How to understand transcendental numbers in terms of infinite integers?

Santeri Satama made in my blog a very interesting question about transcendental numbers. The reformulation of Santeri's question could be "How can one know that given number defined as a limit of rational number is genuinely algebraic or transcendental?". I answered to the question and since it inspired a long sequence of speculations during my morning walk on the sands of Tullinniemi I decided to expand my hasty answer to a blog posting.

The basic outcome was the proposal that by bringing TGD based view about infinity based on infinite primes, integers, and rationals one could regard transcendental numbers as algebraic numbers by allowing genuinely infinite numbers in their definition.

  1. In the definition of any transcendental as a limit of algebraic number (root of a polynomial and rational in special case) in which integer n approaches infinity one can replace n with any infinite integer. The transcendental would be an algebraic number in this generalized sense. Among other things this might allow polynomials with degree given by infinite integer if they have finite number of terms. Also mathematics would be generalized number theory, not only physics!

  2. Each infinite integer would give a different variant of the transcendental: these variants would have different number theoretic anatomies but with respect to real norm they would be identical.

  3. This would extend further the generalization of number concept obtained by allowing all infinite rationals which reduce to units in real sense and would further enrich the infinitely rich number theoretic anatomy of real point and also of space-time point. Space-time point would be the Platonia. One could call this number theoretic Brahman=Atman identity or algebraic holography.

1. How can one know that the real number is transcendental?

The difficulty of telling whether given real number defined as a limit of algebraic number boils down to the fact that there is no numerical method for telling whether this kind of number is rational, algebraic, or transcendental. This limitation of numerics would be also a restriction of cognition if p-adic view about it is correct. One can ask several questions. What about infinite-P p-adic numbers: if they make sense could it be possible to cognize also transcendentally? What can we conclude from the very fact that we cognize transcendentals? Transcendentality can be proven for some transcendentals such as π. How this is possible? What distinguishes "knowably transcendentals" like π and e from those, which are able to hide their real number theoretic identity?

  1. Certainly for "knowably transcendentals" there must exist some process revealing their transcendental character. How π and e are proven to be transcendental? What in our mathematical cognition makes this possible? First of all one starts from the definitions of these numbers. e can be defined as the limit of the rational number (1+1/n)n and 2π could be defined as the limit for the length of the circumference of a regular n-side polygon and is a limit of an algebraic number since Pythagoras law is involved in calculating the length of the side. The process of proving "knowable transcendentality" would be a demonstration that these numbers cannot be solutions of any polynomial equation.

  2. Squaring of circle is not possible because π is transcendental. When I search Wikipedia for squaring of circle I find a link to Weierstrass theorem allowing to prove that π and e are transcendentals. In the formulation of Baker this theorem states the following: If α1,...,αn are distinct algebraic numbers then the numbers eα1,...,eαn are linearly independent over algebraic numbers and therefore transcendentals. One says that the extension Q(eα1,...,eαn) of rationals has transcendence degree n over Q. This is something extremely deep and unfortunately I do not know what is the gist of the proof. In any case the proof defines a procedure of demonstrating "knowable transcendentality" for these numbers. The number of these transcendentals is huge but countable and therefore vanishingly small as compared to the uncountable cardinality of all transcendentals.

  3. This theorem allows to prove that π and e are transcendentals. Suppose on the contrary that π is algebraic number. Then also iπ would be algebraic and the previous theorem would imply that e=-1 is transcendental. This is of course a contradiction. Theorem also implies that e is transcendental. But how do we know that e=-1 holds true? Euler deduced this from the connection between exponential and trigonometric functions understood in terms of complex analysis and related number theory. Clearly, rational functions and exponential function and its inverse -logarithm- continued to complex plane are crucial for defining e and π and proving also e=-1. Exponent function and logarithm appear everywhere in mathematics: in group theory for instance. All these considerations suggest that "knowably transcendental" is a very special mathematical property and deserves a careful analysis.

2. Exponentiation and formation of set of subsets as transcendence

What is so special in exponentiation? Why it sends algebraic numbers to "knowably transcendentals". One could try to understand this in terms of exponentiation which for natural numbers has also an interpretation in terms of power set just as product has interpretation in terms of Cartesian product.

  1. In Cantor's approach to the notion of infinite ordinals exponentiation is involved besides sum and product. All three binary operations - sum, product, exponent are expressed set theoretically. Product and sum are "algebraic" operations. Exponentiation is "non-algebraic" binary operation defined in terms of power set (set of subsets). For m and n definining the cardinalities of sets X and Y, mn defines the cardinality of the set YX defining the number of functions assigning to each point of Y a point of X. When X is two-element set (bits 0 and 1) the power set is just the set of all subsets of Y which bit 1 assigned to the subset and 0 with its complement. If X has more than two elements one can speak of decompositions of Y to subsets colored with different colors- one color for each point of X.

  2. The formation of the power set (or of its analog for the number of colors larger than 2) means going to the next level of abstraction: considering instead of set the set of subsets or studying the set of functions from the set. In the case of Boolean algebras this means formation of statements about statements. This could be regarded as the set theoretic view about transcendence.

  3. What is interesting that 2-adic integers would label the elements of the power set of integers (all possible subsets would be allowed, for finite subsets one would obtain just natural numbers) and p-adic numbers the elements in the set formed by coloring integers with p colors. One could thus say that p-adic numbers correspond naturally to the notion of cognition based on power sets and their finite field generalizations.

  4. But can one naively transcend the set theoretic exponent function for natural numbers to that defined in complex plane? Could the "knowably transcendental" property of numbers like e and π reduce to the transcendence in this set theoretic sense? It is difficult to tell since this notion of power applies only to integers m,n rather than to a pair of transcendentals e,π. Concretization of e in terms of sets seems impossible: it is very difficult to imagine what sets with cardinality e and π could be.

3. Infinite primes and transcendence

TGD suggests also a different identification of transcendence not expressible as formation of a power set or its generalizations.

  1. The notion of infinite primes replaces the set theoretic notion of infinity with purely number theoretic one.

    1. The mathematical motivation could be the need to avoid problems like Russell's antinomy. In Cantorian world a given ordinal is identified as the ordered set of all ordinals smaller than it and the set of all ordinals would define an ordinal larger than every ordinal and at the same time member of all ordinals.

    2. The physical motivation for infinite primes is that their construction corresponds to a repeated second quantization of an arithmetic supersymmetric quantum field theory such that the many particle states of the previous level become elementary particles of the new level. At the lowest level finite primes label fermionic and bosonic states. Besides free many-particle states also bound states are obtained and correspond at the first level of the hierarchy to genuinely algebraic roots of irreducible polynomials.

    3. The allowance of infinite rationals which as real numbers reduce to real units implies that the points of real axes have infinitely rich number theoretical anatomy. Space-time point would become the Platonia. One could speak of number theoretic Brahman=Atman identity or algebraic holography. The great vision is that the World of Classical Worlds has a mathematical representation in terms of the number theoretical anatomy of space-time point.

  2. Transcendence in purely number theoretic sense could mean a transition to a higher level in the hierarchy of infinite primes. The scale of new infinity defined as the product of all prime at the previous level of hierarchy would be infinitely larger than the previous one. Quantization would correspond to abstraction and transcendence.

This idea inspires some questions.

  1. Could infinite integers allow the reduction of transcendentals to algebraic numbers when understood in general enough sense. Could real algebraic numbers be reduced to infinite rationals with finite real values (for complex algebraic numbers this is certainly not the case)? If so, then all real numbers would be rationals identified as ratios of possibly infinite integers and having finite value as real numbers? This turns out to be too strong a statement. The statement that all real numbers can be represented as finite or infinite algebraic numbers looks however sensible and would reduce mathematics to generalized number theory by reducing limiting procedure involved with the transition from rationals to reals to algebraic transcendence. This applies also to p-adic numbers.

  2. p-Adic cognition for finite values of prime p does not explain why we have the notions of π and e and more generally, that of transcendental number. Could the replacement of finite-p p-adic number fields with infinite-P p-adic number fields allow us to understand our own mathematical cognition? Could the infinite-P p-adic number fields or at least integers and corresponding space-time sheets make possible mathematical cognition able to deduce analytic formulas in which transcendentals and transcendental functions appear making it possible to leave the extremely restricted realm of numerics and enter the realm of mathematics? Lie group theory would represent a basic example of this transcendental aspect of cognition. Maybe this framework might allow to understand why we can have the notion of transcendental number!

4. Identification of real transcendentals as infinite algebraic numbers with finite value as real numbers

The following observations suggests that it could be possible to reduce transcendentals to generalized algebraic numbers in the framework provided by infinite primes. This would mean that not only physics but also mathematics (or at least "physical mathematics") could be seen as generalized number theory.

  1. In the definition of any transcendental as an n→ ∞ limit of algebraic number (root of a polynomial and rational in special case), one can replace n with any infinite integer if n appears as an argument of a function having well defined value at this limit. If n appears as the number of summands or factors of product, the replacement does not make sense. For instance, an algebraic number could be defined as a limit of Taylor series by solving the polynomial equation defining it. The replacement of the upper limit of the series with infinite integer does not however make sense. Only transcendentals (and possibly also some algebraic numbers) allowing a representation as n→ ∞ limit with n appearing as argument of expression involving a finite number of terms can have representation as infinite algebraic number. The rule would be simple.

    Transcendentals or algebraic numbers allowing an identification as infinite algebraic number must correspond to a term of a sequence with a fixed number of terms rather than sum of series or infinite product.

  2. Each infinite integer gives a different variant of the transcendental: these variants would have different number theoretic anatomies but with respect to the real norm they would be identical.

  3. The heuristic guess is that any genuine algebraic number has an expression as Taylor series obtained by writing the solution of the polynomial equation as Tarylor expansion. If so, algebraic numbers must be introduced in the standard manner and do not allow a representation as infinite rationals. Only transcendentals would allow a representation as infinite rationals or infinite algebraic numbers. The infinite variety of representation in terms of infinite integers would enormously expand the number theoretical anatomy of the real point. Do all transcendentals allow an expression containing a finite number of terms and N appearing as argument? Or is this the defining property of only "knowably transcendentals"?

One can consider some examples to illustrate the situation.

  1. The transcendental π could be defined as πN=-iN(eiπ/N-1), where eiπ/N is N:th root of unity for infinite integer N and as a real number real unit. In real sense the limit however gives π. There are of course very many definitions of π as limits of algebraic numbers and each gives rise to infinite variety of number theoretic anatomies of π.

  2. One can also consider the roots exp(i2π n/N) of the algebraic equation xN=1 for infinite integer N. One might define the roots as limits of Taylor series for the exponent function but it does not make sense to define the limit when the cutoff for the Taylor series approaches some infinite integer. These roots would have similar multiplicative structure as finite roots of unity with pn:th roots with p running over primes defining the generating roots. The presence of Nth roots of unity f or infinite N would further enrich the infinitely rich number theoretic anatomy of real point and therefore of space-time points.

  3. There would be infinite variety of Neper numbers identified as eN=(1+1/N)N, N any infinite integer. Their number theoretic anatomies would be different but as real numbers they would be identical.

To conclude, the talk about infinite primes might sound weird in the ears of a layman but mathematicians do not lose their peace of mind when they here the word "infinity". The notion of infinity is relative. For instance, infinite integers are completely finite in p-adic sense. One can also imagine completely "real-worldish" realizations for infinite integers (say as states of repeatedly second quantized arithmetic quantum field theory and this realization might provide completely new insights about how to undestand bound states in ordinary QFT).

For details and background see the chapter Physics as Generalized Number Theory: Infinite Primes or to the article How infinite primes relate to other views about mathematical infinity?.