be assigned to the partonic 2-
surfaces so that points of the partonic 2-surface as roots of a polynomial give rise to the Galois
group and ramified primes. The most elegant way to realize this is to introduce 4 polynomials
(P1, P2, P3, P4). The roots of (P1, P2, P3) allow to solve the 3 complex coordinates as a
function of the hypercomplex coordinate u. This surface can be identified as a string world
sheet.

The additional condition P4(u) = 0 gives roots which are algebraic numbers if the coefficients
of P4 are in an extension of rationals. Note that only real roots are allowed.

The interpretation of the roots for u would be as singularities of the space-time surface
located at the partonic 2-surfaces where the minimal surface property fails and the trace
of the second fundamental form diverges. These points would correspond to vertices for the
creation of a fermion pair and would represent defects of the standard smooth structure
giving rise to an exotic smooth structure [L27, L11, L28].

Cognition always requires a discretization.

1. The space of space-time surfaces (”world of classical worlds”, WCW) allows a hierarchy of
discretizations. The Taylor coefficients of the two analytic functions f1, f2 defining space-time
belong to some extension E of rationals forming a hierarchy. Therefore a given space-time
surface corresponds to a discrete set of integers/rationals in an extension of rationals so
that also WCW is discretized for given E. For polynomials and rational functions this set
is discrete. This gives a hierarchy. At the level of the space-time surface an analogous
discretization in terms of E takes place.

2. Gödel number for a given theorem as almost deterministic time evolution of 3-surface would
be parametrized by the Taylor coefficients in a given extension of rationals. Polynomials
are simplest analytic functions and irreducible polynomials define polynomial primes having
no decomposition to polynomials of a lower degree. Polynomial primes might be seen as
counterparts of axioms. General analytic functions are analogous to transcendentals.

3. One can form analogs of integers as products of polynomials inducing products of space-
time surfaces as their roots. The space-time surfaces are unions for the space-time surfaces
defined by the factors but an important point is that they have a discrete set of intersection
points. Fermionic n-point functions defining scattering amplitudes are defined in terms of
these intersection points and give a quantum physical realization giving information of the
quantum superpositions of space-time surfaces as quantum theorems.
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