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1. Introduction 2

Abstract

Holography = holomorphy vision generalizes the realization of quantum criticality in terms
of conformal invariance. Holography = holomorphy vision provides a general explicit solution
to the field equations determining space-time surfaces as minimal surfaces X4 ⊂ H = M4 ×
CP2. For the first option the space-time surfaces are roots of two generalized analytic functions
P1, P2 defined in H . For the second option single analytic generalized analytic function defines
X4 as its root and as the base space of 6-D twistor twistor-surface X6 in the twistor bundle
T (H) = T (M4)× TCP2) identified as a zero section

By holography, the space-time surfaces correspond to not completely deterministic orbits
of particles as 3-surfaces and are thus analogous to Bohr orbits. This implies zero energy
ontology (ZEO) and to the view of quantum TGD as wave mechanics in the space of these
Bohr orbits located inside a causal diamond (CD), which form a causal hierarchy. Also the
consruction of vertices for particle reactions has evolved dramatically during the last year and
one can assign the vertices to partonic 2-surfaces.

M8 −H duality is a second key principle of TGD. M8 −H duality can be seen a number
theoretic analog for momentum-position duality and brings in mind Langlands duality. M8

can be identified as octonions when the number-theoretic Minkowski norm is defined as Re(o2).
The quaternionic normal space N(y) of y ∈ Y 4 ⊂ M8 having a 2-D commutative complex
sub-space is mapped to a point of CP2. Y 4 has Euclidian signature with respect to Re(o2).
The points y ∈ Y 4 are lifted by a multiplication with a co-quaternionic unit to points of the
quaternionic normal space N(y) and mapped to M4 ⊂ H inversion.

This article discusses the relationship of the holography = holomorphy vision with the
number theoretic vision predicting a hierarchy heff = nh0 of effective Planck constants such
that n corresponds to the dimension for an extension rationals (or extension F of rationals).
How could this hierarchy follow from the recent view of M8 − H duality? Both realizations
of holography = holomorphy vision assume that the polynomials involved have coefficients in
an extension F of rationals Partonic 2-surfaces would represent a stronger form of quantum
criticality than the generalized holomorphy: one could say islands of algebraic extensions F
from the ocean of complex numbers are selected. For the P option, the fermionic lines would
be roots of P and dP/dz inducing an extension of F in the twistor sphere. Adelic physics would
emerge at quantum criticality and scattering amplitudes would become number-theoretically
universal. In particular, the hierarchy of Planck constants and the identification of p-adic
primes as ramified primes would emerge as a prediction.

Also a generalization of the theory of analytic functions to the 4-D situation is suggestive.
The poles of cuts of analytic functions would correspond to the 2-D partonic surfaces as vertices
at which holomorphy fails and 2-D string worlds sheets could correspond to the cuts. This
provides a general view of the breaking of the generalized conformal symmetries and their
super counterparts as a necessary condition for the non-triviality of the scattering amplitudes.

1 Introduction

Quantum criticality is realized in terms of conformal invariance in string models and conformal
field theories. Holography = holomorphy vision [L15] generalizes the realization of vision to the
TGD framework. This view has developed considerably during the last years and provides a
general explicit solution to the field equations determining space-time surfaces as minimal surfaces
X4 ⊂ H = M4 × CP2 obeying generalized holomorphy.

By holography, the space-time surfaces correspond to not completely deterministic orbits of
particles as 3-surfaces and are thus analogous to Bohr orbits. This leads to zero energy ontol-
ogy (ZEO) and to the view of TGD as wave mechanics in the space of these Bohr orbits inside
causal diamonds (CD), which form a scale hierarchy. The construction of vertices for particle
reactions identified as these singular lower-D belonging to the light-like 3-surfaces as interfaces of
Minkowskian and Euclidean space-time regions defining partonic orbits has also evolved dramati-
cally during the last year and one can assign the vertices to the partonic 2-surfaces thanks to the
understanding of the modified Dirac equation [L12, L17].

There are two guesses for the vertices. Either as partonic 2-surfaces or as point-like singularities
at which the monopole flux tube representing a particle splits to two. The latter interpretation looks
more plausible. Fermion lines at light-like partonic orbits would correspond to poles of analytic
functions, which are not vertices. At them the minimal surface property would fail. String world
sheets having partonic lines as boundaries would be the analogs of cuts as singularities.
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M8 − H duality is a second key principle of TGD. It has developed to its recent form [L16]
rather slowly during the years via several wrong tracks [L4, L5, L14]. M8 − H duality can be
seen as a number theoretic analog for the momentum-position duality and also brings in mind
Langlands duality [A2, A1] [L10]. In the recent view, it is essential that M8 can be identified
as octonions when its number-theoretic Minkowski norm is defined as Re(o2). The quaternionic
normal space N(y) of y ∈ Y 4 ⊂M8, having a 2-D commutative complex sub-space, is mapped to
a point of CP2. Y 4 has Euclidean signature with respect to Re(o2). The points y ∈ Y 4 are lifted
by a multiplication with a co-quaternionic unit to points of the quaternionic normal space N(y)
and mapped to M4 ⊂ H inversion.

This article discusses the relationship of the holography = holomorphy vision developed in
[L13, L15] with the number theoretic vision predicting a hierarchy heff = nh0 of effective Planck
constants such that n corresponds to the dimension of an extension rationals. The question is
whether and how this hierarchy follows from the recent view of M8 −H duality differing consid-
erably from the earlier view. Also the consistency with the number theoretic vision is discussed.

There are two realizations for the holography = holomorphy vision which need not be mutually
exclusive.

1. For the first option, the space-time surfaces are roots of two generalized analytic functions
f1, f2 of hypercomplex coordinate (having light-like coordinate curves in M4) and 3 complex
coordinates of H. As a special case f1, f2 reduces to a pair (P1, P2) of polynomials. The
minimal surface property holds true for any general coordinate invariant action constructible
in terms of the induced geometry and fails only at lower-dimension singularities. This vision
has tensions with the number theoretical vision. The roots P1 = 0 and P2 = 0 define 6-
surfaces, whose intersection is X4. A possible interpretation is as analogs of twistor spaces
of M4 and CP2.

2. There is also a variant of this picture in which the space-time surface is identified as a
holomorphic zero section of the twistor surface X6 ⊂ T (M4) × T (CP2) defined as a root of
single polynomial P . This option makes the nice predictions of the number theoretic vision
relying strongly on polynomials with coefficients, which are rational or in an extension F of
rationals.

The islands of rationals and their algebraic extensions would be selected by quantum criticality
from the ocean of complex numbers. In music, the rational ratios for the frequencies of the
Pythagorean scale would represent a similar phenomenon [L1, L7, L8, L11]. In this way quantum
criticality defining a hierarchy of number theoretical discretization of WCW would make possible
adelic physics and scattering amplitudes would become number-theoretically universal. For the
P = 0 option, the hierarchy of Planck constants and Galois groups as number theoretical symmetry
groups would emerge as predictions. Also p-adic primes essential for p-adic mass calculations would
correspond to ramified primes of P . The P = 0 option seems to be however consistent with the
(P1, P2) = (0, 0) option.

The generalization of the theory of analytic functions to the 4-D situation is suggestive.

1. The poles and cuts of analytic functions determine them as an analog of holographic data.
Poles could correspond to light-like fermion lines at which the holomorphy fails and the 2-D
string worlds sheets connecting partonic orbits of different monopole flux tubes could corre-
spond to the cuts. This failure of analyticity would make non-trivial scattering amplitudes
possible, and also lead to the breaking of various conformal symmetries and their super
counterpparts and also to the generation of an analog of Higgs vacuum expection [L17].

2. These singularities would define at least a part of the data defining holography allowing to
determine the space-time surface (also the 3-surfaces at the ends of space-time surfaces at
the boundaries of CD might be needed). This picture brings in mind electrostatics in 2-
dimensions where poles and cuts define point charges and line charges as sources. This is
nothing but an analog of holography. The light-like fermionic lines at the light-like partonic
orbits are the most natural counterparts of poles of analytic function and string world sheets
define the analogs of cuts. This would mean a strong analogy with the ordinary complex
analysis
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3. The singularities would realize a stronger form of quantum criticality than the generalized
holomorphy, and there is a rather precise geometric analogy with catastrophe theory predict-
ing a hierarchy of critical surfaces at which some number of roots coincide (cusp catastrophe
represents a simple example).

4. The splitting of a closed monopole flux tube representing a particle reaction vertex rise to
a fundamental vertex for particle creation involving a creation of a fermion pair which does
not seem to correspond to these singularities. The splitting process starts as a touching
of the flux tube portions at parallel Minkowskian space-time sheets and generates a worm-
hole contact, which then splits to two wormhole contacts identifiable as ”ends” of final state
monopole flux tubes. This involves a splitting of the wormhole throats at a point in which a
fermion pair can be created. These two touching points represent genuinely 0-dimensional
singularities defining analogs of QFT vertices having no counterpart in 2-D complex anal-
ysis. A connection with exotic smooth structures [A5, A6, A4], uniquely distinguishing
4-manifolds, and identifiable as standard smooth structure with defects, proposed to be
identifiable in terms of the 2-D singularities, is highly suggestive [L9, L17].

2 About the evolution of the concept of M 8 −H duality

M8 − H duality [L4, L5, L14] can be seen as a number-theoretic analog of momentum position
duality. M8−H duality also relates geometric and number theoretic vision of quantum TGD and
could serve as a physical realization of Langlands duality [L10]. Note that all single-fermion states
are predicted to be massless in the 8-D sense and therefore their 8-D momenta are expected to
reside at the 7-D light-cone of M8.

The development of M8−H duality has been a rather tortuous process and has involved several
wrong tracks.

2.1 The problems with the original forms of M8 −H duality

The very first form of M8 − H duality mapped M4 ⊂ H to a quaternionic tangent space of
M4 ⊂M8: octonions are metrically M8 with respect to the number theoretic norm RE(o2). The
cold shower [L4, L5] was that the distribution of quaternionic tangent spaces is not in general
integrable to a 4-surface Y 4 and it seems that only trivial associative surfaces (M4) are possible.

This forced the conclusion that the normal spaces must be quaternionic, one could call this co-
associativity [L4, L5]. The distribution of normal spaces is indeed known to be associative always.
This however forced complexification of M8 in order to get the metric signature correctly and this
led to a multitude of problems.

The form of M8−H duality discusses in [L4, L5] assumed the algebraic continuation of polyno-
mials P (z) of complex variable z for which the imaginary unit commutes with octonionic imaginary
units to polynomials of complexified octonion.

1. P (z) was assumed to have rational or even integer coefficients smaller than the degree. This
led to the proposal that the roots of P (t) correspond to mass squared values m2 defining
mass shells in M4 ⊂ M8 as p20 −

∑
p2i = m2. This assumption had very nice implications

concerning the number theoretic vision. This led to the notion of associative holography.
One fixes the 3-surfaces defining the boundary data of the holography to be mass shells
H3 ⊂ M4 ⊂ M8 and continues this data to associative 4-surfaces. The problem was that
these holographic data look quite too simple. Deformations in normal direction would seem
to be necessary.

2. Perhaps the most serious problem of the approach was that complex roots correspond to
complex masses so that one must complexity M8. This led to rather complicated construc-
tions [L4, L5, L14]. The assumption that the roots are real could solve this problem but
looks somewhat ad hoc.

3. The image of M4 ⊂ H in M8 was identified as a co-quaternionic sub-space of complexified
octonions M8

c . The octonionic number theoretic norm is defined without the conjugation with
respect to i. There are many choices for the subspace for which the octonionic coordinates
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are real or purely imaginary and all signatures of the number theoretic norm defined by o2

are possible. This also led to interpretational problems: to what what particular M4 ⊂ M8

does M4 ⊂ H correspond to? Does this choice have a physical significance?

2.2 The recent view of M8 −H duality

In [L16], I introduced a dramatic simplification of the earlier version of the M8 − H duality
[L4, L5, L14] allowing to get rid of the complexification of M8 interpreted as an 8-D momentum
space.

The trick is to define the number theoretic norm, not as oo, but as the real part RE(o2)
of o2: the real part here means the part of o2 proportional to the octonionic real unit. This
definition applies also to complex numbers and quaternions as subspaces of octonions. This norm
is Minkowskian and allows the identification of octonions as M8 in the metric sense.

In this interpretation, the projections of the points of H to M4 ⊂ H = M4 × CP2 correspond
by M8 −H duality to the points of Y 4 ⊂ M8 = M4 × E4 such that the M4 projection m of the
point of X4 associated with CP2 point s is mapped by inversion I : mk → ~effmk/mlm

l to a
point of the quaternionic normal space N(y(s)) as its preferred point and naturally projects to the
corresponding point of Y 4. Y 4 is Euclidian with respect to the number theoretic norm already
described.

Number theoretic holography would be realized by requiring that the mass squared value
assignable to the M4 point of the normal space of point of Y 4 has the same Euclidean mass
squared value as the point corresponds to so that Y 4 belongs to the 7-D light-cone of octonions
with Minkowskian number-theoretic norm. This correspondence would define an analogue of Wick
rotation and pose a constraint on the number theoretic holography. The boundary data given
at these Euclidian mass shells S3 and associativity (quaternionic normal space) would serve as a
dynamical principle.

Consider first a simplified view of M8 −H duality as I understand it now, assuming that the
M4 projection of X4 is 4-D.

1. The idea is that the points of X4 ⊂ H are mapped to the points of Y 4 ⊂ M8. The M4

projection of X4 is mapped to the normal Minkowskian normal space of Euclidian surface E4.
The CP2 projection associated with a given point of Y 4 parametrizes the normal spaces for
it. The assumption that the normal spaces are quaternionic and contain a Minkowskian 2-D
commutative space implies that they can be parametrized by CP2. The normal spaces and 2-
D subspaces form integrable distributions and determine Y 4 by number theoretic holography
using the integrable distribution of Minkowskian normal spaces as holographic data located
at 3-D surfaces. The tangent spaces of Y 4 have an Euclidian number theoretic metric. The
points of Y 4 are in 1-1 correspondence with those of CP2 except at the singularities at which
the normal space is not unique.

2. The 4-surface Y 4 ⊂ M8 is Euclidean. All points of Y 4 have as quaternionic normal space
isomorphic to M4 ⊂ M8 containing M2, which is complex and commuting sub-space of
octonions. The normal space N(y) of y ∈ Y 4 as M4 is not unique but this has a geometric
interpretation and does not lead to the problem of non-uniquencess of M4 ⊂ M8 as the
previous view of M8 −H duality.

The normal space contains the M4 point associated with the point of CP2 as a preferred
point having an interpretation as 4-momentum. This point is ”active” if there is a fermion
at the corresponding point of X4. One has a geometric representation of the many-fermion
state in Y 4 mapped to the points of M4 projection of X4 by M8 −H duality.

3. The new form of M8 − H duality requires a lift of the point y ⊂ Y 4 to a point of its
quaternionic and Minkowskian normal space N(y), which is mapped by inversion to M4 ⊂ H.
Multiplication with an imaginary unit e of Y 4 would perform the lift but can one choose e
uniquely?

Is the uniqueness really necessary? The choice of the basis of quaternionic units for the
quaternionic normal space is fixed up to local U(2) rotation. The same is true for the
basis of the complement. Could the interpretation be in terms of the M8 counterpart of
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the electroweak gauge group? Color symmetries would correspond to the SU(3) ⊂ G2 of
octonionic automorphisms so that the standard model symmetries would be realized number-
theoretically. The inverse of the lift would allow to map the pointsM4 ⊂ H to the points of Y 4

and realize the correspondence between points of M4 and CP2 for the surfaces representable
as graphs of a map M4 → CP2.

4. The spinor modes of fermion in CP2, can be mapped to the spinor modes in Y 4 for each
fermionic momentum. Number theoretical vision suggests that the momentum components
are real algebraic integers of the extensions of rationals associated with the space-time surface
in question.

This picture applies when the M4 projection of X4 is 4-D. If this is not the case the situation
is more complex.

1. The ideal CP2 extremal for which M4 coordinates are constant, corresponds to a singularity,
where the normal space at the point of M8 is not unique: the normal open spaces span entire
CP2 one has what alebraic geometers call blow up and it occurs often for algebraic surfaces.
The vertex of a cone is the basic example: in this case tangent and normals spaces are not
unique.

For deformed CP2 extremals M4 projection is a 1-D light-like geodesic line in M4 ⊂ H and
also in M8. Along this curve, the normal spaces form give rise to a 3-dimensional surfaces
of CP2.

2. Cosmic strings also correspond to such a singularity: in a 2-D string world sheet X2 ⊂M4,
the normal spaces at a given point form a 2-D complex manifold of CP2.

3. At singularities at which the normal space of Y 4 is not unique, there are additional conditions
on the allowed spinor modes since the spinor mode must have the same value for all normal
spaces involved. The vanishing of the allowed spinor modes at these points would allow to
satisfy these condition.

4. The number-theoretic quantization of M4 momenta requires that the momentum components
are real integers in the algebraic extenssion of the rationals related to the region of X4

considered. The momentum unit is determined by the size scale of the causal diamond (CD).

What could be the physical interpretation of Y 4?

1. Y 4 can be sliced by the images of r= constant 3-spheres S3 ⊂ CP2. Could the time evolution
in X4 with respect to the light-cone proper time of M4 ⊂ H have as an analog the evolution
of the CP2 projection with respect to the radial coordinate r of CP2 defining a slicing of Y 4

by M8 −H duality? Or can one speak of time evolution below the scale of causal diamond
CD, which implies temporal non-locality below its scale.

2. Positive and negative energy states at the half-cones of CD would be mapped to the opposite
light-cones in the Minkowskian normal space of Y 4. This brings in mind Wick rotation as
the Euclidization trick used in quantum field theories. Could M8 − H duality define Y 4

as a kind of Euclidization of X4? If so, one would have both M4 and CP2 perspective of
the dynamics and also mixed perspectives (cosmic strings). The failure of M4- and/or CP2

projection to be 4-D would force mixed perspective.

3 Holography = holomorphy vision

In this section holography = holomorphy vision and its relation to the theory of analytic functions,
to the number theoretic vision and to M8−H duality will be discussed. It must be confessed that
during the preparation of this section, the view of the realization of the holography = holomorphy
vision simplified dramatically and a considerable portion of the text became obsolete.
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3.1 About the geometric description of fermion pair creation vertex in
the framework of catastrophe theory

It is good to start from a physical picture. The intuitive idea is that vertices somehow correspond
to partonic 2-surfaces X2 on one hand and to the points of X2 at which fermion lines turn back
in time. Is the fundamental vertex a 2-D parton surface or is it point-like or are both aspects
involved? This is the basic question. One must clarify what happens topologically in the
creation of a fermion pair. A non-vanishing monopole flux means homological non-triviality of the
partonic 2-surfaces.

1. The catastrophe theory picture implies that a given catastrophe involves a hierarchy of sin-
gularities such that the number of co-incinding roots and criticality increases. In the case of
cusp catastrophe, the tip of the cusp would correspond to the situation in which all 3 roots
of the third order catastrophe polynomial coincide.

There are good reasons to expect that also now this is the generic situation. This would
suggest that a point-like vertex initiates a process leading to a creation of a pair of
wormhole contacts with opposite monopole fluxes.

2. What happens that a single closed monopole flux tube splits two two monopole flux tubes?
This flux tube has portions at parallel Minkowskian space-time sheets with distance of
order CP2 radius and they carry opposite monopole fluxes. Topologically this process
corresponds to a reconnection when the flux tubes are idealized with strings. One must
generalize this to that for 3-D objects.

At the point of touch, the signature of the induced metric must be between Minkowskian
and Euclidean signatures so that the induced 4 metric is degenerate. The touching point
starts to grow to an Euclidean 3-D region and gives gradually rise to a wormhole contact with
a vanishing total monopole flux between the throats. It has opposite wormhole throats with
a vanishing total magnetic flux having a 2-D interface with Minkowskian regions. After this
both wormhole throats are pinched to two parts with one common point, pinch, between
them. Splitting occurs and one has two separate closed flux tubes having the wormhole
contacts as their second ”end”.

3. This process could be also visualized in terms of the 2-D CP2 projections X2 and Y 2 of
two parallel flux tube portions in M4, which fuse, evolve to a flux tube portion in CP2 and
split again to 2 wormhole contacts. X2 and Y 2 touch and fuse to form an intermediate
wormhole contact, which evolves to two pieces with opposite monopole fluxes, which are
side by side and in CP2. The two flux tubes separate and develop a pinch, which then splits.

4. The fermion pair would be naturally created at the pinch formed in the final step. For
this pinched partonic 2-surface, a global generalized complex structure is not possible since
the generalized complex structures at the two parts differ by the conjugation of the hyper
hypercomplex coordinate (note that also the conjugation of also CP2 coordinates might be
involved. The holomorphy fails at the pinch at least. The other option is that one just
does not have global smooth generalized complex coordinates. The situation would be
similar also before the pinch and the holomorphy would fail at the 3-D pieces of the orbits
of the throats of the intermediate worm contact.

5. Here one must ask what one means as one speaks of singularity at which the minimal surface
property fails. The evolution associated with the splitting of the monopole flux tube involves
a development of the opposite light-like wormhole throats as a boundary of a growing 2-D
Euclidean region. This evolution defines a 3-dimensional light-like region. Does the trace of
the second fundamental form have a 3-D delta function singularity?: this is in conflict
with the guess that the singularities are 2-D [L17]. The final state just before the splitting
is a pair of touching wormhole throats. Does this define the 2-D delta function singularity
or does the touching point correspond to a point-like delta function singularity analogous
to the tip of the cusp catastrophe?

It is good to make a more explicit comparison with the catastrophe theory of Rene Thom [A3].



3.2 The tension between the holography = holomorphy vision and
number-theoretic vision 8

1. One considers gradient dynamics dxi/dt = ∂iV and one considers possible equilibria as
extrema of a potential function V ({xi}, {aj}). A deep result is that, although the number
of the behaviour variables xi can be large, it is possible to choose a single relevant variable,
call it x. Furthermore, in suitable coordinates the potential function can be chosen to be a
polynomial. A possible physical identification for the control variables is as 4 space-time
coordinates or a subset of them.

2. If the number of control variables aj is not larger than 4 there are 7 elementary catastrophes
and the catastrophes for m behavior variables can be engineered from the catastrophes for
m− 1 behavior variables.

3. The number of sheets of the catastrophe manifold in the space spanned by the behavior
variable x and control variables ai corresponds to the number of roots to the condition
dV/dx = 0. The catastrophe manifold is a k-dimensional surface for k control variables.

Different roots correspond to sheets of the catastrophe manifold and meet at lower-dimensional
surfaces at which the roots are degenerate. This means criticality in which a dropping to
another stable sheet driven by the rapid dynamics can occur. The critical manifolds form
a hierarchy and at the tip of the many-sheeted catastrophe region all roots are identical.

3.2 The tension between the holography = holomorphy vision and number-
theoretic vision

The relationship between holography = holomorphy vision and number theory vision involving
the hierarchy of effective Planck constants and M8 −H duality should be understood better. The
updated view M8−H duality [L16] modifies radically the original vision [L4, L5, L14] based on
polynomials P (o) of complexified octonions with rational (or equivalently integer -) coefficients
obtained as a continuation of ordinary complex polynomials P (z) of variable z = x + iy with
imaginary unit i commuting with the octonionic imaginary units. The earlier vision was
consistent with several general ideas such as prediction of the hierarchy of Planck constants and
the identification of p-adic primes as ramified primes for these kinds of the polynomials P . It also
supported the notion of Galois confinement. These parts of the earlier vision should survive.

The hope is that holography = holomorphy vision allows to get naturally the roots of poly-
nomials and corresponding algebraic extensions and even polynomials with rational or integer
coefficients. This would also give ramified primes.

One needs a guiding principle and number theoretical quantum criticality is such a principle.
It states that rationals and algebraic numbers correspond to islands in the ocean of complex
continuum unstable under perturbations selected by quantum criticality which is the basic principle
of TGD. This already implies holography = holomorphy principle but does not fix its details
completely. p-Adic primes would characterize elementary particles rather than space-time
regions. This suggests that the number theoretic quantum criticality is reduced to single fermion
level and allows to identify light-like fermion lines at the light-like orbits of partonic 2-surfaces and
assign the ramified primes and heff = nh0 to them.

3.2.1 Criticism of the (P1, P2) = (0, 0) option

There are many tensions to be resolved. The holography = holomorphy vision forces us to
reconsider both the earlier view of M8 − H duality and the number theoretical vision. The
existing number theoretical vision in turn challenges the detailed realization of the holography =
holomorphy vision based on (P1, P2) = (0, 0) option.

1. In the earlier version of M8 −H duality [L4, L5, L14] a single polynomial P of single com-
plex variable z with coefficients in the field of rationals (or its extension), continued to a
polynomial in a complexification of octonions, defined the holographic data in turn defining
the space-time surface.

Although this approach had shortcomings it also had very nice features. The dimension of
the algebraic extension determined by the roots of P defined effective Planck constant and
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the spectrum of ramified primes of P as factors of its discriminant had interpretation as
p-adic primes. The applications of TGD rely on these notions.

2. For the most obvious realization of holography = holomorphy vision a pair (P1, P2) of
polynomials replaces a single polynomial P (o). Is it possible to reduce the conditions
(P1, P2) = (0, 0) to a single condition P (z) = 0 for some choice of P and z? In the re-
cent case z would correspond to a complex coordinate at the light-like partonic 2-surface as
a slice of the partonic orbit and there are very many choices.

Putting the lightlike-coordinate u to zero (restriction of fermion line at a light-like partonic
orbit) one has polynomials Pi of w, ξ1, and ξ2 and one can choose any w, ξ1, or ξ2 as
dependent variable z. The degree of Pi as a polynomial of z depends on the choice of z.
One can find the common 6-D roots of Pi for each choice and they correspond to the
intersection of 4-D surfaces P1 = 0 and P2 = 0. If the argument w, ξ1, or ξ2 is an
algebraic number, the roots are algebraic numbers. This leaves a lot of freedom and it is
very difficult to figure out the general picture!

Therefore it is far from clear how to identify fermionic lines represented as points of X2

such that they are roots of a polynomial with coefficients in some extension of rationals.
However, if can identify a unique extension E of rationals, and a unique polynomial P (z) of
a highly unique variable z independent of the variables w, ξ1, and ξ2, its ramified primes
would determine the spectrum of p-adic length scales and heff = nh0 would corresponds
the degree of its Galois group.

3.2.2 Does P = 0 option for holomorphy = holography option solve the problems?

How could one solve the problems of the P1, P2) option?

1. The quantum criticality of TGD suggests that there is a catastrophe theoretic hierarchy
of criticalities corresponding to the surfaces P (z) = 0 giving the space-time surface and
as special case partonic 2-surface X2 as v = 0 constant section of the partonic orbit X3.
Criticality corresponds to the coincidence of two roots so that one would have P (z) = 0
and dP (dz) = 0 at criticality. The roots would give the intersections of the fermionic lines
with the partonic 2-surface. The roots of P would define an extension of the coefficient field
F of P as an extension of rationals and the ramified primes of P belonging to F .

2. The twistor lift suggests a natural identification of the coordinate z. Twistor lift replaces
the space-time surface X4 with a twistor space X6 as a S2 bundle over X4. X6 would be
determined by the 6-D Kähler action. z could be identified as a complex coordinate of S2

determined up to holomorphy. Suppose that X6 is known. A natural identification of X4

is a section of twistor bundle X6 can be identifiable as a root of a polynomial Pu,t(z), where
t can be take to be one of the coordinates (w, ξ1, ξ2) (note that u = constant at X3. The
conditions P = 0 and dP/dz = 0 at fermionic lines would fix the value of z and if t belongs
to F , one obtains an algebraic extension of F .

The fermion line would be identified sufficiently uniquely if the choice P defining the section
is sufficiently unique. In fact, different sections could define different physics. The optimistic
expectation is that there is a finite number of sections or at least a finite-dimensional moduli
space of sections for a given for a given twistor-surface X6.

There are 3 obvious choices for the coordinate t corresponding to the set {t1, t2, t3} ≡ {w, ξ1, ξ2}.
Can one identify the complex coordinate t uniquely or does one obtain 3 kinds of roots also now
and what could this mean?

1. If the partonic 2-surface is regarded as a Riemann surface, the natural local coordinate is
tk, and the polynomials Pk(z, u, tk) are uniquely determined. The choice of tk is determined
apart from holomorphic bijection and Hamilton-Jacobi structure [L13] dictates the choice of
w a high degree and in CP2 Eguchi-Hanson coordinates, favoured by their group theoretical
properties, are natural.
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2. If all 3 choices of tk are possible, one obtains 3 kinds of roots. If the roots zk1,i and zk2,j

coincide, they can correspond to the same point of X4 but need not do so.

The partonic 2-surface is many-sheeted with respect to both CP2 and M4. Different w-roots
would correspond to the multi-sheetedness with respect to CP2 and different sheets could
be assigned with parallel monopole flux tubes going through the w-plane. The physical
intuition suggests that, due to the small size of CP2, the number of roots in CP2 direction
is small CP2 for a given M4 point whereas in the direction of M4 the number of w-roots
can be very large giving rise to a large value of heff/h0 = n.

3. In the case of the standard twistor bundle over M4, S2 represents the directions of light-like
geodesics emanating from a point of M4. The twistor fibers S2 at different M4 points have
a common point if there is a light-like geodesic connecting them. This is expected to be a
reasonable guess also now.

Could the w-roots correspond to intersecting twistor spheres for which the points with a
different w coordinate are connected by a light-like geodesic of M4? Since the light-like
coordinate u is constant and v is fixed, this is not plausible. This would suggest that the
complex coordinate for the S2 as the cross section of the light cone boundary defines a
preferred coordinate identifiable as the coordinate of the twistor sphere.

4. The same question can be posed in the case of CP2 for which the light-like geodesics are
replaced with radial geodesics from the origin of Eguchi-Hanson coordinates directed to the
homologically non-trivial geodesic sphere at r = ∞. The points pairs at these geodesics
would have intersecting twistor spheres. Could the CP2 points associated with w-roots in
the radial direction be located along these radial geodesics of CP2 so that there could be a
large number of w-roots per CP2 type roots? The complex coordinate of the homologically
non-trivial sphere of CP2 could serve as the analog of the coordinate of the twistor sphere.

One can argue that there is a problem with number theoretic general coordinate invariance
(GCI) since the form of the P can change in a generalized holomorphism of H expected to have
no physical effect. Is there a unique choice of coordinates allowing to avoid the problem?

1. For the (P1, P2) option, the X4 is identified as an intersection X6
1 ∩X6

2 of 6-surfaces X6
i as

roots of Pi. Could X6
i be identified as twistor surfaces as counterparts of the twistor spaces

T (M4) and T (CP2) with different twistor spheres but the same base space?

If so,the complex coordinates of the twistor spheres of T (M4) and T (CP2) should correspond
to the complex coordinates of the twistor sphere of light-like geodesics of the light-cone
boundary and of radial geodesics of CP2 directed from origin to homologically nontrivial
sphere of CP2 ”at infinity”.

2. The construction of X6 as an extremal of the 6-D Kähler action for X6 ⊂ T (M4)×T (CP2) [?]
identifies the twistor spheres of T (M4) and T (CP2). Does this mean X6

i as twistor bundles
are related by the mapping of the space of light-like geodesics of light-cone boundary and/or
light-like partonit orbit to the space of radial geodesics of CP2?

3. This would make the situation highly unique. Holomorphies for a given choice of w resp.
ξ1 or ξ2 would correspond to SO(3) and U(2) acting linearly on the complex coordinate.
These groups reduce to SO(2) and U(1)× U(1) by the choice of the quantization axes. The
coordinate w would reduce to the complex coordinate of the twistor sphere of T (M4) at the
light-cone boundary (at least). At partonic orbits the complex coordinate ξ of the geodesic
sphere of CP2 and w would be related by a map characterized by a winding number.

Some comments on the physical interpretation are in order.

1. p-Adic primes are rather large, M127 = 2127 − 1 for electrons. I have proposed that one
could pose constraints on the size of the polynomial coefficients, say that they are smaller
than the degree of the polynomial. In this case it is not clear how to obtain such large
ramified primes unless the degree of P is very large. The degree of polynomial increases
exponentially in repeated iteration giving rise to an analog for the approach to chaos [L6].
This would increase the dimension of the extension.
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2. As found, the polynomial P can be identified as a polynomial of Minkowski-coordinate
w, or of CP2 coordinate ξ1 or ξ2. CP2 is rather small and one expects that in CP2

directions the number of sheets is rather small so that P as a polynomial of ξ1 or ξ2 should
have a rather small degree and corresponding heff/h0 should be rather small.

In M4 there is a lot of room and the degree of P as a polynomial of w can be rather large
and therefore also the value of heff/h0 for these fermion lines is large and their number
can be large. Therefore the corresponding ramified primes and associated p-adic length
scales can be rather large in this case. It would seem that the p-adic length scale is naturally
assignable to P (t, u, w). If p-adic length scale is assignable to P (t, ξi), it should be smaller
than CP2 scale and could correspond to excitations of superconformal and supersymplectic
algebras with mass scales which are higher than CP2 mass scale.

P = 0 option reduces the pair of polynomials (P1, P2) to single polynomial P , allows to interpret
the space-time surface X4 as a section of its twistor space X6 determined by 6-D Kähler action
and to identify fermion lines as surfaces (P = 0, dP/dz = 0). This view implies the notions
of effective Planck constant and ramified primes, and allows to understand number theoretical
evolution as the increase of algebraic complexity in two ways: as a collective evolution of the
extensions of rationals F appearing as the coefficient field of P and as the evolution at the single
particle level for the polynomial P . If the polynomial P can be iterated, a connection with chaos
theory [L6] emerges. Also a complexification of catastrophe theory emerges and the space-time
surface is analogous to a complexification of the cusp catastrophe.

3.2.3 (P1, P2) = (0, 0) option and P = 0 option need not be inconsistent with each
other

P = 0 option starts from the twistor surface X6 as a known entity and determines X4 as its section
whereas the (P1, P2) = (0, 0) option represents X6 as a solution of field equations. Therefore these
options need not be inconsistent with each other.

1. One can start from a problem. One can argue that the (P1, P2) = (0, 0) option cannot
represent the twistor surface X6. However, the condition P1 = 0 or P2 = 0 defines a
6-D surface X6

i as a solution. Could these 2 6-surfaces have interpretation as concrete
representations for the H projections of two twistor surfaces X6

i ∈ T (M4)×T (CP2) having
a common base space X4?

2. How could X6
i correspond to S2 bundle over X4? Could the two disjoint twistor spheres

S2 be counterparts for the twistor spheres of T (M4) and T (CP2) having as base-spaces M4

and CP2. Could one say that these base spaces are replaced with the projections of X4 to
M4 and CP2 to get X6. Geometrically these two spheres would correspond to the space of
light-like rays emanating and to the space of CP2 radial geodesics of CP2 emanating from
the point (m, s) ∈ X4 ⊃ H and would now be concretely represented as ”heavenly spheres”.
These spheres need not be metric spheres. Note however that the light-cone boundary as the
space of light-like geodesics is metrically a 2-sphere.

In ZEO the non-trivial homology of M4 twistor sphere could be represented by the effectively
missing tips of cd ⊂ M4, by the axis connecting the tips of the cd, or by the light-like
boundaries of cd indeed representing the space of light-rays analogs to the moment of Big
Bang and Big Crunch.

3.3 Catastrophe theoretic vision of TGD

The analog catastrophe theoretic vision emerges in the TGD framework. One can consider this
vision at the level of the space-time surface and at the level of H and they correspond to the
representations of the spacetime surface as a root of two polynomials P1, P2 and as a root of single
polynomial P .

For the (P1, P2) = (0, 0) option, which is mathematically correct but for which the relationship
to the basic number theoretical ideas is unclear, one has the following picture.
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1. The vanishing of the gradient of V is replaced by the vanishing two generalized complex
functions f1 and f2, which can be also taken as polynomials Pi with coefficients, which are
rational or in an extension F of rationals. The polynomial coefficients of Pi depend on the 4
generalized complex coordinates of H.

2. General coordinate invariance however reduces their number to 2 when one chooses as space-
time coordinates a subset of 2 generalized complex coordinates (z1, z2) (hypercomplex and
complex coordinate in Minkowskian regions and 2 complex coordinates in Euclidean regions).
Space-time coordinates become the analogs of complex control variables and the remaining
2 generalized complex H coordinates (w1, w2) take the role of complex behavior variables.
Instead of dV/dx = 0, one has P1 = 0 and P2 = 0.

3. Space-time surface as the counterpart of catastrophe manifold has two generalized complex
dimensions. An interesting question is whether it makes sense to regard (P1, P2) as a gradient
(partialV/∂w1, ∂V/∂w2) of a complex value potential function with respect to the complex
behavior variables. If this is possible, one could have a complexification of the catastrophe
theory and the catastrophe could correspond to a complexified cusp with two generalized
complex control variables instead of 2 real control variables.

The second option, introduced in this article, is based on a single polynomial with coefficients,
which are rational or in an extension F of rationals and elegantly reproduces the earlier basic ideas
related to the number theoretic vision.

The catastrophe manifold is replaced with a space-time surface X4. The condition dV/dx = 0
is replaced with the condition Pu,t(z) = 0 for generalized complex polynomial P , which has
as the behavior variable z identified as the complex coordinate of the twistor sphere and
the light-like hyper-complex coordinate u and complex variable t are control variables. There
are 3 basic ways to choose t as t ∈ {w, ξ1, ξ2}. P can be interpreted as a complex gradient
dV/dz of V =

∫
Pdz with respect to the behavior variable z so that one has dVu,t(z)/dz = 0.

The conditions (P, dP/dz) = 0 are true for the fermion lines which represent criticality at
which two sheets of the catastrophe graph coincide. Fermion lines are analogous to the folds
of the cusp catastrophe. Space-time surface as the counterpart of a catastrophe manifold
has 2 generalized complex dimensions as also the cusp catastrophe. An interesting question
is how unique the function P (z) defining the space-time surface as a section of the twistor
bundle X6 is.

It is interesting to look for the catastrophe theoretic interpretation of the already discussed
model for what would happen in the splitting of a closed monopole flux tube to two monopole
fluxes leading to a creation of a fermion pair.

1.2.1. In the ordinary catastrophe theory, cusp catastrophe might be enough to describe what
happens. The abstract cusp catastrophe corresponds to a 2-D surface in 3-space spanned
by a behavior variable and two control variables. The upper and lower sheets are stable
whereas the intermediate sheet between them is unstable.

2. The stable sheets would correspond to the initial state with a single monopole flux tube and
to the final state with two monopole flux tubes. The intermediate wormhole contact would
correspond to the unstable sheet of the cusp. The touching of the flux tubes would lead from
the initial stable sheet to the unstable sheet. The intermediate wormhole contact would then
move along the unstable sheet and end up to a critical point (formation of pinch) and end
up to the second stable sheet.

3. In this description, the state of the entire system corresponds to a point of the 3-D space
spanned by the 2 control parameters and 1 behavior variable. Therefore it is not possible to
identify the control variables of cusp as a subset of space-time coordinates and the behavior
variable as an H-coordinate orthogonal to the space-time surface. Rather, the evolution
of the system between the initial and final states should correspond to a part of a 4-D
catastrophe manifold.
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3.4 Holography = holomorphy vision as a realization of quantum criti-
cality and the theory of analytic functions

A generalized complex structure can be seen as a realization of the quantum criticality of the TGD
Universe just like 2-D conformal theories can be seen as a realization of criticality. The generalized
complex structure of the space-time surface, or Hamilton-Jacobi structure as I call it, combines
hypercomplex and complex structures into a 4-D structure [L13].

Hamilton-Jacobi structure involves an integral distribution of the local tangent space-decompositions
M2(x) × E2(x) allowing to assign a pair (u, v) of coordinates with light-like coordinate curves
to the distribution of M2(x) and complex coordinates w,w to the distribution transversal spaces
E2(x). This structure generalizes to H by introducing complex coordinates (ξ1, ξ2) for CP2.

There are two options, which can be consistent. In the (P1, P2) option determining space-time
as 4-surface, the spacetime surfaces are identified as roots of two generalized analytic functions
f1(u,w, ξ1, ξ2) and f2(u,w, ξ1, ξ2) (polynomials in the special case) defined in H and are minimal
surfaces apart from possible 2-D singularities. This option could also allow the identification of
the analogs of twistor spaces of M4 and CP2 as 6-D roots of P1 or P2 having X4 as intersection
and common base space. In the P = 0 option space-time surface X4 is identified as a base space
of the twistor-surface X6 in T (M4)× T (CP2). X6 could be determined by the (P1, P2) option.

This leads to the question, whether the theory of analytic functions could generalize from
dimension 2 to dimension 4. I am not a mathematician in a technical sense and know almost
nothing about the existing mathematical knowledge. However, I can make guesses by using a
physicist’s intuition.

1. In the theory of analytic functions, one basic question is whether an analytic function can
be constructed from its singularities. This is essentially holography.

Electrostatics in dimension D = 2 serves as an instructive physical example. The electric
field can be fixed when the point charges and line charges corresponding to the poles and
cuts for the analytic function are known. Only poles are obtained for rational functions.
Cuts (such as z1/n and log(z)) and essential singularities (exp(1/z)) are also possible. Does
this picture generalize to the 4-D case?

2. The twistor Grassmannian description of the scattering amplitudes leads to the hypothesis
that the amplitudes are coded by the lower-dimensional singularities of the amplitudes. Also
this situation corresponds to holography in a very general sense.

3. In TGD, the construction of scattering amplitudes with the help of vertices and the asso-
ciated light-like parton surfaces leads to the same kind of situation.

These observations motivate the question whether and how the theory of analytic functions
in dimension 2 could generalize to dimension 4 in the TGD framework.

1. Does, for example, the representation of an analytic function in terms of its singularities gen-
eralize? Suppose that 3-D light-like parton surfaces and associated 2-D partonic 2-surfaces
identified as vertices, where the generalized holomorphy breaks down, are known? Can the
space-time surface be derived as a generalized holomorphic 4-surface in H, determined by
two analytic functions f1 and f2 (in the generalized sense) as their roots. Could the partonic
2-surfaces be enough? Or are also string world sheets perhaps identifiable as the counterpart
of cuts needed as data. What about the boundary values of the function fi at the light-like
boundaries of causal diamond CD inside which the space-time surfaces are located as analogs
of Bohr orbits.

2. Hilbert’s principal value theorem (see this) gives an analytic function determined in the
complex plane as a sum of contributions corresponding to poles and cuts. Charges and line
charges determine the electric field. In poles, the holographic information is determined by
residued, and in cuts by the discontinuity of the real-analytical function across the cut.

What can one say about the singularities? Does the singularity correspond to an entire
light-like partonic orbit, to a 2-D partonic surface as a section of partonic orbit, to mere light-like
fermion line along it, to string world sheet, or to a point-like particle reaction vertex as a defect
of a smooth structure as has been assumed hitherto?

https://en.wikipedia.org/wiki/Hilbert_transform
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1. The number theoretical considerations related to holography = holomorphy vision realized
using P = 0 option imply that the light-like fermion lines along a light-like partonic orbit
are theoretically very special and analogous to the lines of criticality for cusp catastrophe.

The fermion line is a static structure and one cannot assign to it acceleration in M4 degrees
of freedom as the trace of the second fundamental form defining a generalized acceleration.
What could diverge is the CP2 part of the generalized acceleration having an interpretation
as an analog of the Higgs field.

The light-like coordinate along the light-like fermion line is constant so that metrically it is
analogous to a pole of an analytic function. On the other hand, topologically the fermion
line is analogous to a cut and it would form part of a boundary of a string world sheet
having interpretation as a generalization of cut. The analogy of the fermion line as the
critical line of the catastrophe graph of cusp catastrophe suggests that the trace of the
second fundamental form in CP2 degrees of freedom indeed diverges at it. There would be
a fold in the CP2 direction. A possible interpretation is that the fermion line serves as a
source of various gauge fields.

2. There is also another kind of singularity: in a creation of a fermion pair in the splitting of
closed monopole flux tube, the point at which the fermion and antifermion lines begin would
correspond to singularity as an analog for an edge at which fermion turns backwards in time.
This singularity is analogous to the vertex of a cusp catastrophe at which 2 folds meet.

This kind of turning point is analogous to an edge on the path of a Brownian particle.
A monopole flux tube would decay to two so that the topological viewpoint of a particle
emission would be in question. Also at this singularity one expects the holomorphy and
minimal surface property to fail. In fact this could be true inside the entire intermediate
wormhole contact formed in the process. The vision about the splitting of monopole
flux tubes [L17] leads to the identification of interaction vertices as genuinely point- like
singularities at which standard smooth structure has a defect so that an exotic smooth
structure is obtained.

3. String world sheets are assumed to connect the 3-D partonic orbits of different monopole
flux tubes. The interpretation of string as an analog of a cut is suggestive. For the cuts of
the analytic function z1/n, the real axis is a seat of discontinuity. By introducing the notion
of n-fold covering space of the complex plane one gets rid of the discontinuity. Could the
string world sheets correspond to the orbits of stringy singularities such that 2π rotation
around the singularities in the generalized complex coordinates of H lead to a point at a
different space-time sheet and one obtains n-fold covering. The analogy with line charges
suggests that it makes sense to assign dynamics to these objects.

n-fold covering suggests an n-fold value of the effective Planck constant and the interpretation
as a dark phase as n-fold covering of M4 or subspace M2. Also n-fold coverings of CP2 or
its geodesic sphere S2 are possible and would look like copies of M4 regions inside which
the map from CP2 to M4 is 1-valued. Now the sheets of the covering would correspond to
different copies, for instance flux tubes.

Consider now what happens in singularities from the perspective of field equations.

1. At singularities defined as loci where the minimal surface property fails, the field equations
for the entire action are valid, but are not separately true for various parts of the action.
Generalized holomorphy breaks down. The fermion lines as singularities are completely
analogous to the poles of an analytic function in 2-D case and there is analogy with the 2-D
electrostatics, where the poles of analytic function correspond to point charges. The fermion
lines are boundaries of string world sheets and these are analogous to cuts as line charges.
The cut disappears as a singularity when the complex plane is replaced with its covering
and the same occurs at the space-time level.

2. The field equations at the singularity give the TGD counterparts of Einstein’s equations,
analogs of geodesic equations, and also the analogy Newton’s F=ma (also in CP2 degrees
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of freedom). The generalized 8-D acceleration Hk defined by the trace of the second
fundamental form, is localized on the singularities. Singularities can be seen as analogs
for the sources of gauge fields. This interpretation could apply to fermion lines analogous
to line charges, which correspond to cuts of an analytic function in 2-D electrostatics. At
these singularities the CP2 part of the generalized acceleration Hk could diverge.

Singularities in a stronger sense can be interpreted as sources for various fermion currents
and supercurrents implying their apparent non-conservation at the singularity. This kind of
singularity could correspond to a vertex at which a fermion-antifermion pair is created
and fermion number conservation is apparently violated since the fermion line ends. Actually
only the separate conservation of fermion and antifermion numbers is broken. Here also the
M4 part of Hk would diverge.

One can pose several questions.

1. What are the counterparts of the residues, i.e. holographic data? Does the holographic
data correspond to the entire 3-D parton trajectory, on only to the 2-D vertices as partonic
surfaces and to the wormhole throats defining the interfaces of Minkowskian and Euclidean
space-time sheets, or perhaps only light-like fermionic lines at the light-like orbits of the
partonic 2-surfaces?

Under what conditions are generalized analytic functions f1(u,w, ξ1, ξ2) and f2(u,w, ξ1, ξ2)
are determined by this holographic data? It should be possible to determine the Taylor
or Laurent coefficients of fi from the data. Can one imagine an explicit formula? Under
what conditions the functions reduce to polynomials with rational (equivalently integer -)
coefficients?

Generalized holomorphy could be seen as a realization of quantum criticality. Physical
intuition also suggests that quantum criticality selects extensions of rationals as islands in
the sea of real numbers and also makes possible number theoretical physics as adelization of
TGD making possible cognitive representations as unique number-theoretical discretizations
[L2, L3].

2. Should also the 2-D string world sheets connecting wormhole throats of different monopole
flux tubes be included as the physical intuition suggests (these string like entities should not
be confused with 4-D cosmic strings X2× Y 2 ⊂M4×CP2 and the monopole flux tubes as
their thickenings).

Are the genuinely 2-D string world sheets analogous to hypercomplex cuts? At them, the
hypercomplex analytic function, which depends on the coordinate of a light-like curve of
M4, would be discontinuous. The 4-surface would be either discontinuous along the stringy
curve or space-time surface could correspond to a covering of a region of M4 so that a
rotation of 2π around the stringy curve leads to another sheet and rotation of n2π
rotation is needed in to return to the original point. I have assigned a fractional spin
to this kind of situation. In CP2 degrees of freedom the same phenomenon is possible and
fractional charges could be assigned with them.

3. What about the 3-surfaces at the light-like boundaries of the CD defining the ”ends” of
X4. Should these 3-surfaces be given as data or could they be fixed from holographic
data provided by the fermion lines and string world sheets?

4. Is it possible to have a general formula for the functions f1 and f2 (or for P ) determining the
space-time surface X4 analogous to the formula of Hilbert in terms of the holographic data?
This formula would be a classical analog for the determination of the scattering amplitudes
from their lower-dimensional momentum space singularities in the twistor Grassmannian
approach.
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