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1. Introduction 2

Abstract

Twistorialization involves several problems. Mention only the identification of the twistor
space, the googly problem meaning that only second massless M4 chirality allows geometriza-
tion in this way, the problem that massive fields do not allow twistorialization, and the problem
that in general relativity only space-times with vanishing Weyl tensor allow twistor structure.

In the TGD framework, twistorialization should be performed for H = M4 × CP2. Now
there are no primary bosonic fields since they are represented in terms of the induced spinor
connection and metric and also classical color fields are obtained by induction. Twistor lift
was based on the replacement of space-time surfaces in H = M4 × CP2 with the analogs of
their 6-D twistor spaces X6 as sphere bundles as a surfaces in the twistor space T (H) of H
identified as the product T (M4) × T (CP2) of twistor spaces H. In TGD, the replacement
of T (M4) = CP3 with CP2,1 having one hypercomplex coordinate is natural. Dimensional
reduction for the extremals of 6-D Kähler action and the identification of the fiber spheres
CP1 of T (M4) and T (CP2) was needed to product to produce the X6 as a sphere bundle over
X4.

Holography= holomorphy (H-H) vision in turn allows to solve the field equations for any
general coordinate invariant action expressible in terms of the induced geometry allows to
solve the field equations, which are extremely nonlinear partial differential equations, exactly
by reducing them to purely algebraic local equations. The independence of action means uni-
versality. H-H vision conforms with T (H) view but one can ask whether one could twist TGD
without the introduction of T (H) by representing the twistor spheres of T (M4) and T (CP2)
as homologically non-trivial spheres of the causal diamond CD (missing the line connecting
its tips) and CP2. The second condition involved with the H-H principle would represent the
identification of the twistor spheres.

In this article various problems of the twistorialization are discussed in the TGD framework
and the question whether the H-H principle is enough for twistorialization is discussed.

1 Introduction

Twistor lift of TGD [K6, K4, K2] relies on the replacement of space-time surfaces in H = M4×CP2

with the analogs of their 6-D twistor spaces X6 as sphere bundles as surfaces in the twistor space
T (H) = T (M4)× T (CP2) of H identified as the product of twistor spaces T (M4) and T (CP2).

Dimensional reduction for the extremals of 6-D Kähler action and the identification of the fiber
spheres CP1 of T (M4) and T (CP2) is needed to product to produce the X6 as a sphere bundle
over X4. The dimensionally reduced action is 4-D Kähler action and volume term as in terms of
an analog of dynamical, length scale dependent cosmological constant. Holography= holomorphy
(H-H) vision [L11, L15] allows us to solve the field equations for the 4-D action exactly.

The structural analogies of the H-H based solutions with the twistor lift led to ask whether the
twistor spheres of T (M4) and T (CP2) could be represented as surfaces inside space-time surfaces
and whether the twistorialization of TGD could be carried out without the introduction of T (H).
As a matter of fact, this kind structural analogies should exist since the notion of twistor space is
basically deduce from the geometry of M4 and CP2 rather than vice versa.

1.1 What twistors are?

The twistor space of M4 can be defined purely geometrically. Twistor would describe fixing a
coordinate frame with origin at a given M4 point and a fixed quantization axis of spin defined by
a direction of light-like momentum characterized by a point of CP2. The light-like vector also
defines a 2-D orthogonal plane. In massless field theories this corresponds to a choice of momentum
vector and polarization vector. Light-like geodesics at a given point define the fiber at this point.
Fiber is a 2-sphere. The bundle structure is non-trivial. The twistor spheres at points with-like
separation have a common point. Not that the twistor sphere would be represented in M4.

In the twistor Grassmannian approach [B3, B6, B4, B2, B7, B1, B5], the twistor space of M4

is identified as CP3 = SU(4)/SU(3) × U(1). One can end up with this identification in the
following way.

1. Single bi-spinor represents a light-like momentum via the correspondence pk → pkσk, where
σk are Pauli spin matrices acting on complex bi-spinors. Light-likeness implies that the
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determinant of this 2 × 2 matrix vanishes. Determinant is a bilinear function or rows and
columns so that the representation so that complex scalings of the bispinor do not affect the
condition p2 = 0.

Twistors thus correspond to pairs of dotted (χ) and undotted (ψ) bi-spinors as conjugate
representations of the Lorentz group defining the matrix pkσk. Dotted and undotted bispinors
are related by co-incidence relation χ = pkσkψ: this does not fix φ uniquely since ψ →
ψ+ prkσkφ leaves χ unaffects. χ and ψ span C2 each so that one has C4. The invariance of
pk under opposite complex scalings of the bi-spinors suggests that C4 must be replaced with
the projective space CP3 = SU(4)/SU(3) × U(1)). The problem is that the geometrically
identified twistor space is non-compact whereas CP3 is compact.

2. CP3 should correspond to S2 bundle over M4 with S2 consisting of light-like geodesics with
common origin. Compact CP3 should correspond to bundles over M4. This cannot be
true since M4 is not compact. This leads to the proposal that compactification of M4 is
involved. This looks to me questionable.

3. The Minkowskian signature of M4 leads to ask whether a more appropriate identification
of the twistor space could be based on group theory and would be as a non-compact space
CP2,1 = SU(3, 1)/SU(3)×U(1). It should have one real time-like dimension and 5 space-like
real dimensions: one complex coordinate should be hypercomplex and 2 coordinates should
be complex. This would fit nicely with the H-H vision in which M4 has one hypercomplex
coordinate and one complex coordinate and a twistor sphere adds one complex coordinate.
Note that now the scaling of hypercomplex coordinates with a complex number does not
make sense so that the group theoretic view is necessary.

One key problem of the twistor Grassmannian approach is that the natural signature of the
Minkowski space would be (2,2) rather than (1,3). Could one think that for the signature
(1,3) the two real time-like coordinates defining complex coordinates are transformed to a
hypercomplex coordinate pair (u = t + z, v = t − z). CP3 naturally associated with the
signature (2, 2) would be transformed to CP2,1 ≡ SU(3, 1)/SU(3)× U(1) associated with
the signature (1,3).

4. CP3 (CP2,1 ) is obtained by adding to E6 the CP2 (CP1,1 = SU(2, 1)/SU(2) × U(1)) at
infinity. The set of geodesics directed from the origin of E6 to infinity is indeed 4-D. CP3

and CP2,1 should allow an interpretation as a bundle with fiber CP1.

How could one understand this geometrically? Does the M4 correspond to the 4-D space
of homologically non-trivial 2-spheres in CP2,1 as counterparts of twistor spheres? Is this
a non-singular manifold? Note that when the points of M4 as 2-spheres are connected by
light-like geodesics, the corresponding 2-spheres must have an intersection point.

The twistor bundle of CP2 is something completely new from the point of view of field theories.
The definition of the twistor space T (CP2) = SU(3)/U(1) × U(1) is as the space of choices of
quantization axes of color isospin and hypercharge. The fiber is sphere as the set of geodesics
directed rom the origin to the infinity, which corresponds to a homologically non-trivial 2-sphere
added to E4.

1.2 About the problems of twistorialization

Twistorialization is also plagued by other difficulties than those already mentioned. Besides the
problems associated with the interpretation of CP3 as twistor space, favoring the (2,2) signature
of Minkowski space, there is a problem that the description of massive particles fails in the twistor
approach. A heuristic guess is that light-likeness in the 8-D sense holding true for the modes of
the second quantized induced spinor fields might help. The classical picture supports this too: for
the light-like geodesics in M4×S1 ⊂M4×CP2 M

4 projection of 8-momentum is indeed massive.
There is also the so-called googly problem and the problem that in general relativity only

conformally flat space-times allow twistor structure.
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1.2.1 Googly problem

Twistorialization means a geometrization of spin in the twistor Grassmannian approach [B3, B6,
B4, B2, B7, B1, B5], which indeed allows a very elegant descirption of scattering amplitudes of
spinning particles in N = 4 SUSY. This requires massless fields. Spin corresponds to a partial
wave in the twistor sphere and there is no need to introduce it as a separate internal degree
of freedom. Holomorphy is an essential ingredient and analogous to holomorphy= holography
hypothesis of TGD but realized at the level of surfaces rather than fields.

Googly problem means that anti-self-dual massless fields do not allow this geometrization.
Only self-dual field configurations allow twistorialization in terms of holomorphic fields in twistor
space. Could the fields with opposite chiralities correspond to holomorphic and antiholomorphic
fields? Or does anti-holomorphy correspond to antiparticles? Why are both of them not allowed?
How would one describe their interaction?

There are several notions involved: the notions of chirality/handedness, helicity and orientabil-
ity, which is a property of space-time. Reflection P in M4 changes chirality/helicity whereas charge
conjugation changes the helicity. P is not a symmetry in the standard model.

A possible solution of the googly problem in terms of pin structures (see this) has been proposed.
Also the reflections in M4 would be symmetries unlike for spin structure. The two chiralities
would be related by a symmetry transforming a left handed glove to a right-handed one if this
symmetry is realized geometrically. Spatial reflection P and time reflection T change the
orientation of M4 but PT preserves it. P and T are not representable as transformations
generated from identity and this seems to be the case also for PT. Could one somehow extend
the Lie-group symmetries (Poincare group) so that PT is generated from identity. To me these
proposals look artificial to me.

1.2.2 Conformal flatness is required in GRT

The existence of the twistor structure requires conformal invariance and massless fields in twistor
space are indeed holomorphic and self-dual fields. Twistor structure is allowed only by conformally
flat space-times. This condition is very strong and implies that the so-called Weyl tensor (see
this) vanishes. The vanishing of the Weyl tensor implies that tidal forces describable in terms
of geodesic deviation vanish. Also the trace of the energy momentum tensor must vanish as it
indeed does for the Yang-Mills action. This condition is violated for typical solutions of Einstein’s
equations.

2 Twistorialization in TGD

There one can consider two, not mutually exclusive, approaches to twistorialization in TGD [K6,
K4, K2]).

1. Twistor lift is based on the twistor space of T (H) identified as the product T (H) =
T (M4) × T (CP2) twistor spaces of M4 and CP2 is the first approach. It involves the
identification of the twistor spheres of T (M4)× T (CP2) and dimensionally reduces the 6-D
Kähler action of T (H) to the sum of 4-D Kähler action and a volume term.

2. H-H principle [L11, L15]solves the field equations space-time surfaces and does not exclude
T (H) but can be extended to the level of T (H). There are some indications that H-H alone
could describe the twistorialization. The twistor spheres indeed have natural representation
in X4 ⊂ H. Since the notion of twistor is realized in terms of the geometry of the space-time,
it would be natural that space-time surfaces provide representation of the twistor lift. If not,
something might be wrong.

2.1 Some background

The existence of both left and right fermion chiralities are the source of googly problem. Reflection
transforming right and left chiralities to each other is therefore closely related to the problem.

In TGD, parity violation is understood. The embedding space H = M4×CP2 is 8-dimensional.
Both M4 chiralities are predicted and parity violation and the strange-looking coupling structure

https://en.wikipedia.org/wiki/Pin_group
https://en.wikipedia.org/wiki/Weyl_tensor
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of the Standard Model finds explanation. Spinor connection and second quantized free spinor
field from H is induced to the spacetime surface are induced. The baryon and fermion numbers
correspond to the two H-chiralities and the couplings to quarks and leptons are obtained correctly.
For quarks/leptons, right- and left-handed M4 chirality correspond to different CP2 chiralities
and the massivation requiring the mixing of M4 chiralities automatically follows from the mixing
of the chiralities for the massless Dirac equation in H.

The counterpart of Googly problem could be however encountered at the H-level if the twisto-
rialization also now requires that only a single H-chirality is allowed. Only quarks or leptons would
be fundamental fermions: I have considered both options. The idea about leptons as a bound
state of quarks is discussed in [L4] and I have also considered the idea that quarks could be quarks,
which have suffered charge fractionation. Now I have become skeptical about both options.

2.2 Twistor lift of TGD

Twistor Grassmannian approach [B3, B6, B4, B2, B7, B1, B5] provides an extremely economical
description of scattering amplitudes in N = 4 SUSY and even for more gauge theories. Therefore
one can ask whether TGD could have a twistor lift and what would this mean?

1. Around the same time that I started developing TGD, it had been discovered that M4 (or
E4 or S4) and CP2 are in a completely special position with respect to twistorization.
Only they allow a twistor space, which has a Kähler structure [A2]. The Kähler structure
indeed plays a key ontological role in TGD [L12, L13]. TGD is unique by the requirement
that twistor lift exists and would correspond to replacing M4 × CP2 with the product
T (H) = T (M4)×T (CP2) of the twistor spaces T (M4) and T (CP2). This led to the proposal
that M4 has the analog of Kähler structure.

2. The induction procedure for gauge potentials would generalize to the twistor level [K6, K4].
The twistor space for the spacetime surface would be a 6-surface X6 in T (H) = T (M4) ×
T (CP2) and therefore an S2 bundle over the spacetime surface and a twistor structure
would be induced on the 6-surface.

2.2.1 About the details of the twistor lift

Consider now this in more detail.

1. The requirement that X6 is an S2 bundle, requires a dimensional reduction of the 6-D
Kähler action, which reduces it to the sum of the 4-D Kähler action and a volume term that
can be interpreted as the emergence of the cosmological constant Λ [K6, K4, K2].

The cosmological constant Λ is determined as the coefficient of the volume term of 4-D
action. It is determined by the sum of Kähler action for the twistor sphere S2 of X6,
which would depend on the induced metric and Kähler form. Λ would be dynamic and
have a spectrum. The Kähler forms of both H and T (H) have both M4 and CP2 parts.
Their destructive interference can make the induced Kähler and therefore also cosmological
constant very small. A natural guess is that it is inversely proportional to the square of the
p-adic length scale and approaches zero in long length scales.

2. The induced metric and Kähler form of T (X6) are obtained in the usual way and in S2(X4)
the metric and Kähler form are the sum of contributions from S2(T (M4) and S2(T (CP2).
This gives rise to a dynamical cosmological constant determined by the part of the 6-D Kähler
action coming from S2(X4).

In TGD, only fermions are fundamental particles and all particles, especially bosons, are built
from these. Therefore twistor geometrization of fermion spin and isospin might make sense but is
not necessary since second quantized free fermion fields in H gives fermionic propagators elegantly.

Color symmetry and rotations represent two exact symmetries realized as isometries and it
might be possible to twistorialize the corresponding quantum numbers (spin and color hypercharge
and - isospin). Electroweak symmetries are not exact symmetries and are not realized as isometries.
Could twistorialization apply also to weak spin and hypercharge?
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Is the twistorialization of the fermion spin, electroweak spin, and color quantum numbers
possible? The correspondence between twistor spheres of T (M4) and T (CP2) poses very strong
constraint. One can argue that if fermion spin and color charges can be twistorialized as points of
these 2 twistor spheres, spin and color isospin and hypercharge would closely relate to each other.
Can this make sense?

1. The first objection is that single quark spin sould correspond to 3 possible color charges. This
could be understood in terms of the 3-valued character of the map S2(T (M4)) to S2(CP2).
It could allow to assign to a given spin of quark 3 different values of color charges as different
space-time surfaces. This would be an analog for the representation of color as partial waves
in CP2 rather than as spin-like quantum number for fermions as in QCD?

2. The second objection is that leptons have no color quantum numbers. Could this correspond
to the fact that for leptonic space-time surfaces S2(T (X4) correspond a single point of T (CP2)
so that only the twistor sphere of T (M4) is ”activated”?

To sum up, in TGD only fermions are fundamental particles and all particles, especially bosons,
are built from these. Therefore twistor geometrization of fermion spin and isospin might make sense
but is not necessary since second quantized free fermion fields in H gives fermionic propagators
elegantly.

2.2.2 How does twistor lift relate to H-J structure?

How does the induced twistor structure relate to the Hamilton-Jacobi (H-J) structure [L7] required
by the existence of H-H structure?

1. H-J structure means the existence of 4 coordinates combining to form hypercomplex coordi-
nate u and its conjugate v and complex coordinate w and its conjugate w. The coordinate
lines of u and v have light-like tangent vectors, which by integrability are proportional to
gradients.

2. A point in twistor space corresponds to the choice of an M4 point and of light-like direction
at each point. Making this choice at each point of M4 defines a section of T (M4). Could
H-J structure correspond to a section of T (M4).

3. Or could it correspond to a section of T (H). If the light-like coordinate curves for u and v
at the space-time surface have CP2 projections as geodesic lines, twistorialization for mas-
sive particles might be possible since M4 projections could correspond to massive geodesics
or more general curves which constant M4 momentum squared. Induction of the twistor
structure of H would generate correlations between twistor structures of M4 and CP2 at the
space-time surface.

4. Under what conditions two H-J structures are equivalent? Physical intuition suggests that
two H-J structures, which are related by a conformal diffeomorphism of H, generating new
identical space-time surfaces in H-H vision, are equivalent. Conformal diffeomorphism would
reduce to a transformation of hypercomplex coordinate u independent of complex coordinates
and an analytic transformation of the 3 complex coordinates with coefficients depending on
hypercomplex coordinates. It also looks natural that the conformal diffeomorphisms reduce
to products of transformations acting in M4 and CP2 degrees of freedom.

5. How many H-J structures do exist? The obstacles come from topology, complex structure
and integrability. A physics inspired guess is that they could correspond to self-dual or
anti-self-dual solutions of the massless spin 1 field in M4. One would have a polarization
vector and light-like vector at each point. Massless extremals define such sections of T (M4)
in H [K1].
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2.3 Could holography= holomorphy vision make possible twistorializa-
tion without twistor lift?

H-H vision encourages to ask whether the homologically non-trivial twistor spheres of T (M4) and
T (CP2) have representations as homologically non-trivial 2-surfaces inside space-time surfaces:
this could mean that the introduction T (H) might not be necessary. In particular, cosmological
constant would have inherent representation in terms of the solution of field equations according
to H-H vision. This does not seem to conform with the idea that T (H) level determines the
cosmological constant. On the other hand, number theoretic vision suggests that the couplings
appearing in the classical action, including cosmological constant, are determined by the number
theoretic expression for the action.

The possible representations of twistor spheres as 2surfaces inside X4 ⊂ H, should be homo-
logically non-trivial in X4. One can indeed represent the twistor spheres of M4 and CP2 in a
natural way at the space-time level.

1. The space-time surface X4 must contain a homologically non-trivial geodesic sphere S2(CP2)
in order to allow the representation of CP2 twistor sphere. Cosmic strings and monopole
flux tubes do so but massless extremals do not.

2. The homological non-triviality of a sphere S2(M4) embeddable inside the space-time surface
X4 is enough and is possible to realize dynamically. If the space-time surface is analogous
to a magnetic monopole in the sense that that S2(M4) is mapped to S2(CP2), S2(M4)
cannot be contracted to a point inside X4.

For instance, the condition f2 = ξ1 = w = 0 mapping to each other the twistor spheres
S2(M4) and S2(CP2) identified as homologically non-trivial spheres in X4 defines also a
section of T (CP2) as the analog of H-J structure of CP2 [L11, L15].

Note that the homological non-triviality at the level of M4 for the M4 sphere S2(M4) is
not necessary but could be realized inside the CD if the CD has a hole, i.e. does not contain the
line connecting its tips. This looks artificial.

2.3.1 H-H vision in more detail

The simplest variant of H-H vision is as follows.

1. A general solution to the field equations is obtained by requiring that the spacetime surfaces
correspond to the roots for the pairs (f1, f2) : H → C2. f1 and f2 are analytic functions of
the hypercomplex coordinate u and 3-complex coordinates (w, ξ1, ξ2) of H. The equations
reduce to purely algebraic conditions and the solution is universal and valid for any action
that is general coordinate-invariant and based on induced geometry [L15].

2. The surface (f1, f2) = (0, 0) would define the intersection of 2 6-D surfaces f1 = 0 and
f2 = 0. The functions fi are analytic functions of a hypercomplex coordinate u and complex
coordinate w of M4 and of complex coordinates ξ1, ξ2 for CP2. The choices of these
coordinates correspond to different Hamilton-Jacobi (H-J) structures [L7] which could be
identified as sections of the twistor space of M4.

3. In the simplest situation u and v correspond to light-like coordinates t + z and t − z.
w = x + iy as a planar coordinate could serve as a local complex coordinate of for the
second hemisphere of a homologically non-trivial sphere CP1 of causal diamond (CD) [L8].
Homological non-triviality means that the time-like axis connecting the vertices of the
causal diamond CD defines a hole in the CD. CD with light-like boundaries could be
sliced by light-cone boundaries parallel to its second boundary. CP1 would parametrize the
light-like geodesic emanating from the points at the axis of the light-cone boundary.

4. For instance, f2 = ξ2 − w = 0 gives rise to a 6-surface, which can be interpreted as a
bundle-like structure in 2 ways. For the first interpretation, (u, (v), ξ1) serve as coordinates
of the 4-D base space X4 and w is the local coordinate for the twistor sphere realized as
the homologically non-trivial sphere CP1 of causal diamond (CD) acting as a fiber.
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The second interpretation is that (u, (v), w) serve as coordinates of the 4-D base space and
ξ1 is the coordinate of the homologically non-trivial geodesic sphere CP1 of CP2 acting as a
fiber. The condition f1 = 0 fixes ξ1 as a function of w and identifies the two fibers and
determines X4.

This picture is the simplest one and perhaps too simple.

1. The physical picture suggests that there is a dimensional hierarchy of surfaces with dimen-
sions 4, 2, 0 [L15]. The introduction of f3 would allow us to identify 2-D string world
sheets or monopole flux tubes as roots of (f1, f2, f3). The introduction of f4 would make it
possible to identify points of string world sheets as roots of (f1, f2, f3, f4) having interpreta-
tion as fermionic vertices. The analytic maps g : C2 → C2 act as dynamical symmetries for
f = (f1, f2) : H → C2.

In the ase of f = (f1, f2, f3) : H → C3 the analytic local diffeomorphisms of the space-time
surfaces for 2-D roots f = (f1, f2, f3) = 0 would act as dynamical symmetries.

2. A prediction, made already earlier [L9] is the breaking of extended conformal invariance
as a gauge symmetry in the following sense. Various conformal algebras have non-negative
conformal weights and have an infinite hierarchy of isomorphic algebras as sub-algebras. The
conformal symmetries as gauge symmetries would transform into dynamical symmetries for
finite dimensional subalgebra and this conforms with the p-adic mass calculations [L5].

3. One could assign to these sets of these 2-surfaces and points discriminants in the way as to
the maps g : C2 → C2 [L15]. This makes sense also for f = (f1, f2, f3, f4): H → C4. The
condition that the classical action exponential reduces to the product of exponents of all
these 3 discriminants would determine the coupling constant evolution. This would corre-
spond to the assignment of separate action exponentials to these surfaces of the dimensional
hierarchy and also this would conform with the physical picture. Note that C4 defines
extended twistor space. Presumably this is a mere accident.

2.3.2 Objections against H-H without T (H)

Consider now the objections against H-H without T (H).

1. T (H) option for TGD based view of twistor space of H is very elegant and a rigorous proof
that the equivalence with H-H option is lacking.

2. If f2, appearing in a simple mode, is assumed to be surjective in either direction, all space-
time surfaces involved would contain homologically non-trivial 2-spheres of both CD and
CP2. This would exclude for instance massless extremals and cosmic string type extremals
[K1]. The problem disappears if the f2 as a map between the homology spheres can also
have winding number 0 in either direction or both directions. This could allow massless
extremals, CP2 type extemals, and cosmic strings and their deformations. Could the value
of cosmological constant determined by f2 vanish for MEs) and have its maximal value for
CP2 type extremals.

Note that these extremals are possible also for the T (H) option since the twistor sphere for
X6 can be identified with the twistor sphere of only T (M4) or T (CP2).

To sum up, HH vision is consistent with the T (H) option. H-H without T (h) would provide
twistorialization without twistor lift.

2.4 Is the Googly problem an illusion in the TGD framework?

In the twistor Grassmann approach [B3, B6, B4, B2, B7, B1, B5] twistors are interpreted in
terms of Majorana fermions of Weyl fermions of fixed chirality (this in fact is a problem of N = 1
SUSYs). The TGD variant of twistor Grassmannian approach [K4, K7] relies on the assumption
that the boundaries of string world sheets at partonic orbits carry quantum numbers.

It must be however emphasized that twistor description of fermions is not necessary in the
TGD approach: the propagators for free fermion fields in H play a central role and vertices emerge
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from exotic smooth structures [L1] possible only in 4-dimensions and allowing the description of
fermion pair creation for free fermion fields as a fundamental vertex [L14, L6].

2.4.1 Twistor space T (H) as the space of choices for the quantization axes

It is possible to start from the geometrization of the space of light-like geodesics, where spinors
emerge naturally. There is however no need to assume that the twistors correspond to ordinary
spinors and have anything to do with fermions. Could the googly problem be an outcome of a
wrong interpretation of the twistor space?

1. To get perspective it is better to start from the twistor space T (CP2) = SU(3)/U(1)×
U(1), which has a natural interpretation as a space for choices of color and isospin quanti-
zation axes. The first application was rather unexpected: the honeybee dance. Topologist
Barbara Shipman [A1] had discovered that this space appears in the model of the honeybee
dance. The idea that quarks could have something to with honeybee dance is of course total
nonsense in the framework of standard particle physics but TGD predicts the possibility of
quantum in all scales, in particular in biological length scales and this led to a TGD based
model [K3] for the finding.

The wave function in T (CP2) would correspond to the wave function in the space of choices
of quantization axes. The choice of the quantization axes is an essential part of a quantum
measurement. It would be very nice if it could correspond to a state function at a higher level,
the level of an experimenter. This view would be consistent with the fact that fundamental
fermions appear as basic building bricks of all elementary particles in TGD.

2. Could the S2 part of the M4 twistor also be interpreted as a choice of the point of M4 as
the origin of the rest frame and the choice of spin quantization axis as a point of S2. In
the case of a massless particle, the spin quantization axis is a direction that is the same as
the direction of motion.

2.4.2 Could also the description of elementary particle quantum numbers using
twistor wave functions make sense?

The idea about description of elementary particles with spin using wave functions in a twistor
sphere is however extremely elegant. Could this make sense? There are two cases to be discussed.

Option I: twistor lift

Consider first the situation for the twistor lift involving T (H). Classically this would mean
that a point of a twistor sphere defines not only the direction of quantization axes but also the
value of spin. In TGD this could make sense since all fundamental particles are fermions.

1. In M8, proposed to relate to H by M8 − H duality as analog of momentum-position
duality [L10, L15], momenta as discrete point of M8 correspond to planewaves in H. This
could apply also at the level of twistor space: at the level of H wave functions in twistor
sphere would describe fermions spin. At the level of M8, the point of M4 twistor sphere
would fix the direction of the spin quantization axis and also the spin value. Since the radius
of S2 is fixed, it would fix its magnitude to s = 1/2, i.e. the value of the Casimir operator
I have built interpretations for twistors based on this observation and the M8 −H duality.

2. What about CP2? The point in twistor space T (CP2) = SU(3)/U(1) × U(1) would fix the
directions of the color isospin and hypercharge quantization axes. Is only quark chirality
allowed. Or could it be that for leptons the S2(T (X4)) is mapped at the level of T (H) to a
point of S2(T (CP2))?

The above arguments suggest abandoning the twistorization of fermion spin. This would not
fit well with the twistor-Grassmann approach. On the other hand, despite the undeniable successes
of the twistor Grassmann approach, Nima-Arkani Hamed and its other proponents seem to have
given it up and the problems for this are obvious.
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1. Quantum measurement theory suggests an interpretation of the section of the twistor bundle
in terms of choices of quantization axes at a given point of H. The choices of the quantization
axes and the spin measurement would mean a localization in the twistor space, in particular
S2. In fact, it would localize in both twistor spheres S2 since twistor spheres are identified.
This conforms with the fact that fermions correspond to isospin and spin doublets.

2. One can of course ask whether the wave functions in the space of choices of quantization
axes could also have an interpretation as spin states of fermions.

Option II: H-H principle

One can consider the situation in the framework provided by H-H principle alone, which
suggests that the space-time surface, in the case that f2 is a surjection between the homology
spheres, can be seen as a sphere bundle in which the sphere corresponds to the twistor sphere
of CP2 or to the twistor sphere of CD. The wave function in the twistor sphere would correspond
to a wave function in either M4 or CP2.

But doesn’t this allow only the representation of integer spin states and color particles
waves with triality t = 0? Here the situation is not so simple. The space-time surfaces can have
multiple coverings of M4 and CP2 and this can lead to the fractionation of quantum numbers
for wave functions defined at space-time surfaces but not for this in H. This would be the basic
mechanism leading to charge fractionalization and braid statistics, even non-Abelian, in the TGD
Universe.

One can construct 4-surfaces for which charge fractionation happens. In M4, simplest
analogs of the 2-sheeted Riemann surface carrying geometric spin 1/2 are associated with z1/2. A
rotation of 2π along the surface would not lead to the starting point. For more general fractional
powers z1/n, onehas the spin fractionation occurring for the representations of quantum groups.
The same argument applies to various other Cartan charges.

Could the correct conclusion be the following? The space-time wave functions assignable to
the twistor spheres of the many-sheeted coverings of M4 and CP2, in turn closely related to the
notion of effective Planck constants, allow the description of charge fractionation. The fundamental
description using spinor modes of H does not however reduce to this kind of description.

2.4.3 The effect of discrete symmetries on H-J structure

Reflection and other discrete symmetries affect the H-J structure defining what hypercomplex
and complex coordinates and what the analyticity of (f1, f2) means. This would represent these
discrete symmetries as geometric transformations of the spacetime surface.

1. The reflection changing left- and right-handed fermions to each other, should also affect the
elementary particle-like space-time surfaces associated with them and for the simples H-J
structure (u = t − x, v = t + x,w = x + iy) mean the transformation (u,w → (v,−w) for
the arguments of fi. Left- and right-handed fermions would live at different elementary
particle-like space-time surfaces representing elementary particles and the googly problem,
if it is a problem in TGD, could disappear. The nature of holomorphy would not be a fixed
but dynamic property and characterize the solution of field equations.

2. Geometrically PT means (u,w → (−u,−w). If the functions fi are odd or even under PT
the space-time surface is not affected. If C corresponds to complex conjugation if CP2 and
CPT corresponds to identity, T should induce complex conjugation in CP2.

3. Baryon and lepton number conservation requiring fixed and opposite H-chiralities for quarks
and leptons does not allow independent reflections in M4 and CP2 but must be carried out
simultaneously. But what is the counterpart of reflection in CP2? Charge conjugation C
is a good guess but does not change orientation: C looks like an analog of PT.

CPT invariance in geometric sense would require that T is accompanied by complex
conjugation in CP2. CPT would act as (u,w)→ (−u,−w) and trivially in CP2. Odd/even
property of f with respect to u and w would guarantee the invariance of the space-time
surface. Here one must be cautious since in ZEO ”big” state function reduction changes the
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arrow of the geometric time by mapping fermionic vacuum to its dual. This could explain
why complex conjugation in CP2 must be involved. T in this sense is not mere geometric
time reflection. This would correspond to a realization at the Hilbert space level as an anti-
unitary transformation involving hermitian conjugation analogous to complex conjugation in
CP2.

4. What is interesting is that CP acts as (u,w)→ (v,−w) in M4 and as complex conjugation
in CP2. This affects the space-time surfaces so that exact symmetry is not in question. This
would conform with the small CP breaking and also with matter antimatter asymmetry,
which could be understood if matter and antimatter correspond to different H-J structures
so that they must live at different space-time surfaces.

2.4.4 Pin structure and TGD

Ordinary spin structure and also conformal structure require orientable manifolds. Pin structure
extending SO(1,3) to O(1,3) containing also P , PT and PT has been discussed as one possible cure
of the googly problem. Pin structure is also possible for non-orientable manifolds. P transforms
M4 chiralities of spinors to each other. In the electro-weak gauge transformations respect M4

chirality but the Dirac equation in H and also the induced Dirac equation couples opposite M4

chiralities. These couplings are analogous to mass or Higgs couplings.
In TGD, H is orientable so the pin group is not relevant in TGD. In TGD, the 8-D pin

structure would mean that there are continuous symmetries that convert quarks into leptons in
TGD. This is not possible due to different charges and color quantum numbers as well conservation
laws of baryon and lepton number.

How does the possible non-orientability of the space-time surface affect the situation? Certainly
non-orientable surfaces are possible but the holography= holomorphism hypothesis does not allow
them since complex structure requires orientability.

3 Twistorialization at the level of M 8

M8−H duality as analog of momentum-position duality for 3-surfaces as particles [L2, L3, L10, L15]
is central part of TGD. I have already earlier considered several variants of what the twistor lift
at the level of M8 could mean. There are several questions to be answered.

3.1 Identification of the twistor spaces

What are the twistor spaces of T (M8) and T (Y 4) for the M8 − H dual Y 4 of the space-time
surfaces X4 ⊂ H?

1. The 12-D space of light-like geodesics in M(1, 7) would be the naive guess for the twistor
space of M8. Now however the Minkowski metric of M8 is number theoretic and given by
real part of octonionic product and 14-D G2, is the number theoretic symmetry group so
that the 12-D G2/U(1) × U(1) is the natural candidate for the octonionic twistor space of
M8. U(1)× U(1) has an interpretation as color Cartan algebra.

2. Without further conditions, the twistor sphere defined by light-like rays at a given point of
M8 is a 6-D and the space S6 = G2/SU(3) is the natural identification for it. With this
identification, the dimension of the total twistor space T (M8) would be 8 + 6 = 14, the
dimension of G2. This does not conform with the identification as T (M8) = G2. It is also
an open question whether S6 possesses the twistorially highly desirable Kähler structure.

3. How could one reduce the dimension of the space of light-like rays of M8 from 6 to 4? Could
the condition that the light-rays are associated with a point of M8 −H dual Y 4 ⊂ M8 are
quaternionic, allow to achieve this. M8 −H duality in its recent form indeed requires that
the normal space for a given point of Y 4 ⊂ M8 as M8 −H dual of X4 ⊂ H is quaternionic
and Minkowskian in number theoretic sense [L15]. This suggests a direct connection between
twistorialization and M8 −H duality.
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(a) Could one require that the light-like 8-momentum has vanishing tangential component
to Y 4 and is therefore quaternionic? This would replace the twistor sphere with a union
of twistor spheres associated with Minkowskian mass shells p2 = m2. The space of light
rays would be 3- rather than 4-D and the wistor space of M8 would be 11-D rather than
12-D. One dimension is missing.

(b) The physical intuition suggests that the light rays do not have a momentum component
in the direction of the tangent space of Y 3 defining the 3-D holographic data but that
they have a component tangential to Y 4 in a direction normal to Y 3. This would conform
with non-point-likeness: by general coordinate invariance, the momentum component
tangential to Y 3 would not correspond to anything physical.

The additional condition would be that these light-like vectors are quaternionic. The
space of allowed 8-D light-like vectors would be 4-D and the twistor space could be
G2. The associativity of the dynamics at the level of M8 requires that the normal
space is quaternionic and thus Minkowskian and also contains a commutative subspace.
Can these two quaternionicity conditions be consistent with each other? If so, 8-D
associative light-likeness respecting the 3-dimensality of holographic data implies the
desired 4-dimensionality of the analog of the twistor sphere.

4. The section of the twistor bundle assigned to Y 4 assigns to each point of Y 4 a light-like
vector. If also quaternionic units are chosen in an integrable way, this would define the M8

counterpart of the H − J structure which, when mapped to H by M8 − H duality, would
provide the H-J structure of H.

If the selected light-like vectors have a vanishing tangential component in Y 4, the light-like
vectors in H are in M4. If this is not the case, the light-like vectors in M4 have also CP2

component. For instance, light-like geodesics in M4×S1, S1 ⊂ CP2 are possible. It therefore
seems that the TGD view of twistorialization indeed makes possible the twistor description
of massive particles.

The precise identification of the twistor spaces of M8 is not obvious. The twistor space of M8

should have 4-D fiber.

1. The condition that the twistor space allows Kähler structure and has S2×S2 as a fiber might
leave only the product T (M8) = T (M4)× T (E4), which is consistent with M8 = M4 × E4.
Whether one can identify T (E4) as CP3 is quite not clear.

In this case, the dimensional reduction of 6-D Kähler action to 4-D action involves the
identification of the 2 twistor spheres S2(T (M4)) and S2(T (E4)). As in the case of T (H),
this identification need not and cannot always be 1-1.

Y 6 = T (Y 4) decomposes locally to a Cartesian tensor product Y 4 × S2(T (Y 4)), Y 4 ⊂
M4 × E4: Y 4 need not correspond to a map M4 → E4 or vice versa.

The twistor spheres of S2(T (M4)) and S2(T (CP2)) are mapped to each other. The con-
sistency between the purely geometric and spinorial view of twistorialization requires that
S2(T (M4)) and S2(T (CP2)) correspond to homologically non-trivial spheres in Y 4, which
are therefore mapped to each other. Cosmological constant depends on the winding number
of the identification.

2. Very naively, in the spinorial approach the extended twistor space C4 is replaced with C8.
Division with 2-complex-dimensional planes CP2 would give Grassmannian Grc(2, 8) with
dimension 2×(8−2) = 12, which is a complex manifold having the representation U(8)/U(2)×
U(6). Intuition suggests that the fiber is CP2. Minkowskian signature would suggest that
U(6) is replaced with U(5, 1) and U(8) with U(7, 1).

The existence of an analog of the previous dimensional reduction of 6-D Kähler action to 4-D
action does not seem plausible. CP2 fiber does not allow S2 × S2 as a sub-manifold.

3. The number theoretic G2/U(1)× U(1) is the third possible identification but it is not clear
whether it is consistent with the number theoretic M4 signature and CP2 fiber. It is far from
clear whether the 4-D fibration exists and whether the fiber is S2 × S2.



3.2 About the spinorial aspects of M8 twistorialization 13

3.2 About the spinorial aspects of M8 twistorialization

What about the spinorial aspects of M8 twistorialization? One should generalize a) the map
of the points of sphere S2 to the 2 × 2 matrices defined by a bi-spinor and its dual, b) the
masslessness condition as vanishing of a determinant of the analog of the quaternionic matrix and
c) the coincidence relation. One should also understand how the counterparts of the electroweak
couplings are represented and solve the Dirac equation in M8.

1. In the case of M4, the light-like momenta are mapped to the bispinors providing a matrix
representation of quaternions in terms of Pauli sigma matrices. A possible way to achieve
this is to introduce octonionic spinor structure [K8, K5, L10] in which massless 8-D momenta
correspond to octonions, which should be associative and therefore quaternionic. This would
conform with the above identification of light rays.

2. Octonionic spinors, presumably complexified octonionic spinors with i =
√
−1 commuting

with the octonionic units, should be also defined. The map of quaternionic massless 8-
momenta to the octonionic counterparts of the Pauli spin matrices representing quaternionic
basis would define octonionic spinors satisfying the quaternionicity condition. Massless Dirac
equation can be solved in the standard way.

3. The matrices defined by bi-spinor pairs associated with M4 twistors can be regarded as
quaternions. The quaternionicity condition means that the octonionic spinor pairs actually
reduce to M4 bi-spinor pairs on a suitable basis, which however depends on the point of Y 4?

If commutative i is introduced and quaternions are not replaced with their 2 × 2 matrix
representations involving commuting imaginary units, a doubling of degrees of freedom takes
place. Does this mean that both M4 chiralities are obtained? Could this solve the googly
problem in M4?

Also in the case of octonionic spinors complexification would double the degrees of freedom.
Does one obtain in this way both spin and electroweak spin?

1. What happens to M8 spinors as tensor products of Minkowski spinors and electroweak
spinors when the octonionic Dirac operator acts on a quaternionic subspace. The electroweak
degrees of freedom do not disappear but become passive. One has 8-D complex spinors, which
are enough to represent a single H-chirality if the octonionic gamma matrices, which are
quaternionic at Y 4, are not represented in terms of Pauli sigma matrices and i is introduced.

2. The electroweak gauge potentials as induced spinor connection represent the geometric
view of physics realized at the level of H. Number theoretical vision suggests that the M8

spinor connection cannot involve sigma matrices, which would be defined as commutators
of octonionic units and be octonionic units themselves. Kähler coupling is however possible.

What could the form of the Kähler gauge potential be? The Kähler form should be apart
from a multiplicative imaginary unit i equal to the theoretical flat metric of M8 so that
the Kähler function would represent harmonic oscillator potential.

The octonionic Dirac equation would have a unique coupling to the Kähler gauge potential
with Kähler coupling constant absorbed to it. This would guarantee that the solutions of
the modified Dirac equation in M8 have a finite norm. The solutions can be found by
generalizing the procedure to solve Dirac equation in harmonic oscillator potential.

3. The octonionic Dirac operator, which reduces to the quaternionic M4 Dirac operator and
for the local quaternionic M4 identified as a normal space, the fermions are massless. How
to solve this problem? As found, the non-vanishing M4 mass requires that the light-like
M8 momentum has a component in the direction of Y 4 having a natural interpretation as
the analog of the square root of the Higgs field.

4. Complexified octonionic spinors form a complex 8-D space, which corresponds to a single
fermion chirality. Do different H chiralities emerge from the mere octonionic picture or
must one introduce them in the same way in the case of H? The couplings of quarks and
leptons to the induced Kähler form are different and this should be true also at the level of
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M8: it seems that both quarks and leptons should be introduced unless on is read consider
either leptons or quarks as fundamental fermions.

5. Color SU(3) acts as a number theoretic symmetry of octonions. SU(3) as an automorphism
group transforms to each other different quaternionic normal spaces represented as points
of CP2. This representation is realized at the level of H in terms of spinor harmonics. The
idea that the low energy and higher energy models for hadron in terms of SO(4) and SU(3)
symmetries are dual suggest that fermionic SO(4) harmonics in M8 could be analogous to
the representation of color as spinor harmonics in CP2.

One should understand the massless octonionic Dirac equation.

1. The octonionic Dirac equation looks like the ordinary Dirac equation but with gamma ma-
trices replaced with octonionic units. The quaternionic Dirac equation involves quaternionic
units but it is essential that they are not represented as matrices. This allows the introduc-
tion of imaginary uni i commuting with the quaternionic and octonionic units and implies
double of the degrees of freedom so that one can have analogs of complex spinors.

The octonionic units are analogs of Pauli sigma matrices and the first problem is caused by
the lacking anticommutativity of the real unit with other octonion units. The Dirac equation
however makes sense also in this case.

2. The 8-D masslessness condition must correspond to the condition that the real part of the
square of Dirac operator on spinors vanishes. For momentum eigenstates this gives the usual
algebraic conditions for masslessness.

3. H spinors have a defined H-chirality guaranteeing separate conservation of quark and lepton
numbers. H-chirality ε is a product ε = ε1ε2 of M4 and CP2 chiralities. Alls these chiralities
should be definable also at the level of M8. Also the octonionic Dirac equation for H spinors
should be consistent with the chirality condition.

(a) The decomposition of octonion units to quaternion units {1, Ik|k = 1, 2, 3} and co-
quaternion units I4{1, Ik|k = 1, 2, 3} suggests the identification of the counterpart of
Γ9. The matrix Γ9 is defined as the product of H gamma matrices satisfies Γ2

9 = −1,
anticommutes with H gamma matrices. H chirality corresponds to the eigenvalue of
iΓ9 equal to ε = ±1. The eigen spinors with chirality ε are of the form (1 + εiΓ9)Ψ0.

The spinors with fixed H-chirality are tensor products of spinors of fixed M4 chirality
and CP2 chirality and the product of these chiralities defines H-chirality.

(b) The operator iI4, satisfying (iI4)2 = 1, is a good guess for the counterpart of Γ9 for the
octonionic spinors. The octospinors with a fixed M8 chirality ε should be of the form
(1 + εiI4)Ψ0. It is easy to check that for an octospinor of form Ψε = Ψa + I4Ψb having
a fixed chirality ε, one obtains

Ψb = iεΨa (3.1)

so that the spinor is determined completely by its quaternionic part. Perhaps this might
be regarded as a realization of quaterniocity.

(c) One can decompose also the quaternionic spinors to two parts corresponding to the de-
composition to complex subspace spanned by {1, I1} and co-complex subspace spanned
by {I2, I3}. This allows us to define M4 chirality and its E4 counterpart.

4. Octonionic Dirac equation for the momentum eigenstates can be decomposed to a sum of
quaternionic and co-quaternionic parts

DΨ = (pk1Ik + I4p
k
2Ik)Ψ = 0 . (3.2)

The real part of D2 gives the Minkowskian mass shell condition p21 − p22 = 0.
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The Dirac equation for the Ψε = (1 + iεI4)Ψ0 gives

DΨ0 = (pk1Ik + I4p
k
2Ik)Ψ0 + D̃Ψ̃0 = 0 .

D̃ = p̃k1Ik + I4p̃
k
2Ik) .

(3.3)

Tilde means a conjugation of quaternionic imaginary units. This gives two separate equa-
tions? Are they consistent? By multiplying the equation with tildes by 1 = −I22 from
left and transporting the second I4 through the equation to right, one obtains the equation
−I2(pk1Ik + I4p

k
2Ik)Ψ0I5 = 0. The two equations are therefore consistent.

This picture suggests that 6-D Kähler action as the Kähler function of the twistor space of M8

could determine surfaces Y 4 as its preferred extremals and that holography= holomorphy principle
determines the extremals also now. The 12-D twistor bundle with 4-D fiber should have Kähler
structure. This gives very strong condition. One possibility is that it is just the Cartesian product
of twistor spaces for M4 and E4.
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