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Abstract

Cognitive representations are identified as points of space-time surface X* ¢ M* x CP,
having imbedding space coordinates in the extension of of rationals defined by the polynomial
defined by the M® pre-image of X* under M® — H correspondence. Cognitive representations
have become key piece in the formulation of scattering amplitudes and in TGD view about
consciousness and cognition. One might argue that number theoretic evolution as increase
of the dimension of the extension of rationals favors space-time surfaces with especially large
cognitive representations since the larger the number of points in the representation is, the
more faithful the representation is. Strong form of holography (SH) suggests that it is enough
to consider cognitive representations restricted to partonic 2-surfaces and string world sheets.
What kind of 2-surfaces are the cognitively fittest one? It would not be surprising if surfaces
with large symmetries acting in extension were favored and elliptic curves with discrete 2-D
translation group indeed turn out to be assigable string world sheets as singularities and string
like objects. In the case of partonic 2-surfaces geodesic sphere of C'P» is similar object.
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1 Introduction

Cognitive representations are identified as points of space-time surface X4 ¢ M* x C'P, having
imbedding space coordinates in the extension of of rationals defined by the polynomial defined
by the M® pre-image of X* under M® — H correspondence [[2} L3, [L11], L8, L7, [L5]. Cognitive
representations have become key piece in the formulation of scattering amplitudes [L9] . One
might argue that number theoretic evolution as increase of the dimension of the extension of
rationals favors space-time surfaces with especially large cognitive representations since the larger
the number of points in the representation is, the more faithful the representation is.

One can pose several questions if one accepts the idea that space-time surfaces with large
cognitive representations are survivors.

1. Preferred p-adic primes are proposed to correspond to the ramified primes of the extension
[L13]. The proposal is that the p-adic counterparts of space-time surfaces are identifiable
as imaginations whereas real space-time surfaces correspond to realities. p-Adic space-time
surfaces would have the imbedding space points in extension of rationals as common with
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real surfaces and large number of these points would make the representation realistic. Note
that the number of points in extension does not depend on p-adic prime.

Could some extensions have an especially high number of points in the cognitive repre-
sentation so that the corresponding ramified primes could be seen as survivors in number
theoretical fight for survival, so to say? Galois group of the extension acts on cognitive rep-
resentation. Galois extension of an extension has the Galois group of the original extension
as normal subgroup so that ormal Galois group is analogous to a conserved gene.

. Also the type of extremal matters. For instance, for instance canonically imbedded M* and
CP, contain all points of extension. These surfaces correspond to the vanishing of real or
imaginary part (in quaternionic sense) for a linear octonionic polynomial P(o) = o! As a
matter of fact, this is true for all known preferred extremals under rather mild additional
conditions. Boundary conditions posed at both ends of CD in ZEO exclude these surfaces
and the actual space-time surfaces are expected to be their deformations.

. Could the surfaces for which the number of points in cognitive representation is high, be
the ones most easily discovered by mathematical mind? The experience with TGD supports
positive answer: in TGD the known extremals [K3| are examples of such mathematical
objects! If so, one should try to identify mathematical objects with high symmetries and
look whether they allow TGD realization.

. One must also specify more precisely what cognitive representation means. Strong form of
holography (SH) states that the information gives at 2-D surfaces - string world sheets and
partonic 2-surfaces - is enough to determine the space-time surfaces. This suggests that it
is enough to consider cognitive representation restricted to these 2-surfaces. What kind of
2-surfaces are the cognitively fittest one? It would not be surprising if surfaces with large
symmetries acting in extension were favored and elliptic curves with discrete 2-D translation
group indeed turn out to be assigable string world sheets as singularities and string like
objects. In the case of partonic 2-surfaces geodesic sphere of C'P; is similar object.

Assigning large cognitive representations to partonic 2-
surfaces, string world sheets, and cosmic strings

By SH partonic 2-surfaces and string world sheets are expected to give rise to cognitive represen-

tations. Under what conditions these representations are large?

2.1 Partonic 2-surfaces as seats of cognitive representations

One can start from SH and look the situation more concretely. The situation for partonic 2-surfaces

has been considered already earlier [L12] [LG] but deserves a separate discussion.

1. Octonionic polynomials allow special solutions for which the entire polynomial vanishes. This

happens at 6-sphere S% at the boundary of 8-D light-cone. S is analogous to brane and has
radius R = r,, which is a root of the real polynomial with rational coefficients algebraically
continued to the octonionic polynomial.

56 has the ball B? of radius 7, of the light-cone Mjl_ with time coordinate ¢t = r,, as analog

of base space and sphere S3 of E* with radius R = /r2 —r2, r the radial coordinate of
B3 as an analog of fiber. The analog of the fiber contracts to a point at the boundary of
the light-cone. The points with B? projection and E* coordinates in extension of rationals
belong to the cognitive representation. The condition that R? = x;2° = r2 — 72 is square of

a number of extension is rather mild and allows infinite number of solutions.

. The 4-D space-time surfaces X% are obtained as generic solutions of Im(P(0)) = 0 or
Re(P(0)) = 0. Their intersection with S% - partonic 2-surface X2 - is 2-D. The assumption
is that the incoming and outgoing 4-D space-time surfaces representing orbits of particles
in topological sense are glued together at X2 and possibly also in their interiors. X? serves



2.2

Ellipticity 3

as an analog of vertex for 3-D particles. This gives rise to topological analogs of Feynman
diagrams.

In the generic case the number of points in cognitive representation restricted to X? is finite
unless the partonic 2-surface X? is special - say correspond to a geodesic spere of S6.

The discrete isometries and conformal symmetries of the cognitive representation restricted
to X2 possibly represented as elements of Galois group might play a role. For X2 = 52 the
finite discrete subgroups of SO(3) giving rise to finite tesselations and appearing in ADE
correspondence might be relevant. For genera g = 01,2 conformal symmetry Zs is always
possible but for higher genera only in the case of hyper-elliptic surfaces- this used to explain
why only g = 0,1,2 correspond to observed particles [K1] whereas higher genera could be
regarded as many-particle states of handles having continuous mass spectrum. Torus is an
exceptional case and one can ask whether discrete subgroup of its isometries could be realized.

In TGD inspired theory of consciousness [L4l [L6] the moments ¢ = r,, corresponds to “very
special moments in the life of self”. They would be also cognitively very special - kind of
eureka moments with a very large number of points in cognitive representation. The question
is whether these surfaces might be relevant for understanding the nature of mathematical
consciousness and how the mathematical notions emerge at space-time level.

2.2 Ellipticity

Surfaces with discrete translational symmetries is a natural candidate for a surface with very large
cognitive representation. Are their analogs possible? The notions of elliptic function, curve, and
surface suggest themselves as a starting point.

1. Elliptic functions (http://tinyurl.com/gpugcnh) have 2-D discrete group of translations

as symmetries and are therefore doubly periodic and thus identifiable as functions on torus.

Weierstrass elliptic functions P(z;wi,ws) (http://tinyurl.com/ycu8oadr) are defined on
torus and labelled by the conformal equivalence class A = wj/wsy of torus identified as the
ratio A = wy /wy of the complex numbers w; defining the periodicities of the lattice involved.
Functions P(z; w1, ws) are of special interest as far as elliptic curves are considered and defines
an imbedding of elliptic curve to C'P» as will be found.

If the periods are in extension of rationals then values in the extension appear infinitely
many times. Elliptic functions are not polynomials. Although the polynomials giving rise to
octonionic polynomials could be replaced by analytic functions it seems that elliptic functions
are not the case of primary interest. Note however that the roots r,, could be also complex
and could correspond to values of elliptic function forming a lattice.

Elliptic curves (http://tinyurl.com/lovksny) are defined by the polynomial equation

y> = Px)=a2"+ax+b . (2.1)

An algebraic curve of genus 1 allowing 2-D discrete translations as symmetries is in ques-
tion. If a point of elliptic curve has coordinates in extension of rationals then 2-D discrete
translation acting in extension give rise to infinite number of points in the cognitive represen-
tation. Clearly, the 2-D vectors spanning the lattice defining the group must be in extension
of rationals.

One can indeed define commutative sum P + ) for the points of the elliptic curve. The

detailed definition of the group law and its geometric illustration can be found in Wikipedia article
(http://tinyurl.com/lovksny).

1. Consider real case for simplicity so that elliptic curve is planar curve. y? = P(x) = 23 +ax+b

must be non-negative to guarantee that y is real. P(z) > 0 defines a curve in upper (z,y)
plane extending from some negative value ., corresponding to y? = P(Zmin) = 0 to the
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right. Given value of y can correspond to 3 real roots or 1 real root of P,(z) = y* — P(z).
At the two extrema of P,(z) 2 real roots co-incide. The graph of y = £,/P(x) is reflection
symmetric having two branches beginning from (Z,in,y = 0).

2. The negative — P is obtained by reflection with respect to x-axis taking yp to —yp. Neutral
element O is identified as point a infinity (assuming compactification of the plane to a sphere)
which goes to itself under reflection y — —y.

3. One assigns to the points P and @ of the elliptic curve a line y = sz + d containing them
so that one has s = (y, —y0)/(zp — 2g). In the generic case the line intersects the elliptic
curve also at third point R since Py—gy4q(x) is third order polynomial having three roots
(xp,zq,xr). It can happen that 2 roots are complex and one has 1 real root. At criticalityfor
the transiton from 3 to 1 real roots one has xg = .

Geometrically one can distinguish between 4 cases.

o The roots P, Q, R of Py—s,t4(x) are different and finite: one defines the sum as P+Q =
—R.

e P£(@Q and Q = R (roots @ and R are degenerate): P+ Q + Q = O giving R = —P/2.

e P and @ are at a line parallel to y-axis and one has R = O: P+ Q + O = O and
P=-Q.

e P is double root of Py—s;4q(x) with tangent parallel to y-axis at the point (&min,y = 0)
at which the elliptic curve begins so that one has R = O: P4+ P+0 = O gives P = —P.
This corresponds to torsion.

4. Elliptic surfaces (seehttp://tinyurl.com/yc33a6dg) define a generalization of elliptic curves
and are defined for 4-D complex manifolds. Fiber is required to be smooth and has genus 1.

2.3 String world sheets and elliptic curves

In twistor lift of TGD space-time surfaces identifiable as minimal surfaces with singularities, which
are string world sheets and partonic 2-surfaces. Preferred extremal property means that space-time
surfaces are extremals of both Kéhler action and volume action except at singularities.

Are string world sheets with very large number of points in cognitive representation possible?
One has right to expect that string world sheets allow special kind of symmetries allowing large,
even infinite number of points at the limit of large sheet and related by symmetries acting in the
extension of rationals. If one of the points is in the extension, also other symmetry related points
are in the extension. For a non-compact group, say translation one would have infinite number
of points in the representation but the finite size of CD would pose a limitation to the number of
points.

String world sheets are good candidates for the realization of elliptic curves.

1. The general conjecture is that preferred extremals allow what I call Hamilton-Jacobi structure
for M* [K2]. The distribution of tangent spaces having decomposition M*(z) = M?(x) x
E?(x) would be integrable giving rise to a family of string world sheets Y2 and partonic
2-surfaces X2 more general than those defined above. X2 and Y? are orthogonal to each
other at each point of X*. One can introduce local light-cone coordinates (u,v) for Y2 and
local E? complex coordinate w for X?2.

2. Space-time surface itself would be a deformation of M* with Hamilton-Jacobi structure in
CP, direction. w coordinate as function w(z) of C'P, complex coordinate z or vice versa
would define the string world sheet. This would be a transversal deformation of the basic
string world sheet Y2: stringy dynamics is indeed transversal.

3. The idea about maximal cognitive representation suggests that w <+ z correspondence defines
elliptic curve. One would have y?> = P(z) = 2% + ax + b with either (y = w,z = 2) or
(y = z,& = w). A natural conjecture is that for the space-time surface corresponding to
a given extension K of rationals the coefficients a an b belong to K so that the algebraic
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complexity of string world sheet would increase in number theoretic evolution [L10]. The
orbit of a algebraic point at string world sheet would be lattice made finite by the size of
CD. Elliptic curves would define very special deformed string world sheets in space-time.

4. Tt is interesting to consider the pre-image of given point y (y = w or y = z) covering point
z. One has y = ++/u, u = P(x) corresponding to group element and its negative: there are
two points of covering given value of u. u = P(x) covers 3 values of x. The values of z would
belong to 6-fold covering of rationals. The number theoretic interpretation for the effective
Planck constant h.rs = nhg states that n is the number of sheets for space-time surface as
covering.

There is evidence that hers = h corresponds to n = 6 [L1]. Could 6-fold covering of rationals
be fundamental since it gives very large cognitive representation at the level of string world
sheets?

For extensions K of rationals the = coordinates for the points of cognitive representation
would belong to 6-D extension of K.

5. Ellipticity condition would apply on the string world sheets themselves. In the number
theoretic vision string world sheets would correspond at M? level to singularities at which the
quaternionic tangent space degenerates to 2-D complex space. Are these conditions consistent
with each other? It would seem that the two conditions would select cognitively very special
string world sheets and partonic 2-surfaces defining by strong form of holography (SH) space-
time surface as a hologram in SH. Consciousness theorist interested in mathematical cognition
might ask whether the notion of elliptic surfaces have been discovered just because it is
cognitively very special. In the case of partonic 2-surfaces geodesic sphere of C' Py is similar
object.

2.4 String like objects and elliptic curves

String like objects - cosmic strings - and their deformations, are fundamental entities in TGD based
cosmology and astrophysics and also in TGD inspired quantum biology. One can assign elliptic
curves also to string like objects.

1. Quite generally, the products X2 x Y2 C M* of string world sheets X2 and complex surfaces
Y2 of CP; define extremals that I have called cosmic strings [K3].

2. Elliptic curves allow a standard imbedding to C' P, as complex surfaces constructible in terms

of Weierstrass elliptic function P(z) (http://tinyurl.com/ycu8oadr) satisfying the identity

P2 = [P() = 9P () — g5 - (2.2)

Here g5 and g3 are modular invariants. This identity is of the same form as the condition

y? = 23 + ax + b with identifications y = P’(z),z = P(z) and (a = —ga,b = —g3). From the
expression

y?=x(r—1)(z — N (2.3)

in terms of the modular invariant A = w; /wy of torus one obtains

41/3

=15 (A= A+1, gg=F£A+1)2\2-51+2) . (2.4)

Note that third root of a appears in the formula. The so called modular discriminant

A=gs—27g2=X(\-1)2 . (2.5)

vanishes for A = 0 and A = 1 for which the lattice degenerates.
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3. The imbedding of the elliptic curve to C'P» can be expressed in projective coordinates of C'Py
as

(21a22723) = (51,52’1) = (
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