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1. Introduction 4

Abstract

What gravitons are in the TGD framework? This question has teased me for decades.
It is easy to understand gravitation at the classical level in the TGD framework but the
identification of gravitons has been far from obvious. Second question is whether the new
physics provided by TGD could make the detection of gravitons possible?

The generalized Kähler structure for M4 ⊂ M4 × CP2 leads together with hologra-
phy=generalized holomorphy hypothesis to the question whether the spinor connection of M4

could have interpretation as gauge potentials with spin taking the role of the gauge charge.
However, the induced M4 spinor connection has a vanishing vielbein curvature. The M4

Kähler gauge potential remains a candidate for giving rise to graviton-like state: the additional
spin would come from the rotation of the monopole flux tube. Also the second fundamental
form Hk has M4 part Mk behaves like a spin 1 object.

One can assign the fundamental vertices with the splitting of closed string-like flux tubes
representing elementary particles. The vertices would correspond to the defects of ordinary
4-D smooth structure making possible a theory allowing a creation of fermion pairs.

The Kähler part of the M4 spinor connection could contribute to electroweak U(1) gauge
potential or define a new gauge force. It could also give rise to graviton-like states as monopole
flux tubes containing fermion pairs with rotational angular momentum L = 1. There are
however several objections against this idea.

Hk, generalizing the Higgs field, contains M4 part Mk and CP2 part Sk. Sk behaves
like Higgs field and the M4 part looks like a plausible candidate for graviton. Hk is concen-
trated at the singularities of space-time as a minimal surface and vanishes elsewhere and is
identifiable as a generalized acceleration. The bosonic field equations imply that the vertex
generalizes Newton’s ”F=ma” and gives rise to the TGD counterpart of Einstein’s equations.
The interpretation of graviton in terms of a generalized acceleration would conform with the
Equivalence Principle.

The second question considered in this article is whether gravitons can be detected in
the TGD Universe. It turns out dark protons at the monopole flux tube condensates give rise
to a mild optimism in this respect.

1 Introduction

Consider first the general view of elementary particles and vertices in the TGD framework.

1. All elementary particles are identified as closed monopole flux tubes having parts at two
Minkowskian space-time sheets connected by Euclidean wormhole contacts and carrying
fermion lines at the light-like orbits of partonic 2-surfaces defining the interfaces between
Minkowskian space-time sheets and an Euclidean wormhole contact. Fermionic lines corre-
spond to the boundaries of string world sheets connecting different partonic orbits.

2. Only fermions are fundamental particles and bosons are bound states of fermions and an-
tifermions. The basic objection is that fermion pair creation is impossible and fermion and
antifermions are separately conserved. The solution of the problem is that the vertices
for boson emission are analogous to their counterparts of quantum field theories in external
classical fields and reduced to a creation of a fermion pair [L12].

The original TGD based proposal was that fermion spin gives the spin of graviton so that it
would correspond to a closed monopole flux tube carrying a pair of fermion-antifermion pairs.
One can also consider the proposal that graviton corresponds to a spin S = 1 boson associated
with a rotating closed monopole flux tube and having rotational angular momentum L = 1 so
that a J = 2 state would be the outcome.

There are several candidates for the spin 1 particle serving as a building block of graviton.

1. M4 spinor connection has a vielbein part which can be however eliminated in linear M4

coordinates. M4 Kähler structure, or Hamilton-Jacobi structure [L13] as I call it, forced by
the twistor lift of TGD [L3, L4], gives a U(1) contribution to the M4 spinor connection, which
couples to fermion number. It could contribute to the electroweak U(1) gauge potential or
define an independent gauge field at QFT limit.
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2. The trace of the second fundamental form as a generalization of the Higgs field has an M4

part which has spin 1 and is the most plausible candidate for graviton.

The fundamental vertices involve the splitting of closed string-like flux tubes representing
elementary particles.

1. The Equivalence Principle at quantum level would state that the minimal surface property
fails only at the singularities and that vertices for fermion pair creation and gauge boson and
graviton emission correspond to singularities. One could say that acceleration is associated
only with the singularities and the motion at quantum level for a particle as 3-surfaces is a
generalization of Brownian motion. Fermion pair creation as a turning of fermion backwards
in time would correspond to this kind of singularity.

2. The proposal is that singularities are at most 2-D delta function type singularities assignable
to the 3-D light-like partonic orbits at which the 4-metric is effectively 2-dimensional if
holography= generalized holomorphy hypothesis holds true. This means that space-time
surfaces are roots of two generalized holomorphic functions of H coordinates, one of which
is light-like coordinate and the other three are complex coordinates. The singularities
are analogous to poles so that the induced metric has also diagonal components in the
generalized complex space-time coordinates consisting of light-like coordinate and complex
coordinate identifiable as a subset of the generalized complex coordinates for H.

3. Singularities involve singular points at which a fermion pair is created (fermion turns
backwards in time) and could be seen as intersections of representatives of 2-D homology
equivalence classes identifiable as partonic 2-surfaces and involving points at which a closed
monopole flux tube splits to two.

4. Exotic smooth structures [A2, A3, A1], which emerge first in dimension four and mean a grave
difficulty for general relativity, can be seen as the standard smooth structure with defects
and the conjecture is that the vertices as singularities correspond to these defects [L7]. The
intersection form of the 4-manifold detects the exotic smooth structures and has a central
role in 4-topology. The vertices would correspond to the defects of ordinary 4-D smooth
structure making possible a theory allowing a creation of fermion pairs and I ended up with
a proposal for the construction of gauge boson emission vertices [L12]. Space-time dimension
would be the only possible space-time dimension.

There would be two kinds of vertices assignable to the singularities.

1. A term proportional to the trace Hk of the second fundamental form has delta function
behavior the singularities. Its CP2 part Sk behaves like Higgs whereas the M4 part Mk

is analogous to spin 1 particle. Bosonic field equations express Hk having interpretation
as acceleration in terms of various generalized forces associated with gauge interactions.
This equation generalizes Newton’s ”F=ma” and defines a counterpart for Einstein’s
equations. Graviton as a generalized acceleration at singularities codes for a very strong
form of the Equivalence Principle and also the vision that the theory is free outside the
singularities. Indeed, minimal surface equations correspond to massless field equations and
minimal surface to a generalization of light-like geodesics.

2. Also the induced spinor connection develops a delta function behavior at the singularity
since the diagonal components of the induced metric in generalized complex coordinates are
non-vanishing and develop delta function singularity.

The second question considered in this article is whether gravitons can be detected in the
TGD Universe. It turns out dark protons at the monopole flux tube condensates give rise to a
mild optimism in this respect.

2 Brief summary of some basic ideas of TGD

In this section some background of classical and quantum TGD is described and also the question
what gravitons are is considered.
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2.1 Recent view of classical TGD

Before continuing, it is good to summarize the basic view about classical TGD as it is now.

1. In the TGD framework, one can understand classical gravitation in terms of the induced
geometry of the space-time surface X4 ⊂ H = M4 × CP2. The gravitational constant G
should be determined by the square of the CP2 radius R ∼ 104lP , l2P = G~. If one accepts
the hierarchy of Planck constants heff = nh0 predicted by the number theoretical vision
about TGD [L17], the effective radius of CP2, which is about 104 Planck lengths, would be
apart from a numerical scale factor near unity R2

eff = (~eff/h0)l2P .

2. Embeddability to H and the holography forced by the general coordinate invariance, implying
that space-time surfaces are analogs of Bohr orbits, poses extremely strong constraints on the
space-time surfaces so that they cannot directly correspond to the Einsteinian space-time.

The QFT limit of TGD is obtained by replacing the many-sheeted space-time surface with a
single metrically deformed region of M4 such that gauge potentials are sums of the induced
gauge potentials for the space-time sheets. Same applies to the deviations of the induced
metric from the M4 metric. This picture applies in long length scales in which Einsteinian
view of space-time works [L11, L12, L15].

3. Holography is realized as a generalized holomorphy [L17, L19]. The twistor lift of TGD [L3,
L4, L13] leads to the proposal that M4 has a generalized Kähler structure, which combines
ordinary complex structure and hypercomplex structure to its 4-D generalization so that H
also allow generalized complex structure with 1 hypercomplex (light-like) coordinate and 1
complex coordinate for M4 and two complex coordinates for CP2. I have christened this
generalization of the complex structure as Hamilton-Jacobi structure [L13]. A good guess
is that there is a moduli space of Hamilton-Jacobi structures and in the first guess locally
equal to a Cartesian product of the moduli space of ordinary complex structures and its
hyper-complex analog.

The generalized complex structure corresponds to the slicings of M4 and X4 by complex
partonic 2-surfaces and hypercomplex string world sheets which are transversal or possibly
even orthogonal locally.

2.1.1 About the bosonic action

The action associated with the singularities involves singular terms coming from the action defining
the space-time surfaces as 4-D Bohr orbits. One could also assign a lower-dimensional action with
the singularities as independent action. For instance, Chern-Simons-Kähler (C-S-K) action can
emerge from the Kähler or appear as an independent action. Fermion lines can involve a 1-D Dirac
action coupled to induced gauge potentials and string world sheets can involve separate action. It
is not clear whether these all actions could emerge from a 4-D action at the singularities.

One can consider several options assuming that the exotic smooth structure can be regarded
as an ordinary smooth structure with defects identifiable as singularities. One can consider several
options depending on what the role of the instanton terms associated with the Kähler form is.
Instanton terms gives C−S−K boundary terms with an apparent violation of U(1) gauge invari-
ance (which actually corresponds to symplectic invariance as an approximate symmetry broken by
gravitation). Therefore Kähler function can contain this term as a real contribution. Here only
the most plausible option is considered.

Consider the bosonic action in more detail.

1. The exponential of the modified Dirac action is assumed to be imaginary and analogous to
the phase defined by the action in QFTs. Unlike in gauge theories, the vacuum functional is
a real exponent of the Kähler function identified as a purely classical bosonic action. This
is possible since bosons are not primary quantum fields but expressible as bound states of
fundamental fermions and antifermions.

2. Instanton term gives rise to a C − S − K term associated with 3-D singularities. For the
representations of Kac-Moody algebras, the coefficient of Chern-Simons action is k/4π and
allows an interpretation as quantization of αK as αK = 1/k.
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3. Volume action giving rise to cosmological constant is in a very special role in that it represents
both the classical dynamics of particles as 3-D surfaces as analogs of geodesic lines, the
classical geometrized dynamics of massless fields, and generalizes the Laplace equations of
complex analysis.

4. The real exponential exp(K) of the real Kähler function defined by SK + SV would be
visible in the WCW vacuum functional and bring in an additional dependence on the αK
and cosmological constant Λ, whose number theoretic evolution would fix the evolution of
the other coupling strengths. Note that the induced spinor connection corresponds in gauge
theories to gauge potentials for which the gauge coupling is absorbed as a multiplicative
factor.

2.1.2 Chern-Simons-Kähler action

The status of Chern-Simons-Kähler (C-S-K) action is not clear. It would result from the instanton
term for the Kähler action. It if taken to be real as also the remaining part of the action it can
contribute to Kähler function and the exponent of vacuum functional. If it is taken imaginary
it does not contribute to the Kähler function its exponential and defines a complex phase of the
vacuum functional.

1. At the first look, in the TGD framework Chern-Simons-Kähler action is the only possible
action for 3-D light-like surfaces representing light-like orbits of partonic 2-surfaces appearing
as interfaces of Euclidean and Minkowskian space-time regions or as boundaries of space-time
surfaces. This first guess turns out to be too naive: the fact that minimal surface property
fails at the singularities changes the situation.

Irrespective of whether the instanton term is real or not, one can assume that the field
equations expressing conservation of various charges are satisfied. If it is real, the boundary
conditions allow the flow of interior Noether charges and complex charges to the boundary
or interfaces. Otherwise there is no flow to the boundary.

At these 3-surfaces 4-D induced metric degenerates to an effectively 3-dimensional metric.
The twistor lift of TGD suggests that C − S − K action involves contributions from both
CP2 and M4 allowing a generalized Kähler structure [L13]. The M4 contribution allows the
assignment of non-vanishing Poincare charges to C − S −K action.

2. By its topological nature, C − S − K action does not involve the induced metric at all.
The interior part of action makes itself visible in boundary conditions stating that quantum
numbers do not flow out through boundaries and are conserved at light-like interfaces between
regions of space-time surface with Euclidean and Minkowski signature [L8].

3. Modified Dirac action for the entire action would contain the fermionic counterpart of
C − S − K action, determined uniquely by consistency arguments predicting a far reach-
ing generalization of superconformal symmetry and related Kac-Moody symmetry is used to
describe all interactions at elementary particle level [K3] [L19]. If will be however found that
the vertices at the singularities are defined by the volume part of the action but expressible
in terms of the remaining parts of the action.

Modified C−S−K Dirac action involves couplings to the induced electroweak gauge poten-
tials. The covariant derivatives contain the CP2 spinor connection determined by the CP2

metric. CP2 scale appears as a counterpart of Planck length and could be equal to Planck
length for the minimal value of effective Planck constant heff = nh0. Also the M4 part
associated with the generalized Kähler structure is present if one accepts a twistor lift of
TGD.

4. The light-like surface can also contain many-fermion states and I proposed for a long time ago
that at the fundamental level FQHE (Fractional Quantum Hall Effect) type systems could
correspond to the nanoscopic analogs of partonic 2-surfaces carrying a very large number of
electrons [K2]. One possibility is that the partonic surface contains a very large number of
handles behaving like particles but this is not the only possibility.



2.2 The failure of the minimal surface property at singularities 8

The couplings of this kind of systems to gauge bosons and gravitons would be described as
in the case of elementary particles. One would have a sum over scattering amplitudes and
quantum coherence would apply. 2-dimensionality would be essential and would raise FQHE
type systems in a special role.

2.1.3 About the modified Dirac action

If the bosonic field equations are true at singularity and modified Dirac action is determined by the
entire bosonic action, there would be no singularities and vertices since modified Dirac equation
would be true everywhere. The solution of the problem is that the modified Dirac action involves
only the volume term so that the modified gamma matrices are just induced gamma matrices,
which indeed looks very natural.

This motivates the consideration of the proposal that only the induced gamma matrices Γα =
gαβhkβγk (no contribution from LK) corresponding to SV appear in LD and the bosonic action
SB = SK + SV + SI , where the instant on term SI , reducing to a Chern-Simons-Kähler term, is
real, is defined by the twistor lift of TGD.

1. If the field equations are satisfied also at the singularities, the contributions from SK+SI and
SV cancel each other at the singularity in accordance with the idea that an exotic smooth
structure is in question. Both SK and SI contributions would have an imaginary phase.

2. LV , which involves cosmological constant Λ, would disappear from the scattering amplitudes
by the field equations for LB although it is implicitly present. The number theoretic evolution
of the SK + SI would make itself visible in the scattering vertices. Outside the singulari-
ties both terms vanish separately but at singularities this is not the case. Only lower-D
singularities contribute to the scattering amplitudes.

The number theoretical parameters of the bosonic action determined by the hierarchy of
extensions of rationals would parametrize different exotic smooth structures and make them-
selves visible in the quantum dynamics in this way. SI would contribute to classical charges
and its M4 part would contribute to the Poincare charges.

3. An objection against this proposal is that the divergence of the modified gamma matrices
defined by the SK + SI need not be well-defined. It should be proportional to a lower-
dimensional delta function located at the singularity.

2.2 The failure of the minimal surface property at singularities

The failure of the minimal surface property at the singularities implied by generalized holomorphy
implies an interesting and, as it seems, important delicacy. Since the contribution of the volume
part of action gives a delta function like singularity also the contribution of other parts of the
action give a delta function like singularity since otherwise the field equations would not be sat-
isfied everywhere. This implies that the trace of the second fundamental form, call it Hk, at the
singularity equals apart from the sign to the similar contribution of the parts of the action. This
is nothing but the analog of Newton’s equations with Hk representing acceleration for a particle
as 3-surface.

What about modified Dirac action at singularity? If modified Dirac matrices are defined by
the entire action, Dirac action vanishes and also the divergence of modified matrices vanishes
everywhere. No vertices are obtained. However, if the modified gamma matrices are identified as
induced gamma matrices, their divergence is proportional to Hk contracted with ordinary gamma
matrices and is by field equations equal to the divergence associated with the remaining terms in
the action. This vanishes everywhere except at the singularities. This is like Newton’s equation.
Could this give rise to fermionic vertices?

Hk has CP2 part, which behaves group theoretically like a Higgs field. The M4 part behaves
like a spin 1 field. Gauge-gravitation duality of QFTs due to holography states that gauge theory
at the boundary corresponds to gravitation in the interior. Does this mean that the spin one
particles at the singularities acting as a source of Hk give rise to gravitation in the interior. Could
gravitons correspond to monopole flux tubes, which carry spin 1 fermion-antifermion states at the
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wormhole throats? Could the rotation of the monopole flux tubes give rise to an additional spin
so that graviton is obtained as J = 2 state.

2.2.1 About the singularities of the bosonic action

The Hamilton-Jacobi structure [L13] implies the existence of generalized complex coordinates
(u, v, w,w) of space-time as a subset of similar coordinates of H.

1. At the singularities generalizing the poles of analytic function the minimal surface property
fails and the action is expected to give a singular delta function type contribution. This
contribution should give rise to the scattering amplitudes. The failure of generalized holo-
morphy is analogous to that of 2-D holomorphy. The latter means that the pole of the action
of Laplacian of the analytic function develops a delta function so that ∂z∂zf is proportional
to a delta function rather than vanishing. In a cut f in turn develops a discontinuity.

2. There are 3 kinds of pole-like singularities associated with light-like partonic orbits. The
pole at u = u0 gives a 3-D light-like partonic orbit. The pole at z = z0 gives a string
world sheet, whose boundary intersects the partonic orbit along the fermion line. The pole
at (u, v) = (u0, v0) gives a partonic 2-surface with a vertex interpretation. The pole with
(u, z) = (u0, z0) gives a fermionic line as the boundary of the string world s000heet. The pole
(u, v, z) = (u0, v0, z0) gives a point-like singularity which could correspond to the turning of
the light-like fermion line. At least turning back in the time direction is possible.

3. The cuts for partonic 2-surfaces would mean that the H complex coordinates as function
of (u, v, w,w) are discontinuous and this implies multiple covering property. These kinds
of singularities could correspond to the non-minimal values of the effective Planck constant
identified as a dimension of an extension of rationals. The roots of polynomials defining the
space-time surfaces as holomorphic imbeddings indeed define multiple coverings. These cuts
are possible both in CP2 and M4 degrees of freedom. In the CP2 (M4) case M4 (CP2)
coordinates as functions of CP2 (M4) coordinates are many-valued.

4. In CP2 case multiple coverings of M4 analogous to those for Riemann surfaces would mean
surfaces for which closed paths around the singularity turn the singularity several times.
Anyons could correspond to this kind of singularities [K2]. In the M4 case, the space-
time surface could consist of a larger number or parallel monopole flux tubes behaving as a
quantum coherent unit with a very large value of heff .

2.2.2 What singularities can correspond to vertices for fermion pair creation?

It is not clear whether all singularities have an interpretation in terms of exotic smooth structures.
The physical criterion would be that the creation of a fermion pair takes place at the defect and
that the minimal surface property fails. Fermions can correspond to induced spinor fields and
fermion pairs could be created at surfaces of dimension d < 4.

1. For closed two-sheeted cosmic strings and monopole flux tubes, which split by reconnection,
the interpretation makes sense and means a generalization of the basic vertex for closed
strings. These objects can be 2-sheeted as elementary particles in which case the reconnection
would occur in the direction of CP2. If they are single sheeted, the reconnection would occur
in the direction of M4.

2. 3-D light-like light-partonic orbits appearing as interfaces between Euclidean and Minkowskian
space-time regions and as boundaries of space-time surfaces are singularities [L8]. Boundary
conditions state that the possible flows of conserved charges from the interior go to the par-
tonic orbit so that the divergence of the Chern-Simons-Kähler canonical momentum current
coming from instanton term equals to the sum of the normal components of the canonical
currents associated with Kähler action and volume term.

(a) Chern-Simons action at the light-like partonic orbit coming from the instanton term is
well-defined and finite and field equations should not give rise to a singularity except
possibly at partonic 2-surfaces, which have been identified as analogs of vertices at which
the partonic 2-surface X2 splits to two.
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(b) At the light-like partonic orbit 4-metric has a vanishing determinant and is therefore
effectively 2-D (the light-like components of guv = gvu of the 4-metric vanish). As a
consequence,

√
g4 vanishes like L2 at the partonic orbit unless some coordinate gradients

diverge.

The canonical momentum currents for the volume action are proportional to the con-
travariant induced metric appearing in the trace of the second fundamental form di-
verging like 1/L2 and to

√
g so that they remain finite.

(c) Kähler action contains the contravariant metric twice and is proportional to
√
g4. This

can give rise to a divergence of type 1/L2 unless the boundary conditions make it finite. I
have proposed that the electric-magnetic self-duality at the partonic orbit can transform
the Kähler action to an instanton term giving Chern-Simons Kähler term. In this case,
a separate instanton term would not be needed. In this case everything would be finite
at the partonic orbit. Minimal surface property fails in a smooth manner.

The intuitive picture is that the contributions from the normal currents at the partonic
orbit and the Chern-Simons term cancel each other and the partonic orbit cannot play
a role of a vertex.

(d) The possible presence of 1/L2 divergence could however give rise to a 2-D defect and
genuine vertex. If it is identified as a creation of a pair of partonic 2-surfaces, the
interpretation in terms of a creation of a fermion pair is possible and could be assigned
to the splitting of a monopole flux tube.

In accordance with the QFT picture, I have considered the possibility that the 2-D vertex
could correspond to a branching of a partonic orbit. In the recent picture it would be
accompanied by a creation of a fermion pair. The stringy view however suggests that
pair creation occurs in the creation of partonic orbits in the splitting of monopole flux
tubes. The stringy view is more attractive.

3. I have also proposed that 1-D singularities identifiable as boundaries of string world sheets
and identifiable as fermion lines at the partonic orbits are important. The creation of a pair
of fermion lines would give rise to the analogs of gauge theory vertices as 0-D singularities. It
is however far from clear whether the stringy singularities are actually present and whether
they could correspond to exotic smooth structures. One can imagine two options.

(a) There are no string world sheets. Monopole flux tubes can be regarded as deformations
of cosmic strings. Instead of strings several monopole flux tubes can emerge from a
wormhole contact. For the minimal option, monopole flux tubes, CP2 type extremals,
and massless extremals as counterparts of radiation fields are the basic extremals and
the splitting of monopole flux tubes gives rise to vertices as defects of the ordinary
smooth structure.

(b) String world sheets appear as singularities of the monopole flux tubes or even more
general 4-surfaces and are analogous to wormhole contacts as blow-ups in which a point
of X4 explodes to CP2 type extremal. I have indeed proposed that a blow-up at which
the points of the string world sheet as surfaceX2 ⊂ X4 are replaced with a homologically
non-trivial 2-surface Y 2 ⊂ CP2 takes place. Y 2 could connect two parallel space-time
sheets. Could these singularities correspond to defects of exotic smooth structures such
that the ends of the string carry fermion number? The vertex for the creation of a pair
of fermion and antifermion lines would correspond to a diffeo defect. Note that also
these defects could reduce to a splitting of a monopole flux tube so that TGD would
generalize the stringy picture.

2.3 How to handle the interfaces between Minkowskian and Euclidean
regions of space-time?

The understanding of how vertices can emerge as singularities requires the treatment of the
dynamics at the interfaces X3 between Minkowskian and Euclidean regions X3 of the space-
time surface identified as light-like partonic orbits. This is a difficult technical problem. The vision
is that by holomorphy as a realization of generalized holography, the 4-metric at X3 degenerates
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to 2-D effective Euclidean metric apart from 2-D sub-singularities X2 at which the generalized
holomorphy fails.

One must treat both the bosonic and fermionic situations.

1. The densities of both volume action and Kähler action vanish at X3 whereas C-S-K action
density is non-vanishing. The canonical momentum densities appearing also in gamma ma-
trices involving the singular contravariant metric have a has 2-D delta function singularity
field equations are satisfied due to the generalized holomorphy except at X2.

2. For the modified Dirac action, the modified gamma matrices have 2-D delta function singu-
larity at X3 but their divergences vanish by the holomorphy outside X2f or each part of the
action separately.

The simplest way to make sense of the modified Dirac equation at X3 is to assume that the
covariant derivatives of the induced spinor field with respect to the light-like coordinates u
and v vanish at X3 except at X2.

At X2 one would obtain effectively a 3-D delta function source analogous to a pole of an
analytic function and giving rise to a vertex. The analogy with the 2-D electrostatics where
point charges correspond to poles of analytic functions is obvious.

There are two options for the treatment of the interface dynamics.

1. The interface X3 is regarded as an independent dynamic unit and carrier of charges. The
earlier approaches rely on this assumption. By the light-likeness of X3, C-S-K action is
the only possible option and is indeed non-vanishing at X3. The problem with U(1) gauge
invariance disappears if C-S-K action is identified as a total divergence emerging from the
instanton term for Kähler action.

One can assign to the instanton term a corresponding contribution to the modified Dirac
action at X3. It however seems that the instanton term associated with the 4-D modified
Dirac action does not reduce to a total divergence allowing to localize it a X3.

In this approach, conservation laws require that the normal components of the canonical
momentum currents from the Minkowskian and Euclidean sides add up to the divergence of
the canonical momentum currents associated with the C-S-K action.

2. Since the interface is not a genuine boundary, one can argue that one should treat the
situation as 4-dimensional. The interface would not be a carrier of charges. This approach
is adopted in this article. In the bosonic degrees of freedom, the C-S-K term is present
also for this option and could determine the bosonic dynamics of the boundary apart from
a 2-D sub-singularities coming from the violation of the minimal surface property and of
the generalized holomorphy. At vertices involving fermion pair creation this violation would
occur.

In the 4-dimensional treatment there are no analogs of the boundary conditions at the interface.

1. It is essential that the 3-D light-like orbit X3 is a 2-sided surface between Minkowskian and
Euclidean domains. The variation of the C-S-K term emerging from a total divergence could
determine the dynamics of the interface except possibly at the singularities X3, where the
interior contributions from the 2 sides give rise to a 2-D delta function term.

2. The contravariant metric diverges at X3 since by holomorphy one has guv = 0 at X3 outside
X2. For the same reason the divergences of canonical momentum currents vanish outside
X2.

One can however consider stronger condition Juv = 0 at X3 outside X2, which could
guarantee that the contribution of the Kähler action remains finite. The contribution from
Kähler action to field equations could be even reduced to the divergence of the instanton
term at X3 by what I have called electric-magnetic duality proposed years ago [K1]. At
X3, the dynamics would be effectively reduced to 2-D Euclidean degrees of freedom outside
X2. Everything would be finite as far as modified gamma matrices associated with the Kähler
action outside X2 are considered.
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3. Since the metric at X3 is effectively 2-D, the induced gamma matrices are proportional to
2-D delta function. If Juv = 0 condition (, which is not necessary) is true, the contribution
of the volume term to the modified gamma matrices dominates over the finite contribution
of the Kähler action outside X2.

In order to obtain the counterpart of Einstein’s equations the metric must be effectively 2-D
also at X2 so that det(g4) = 0 is true although holomorphy fails. It seems that one must
assume induced, rather than modified, gamma matrices (effectively reducing to the induced
ones at X3 outside X2) since for the latter option the gravitational vertex would vanish by
the field equations. The induced gamma matrices anticommute to the induced metric unlike
the modified gamma matrices so that they are arguably a natural choice.

What raises worries is that the vanishing of the covariant divergence of modified gammas,
which guarantees hermiticity of the modified Dirac operator, is not true for the induced
gamma matrices. The situation is therefore very delicate and I cannot claim that I under-
stand it sufficiently. It seems that the edge of the partonic orbit due to the turning of the
fermion line and involving hypercomplex conjugation is essential.

4. For the modified Dirac equation to make sense, the vanishing of the covariant derivatives
with respect to light-like coordinates seems necessary. One would have DuΨ = 0 and
DvΨ = 0 in X3 except at the 2-D singularities X2, where the induced metric would have
non-vanishing diagonal components guu and gvv. This would give rise to the gauge boson
vertices involving emission of fermion-antifermion pairs.

5. By the generalized holomorphy, the second fundamental form Hk vanishes outside X2.
At X2, Hk is proportional to a 2-D delta function and also the Kähler contribution can
be of comparable size This should give the TGD counterpart of Einstein’s equations and
Newtonian equations of motion and to the graviton vertex.

The orientations of the tangent spaces at the two sides are different. The induced metric at
the Minkowskian side would become 4-D. At the Euclidean side it could be Euclidean and
even metrically 2-D.

The overview about symmetry breaking through the generation of 2-D singularities is sugges-
tive. Masslessness and holomorphy are violated via the generation of the 8-D analog of Higgs
expectation at the vertices. The use of the induced gamma matrices violates supersymmetry
guaranteed by the use of the modified gamma matrices but only at the vertices.

The basic objection is that the use of the induced gammas in the modified Dirac equation seems
necessary although the non-vanishing of Hk seems to violate the hermiticity at the vertices. Can
the turning around of the fermion line and the exotic smooth structure allow to get rid of this
problem?

2.4 About the QFT limit of TGD

Just for fun, one can also look at the situation from the point of view of Einstein-Yang-Mills
type theory, which should emerge as the QFT limit of TGD at which space-time surface can be
assumed to have a 4-D M4 projection so that the modelling of the many-sheeted space-time surfaces
as slightly curved M4 should make sense. The gauge potentials would correspond to the sums of
the induced gauge potentials for various space-time sheets. Same would apply to the deviation of
the metric from the M4 metric.

One expects that in the case of effectively 2-D systems, the light-like partonic orbits cannot be
completely eliminated even at this limit and FQHE systems could represent systems of this kind.
In elementary particle length scales they could be replaced by point-like particles but in the case
of multi-electrons states at nanoscopic parton surfaces this does not work.

What happens to the curvature scalar at the limit when the induced 4-metric becomes effectively
3-D?

1. The induced covariant 4-metric becomes degenerate at the partonic orbit and the contravari-
ant metric has some divergent components.

√
−g4 vanishes at this limit like 1/L, L→ 0.
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2. The curvature tensor Rαβγδ has dimension zero and could remain finite. Ricci tensor Rαβ and

Einstein tensor Gαβ could diverge like 1/L4. Curvature scalar could diverge like 1/L2. If
Einstein’s equations hold true, the energy momentum tensor is proportional to the Einstein
tensor and could diverge like 1/L4. Multiplied with

√
−g it would diverge like 1/L3. This

suggests that the limit gives the analog of Chern-Simons-Kähler action or its QFT analog as
a delta function like singularity. The modified Dirac action should also have a counterpart,
which could be finite since it has vanishing dimension.

3 About the identification of gravitons in the TGD Universe

TGD leads to the identification of all elementary particles in terms of closed monopole flux tubes
associated with pairs of two parallel space-time sheets. The Euclidean wormhole contacts at the
”ends” of the flux tube correspond to light-like orbits of partonic 2-surfaces and would carry
point-like fermions serving as building bricks of all elementary particles. In the case of particles
with spin smaller than 2, either wormhole contact can carry the spin and electroweak quantum
numbers and second wormhole contact possibly carries a neutrino pair neutralizing the weak isospin
so that one has a weak analog of confinement. There are also closed half-monopole flux tubes
having boundaries [L20] and both these and monopole flux tubes with closed cross section could
be important in superconductivity [L2].

3.1 Graviton as a fermion antifermion pair?

The proposal has been that graviton spin reduces to fermionic spin so that both wormhole contacts
should carry a fermion pair with spin 1. These kinds of states might well exist but in this picture
it is difficult to understand how the expected value of the gravitational constant is coded to the
structure of the state formed by the two spin 1 fermion pairs. The second problem is that it is not
obvious how the Equivalence Principle could be realized at the level of gravitons in this picture.

The assumption of two fermion pairs is not necessary if the monopole flux tube rotates. One
could have fermion and antifermion at the wormhole contacts defining the ends of this string-like
object. Angular momentum L = 0 would give bosons with spin 0 and 1. L = 1 would allow bosons
spin 2, 1, and 0 and L = 2 would allow bosons with spin 3, 2, 1. At least formally, this picture
would conform with the holography and the idea that gauge theory at boundaries corresponds to
gravitation in the interior.

The M4 part of the trace of the second fundamental form and M4 Kähler gauge potential are
the natural candidates for defining graviton-like state in this way.

1. The graviton candidate in question should couple in the same way to all fermions and there-
fore to fermion number. The objection is that, unlike gravitons, gauge bosons couple with
opposite signs to fermions and antifermions. Could the rotation of the monopole flux tube
cure the problem?

2. A further condition is that graviton couplings are proportional to four-momenta. If graviton
corresponds to the ordinary spin 1 gauge boson in the proposed way, the rotational motion
should give rise to this dependence.

3. One should also understand the value of gravitational constant. The M4 part of the second
fundamental form is the most natural candidate and has a delta function singularity at the
singularities of space-time surfaces as minimal surfaces. At these surfaces also the generalized
holomorphy fails.

3.2 About the physical interpretation of the trace of the second funda-
mental form

The trace of the second fundamental form, which can be regarded as an analog and a generalization
of the Higgs field of the standard model, has a delta function like singularity at the singularities
of the space-time surface at which the minimal surface property fails.
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1. The divergence of gµν∂ν vertex as the trace of the second fundamental form Hk ≡ Dαh
kβ

defined by the covariant derivatives of coordinate gradients, appears in the vertex. The
second fundamental form Hk is orthogonal to the space-time surface and can be written as

Hk ≡ gµνDν∂µh
k = P kl H

l
0 , P kl = hkl − gµνhkµhlrhrν ,

Hk
0 = gαβ(∂α +Bkα)(gαβhkβ , Bkα = Bklmh

m
α .

(3.1)

P kl projects Hk
0 to the normal space of the space-time surface. Hk

0 is covariant derivative of
hkα and Bkα = Bklmh

m
α is the projection of the Riemann connection of H to the space-time

surface.

2. In linear Minkowski coordinates for M4, the induced M4 vielbein connection vanishes: Bkα =
0 and the direct M4 contribution to the M4 part of the trace of the second fundamental
form vanishes Mk

0 = 0. However, the presence of the CP2 contribution coming from the
orthonormal projection implies that Mk is non-vanishing and proportional to the radius
squared of CP2. This is expected to give rise to a vertex that is proportional to Hk, whose
CP2 part, call it Sk, is analogous to the Higgs field of the standard model.

This field is vanishing in the interior by the minimal surface property in analogy with the
generalized Equivalence Principle. M4 part, call it Mk, with spin 1 property would also
vanish in the interior and could contribute to the graviton vertex if the corresponding particle
corresponds to a rotating monopole flux tube with L = 1. The quantum variant of the
Equivalence Principle would be extremely strong.

Hk is a generalization of acceleration from 1-D case to 4-D situation so that the interaction
vertices are lower-dimensional regions of the space-time surface which experience accelera-
tion. The regions outside the singularities represent massless fields geometrically. At the
singularities the Higgs-like field is non-vanishing so that there is mass present. The analog
of Higgs vacuum expectation is non-vanishing only at the defects.

3.2.1 Could the trace of the second fundamental form be enough?

Gauge-gravitation duality forces to ask whether generalized Higgs Hk as the trace of the second
fundamental define a universal vertex? This would be extremely nice but does not look plausible.
The proposal that the electroweak gauge potentials and M4 Kähler gauge potential defined gauge
theory vertices [L12] looks more plausible.

1. The trace of the second fundamental form Hk is expressible in terms of the divergence of
the remaining contribution to the action is present giving the TGD counterpart of sum over
gauge currents. Gravitational-gauge theory duality would suggest that this is enough.

The analogous contribution in gauge theory is proportional to the divergence of canonical
momentum current and therefore gauge current and would indeed make sense. Now gauge
potentials as dynamical variables are replaced with H coordinates and the contribution from
Kähler action involves a term proportional Kähler gauge current jα contracted with a quan-
tity proportional to J β

α (hkβ − Jklhlβ). This term can be non-vanishing if jα is non-vanishing.
For massless extremels jα is light-like. Also the contribution from energy momentum tensor
expressible as TαβHk

αβ is present in the vertex.

2. It is however no need to express the trace of the second fundamental form in this way.
Furthermore, the fermionic couplings at singularity coming from Kähler action involve only
Kähler form. At the vertices there would be no couplings to electroweak charges and therefore
no parity violation. The electroweak couplings are present in the modified Dirac equation,
which in turn induced from the massless Dirac equation at the level ofH involving electroweak
gauge couplings gauge potentials. Second quantized fermions defining fermion propagators
obey electroweak dynamics. Is the appearance of electroweak interactions at the level of H
enough? If this picture is correct, generalized Higgs could be indeed called the God particle.
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3. One could replace Kähler action in CP2 degrees of freedom with electroweak action based
on spinor connection to get the couplings to electroweak gauge currents without changing
the situation. Now the counterparts of the bosonic electro-weak currents would appear in
the vertices as they appear in YM theory. But again the couplings could be expresses solely
in terms of the generalized acceleration and there would be independence on variational
principle in this sense. The vacuum functional as exponent of Kähler function of WCW
could however depend on the action.

4. The original intuitive expectation [L12] was that the vertex should contain a singular contri-
bution proportional to the induced spinor connection, present also if the volume term defines
the modified Dirac action, and giving rise to the analogs of gauge theory vertices is expected
on the basis of physical intuition [L12]. In CP2 degrees this would give rise to electroweak
vertices.

In M4 degrees of freedom, the vielbein part of the spinor connection can be eliminated in
linear M4 coordinates but the M4 Kähler form gives rise to a U(1) gauge potential. Does
this contribution give an additional contribution to the electroweak U(1) gauge potential,
a new U(1) force, or a graviton-like state in the same way as Mk. The first option looks
at first implausible since it is not clear how the R2 proportionality of the coupling could
emerge. Note however that the vertices correspond to partonic 2-surfaces. I have considered
the possibility that the M4 Kähler form could give rise to a CP violation.

It however seems that it is not possible to obtain this coupling at the singularity.

A little technical remark is in order. The modified Dirac action must be dimensionless so that
the scaling dimension of the induced spinors should be d = −3/2 and therefore the same as the
scaling dimension of M4 spinors. This looks natural since CP2 is compact. The volume term
included in the definition of the induced gamma matrices must be normalized by 1/L4

p. Lp is
a p-adic length scale and is roughly of order of a biological scale Lp ∼ 10−4 meters if the scale
dependent cosmological constant Λ corresponds to the inverse squared for the horizon radius. One
has 1/L4

p = 3Λ/8πG. This guarantees the expected rather slow coupling constant evolution induced
by that of αK diverging in short scales.

3.2.2 Could the trace of the second fundamental form unify Higgs and graviton?

The CP2 part of the second fundamental form has quantum numbers of the Higgs field of the
standard model. The M4 part in turn contains a term proportional to the square of CP2 radius
identifiable as Planck length for the minimal value of heff = nh0. The effective value CP2 radius

scales
√
heff/h0.

One can start from the following tentative physics inspired picture.

1. The vertex which corresponds to a d < 3-dimensional surfaces as a defect of the standard
smooth structure and as singularity of the space-time as minimal surface. At it the trace of
the second fundamental form, vanishing elsewhere, has a delta function like singularity. The
M4 part of the trace is spin 1 object and a natural guess is that it corresponds to gravitaton.

2. In linear M4 coordinates, only the contribution from CP2 degrees of freedom to it is non-
vanishing and proportional to CP2 radius squared having interpretation in terms of Newton’s
constant. Could a rotating flux tube having angular momentum L = 1 and carrying M4 Higgs
with spin 1 at the wormhole throat give rise to gravitons as a fermion-antifermion pair and
having J = 2?

3. The field equations for SB are satisfied at the vertex so that the trace of the second funda-
mental form can be expressed in terms of divergences of the canonical momentum currents
associated with the Kähler and instanton parts of SB . This is essentially generalization of
Newton’s equation and the TGD counterpart of geodesic equations of motions in general
relavity for particles as 3-surfaces and experience accelerations concentrated at the lower-
dimensional vertices.

Note that also the covariant divergences for the canonical momentum currents of a more general
action than volume term, having group theoretical properties of Higgs field in CP2 degrees of
freedom, could appear in the vertex and would be slashed between induced spinor and its conjugate.
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3.2.3 Could M4 Kähler form give rise to graviton like state?

Also a second candidate for graviton-lilke state must be considered. The vector bosons defined by
the M4 part of Hk and M4 Kähler form could give rise to graviton-like state if the monopole flux
tube corresponds to L = 1 state.

1. The induced M4 spinor connection contains a U(1) (Kähler) part and vielbein part. The
Kähler part cannot be eliminated by a general coordinate transformation or gauge symmetry
so that it defines a candidate for graviton. Note that instead of a genuine gauge symmetry
one has an M4 analog of symplectic symmetry [L13].

Should the M4 Kähler gauge potential be counted as a contribution to the U(1) gauge
potential of electroweak interactions? Or could it give rise to an independent degree of
freedom at the QFT limit and give rise to graviton?

2. Can the induced M4 Kähler gauge potential produce a realistic quantum theory of grav-
itation? The strongest objection is that in the QFT framework spin 1 fields give repul-
sion/attraction between changes of same/different sign. Whether the L = 1 rotational state
could change the situation is not clear to me. Gravitational-gauge theory duality suggests
this but one must be cautious: spin 2 particle coupling with opposite signs to matter and
antimatter could be in question. On the other hand, the sign of the coupling of the trace
of the second fundamental form to fermions and antifermions is the same that this looks a
more promising option.

In the QFT picture, M4 Kähler gauge potential would correspond to a spin 1 particle.
However, gravitons could correspond to closed monopole flux tubes with L = 1 angular
momentum associated with the rotation of the flux tube and one would obtain a connection
with the string picture. This might relate to the ability to approximate classical gravitation
with a Maxwellian gauge theory using Newtonian gravitational potential as a counterpart of
electric potential.

3. Can one understand the smallness of the gravitational constant for the Kähler option? The
M4 Kähler form gives rise to a spin one particle and that the rotation of the flux tube could
give rise to a massless graviton-like state. The vertex term ΓµAµ, where Aµ denotes M4

spinor connection, contains a contribution from the CP2 gamma matrices proportional to CP2

radius squared and would naturally correspond to graviton coupling. There is however also
a large contribution to the induced metric from the matrices of M4. This contribution would
come from 2-D partonic surfaces as singularities of partonic orbits and the M4 contribution
the metric should be of the same order of magnitude as CP2 metric. This conforms with the
intuitive picture about partonic 2-surfaces.

3.3 Exotic differential structures in 4 dimensions, particle vertices, and
the new view of gravitons

What remains to be understood are the counterparts of the basic vertices of the gauge theory and
quantum gravity.

3.3.1 How to avoid separate conservation of fermion and antifermion numbers?

One can start from a long standing problem of TGD. The idea that all bosons are bound states
of fundamental fermions is extremely nice but leads to a problem: it seems that the creation from
fermion pairs from vacuum is not possible. The numbers of fermions and antifermions appearing
as free particles and building bricks of bosons are separately conserved. The experimental fact is
that fermion and antifermion numbers cannot be separately conserved.

1. The conservation law for the total fermion number can be expressed as a vanishing of the
divergence of the fermion current Jα = ΨΓαΨ

√
g, where Γα are modified gamma matrices

defined in terms of the action.
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2. The vertex serves as a source for the modified Dirac equation since this equation cannot
be satisfied at the vertex. This source must be also proportional to a delta function at
singularity.

3. Intuitively, the pair creation vertex corresponds to a situation in which the fermion line turns
back in time directions. This direction could also be some other direction, and in standard
perturbation theory it could be even space-like, and should be normal to the singularity as
a surface of the space-time surface. This raises the question whether one should identify the
spinor fields emerging from the vertex as Ψ and its T- (CP-) conjugate proportional to Ψ.
The ordinary perturbation suggests that nothing special needs to be done.

3.3.2 Do exotic smooth structures make fermion pair creation possible?

The solution came from the discovery that 4-dimensional space-times are completely unique in the
sense that they allow an infinite number of exotic smooth structures [L7]. Apart from a subset of
measure zero they are reduced to ordinary differentiable structures. These subsets are physically
analogous to defects and the simplest defects are point defects but one can also imagine 1-, 2-, and
even 3-D defects. This finding means a serious difficulty for general relativity. Should some kind
of cosmic censorship hypothesis deny their existence?

In the TGD framework, an attractive identification of the defects would be as singularities at
which the minimal surface property for space-time surfaces as generalized complex surfaces fails.
These singularities are analogs of poles and cuts in the complex analysis. In fact, hypercomplex
poles are 1-D geodesic lines in M2 and would correspond to light-like curves in the general case.
Therefore 3-D light-like partonic orbits would be analogous to poles. String world sheet could serve
as a counterpart for a hypercomplex cut.

The identification
defects of the ordinary smooth structure ↔ singularities at which the minimal surface property

fails ↔ poles and other singularities where generalized holomorphy fails
looks highly attractive. The 3-D light-like orbits of partonic orbits, string world sheets, strings,

and points at which light-like orbits of point-like fermions split, could correspond to these singu-
larities identifiable as generalized vertices. It is not clear whether 3-D defects can be space-like
3-surfaces.

These structures could be essential for the definition of creation and annihilation vertices for
fermion-antifermion pairs. The intuitive picture is that a fermion turns backwards in time in this
kind of vertex.

1. In QFTs a standard approximation is to replace the gauge boson of the vertex with a classical
gauge potential. In TGD there are no bosons as fundamental particles and this replacement
is necessary. This would correspond to a turning of fermion lines at the orbit of a partonic
2-surface backwards in time which is somehow special. Could this point correspond to a
defect of the ordinary differentiable structure which is actually exotic smooth structure?

2. There is also another problem. Modified Dirac action should give rise to all fundamental
vertices. At the fermion line the modified Dirac equation is satisfied but it puts modified
Dirac action to zero so that the action would be trivial in the gauge theory sense. At the
singularity the modified Dirac equation could however fail and one would obtain a delta
function like singularity giving the standard classical vertex for the creation of a fermion
pair or a particle with spin smaller than 2 as a bound fermion pair. This picture generalizes
also to higher-dimensional defects. Interesting quantum physics would be possible only in
space-time dimension four!

3. Gauge-theory-gravitation duality suggests that gravitons correspond to fermion pairs annd
to M4 Kähler gauge potential assigned to rotating monopole flux tubes. Second option is
that gravitons correspond to the M4 part of the second fundamental form. These two views
are equivalent since field equations are satisfied at the singularities although the minimal
surface property fails.

One can ask whether gravitons analogs of gauge bosons with gauge group SO(1, 3) or its
compact subgroup as required by unitarity unless one allows infinite-dimensional represen-
tations of SO(1, 3), which in fact are naturally associated with the causal diamonds (CDs),
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which are basic objects in zero energy ontology (ZEO) [L14]: the Poincare invariance which
is problematic at the level of CD would be realized in the moduli space of CDs. This option
does not look plausible however.

The unitary representations of SO(1, 3) would however appear naturally in the Dirac equation
in CD= cd × CP2. The mass spectrum (Equivalence Principle) would be the same as for
Dirac equation in H since the only difference is that the separation of variables takes place
only in different coordinates. Indeed, future light-cone can be regarded as a slicing by the
hyperboloids H3 parameterized by the light-cone proper time. Instead of momenta the
SO(1,3) quantum numbers would appear in the graviton vertex.

4. If gravitons are pairs of fermion pairs, the vertex involves two separate vertices in an essential
way. This is possible but does not look elegant since two separate gauge boson vertices would
be needed. This would conform with the idea that gravitation is in some sense square of a
gauge theory but does not look an attractive idea.

In this framework one could understand basic vertices as splitting of two-sheeted closed monopole
flux tubes with Euclidean wormhole contacts at ends [L12]. The splitting of the flux tube as a
generalization of reconnection for closed strings would produce two closed flux tubes. The sim-
plest reconnection would involve creation of a fermion-antifermion pair such that the fermion and
antifermion pair go to separate wormhole contacts. The defects of the smooth structure would cor-
respond to situations in which the topology of 3-surface is between two topologies. The pinching
of torus to produce two spheres represent the basic example of this.

In the case of a fermion with a neutrino-antineutrino (left- and right-handed neutrinos) pair at
the second wormhole contact neutralizing the weak isospin of the fermion as a geometric object,
the reconnection would produce a pair of monopole flux tubes. The first one would represent
a fermion. The second one would represent a boson with fermion and antifermion at opposite
wormhole contacts. If the string does not rotate, the boson has spin 1 or 0 corresponding to a
gauge boson and Higgs type scalar or pseudoscalar. If the string rotates one obtains a boson with
spin 2 or 1 for the simplest option if the M4 spinor connection contributes.

One can of course worry about the triviality of the vielbein part of M4 spinor connection.
Maybe it gives only rise to a topological gravitation whereas the Kähler part would give rie to
graviton. The failure of the standard smooth structure at the defect could however imply that the
elimination of the vielbein spinor connection by a general coordinate transformation fails just at
the defect which is 2-D and has complex CP2 coordinates as more natural coordianates.

3.4 How could modified Dirac action determine the scattering ampli-
tudes?

Holography=generalized holomorphy property means that minimal surface field equations are true
outside singularities for any general coordinate invariant action constructible in terms of the in-
duced geometry. However, the twistor lift of TGD suggests that 6-D Kähler action is the funda-
mental action. It reduces to 4-D Kähler action plus volume term in the dimensional reduction
guaranteeing that the 6-surface can be regarded as a generalization of twistor space having space-
time surface as a base-space and 2-sphere.

3.4.1 Are modified gamma matrices defined by the entire bosonic action or induced
gamma matrices?

One can express the induced spinor field obtained as a restriction of the massless second quantized
H spinor field to the space-time surface and it satisfies modified Dirac equation [L19].

Modified Dirac action LD is defined for the induced spinor fields. One must distinguish between
two cases. The modified Dirac action involves the modified gamma matrices defined in terms of the
entire bosonic action whereas its variant involves induced gamma matrices determined by volume
action alone (cosmological constant). The original proposal was that the first option is correct but
it seems that the simpler option based on induced gamma matrices is what makes possible the
construction of the scattering amplitudes.
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1. The modified Dirac action fixed by the condition of hermiticity stating that the canonical
momentum currents appearing in it have a vanishing divergence. If the modified gamma
matrices Γα are defined by a bosonc action SB defining the space-time surface itself, they
are indeed divergenceless by field equations. This implies a generalization of conformal
symmetry to the 4-D situation [L13] and the modes of the modified Dirac equation define
super-symplectic and generalized conformal charges defining the gamma matrices of WCW
[L19]. The problem is that the modified Dirac action vanishes identically by a modified
Dirac equation and one cannot construct non-trivial scattering amplitudes since ordinary
perturbation theory is not possible.

2. Generalized holomorphy implies that minimal surface equations hold true outside singulari-
ties. Modified gamma matrices could be therefore replaced by the induced gamma matrices
and modified Dirac action would vanish everywhere except at the singularities where the
action density has delta function like singularity.

This conforms with the original, hard-to-justify, intuition that only the light-like partonic
orbits and possibly other singularities contribute to the interaction vertices so that effectively
fermions reside only at the singularities.

Therefore there are two options: the modified gamma matrices are defined by the sum of LB
or by LV defining the induced gamma matrices. The latter option looks more plausible since
it gives the analog of Newton’s equations at the vertices identified as singularities.

3. An attractive guiding physical idea is that the singularities are not actually singularities if
exotic smooth structure is introduced. Field equations hold true but with SB . The singu-
larities would cancel for the exotic smooth structure. One would avoid problems with the
conservation laws by using exotic smooth structure. What the precise meaning of this idea
is, remains unclear and requires precise formulatikon of the exotic smooth structure.

4. At the short distance limit for which αK is expected to diverge as a U(1) coupling, the action
reduces to SV and the defects would be absent. Only closed cosmic strings and monopole
flux tubes would be present but wormhole contacts and string world sheets identifiable as
defects are absent: this would be the situation in the primordial cosmology [L18]. Only dark
energy as classical energy of the cosmic strings and monopole flux tubes would be present
and there would be no elementary particles and elementary particle scattering at this limit.

In [L12] the construction of vertices was discussed and the conclusion was that the vertices
are generalizations of ordinary vertices in which induced gauge potentials replaced standard model
electroweak gauge potentials. The key idea is that one can overcome the problem due to the fact
that gauge fields are not primary fields in TGD is that classical gauge potentials give rise to a pair
creation. The discussion was based on physical intuition and far from rigorous.

3.4.2 How to obtain vertices for gauge bosons?

What about the gauge boson vertices?

1. In the earlier article [L12] I ended up with the vision that the induced spinor connection of
CP2 must give the TGD counterparts of electroweak vertices but could not represent a precise
argument for why this should be the case. The induced M4 vielbein connection is trivial but
M4 Kähler gauge potential gives rise to U(1) gauge potential. This could contribute and
additional term to U(1) part of electroweak gauge fields or define and new U(1) field. One
would have vertices and therefore concrete representations for electroweak gauge bosons,
Higgs and graviton plus possibly for this new spin 1 boson.

2. Since the gauge potential terms seem (!) to remain finite at the singularity, one can argue
that only the trace of second fundamental form appears in the vertex and gives rise to the
sum of the terms associated with the remaining parts of SB and can be interpreted as source
currents as divergences of the bosonic canonical momentum currents slashed between fermion
field and its conjugate much like in gauge theories. Classical gauge potentials would disappear
altogether, which would conform with gauge invariance.
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Could the interpretation be in terms of gravitation-gauge theory duality? Different interac-
tions would make their existence manifest only in the structure of incoming and outgoing
states. The couplings to the spinor connections of CP2 and M4 are present in the massless
Dirac equation at the level of H determining the fermionic propagators. Is this enough to
give scattering amplitudes with correct physical properties?

Could the entire electroweak physics be induced from that for free massless H spinor fields?
To me this looks unrealistic option. Somehow one should obtain the the couplings to the
induced gauge potentials.

To understand how one could obtain gauge boson vertices, one must study in detail what
happens at the singularities.

1. The modified Dirac action contains ΨΓµ(∂µ + Aµ)Ψ
√
g term and its conjugate. Here the

induced gamma matrix is proportional to Γµ = gµν∂νh
kΓk.

2. In order to obtain non-trivial gauge boson vertices, ΓµAµ should have a delta function sin-
gularity at the vertex which corresponds to a singular 2-surface at at the 3-D light-like orbit
of partonic 2-surface forming an interface between Euclidean and Minkowskian space-time
regions.

At this 2-D singularity the trace of the second fundamental form develops a delta function
singularity. Elsewhere it vanishes identically since it does not have common non-vanishing
tensor components with the induced metric. The singularity must correspond to the breaking
of the generalized analyticity. Embedding space coordinates are not anymore functions of
generalized complex coordinates of say (u,w) of space-time surface but functions of also
(v, w) at the singularity. Singularity would be like a pole of an analytic complex function.

3. The covariant 4-metric (not only the 3-metric) is degenerate and effectively 2-D at the par-
tonic orbit. In light-like coordinates (u, v) for the Minkowskian space-time region the induced
metric of form ds2 = 2guvdudv + 2gwwdwdw becomes degenerate since the generalized com-
plex coordinates for the imbedding space depend only on u or v but not both so that one
has guv = gvu = 0.

The tangent space of the space-time surface is therefore metrically 2-dimensional and
√
g4

vanishes. The quantity guv
√
g behaves like 1/

√
g4 and has 2-D delta function singularity

at the entire partonic orbit. At the partonic orbit the modified Dirac equation must be
true outside the 2-D singularity but the delta function like divergence means that this is not
trivially true. Generalized holomorphy makes Ψ should guarantee this outside the singularity
meaning that at the singularity Ψ depends on both u and v rather on only u or v.

4. At the singularity, the second fundamental form is non-vanishing and guu and gvv are non-
vanishing which correspond to the failure of hypercomplex analyticity. If one assumes

√
g4 =

0 also now one obtains a delta function singularity for the trace. At the singularity Γµ is a
combination of gammas of both ΓU and ΓV . This means that AU and AV appear at vertex
and are multiplied by the required delta function. By the loss of hypercomplex analyticity,
the Dirac equation at the vertex is not satisfied and this gives the non-vanishing ΓµAµ giving
rise to the vertex.

5. What does the singular 2-surface look like? The fermion should turn backwards in time.
This means that at the vertex the time coordinate T of M4 for the partonic orbit must
have extremum. Hence the derivatives of T with respect to the coordinates of the 2-surface
must vanish: time stops. As a consequence, the derivatives of the coordinates of 2-surface
with respect to T diverge. The two branches meeting at the singularity could correspond
to hypercomplex analytic resp. anti-analytic functions meaning that one has (U = u, hk =
hk(u, ...)) resp. (V = v, hk = hk(v, ...)).

6. A more general condition would be that the meeting fermion lines are also complex analytic
resp. anti-analytic functions. Fermions and antifermions could correspond to analytic resp.
ant-ianalytic surfaces, that is generalized complex conjugates of each other. Since a single
connected space-time region must be either analytic or antianalytic, this might relate closely
to the matter antimatter asymmetry.
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3.4.3 How to obtain the vertices from the modified Dirac equation

How could one deduce the vertex from the modified Dirac action by using these assumptions.

1. Should one assign a d < 4-dimensional fermionic term to the singular surface? Could one add
to the Dirac action a total divergence expressing the separate conservation laws for the total
fermion number outside the vertices and only the conservation of their sum at the vertex?
This divergence can be transformed to an d < 4-dimensional integral over the vertex for the
flux of the normal component of the non-conserved part of the fermion current through the
surface.

2. One can check what comes out from this guess. Let us forget the possible complications due
to the reversal of the direction of time at the vertex possibly due to T reflection. The total
divergence is given by ∂µJ

µ, Jµ = ΨΓµΨ
√
g for the surface representing the particle (it can

have dimension smaller than 4 and even correspond to a fermion line).

One can write the divergence as a covariant divergence and for the contributions involving
bilinears of the creation operators for fermions and antifermions, one obtains a sum of two
terms which should not vanish at the singularity whereas the remaining contribution vanishes
everywhere. This gives

∂µJ
µ =

∑
±Ψ±[D← +D→ +DµΓµ]Ψ∓]

√
g ,

D← = (−i∂←µ +Aµ)Γµ ,
D→ = Γµ(i∂→µ +Aµ) ,

(3.2)

DµΓµ corresponds to the generalized Higgs term and is singular at the vertex.

3. What one wants is the following. At the singularity for the Ψ±ΓαΨ∓ parts of the current, the
contributions of ordinary derivatives, at least of the normal derivatives, cancel each other also
at the singularity. The contributions from the gauge potential terms should be nonvanishing
at the singularity and should give the gauge couplings so that one would have

∂µJ
µ =

∑
±

Ψ±[AµΓµ + ΓµAµ +DµΓµ]Ψ∓
√
g . (3.3)

Kähler gauge potential commutes with the modified gamma matrices so that one obtains
what one wants.

4. The Higgs term is singular but the gauge potential term does not seem able to develop
a singularity unless the induced gauge potential behaves like a gauge potential of a point
charge. Something still goes wrong in the above proposal. The modified Dirac equation is
true outside the singularity. Singularity however serves as a fermionic source of the Dirac
field. This means that the terms Ψ±D

← and D→Ψ∓ have a delta function like behavior at
the singularity just like field equations have a singularity. This of course conforms with the
super-symmetry associated with the modified Dirac equation.

To get correct couplings, the sum of the source terms should give AµΓµ + ΓµAµ times a
d − 2-dimensional delta function associated with the singularity.

√
gd must appear in the

integration measure to get the dimensions correctly. The delta function would compensate
for the reduction of the dimension in the integral appearing in the Dirac action.

One could worry about the gauge invariance of the scattering amplitudes at the fundamental
level. In TGD, the notion of gauge invariance for Kähler gauge potential could be only
approximate and correspond to symplectic transformations which are not isometries of the
imbedding spaces. Classical gravitation would cause it’s breaking as a gauge symmetry.
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3.5 More about the singularities

3.5.1 About the singularities of the bosonic action

The Hamilton-Jacobi structure [L13] implies the existence of generalized complex coordinates
(u, v, w,w) of space-time as a subset of similar coordinates of H.

1. At the singularities generalizing the poles of analytic function the minimal surface property
fails and the action is expected to give a singular delta function type contribution. This
contribution should give rise to the scattering amplitudes. The failure of generalized holo-
morphy is analogous to that of 2-D holomorphy. The latter means that the pole of the action
of Laplacian of the analytic function develops a delta function so that ∂z∂zf is proportional
to a delta function rather than vanishing. In a cut f in turn develops a discontinuity.

2. There are 3 kinds of pole-like singularities associated with light-like partonic orbits. The
pole at u = u0 gives a 3-D light-like partonic orbit. The pole at z = z0 gives a string
world sheet, whose boundary intersects the partonic orbit along the fermion line. The pole
at (u, v) = (u0, v0) gives a partonic 2-surface with a vertex interpretation. The pole with
(u, z) = (u0, z0) gives a fermionic line as the boundary of the string world s000heet. The pole
(u, v, z) = (u0, v0, z0) gives a point-like singularity which could correspond to the turning of
the light-like fermion line. At least turning back in the time direction is possible.

3. The cuts for partonic 2-surfaces would mean that the H complex coordinates as function
of (u, v, w,w) are discontinuous and this implies multiple covering property. These kinds
of singularities could correspond to the non-minimal values of the effective Planck constant
identified as a dimension of an extension of rationals. The roots of polynomials defining the
space-time surfaces as holomorphic imbeddings indeed define multiple coverings. These cuts
are possible both in CP2 and M4 degrees of freedom. In the CP2 (M4) case M4 (CP2)
coordinates as functions of CP2 (M4) coordinates are many-valued.

4. In CP2 case multiple coverings of M4 analogous to those for Riemann surfaces would mean
surfaces for which closed paths around the singularity turn the singularity several times.
Anyons could correspond to this kind of singularities [K2]. In the M4 case, the space-
time surface could consist of a larger number or parallel monopole flux tubes behaving as a
quantum coherent unit with a very large value of heff .

3.5.2 What singularities can correspond to vertices for fermion pair creation?

It is not clear whether all singularities have an interpretation in terms of exotic smooth structures.
The physical criterion would be that the creation of a fermion pair takes place at the defect and
that the minimal surface property fails. Fermions can correspond to induced spinor fields and
fermion pairs could be created at surfaces of dimension d < 4.

1. For closed two-sheeted cosmic strings and monopole flux tubes, which split by reconnection,
the interpretation makes sense and means a generalization of the basic vertex for closed
strings. These objects can be 2-sheeted as elementary particles in which case the reconnection
would occur in the direction of CP2. If they are single sheeted, the reconnection would occur
in the direction of M4.

2. 3-D light-like light-partonic orbits appearing as interfaces between Euclidean and Minkowskian
space-time regions and as boundaries of space-time surfaces are singularities [L8]. Boundary
conditions state that the possible flows of conserved charges from the interior go to the par-
tonic orbit so that the divergence of the Chern-Simons-Kähler canonical momentum current
coming from instanton term equals to the sum of the normal components of the canonical
currents associated with Kähler action and volume term.

(a) Chern-Simons action at the light-like partonic orbit coming from the instanton term is
well-defined and finite and field equations should not give rise to a singularity except
possibly at partonic 2-surfaces, which have been identified as analogs of vertices at which
the partonic 2-surface X2 splits to two.
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(b) At the light-like partonic orbit 4-metric has a vanishing determinant and is therefore
effectively 2-D (the light-like components of guv = gvu of the 4-metric vanish). As a
consequence,

√
g4 vanishes like L2 at the partonic orbit unless some coordinate gradients

diverge.

The canonical momentum currents for the volume action are proportional to the con-
travariant induced metric appearing in the trace of the second fundamental form di-
verging like 1/L2 and to

√
g so that they remain finite.

(c) Kähler action contains the contravariant metric twice and is proportional to
√
g4. This

can give rise to a divergence of type 1/L2 unless the boundary conditions make it finite. I
have proposed that the electric-magnetic self-duality at the partonic orbit can transform
the Kähler action to an instanton term giving Chern-Simons Kähler term. In this case,
a separate instanton term would not be needed. In this case everything would be finite
at the partonic orbit. Minimal surface property fails in a smooth manner.

The intuitive picture is that the contributions from the normal currents at the partonic
orbit and the Chern-Simons term cancel each other and the partonic orbit cannot play
a role of a vertex.

(d) The possible presence of 1/L2 divergence could however give rise to a 2-D defect and
genuine vertex. If it is identified as a creation of a pair of partonic 2-surfaces, the
interpretation in terms of a creation of a fermion pair is possible and could be assigned
to the splitting of a monopole flux tube.

In accordance with the QFT picture, I have considered the possibility that the 2-D vertex
could correspond to a branching of a partonic orbit. In the recent picture it would be
accompanied by a creation of a fermion pair. The stringy view however suggests that
pair creation occurs in the creation of partonic orbits in the splitting of monopole flux
tubes. The stringy view is more attractive.

3. I have also proposed that 1-D singularities identifiable as boundaries of string world sheets
and identifiable as fermion lines at the partonic orbits are important. The creation of a pair
of fermion lines would give rise to the analogs of gauge theory vertices as 0-D singularities. It
is however far from clear whether the stringy singularities are actually present and whether
they could correspond to exotic smooth structures. One can imagine two options.

(a) There are no string world sheets. Monopole flux tubes can be regarded as deformations
of cosmic strings. Instead of strings several monopole flux tubes can emerge from a
wormhole contact. For the minimal option, monopole flux tubes, CP2 type extremals,
and massless extremals as counterparts of radiation fields are the basic extremals and
the splitting of monopole flux tubes gives rise to vertices as defects of the ordinary
smooth structure.

(b) String world sheets appear as singularities of the monopole flux tubes or even more
general 4-surfaces and are analogous to wormhole contacts as blow-ups in which a point
of X4 explodes to CP2 type extremal. I have indeed proposed that a blow-up at which
the points of the string world sheet as surfaceX2 ⊂ X4 are replaced with a homologically
non-trivial 2-surface Y 2 ⊂ CP2 takes place. Y 2 could connect two parallel space-time
sheets. Could these singularities correspond to defects of exotic smooth structures such
that the ends of the string carry fermion number? The vertex for the creation of a pair
of fermion and antifermion lines would correspond to a diffeo defect. Note that also
these defects could reduce to a splitting of a monopole flux tube so that TGD would
generalize the stringy picture.

3.6 About symmetry between gravitational and gauge interactions

The beauty of the proposal is that it implies a symmetry between gravitational and gauge interac-
tions. Higgs and graviton are parts of the second fundamental form. Color interactions couple to
the isometry charges of CP2 and gravitational interactions couple to the isometry charges of M4.
The extreme weakness of the gravitation can be understood as being due to the fact that by the
flatness of M4, the M4 part of the second fundamental form involves only the CP2 contribution.
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One of the ideas related to gravitation is that gravitation could correspond to SO(1, 3) gauge
theory. The problem is that the finite-D irreps of SO(1, 3) are non-unitary. In ZEO, the finite-
D space of causal diamonds (CDs) forms [L14] the backbone of WCW and Poincare invariance
and Poincare quantum numbers can be assigned with wave functions in this space. For CD, the
infinite-D unitary representations of SO(1, 3) satisfying appropriate boundary conditions are a
highly attractive identification for the counterparts of finite-D unitary representations associated
with gauge multiplets.

One could replace the spinor fields of H with spinor fields restricted to CD with spinor fields
for which M4 parts sinor nodes as plane waves are replaced with spinor modes in CD labelled by
spin and its hyperbolic counterpart assignable to Lorentz boosts with respect to either tip of CD.
One could also express these modes as superpositions of the plane wave modes defined in the entire
H. In TGD, gravitation could be seen as a SO(1, 3) gauge theory if it can be regarded as a gauge
theory for the Poincare group.

Does color confinement have any counterpart at the level of M4? The idea that physical states
have vanishing four-momenta does not look attractive.

The analog of color confinement would hold true for particles as unitary representations of
SO(1, 3) in CD. One could say that SO(1, 3) appears as an internal isometry group of an
observer’s perceptive field represented by CD and Poincare group as an external symmetry
group treating the observer as a physical object.By separation of variables the spinor har-
monics in CD factorize phases depending on the mass of the particle determined by CP2 and
spinor harmonic of hyperbolic 3-space H3 = SO(1, 3)/SO(3). SO(1, 3) allows an extremely
rich set of representations in the hyperbolic space H3 analogous to spherical harmonics. A
given infinite discrete subgroup Γ ⊂ SO(1, 3) defines a fundamental domain of Γ as a double
coset space Γ \ SO(1, 3)/SO(3). This fundamental domain is analogous to a lattice cell of
condensed matter lattice defined by periodic boundary conditions. The graphics of Escher
give an idea about these structures in the case of H2. The products of wave functions de-
fined in Γ ⊂ SO(1, 3) and of wave functions in Γ define a wave function basis analogous
to the space states in condensed matter lattice. TGD allows gravitational quantum coher-
ence in arbitrarily long scales and I have proposed that the tessellations of H3 define the
analogs of condensed matter lattices at the level of cosmology and astrophysics [L16]. The
unitary representations of SO(1, 3) would be central for quantum gravitation at the level of
gravitationally dark matter. They would closely relate to the unitary representations of the
supersymplectic group of δM4

+×CP2 in M4 degrees of freedom and define their continuations
to the entire CD. There exists a completely unique tessellation known as icosa tetrahedral
tessellation consisting of icosahedrons, tetrahedrons, and octahedrons glued along bound-
aries together. I have proposed that it gives rise to a universal realization of the genetic
code of which biochemical realizations is only a particular example [L1, L9]. Also this sup-
ports a deep connection between biology and quantum gravitation emerging also in classical
TGD [L6, L5]. Also electromagnetic long range classical fields are predicted to be involved
with long length scale quantum coherence [L10].

The challenge is to understand the implications of this picture for M8 −H duality [L17]. The
discretization of M8 identified as octonions O with the Minkowskian norm defined by Re(Im(o2))
is linear M8 coordinates natural for octonions. The discretization obtained by the requirement
that the coordinates of the points of M8 (momenta) are algebraic integers in an algebraic extension
of rationals would make sense also in p-adic number fields.

In the Robertson-Walker coordinates for the future light-cone M4
+, sliced by H3:s. In M8, the

analog of time coordinate is defined by mass and in H by the light-cone proper time. Hyperbolic
angle and spherical angles defined the coordinates of H3. The discretizations defined by the
spaces Γ \ SO(1, 3)/SO(3) would define a discretization and one can define an infinite hierarchy
of discretizations defined by the discrete subgroups of SO(1, 3) with matrix elements belonging
to an extension of rationals. This number theoretically universal discretization defines a natural
alternative for the linear discretization. Maybe the linear resp. non-linear discretization could be
assigned to the moduli space of CDs resp. CD.
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4 Could TGD allow the detection of gravitons?

Could an effectively 2-dimensional system make it possible to observe real gravitons and why
should this be the case? Could the couplings to quantum coherent many-particle states such as
electrons or protons at light-like 3-surfaces assignable to the fractional quantum Hall effect (FQHE)
in the TGD description amplify the effects induced by gravitons? Also gravitational field bodies
can be considered as an amplification mechanism.

One can consider two ways to detect gravitons. For the first option, one would have a condensed
matter system with a large value of heff allowing large scale quantum coherence so that the
rate for the Compton scattering of graviton would be high. The second option is based on the
notion of a field body. One might hope that dark protons or even electrons associated with the
gravitational magnetic body residing at the monopole flux tubes and half-monopole flux tubes
make possible the detection of gravitons. Kind of gravitational quantum antenna would be in
question.

The scattering amplitude of graviton from electrons or protons or even heavier particles
would be a sum of a very large number of identical amplitudes when the wavelength of real
graviton is much longer than the size of the partonic 2-surface representing the particle. One
would obtain an analog of diffraction, somewhat like in the TGD based models of the recently
discovered gravitational hum identified in the TGD framework as diffraction in astrophysical
length scales [L16].

4.1 Is the detection of gravitons possible in FQHE type systems?

One might hope that the coupling of real gravitons to condensed matter gravitons and/or nanoscale
quantum coherence could make the amplitude for the Compton scattering of graviton from a
particle [B1] proportional to the square of the total number N of electrons.

One can consider fractional quantum Hall effect (FQHE) as an example. The stimulus for
this came from a popular article (see this) telling about the work of Liang et al with title
”Evidence for chiral graviton modes in fractional quantum Hall liquids” published in Nature [D1].
Chiral gravitons are not ordinary gravitons but this notion inspired the possible identification
of gravitons as fermion-antifermion pairs at rotating monopole flux tubes discussed in this article.

1.2.3.1. FQHE occurs in 2-D electron gas and (see this) and the typical densities of electrons are of
order 1011/cm2. For an area cm2 one would have N2 ∼ 1022.

2. The differential cross section for gravitational Compton scattering from a particle with mass
m [B1] is

dσ

dΩ
=

G2m2

sin4(θ/2)
(cos8(θ/2) + sin8(θ/2)) .

For the electron, the order of magnitude is σ ∼ 10−42l2e , where le is electron’s Compton
length, unless θ is very near to the forward direction. There is no hope of detecting gravitons
in this way unless one has an analog of nearly forward scattering. Even in the presence of
quantum coherence, giving for the rate of scattering events for N electron system a rate
proportional to N2 instead of N , the hopes for detection seem rather meager. If θ is of order
10−5, the order of magnitude for the differential cross section is of the order of l2e .

4.2 What about dark protons at the monopole flux tubes and half-
monopole flux tubes?

Proton mass is roughly 2000 times larger than electron mass so that the gravitons scattering from
protons at the gravitational magnetic body of Earth is a promising idea to consider.

1. Could the dark protons at magnetic monopole flux tubes give rise to a quantum coherence
amplifying the interactions with gravitons. Monopole flux tube condensates involve a very
large number of parallel monopole flux tubes, which form a quantum coherent region. By
quantum coherence, the dark proton system at the magnetic body would behave like a particle

https://lifeboat.com/blog/2024/04/scientist-say-they-have-first-experimental-evidence-of-gravitons-that-could-connect-quantum-mechanics-and-relativity
https://en.wikipedia.org/wiki/Two-dimensional_electron_gas


4.2 What about dark protons at the monopole flux tubes and half-monopole flux
tubes? 26

with total protonic mass Nmp. Even if the magnetic body involves particles with different
masses, the Equivalence Principle coded to the gravitational Planck constant implies that
the field body responds with its total mass.

Could the quantum coherent Compton scattering of graviton, or even better, of an analog of
laser beam for gravitons, from the gravitational magnetic body of Earth lead to detectable
recoil effects such as the transformation of dark protons to ordinary protons by the reverse
Pollack effect? These effects are of course not observable using the existing technology
which knows nothing about field bodies and dark matter in the TGD sense.

2. The number of monopole flux tubes corresponds to heff/h and this can be as large as
1014. This would give a factor of order N2 ∼ 1028 to the scattering cross section. In the case
of dark protons, one would have a scaling factor (mp/me)

2 ∼ 4 × 106. This would give a
factor of order 1034 giving σ ∼ 10−8l2e ∼ 10−2l2p. Could this make the detection possible?

3. Half-monopole flux tubes appear in the TGD based model for the transition to supercon-
ductivity as an intermediate, not yet superconducting, flux tubes carrying dark electrons
but not their Cooper pairs [L20]: the pair of dark electron and corresponding hole at the
level of ordinary matter replaces the notion of Bogoliubov quasiparticle as a superposition of
electron and hole in such a way that the total fermion number is conserved. Half-monopole
flux tubes have boundaries, which should be light-like and can be so as a static structure in
the induced geometry [L8], which could carry dark protons.

Note that also the light-like surfaces associated with the Quantum Hall systems would be
naturally half-monopole flux tubes since electrons in these systems are known to form bound
states with magnetic fluxes.

Appendix: GPT summary about exotic smooth structures

I do not count myself as a real mathematician. The GPT summary of exotic smooth structures
kindly posted by Gary Ehlenberg however suggests deep connections between the TGD view of
particle physics and 4-D gauge theories and theory of 4-manifolds.

The study of exotic R4’s has led to numerous significant mathematical developments, partic-
ularly in the fields of differential topology, gauge theory, and 4-manifold theory. Here are some key
developments.

1. Donaldson’s Theorems

Simon Donaldson’s groundbreaking work in the early 1980s revolutionized the study of
smooth 4-manifolds. His theorems provided new invariants, known as Donaldson polyno-
mials, which distinguish between different smooth structures on 4-manifolds.

Donaldson’s diagonalization theorem states that the intersection form of a smooth, simply
connected 4-manifold must be diagonalizable over the integers, provided the manifold admits
a smooth structure. This result was crucial in showing that some topological 4-manifolds
cannot have a smooth structure.

Donaldson’s polynomial invariants help to classify and distinguish different smooth structures
on 4-manifolds, particularly those with definite intersection forms.

2. Freedman’s Classification of Topological 4-Manifolds

Michael Freedman’s work, which earned him a Fields Medal in 1986, provided a complete
classification of simply connected topological 4-manifolds. His results showed that every such
manifold is determined by its intersection form up to homeomorphism.

h-Cobordism and the Disk Embedding Theorem: Freedman’s proof of the h-cobordism the-
orem in dimension 4 and the disk embedding theorem were instrumental in his classification
scheme.

3. Seiberg-Witten Theory
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The development of Seiberg-Witten invariants provided a new set of tools for studying smooth
structures on 4-manifolds, complementing and sometimes simplifying the methods introduced
by Donaldson.

Seiberg-Witten Invariants are simpler to compute than Donaldson invariants and have been
used to prove the existence of exotic smooth structures on 4-manifolds.

4. Gauge Theory and 4-Manifolds

Gauge theory, particularly through the study of solutions to the Yang-Mills equations, has
provided deep insights into the structure of 4-manifolds.

The study of instantons (solutions to the self-dual Yang-Mills equations) has been crucial in
understanding the differential topology of 4-manifolds. Instantons and their moduli spaces
have been used to define Donaldson and Seiberg-Witten invariants.

5. Symplectic and Complex Geometry

The interaction between symplectic and complex geometry with 4-manifold theory has led
to new discoveries and techniques.

Robert Gompf’s work on constructing symplectic 4-manifolds has provided new examples of
exotic smooth structures. His techniques often involve surgeries and handle decompositions
that preserve symplectic structures.

Symplectic Surgeries, that is techniques such as symplectic sum and Luttinger surgery have
been used to construct new examples of 4-manifolds with exotic smooth structures.

6. Floer Homology

Floer homology, originally developed in the context of 3-manifolds, has been extended to
4-manifolds and provides a powerful tool for studying their smooth structures.

Instanton Floer Homology associates a homology group to a 3-manifold, which can be used
to study the 4-manifolds that bound them. It has applications in understanding the exotic
smooth structures on 4-manifolds.

7. Exotic Structures and Topological Quantum Field Theory (TQFT)

The study of exotic R4’s has also influenced developments in TQFT, where the smooth
structure of 4-manifolds plays a crucial role. TQFTs are sensitive to the smooth structures
of the underlying manifolds, and exotic R4’s provide interesting examples for testing and
developing these theories.

To sum up, the exploration of exotic R4’s has led to significant advances across various areas of
mathematics, particularly in the understanding of smooth structures on 4-manifolds. Key devel-
opments include Donaldson and Seiberg-Witten invariants, Freedman’s topological classification,
advancements in gauge theory, symplectic and complex geometry, Floer homology, and topological
quantum field theory. These contributions have profoundly deepened our understanding of the
unique and complex nature of 4-dimensional manifolds.

The singularity X2, where the minimal surface property and generalized complex structure fail
should correspond to a defect of the ordinary smooth structure. This is the conjecture that I
would like to understand better and here my limitations as a mathematician are the problem.

I can only ask questions inspired by the result that the intersection form I(X4) for 2-D
homologically non-trivial surfaces of X4 detects the defects of the ordinary smooth structure,
which should correspond to surfaces X2, i.e. vertices for a pair creation.

1. In homology, the defect should correspond to an intersection point of homologically
non-trivial 2-surfaces identifiable as wormhole throats, which correspond to homologically
non-trivial 2-surfaces of CP2. This suggests that X4

1 ⊃ X4
2 containing the singularity/vertex

differs from I(X4
2 ) when X4

2 does not contain the vertex.

2. CP2 has an intersection form corresponding to the homologically non-trivial 2-surfaces for
which minimal intersection corresponds to a single point. The value of intersection form for
2 2-surfaces is essentially the product of integers characterizing their homology equivalence
classes. If each wormhole contact contributes a single CP2 summand to the total intersection
form, there would be two summands per elementary particle as monopole flux tube.
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3. 2-D singularity gives rise to a creation of an elementary particle and would therefore add two
CP2 summands to the intersection form. The creation of a fermion-antifermion pair has an
interpretation in terms of a closed monopole flux tube. A closed monopole flux tube having
wormhole contacts at its ”ends” splits into two by reconnection.
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